WO2012129932A1 - 检测门限的确定方法和感知节点设备 - Google Patents

检测门限的确定方法和感知节点设备 Download PDF

Info

Publication number
WO2012129932A1
WO2012129932A1 PCT/CN2011/083834 CN2011083834W WO2012129932A1 WO 2012129932 A1 WO2012129932 A1 WO 2012129932A1 CN 2011083834 W CN2011083834 W CN 2011083834W WO 2012129932 A1 WO2012129932 A1 WO 2012129932A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
primary user
sensing node
user transmitter
signal strength
Prior art date
Application number
PCT/CN2011/083834
Other languages
English (en)
French (fr)
Inventor
邱晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11862504.5A priority Critical patent/EP2680646B1/en
Publication of WO2012129932A1 publication Critical patent/WO2012129932A1/zh
Priority to US14/035,606 priority patent/US9210707B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method for determining a threshold and a sensing node device. Background technique
  • Cognitive Radio Able to sense the wireless communication environment, dynamically detect and effectively utilize idle spectrum resources, allowing secondary users to perform multi-dimensional spectrum multiplexing with primary users in time, frequency and space, which will greatly reduce spectrum and bandwidth limitations for wireless technologies.
  • Spectrum sensing is one of the key technologies of cognitive radio.
  • the purpose of spectrum sensing is to monitor and detect the activity of the main user signal on a specific frequency band: When the idle spectrum is present, the cognitive radio system can use the frequency band; when the primary user signal is detected, the cognitive radio system must exit the frequency band within the specified time.
  • the spectrum sensing performance mainly depends on the following factors:
  • the detection threshold is the minimum primary user signal strength that the sensing node needs to detect. If, on a frequency, the sensing node detects that the primary user signal strength exceeds the detection threshold, the primary user may be considered to appear on the frequency; otherwise, the frequency may be idle and may be used; the primary user protection time, that is, the maximum allowed by the primary user Interference time refers to the time from when the primary user appears to the secondary system and exits the frequency.
  • the determined channel model calculates the received signal strength at a specific location as the actual detection threshold at that location.
  • the existing channel models are general channel models for a certain terrain, that is, for a specific terrain (city, suburb, open land, mountain, etc.), as long as the distance from the primary user transmitter is the same, regardless of whether the sensing node is actually.
  • the geographical environment has the same detection threshold, which causes the calculated detection threshold to be inconsistent with the actual detection threshold.
  • the detection threshold is determined based on the existing method, or the detection threshold is set too high, the detection probability is lowered; or the detection threshold is set too low, the sensing overhead is increased, and the false alarm probability is increased. Therefore, the existing methods for determining the detection threshold have great drawbacks.
  • the detection threshold is determined by the existing method, it is necessary to know the position of the television (hereinafter referred to as TV) transmitter and the transmission power, and the information is not available in any country or region. If the above information cannot be obtained in advance, it is difficult to determine the detection threshold of the location of the sensing node. Only the uniform minimum detection threshold can be used to constrain the behavior of the sensing node, thereby causing the detection threshold to be set too low. Summary of the invention
  • the embodiment of the invention provides a method for determining a threshold and a sensing node device, so that the sensing node determines the appropriate detection threshold for the unoccupied frequency by measuring the received signal strength of the occupied frequency of the primary user transmitter.
  • An embodiment of the present invention provides a method for determining a detection threshold, including:
  • the sensing node measures the target frequency band, determines the occupied frequency in the target frequency band, and the received signal strength of the sensing node on the occupied frequency, where the occupied frequency in the target frequency band includes the target frequency band.
  • the sensing node determines, according to the received signal strength on the occupied frequency, a detection threshold of an unoccupied frequency in the target frequency band, where the unoccupied frequency includes a frequency that is not used by a primary user transmitter in the target frequency band.
  • the embodiment of the invention further provides a sensing node device, including:
  • a measurement module configured to measure a target frequency band, determine an occupied frequency in the target frequency band, and a received signal strength of the sensing node device on the occupied frequency, where the occupied frequency in the target frequency band includes The frequency that the primary user transmitter is using or has used in the target frequency band; a determining module, configured to determine, according to the received signal strength on the occupied frequency determined by the measurement module, a detection threshold of an unoccupied frequency in the target frequency band, where the unoccupied frequency includes not being transmitted by a primary user in the target frequency band The frequency used by the machine.
  • the sensing node measures the target frequency band, determines the received signal strength of the occupied frequency in the target frequency band, and determines the detection threshold of the unoccupied frequency according to the received signal strength of the occupied frequency, so that the sensing node is The occupancy frequency determines the appropriate detection threshold.
  • FIG. 1 is a flow chart of an embodiment of a method for determining a detection threshold according to the present invention
  • FIG. 2 is a schematic diagram of an embodiment of a path loss difference curve of the present invention.
  • FIG. 3 is a flow chart of another embodiment of a method for determining a detection threshold according to the present invention.
  • FIG. 4 is a flow chart of still another embodiment of a method for determining a detection threshold according to the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of a sensing node device according to the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of a sensing node device according to the present invention. detailed description
  • FIG. 1 is a flowchart of an embodiment of a method for determining a detection threshold according to the present invention. The following is an application scenario of the embodiment:
  • the same primary user transmitter uses the same transmit power each time the same frequency is used; the transmit power of the same standard transmit signal of the same primary user transmitter at all frequencies All the same.
  • the application scenario of the method for determining the detection threshold provided by this embodiment is the perception of a main user signal such as a TV signal.
  • the method for determining the detection threshold may include:
  • Step 101 The sensing node measures the target frequency band, determines the occupied frequency in the target frequency band, and the received signal strength of the sensing node on the occupied frequency.
  • the occupied frequency in the target frequency band includes the primary user transmitter in the target frequency band. The frequency being used or used.
  • Step 102 The sensing node determines, according to the received signal strength on the occupied frequency, a detection threshold of an unoccupied frequency in the target frequency band, where the unoccupied frequency includes a frequency in the target frequency band that is not used by the primary user transmitter.
  • the sensing node may calculate a path loss difference between the occupied frequency and the unoccupied frequency of the primary user transmitter, and then calculate the received signal strength on the occupied frequency, and the primary user transmitter is in the occupied frequency and the unoccupied frequency.
  • calculating a path loss difference between the occupied frequency and the unoccupied frequency of the primary user transmitter may be: the sensing node determines a channel model formula between the primary user transmitter and the sensing node, According to the formula, the path loss difference between the occupied frequency and the unoccupied frequency of the primary user transmitter is calculated.
  • calculating a path loss difference between the occupied frequency and the unoccupied frequency of the primary user transmitter may be: the sensