WO2012130063A1 - 电源模块以及应用该电源模块的电子设备 - Google Patents

电源模块以及应用该电源模块的电子设备 Download PDF

Info

Publication number
WO2012130063A1
WO2012130063A1 PCT/CN2012/072665 CN2012072665W WO2012130063A1 WO 2012130063 A1 WO2012130063 A1 WO 2012130063A1 CN 2012072665 W CN2012072665 W CN 2012072665W WO 2012130063 A1 WO2012130063 A1 WO 2012130063A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
circuit board
printed circuit
heat pipe
heat sink
Prior art date
Application number
PCT/CN2012/072665
Other languages
English (en)
French (fr)
Inventor
侯召政
邓小池
陈严
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012130063A1 publication Critical patent/WO2012130063A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a power module and an electronic device to which the power module is applied. Background technique
  • a power module typically includes a printed circuit board and a number of energy conversion components mounted on the printed circuit board.
  • existing power modules usually have a heat sink placed above the energy conversion assembly. In this way, the heat generated by the energy conversion component is dissipated through the radiator in time.
  • the heat sink of the existing power module usually has only a single heat transfer and heat dissipation channel, and only heats the energy conversion component, and does not take into account the heat accumulated by the energy conversion component on the printed circuit board, along with the heat of the printed circuit board. Constant accumulation can also adversely affect the printed circuit board and other electronic components mounted on the circuit board, resulting in a thermal blind spot in the power module, and the overall heat dissipation effect is not good.
  • the embodiment of the invention provides a power module with better heat dissipation effect and an electronic device applying the power module.
  • a power module includes a printed circuit board and a plurality of energy conversion components mounted on the printed circuit board, at least one heat pipe, at least one heat sink; the heat sink is mounted on the at least one energy conversion component;
  • the printed circuit board is thermally connected, and the other end of the heat pipe Thermally connected to the heat sink. Heat from the printed circuit board is transferred to the heat pipe; heat is then transferred to the heat sink through the heat pipe.
  • An electronic device includes a power module including a printed circuit board and a plurality of energy conversion components mounted on the printed circuit board, at least one heat pipe, and at least one heat sink; the heat sink being mounted to the at least one energy conversion component One end of the heat pipe is thermally connected to the printed circuit board, and the other end of the heat pipe is thermally connected to the heat sink.
  • the power module has a heat conduction connection between one end of the heat pipe and the printed circuit board, and the other end is thermally connected to the heat sink, thereby adding a heat dissipation channel to the printed circuit board, and transferring heat on the printed circuit board through the heat pipe.
  • the heat is dissipated to the surrounding environment by the heat sink, thereby solving the technical problem that the existing power module has a heat dissipation blind spot and the overall heat dissipation effect is poor by increasing the heat dissipation channel.
  • FIG. 1 is a schematic diagram of an embodiment of a power module according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of an internal heat transfer model of a power module according to Embodiment 1 of the present invention
  • Schematic diagram of the internal heat transfer model of the module
  • FIG. 4 is a schematic diagram of an embodiment of a power module according to Embodiment 2 of the present invention. Specific real li ⁇ r
  • the embodiment of the invention provides a power module.
  • a power module provided by an embodiment of the present invention includes a printed circuit board 1 and a plurality of energy conversion components 2 mounted on the printed circuit board 1 , at least one heat pipe 5 , at least one heat sink 3 , and a heat sink 3 . It is mounted on at least one energy conversion component 2; one end of the heat pipe 5 is thermally connected to the printed circuit board 1, and the other end of the heat pipe 5 is thermally connected to the heat sink 3. The heat of the printed circuit board 1 is transferred to the heat pipe 5; heat is then transferred to the heat sink 3 through the heat pipe 5.
  • a thermal pad 4 (or thermal paste) is typically placed between the energy conversion assembly 2 and the heat sink 3, although the heat sink 3 can also be mounted directly to the energy conversion assembly 2.
  • One end of the heat pipe 5 is thermally connected to the printed circuit board 1, and the other end of the heat pipe 5 is thermally connected to the heat sink 3, thereby adding a heat dissipation path to the printed circuit board 1.
  • multiple heat pipes 5 can be placed on the power module to add more heat dissipation channels.
  • the heat on the printed circuit board 1 is transmitted to one end of the heat pipe 5, and then transmitted to the heat sink 3 at the other end through the heat pipe 5, and is radiated by the heat sink 3, thereby solving the technology of low heat dissipation efficiency on the printed circuit board 1. problem.
  • a side surface of the printed circuit board 1 is formed with a metallized side wall 13 and joined to one end of the heat pipe 5.
  • the printed circuit board 1 is composed of a phase-conducting conductive layer 11 and a spacer layer 12, and a metallized sidewall 13 is formed on the surface of the printed circuit board 1 and joined to one end of the heat pipe 5 to form a heat-conductive connection, which can more quickly generate the conductive layer 11. Heat is transferred to the heat pipe 5.
  • the heat pipe 5 is flat, and the flat surface of the heat pipe 5 is attached to the metallized side wall 13.
  • the flat heat pipe 5 can obtain a larger contact area with the metallized side wall 13 under the same volume condition, i.e., maximize the heat exchange area.
  • the heat sink 3 includes a substrate 32 and a heat dissipation structure formed on the substrate 32.
  • the heat dissipation structure may be a fin, a fin, a screw, a cylinder, or the like for increasing the physical contact area with air.
  • the heat dissipation structure is a plurality of fins 33 spaced apart from each other.
  • a hole 31 is formed in the substrate 32 of the heat sink 3, and the other end of the heat pipe 5 is inserted into the hole 31.
  • the contact area between the heat pipe 5 and the heat sink 3 can be increased, and the thermal resistance can be reduced, so that the heat of the printed circuit board 1 can be transferred to the substrate 32 of the heat sink 3 through the heat pipe 5, and then passed through the fins 33.
  • the heat is quickly dissipated into the surrounding air, thereby cooling the printed circuit board 1, improving the heat dissipation efficiency of the power module, especially the heat dissipation efficiency of the printed circuit board 1.
  • the metallized sidewall 13 is formed on the sidewall of the printed circuit board 1 by means of copper or the like. Copper sinking is a deposition method suitable for the manufacture of printed circuit boards 1.
  • the metallized sidewall 13 and the heat pipe 5 are fixed by bonding or welding. In order to transfer heat better, it is necessary to ensure that the heat pipe 5 is in close contact with the metallized side wall 13 and is fixedly connected. Preferably, the metallized sidewall 13 is fixedly connected to the heat pipe 5 by means of bonding or welding.
  • the heat pipe 5 may be a heat-conducting pipe body having various shapes such as a circular shape, an elliptical shape and a flat shape. In the embodiment, the heat pipe 5 is bent in an L shape and is flat in cross section, and the flat surface of the heat pipe 5 - end is closely combined with the metallized sidewall 13 of the printed circuit board 1 to realize the same under the same conditions. The heat exchange area of the heat pipe 5 and the metallized sidewall 13 is maximized.
  • the heat transfer model of the embodiment of the present invention can be simplified to the form shown in FIG. 2, wherein Q1 is the heat of the heat source of the printed circuit board, and Q2 is the heat source of the energy conversion component of the surface of the printed circuit board.
  • Q3 is the heat from the energy conversion component on the lower surface of the printed circuit board;
  • R1 is the thermal resistance from the heat source of the upper energy conversion component to the heat sink;
  • R2 is the thermal resistance from the inside of the heat sink;
  • R3 is from the heat sink to Thermal resistance of the external environment;
  • R4 is the thermal resistance from the printed circuit board to the upper energy conversion component;
  • R5 is the thermal resistance from the printed circuit board to the lower energy conversion component;
  • R6 is the thermal resistance of the lower energy conversion component to the external environment Resistor;
  • R7 is the thermal resistance of the PCB through the metallized sidewall through the heat pipe to the heat sink:
  • the thermal resistance of Q1 to the external environment is (R1+R2+R3+R4) II (R5+R6) II (R7+R2+R3);
  • the thermal resistance of the Q2 to the outer environment is ( R1+R2+R3 ) II ( R4+R5+R6 ) II (R4+R7+R2+R3);
  • the thermal resistance of Q3 to the external environment is (R1+R2+R3+R4+R5) II R6 II (R5+R7+R2+R3)o.
  • the heat transfer model can be simplified as shown in Figure 3. Form of presentation: the same as the model shown in Figure 2 except R7;
  • the thermal resistance of Q1 to the external environment is (R1+R2+R3+R4) II (R5+R6);
  • the thermal resistance of Q2 to the external environment is (R1+R2+R3) II (R4+R5+R6);
  • the thermal resistance of Q3 to the external environment is (R1+R2+R3+R4+R5) II R6.
  • the lower layer energy conversion component Since the lower layer energy conversion component has a small surface area, it exchanges less heat with the external environment; its thermal resistance R6 is large; and R2, R3, R4, R5, and R7 are both conduction heat resistance, relatively small; and because the heat pipe is very excellent Thermal conductivity, thermal resistance R7 is very small for R2, R3, R4, R5, R7 one tenth or even one thousandth; more than one thousandth of the R6; visible
  • This embodiment is basically the same as the first embodiment, and the difference is that, as shown in FIG. 4, in the embodiment, the hole 34 is formed on the fin 33 of the heat sink 3.
  • the heat pipe 5 can be placed in the hole 34 in the middle portion of the fin 33 to prevent the heat of the portion of the substrate 32 of the heat sink 3 from being excessively concentrated, resulting in a decrease in heat dissipation efficiency.
  • Example 3 The embodiment of the invention further provides an electronic device, which comprises the power module of the first embodiment or the second embodiment.
  • the power module includes a printed circuit board and a plurality of energy conversion components mounted on the printed circuit board, at least one heat pipe, and at least one heat sink; the heat sink is mounted on the at least one energy conversion component, and the heat sink is disposed above the energy conversion component; One end of the heat pipe is thermally connected to the printed circuit board; the other end of the heat pipe is thermally connected to the heat sink.

Description

电源模块以及应用该电源模块的电子设备
技术领域 本发明属于电子技术领域, 具体涉及一种电源模块以及应用该电源模 块的电子设备。 背景技术
随着电信、 服务器等领域的设备功率不断增加、 体积不断减小, 这些 设备的电源模块应用空间也越来越紧凑, 高功率高密度电源模块已成为未 来的发展方向之一, 而电源模块的散热能力直接决定了电源模块的热性能, 及高温下的输出功率、 供电效率等性能。
电源模块通常包括一块印刷电路板和安装于印刷电路板上的若干能量 变换组件。 现有的电源模块为达到散热效果, 通常在能量变换组件上方放 置散热器。 这样, 能量变换组件产生的热量就会通过散热器及时散发。
然而, 现有电源模块的散热器通常只有单一的传热以及散热通道, 仅 对能量变换组件进行散热, 并没有考虑到能量变换组件聚集在印刷电路板 上的热量, 随着印刷电路板热量的不断聚集也会对印刷电路板以及安装于 电路板上的其它电子元件产生不良影响, 而导致电源模块存在散热盲点, 而整体散热效果不佳。 发明内容
本发明实施例提供了一种散热效果较好的电源模块以及应用该电源模 块的电子设备。
一种电源模块, 包括印刷电路板和安装于印刷电路板上的若干能量变 换组件、 至少一热管、 至少一散热器; 所述散热器安装于至少一能量变换 组件上; 所述热管的一端与所述印刷电路板导热连接, 所述热管的另一端 与散热器导热连接。 所述印刷电路板的热量传递至所述热管; 然后通过所 述热管将热量传递至所述散热器。
一种电子设备, 包括一电源模块, 该电源模块包括印刷电路板和安装 于印刷电路板上的若干能量变换组件、 至少一热管、 至少一散热器; 所述 散热器安装于至少一能量变换组件上; 所述热管的一端与所述印刷电路板 导热连接, 所述热管的另一端与所述散热器导热连接。
与现有技术相比, 上述电源模块通过将热管的一端与印刷电路板导热 连接, 另一端与散热器导热连接, 从而为印刷电路板增加了散热通道, 将 印刷电路板上的热量经由热管传递至散热器, 再由散热器将热量散发到周 围环境中, 从而通过增加散热通道解决了现有的电源模块存在散热盲点而 整体散热效果不佳的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明的实施例 1所提供的电源模块的一种实施方式的示意图; 图 2为本发明的实施例 1所提供的电源模块内部热传递模型的示意图; 图 3为现有的电源模块内部热传递模型的示意图;
图 4为本发明的实施例 2所提供的电源模块的一种实施方式的示意图。 具体实 li^r式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人 员在没有付出创造性劳动的前提下所获得的所有其他实施例, 都属于本发 明保护的范围。
本发明实施例提供了一种电源模块。
实施例 1 :
如图 1所示, 本发明实施例所提供的电源模块, 包括印刷电路板 1和 安装于印刷电路板上 1的若干能量变换组件 2、 至少一热管 5、 至少一散热 器 3; 散热器 3安装于至少一能量变换组件 2上; 热管 5的一端与印刷电路 板 1导热连接, 热管 5的另一端与散热器 3导热连接。 印刷电路板 1的热 量传递至热管 5; 然后通过热管 5将热量传递至散热器 3。
通常在能量变换组件 2与散热器 3之间放置导热垫 4 (或导热胶), 当 然也可以将散热器 3直接安装在能量变换组件 2上。 将热管 5的一端与印 刷电路板 1导热连接, 并将热管 5的另一端与散热器 3导热连接, 从而为 印刷电路板 1增加了散热通道。 当然, 在电源模块上可以设置多个热管 5, 从而增加更多的散热通道。将印刷电路板 1上的热量传递至热管 5的一端, 再通过热管 5传递至另一端的散热器 3, 并由散热器 3进行散热, 从而解决 了印刷电路板 1上的散热效率低的技术问题。
本发明实施例中, 印刷电路板 1的一侧面形成有金属化侧壁 13并与热 管 5的一端接合。 印刷电路板 1由相间的导电层 11和隔离层 12构成, 在 印刷电路板 1层面形成金属化侧壁 13并与热管 5的一端接合, 形成导热连 接, 能够更加快速的将导电层 11产生的热量传递至热管 5上。
本发明实施例中, 热管 5呈扁平状, 热管 5—端的扁平面贴合于金属 化侧壁 13上。 扁平状的热管 5在相同体积的条件下, 能够获得与金属化侧 壁 13更大的接触面积, 即实现了热交换面积的最大化。
上述散热器 3包括一基板 32以及形成与基板 32上的散热结构。 所述 散热结构可以是鳍片、 翅片、 螺杆、 柱体等用于增加与空气接触面积的物 理结构。 本发明实施例中, 所述散热结构为若干相互平行间隔的翅片 33。 在散热器 3的基板 32内开设孔 31, 热管 5的另一端插设于孔 31内。 采用 这种结构, 能增加热管 5与散热器 3的接触面积, 减小热阻, 从而可以通 过热管 5将印刷电路板 1的热量传递至散热器 3的基板 32上, 再通过翅片 33将热量快速散发到周围空气中, 从而实现冷却印刷电路板 1, 提高电源 模块的散热效率, 尤其是印刷电路板 1的散热效率。
本发明实施例中, 金属化侧壁 13通过沉铜等加工方式形成于印刷电路 板 1的侧壁上。 沉铜属于沉积法, 适用于印刷电路板 1的制造。
本发明实施例中, 金属化侧壁 13与热管 5通过粘接或焊接的方式相固 连。 为了更好的传递热量, 需要保证热管 5与金属化侧壁 13紧密接触, 并 固定连接。 作为优选方案, 采用粘接或焊接的方式, 将金属化侧壁 13与热 管 5固连, 所述热管 5可以为横截面呈圆型、 椭圆形、 扁平形等各种形状 的导热管体, 在本实施例中所述热管 5呈 L形弯折且截面上呈扁平状, 所 述热管 5—端的扁平面与印刷电路板 1的金属化侧壁 13紧密结合, 以在同 等条件下实现所述热管 5与金属化侧壁 13热交换面积的最大化。
本发明实施例的热传递模型可以简化为如图 2所示的形式:其中 Q1为 以印刷电路板的导电层为热源的热量, Q2为以印刷电路板上表面的能量变 换组件为热源的热量, Q3为以印刷电路板下表面的能量变换组件为热源的 的热量; R1为从上层能量变换组件热源至散热器的热阻; R2为从散热器内 部的热阻; R3为从散热器至外部环境的热阻; R4为从印刷电路板至上层能 量变换组件的热阻; R5 为从印刷电路板至下层能量变换组件的热阻; R6 为下层能量变换组件的热阻至外部环境的热阻; R7为 PCB经过金属化侧壁 经热管至散热器的热阻:
Q1至外部环境的热阻为(R1+R2+R3+R4) II (R5+R6) II (R7+R2+R3 );
Q2 至夕卜部环境的热阻为 ( R1+R2+R3 ) II ( R4+R5+R6 ) II (R4+R7+R2+R3 );
Q3至外部环境的热阻为(R1+R2+R3+R4+R5 ) II R6 II (R5+R7+R2+R3)o 而现有的电源模块, 其热传递模型可以简化为如图 3所示的形式: 除 R7以外与图 2所示的模型相同;
Q1至外部环境的热阻为 (R1+R2+R3+R4) II (R5+R6);
Q2至外部环境的热阻为 (R1+R2+R3 ) II (R4+R5+R6);
Q3至外部环境的热阻为 (R1+R2+R3+R4+R5 ) II R6。
由于下层能量变换组件表面积小, 其与外部环境交换热量较少; 其热 阻 R6很大; 而 R2、 R3、 R4、 R5、 R7均为传导热阻, 相对较小; 而由于 热管非常优良的导热性能, 热阻 R7非常小为 R2、 R3、 R4、 R5、 R7十分 之一甚至千分之一; 比 R6更是千分之一以下; 可见
(R1+R2+R3+R4) II (R5+R6) II (R7+R2+R3 ) < (R1+R2+R3+R4) II (R5+R6)
(R1+R2+R3 ) II (R4+R5+R6) II (R4+R7+R2+R3 ) < (R1+R2+R3 ) II (R4+R5+R6)
( R1+R2+R3+R4+R5 ) II R6 II ( R5+R7+R2+R3 ) < (R1+R2+R3+R4+R5 ) II R6, 当然最直接最有效的还是对 Q1 至外部环境 的热阻的改善, 而且采用本发明实施例的技术方案后从热源至外部环境的 热阻根据翅片散热片的设计可以减小到 1/2以下;有效的加强电源模块的散 热, 是实现高功率高密度电源模块的有效方法之一。
实施例 2:
本实施例与实施例 1基本相同, 其不同点在于: 如图 4所示, 本实施 例中, 孔 34开设在散热器 3的翅片 33上。
当电源模块的发热量很大时, 可将热管 5放置于翅片 33中间部分的孔 34内, 避免散热器 3基板 32部分的热量过于集中, 而导致散热效率降低。
实施例 3: 本发明实施例还提供一种电子设备, 该电子设备包括上述实施例 1 或 实施例 2 的电源模块。 该电源模块, 包括印刷电路板和安装于印刷电路板 上的若干能量变换组件、 至少一热管、 至少一散热器; 散热器安装于至少 一能量变换组件上, 能量变换组件上方设置有散热器; 热管的一端与印刷 电路板导热连接; 热管的另一端与散热器导热连接。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发 明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1、 一种电源模块, 其特征在于: 包括印刷电路板和安装于印刷电路板 上的若干能量变换组件、 至少一热管、 至少一散热器;
所述散热器安装于至少一能量变换组件上;
所述热管的一端与所述印刷电路板导热连接, 所述热管的另一端与所 述散热器导热连接。
2、 根据权利要求 1所述的电源模块, 其特征在于: 所述印刷电路板的 一侧面形成有金属化侧壁并与所述热管的一端接合。
3、根据权利要求 2所述的电源模块,其特征在于:所述热管呈扁平状, 所述热管一端的扁平面贴合于所述金属化侧壁上。
4、 根据权利要求 3所述的电源模块, 其特征在于: 所述热管的另一端 插设于所述散热器内, 以将所述印刷电路板的热量传递至所述散热器上。
5、 根据权利要求 3所述的电源模块, 其特征在于: 所述散热器包括一 贴设于至少一能量变换组件上的基板以及形成于基板上的散热结构。
6、 根据权利要求 5所述的电源模块, 其特征在于: 所述热管另一端插 设于所述基板内。
7、 根据权利要求 5所述的电源模块, 其特征在于: 所述散热结构为形 成于基板上的翅片, 所述热管的另一端穿设于翅片内。
8、 根据权利要求 2所述的电源模块, 其特征在于: 所述金属化侧壁采 用侧壁沉铜的方式加工而成。
9、 根据权利要求 2所述的电源模块, 其特征在于: 所述金属化侧壁与 所述热管通过粘接或焊接的方式相固连。
10、 一种电子设备, 包括一电源模块, 其特征在于: 该电源模块包括 印刷电路板和安装于印刷电路板上的若干能量变换组件、 至少一热管、 至 少一散热器;
所述散热器安装于至少一能量变换组件上; 所述热管的一端与所述印刷电路板导热连接, 所述热管的另一端与所 述散热器导热连接。
11、 根据权利要求 10所述的电子设备, 其特征在于: 所述印刷电路板 的一侧面形成有金属化侧壁并与所述热管的一端接合。
PCT/CN2012/072665 2011-03-29 2012-03-21 电源模块以及应用该电源模块的电子设备 WO2012130063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110077095.3 2011-03-29
CN2011100770953A CN102163910B (zh) 2011-03-29 2011-03-29 电源模块以及应用该电源模块的电子设备

Publications (1)

Publication Number Publication Date
WO2012130063A1 true WO2012130063A1 (zh) 2012-10-04

Family

ID=44464939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072665 WO2012130063A1 (zh) 2011-03-29 2012-03-21 电源模块以及应用该电源模块的电子设备

Country Status (2)

Country Link
CN (1) CN102163910B (zh)
WO (1) WO2012130063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728942B (zh) * 2020-07-20 2021-05-21 雙鴻科技股份有限公司 散熱模組

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163910B (zh) * 2011-03-29 2013-12-04 华为技术有限公司 电源模块以及应用该电源模块的电子设备
CN113296202B (zh) * 2016-02-05 2022-10-21 苏州旭创科技有限公司 光模块
CN112020266A (zh) * 2019-05-31 2020-12-01 中科寒武纪科技股份有限公司 多用途散热器及其制造方法、板卡和多用途散热器平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088728A1 (en) * 2002-04-12 2003-10-23 Bombardier Transportation Gmbh Power converter module
CN2629393Y (zh) * 2003-06-20 2004-07-28 艾默生网络能源有限公司 一种模块电源
CN201066981Y (zh) * 2007-07-05 2008-05-28 纬创资通股份有限公司 连接多个发热元件的排热模块及可排除其热能的主机板
CN201450460U (zh) * 2009-08-10 2010-05-05 杜长福 一种散热性好的中小功率逆变电源
CN102163910A (zh) * 2011-03-29 2011-08-24 华为技术有限公司 电源模块以及应用该电源模块的电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018463A (zh) * 2006-02-08 2007-08-15 富准精密工业(深圳)有限公司 电子装置组合
CN101102655A (zh) * 2006-07-07 2008-01-09 富准精密工业(深圳)有限公司 散热装置
CN101196772A (zh) * 2006-12-06 2008-06-11 华硕电脑股份有限公司 散热器背板模块及应用此模块的电路板与电子装置
CN102122879B (zh) * 2011-01-07 2013-08-07 华为技术有限公司 一种叠层电源及叠层电源互联方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088728A1 (en) * 2002-04-12 2003-10-23 Bombardier Transportation Gmbh Power converter module
CN2629393Y (zh) * 2003-06-20 2004-07-28 艾默生网络能源有限公司 一种模块电源
CN201066981Y (zh) * 2007-07-05 2008-05-28 纬创资通股份有限公司 连接多个发热元件的排热模块及可排除其热能的主机板
CN201450460U (zh) * 2009-08-10 2010-05-05 杜长福 一种散热性好的中小功率逆变电源
CN102163910A (zh) * 2011-03-29 2011-08-24 华为技术有限公司 电源模块以及应用该电源模块的电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728942B (zh) * 2020-07-20 2021-05-21 雙鴻科技股份有限公司 散熱模組

Also Published As

Publication number Publication date
CN102163910B (zh) 2013-12-04
CN102163910A (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
TW201248109A (en) Electronic equipment
JP3128955U (ja) 放熱シート結合の電気回路板構造
TW201334679A (zh) 散熱模組
TWI467116B (zh) 散熱模組結合構造
WO2012130063A1 (zh) 电源模块以及应用该电源模块的电子设备
JP3233006U (ja) 放熱装置
TWI603441B (zh) 功率模組及其製造方法
CN107871723A (zh) 一种预埋热管的散热板及其应用于电子设备的方法
TWI522032B (zh) 散熱模組
CN209745070U (zh) 相变散热装置
CN209402925U (zh) 一种pcb板的双面散热装置
TWM438651U (en) Stacked type heat dissipation module of electronic device
CN212588569U (zh) 一种带有散热装置的柔性线路板
CN217406795U (zh) 用于支撑印制电路板的覆铜箔
CN105764239B (zh) 一种高散热性能的大功率电子元件线路板及其制作方法
JP2004311464A (ja) 半導体装置
CN205179511U (zh) 一种高散热性能的大功率电子元件线路板
TWI823234B (zh) 散熱器及散熱器製造方法
CN219269435U (zh) 双向散热器
CN213662045U (zh) Mos管散热装置及系统
CN214046434U (zh) 散热模组以及装置
CN212183801U (zh) 一种具有散热功能的多层印制线路板
CN220510169U (zh) 一种组合式电池包安装连接架
CN215222808U (zh) 一种半导体电子元件
JP2018174184A (ja) 冷却装置及び冷却装置を備えた照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764850

Country of ref document: EP

Kind code of ref document: A1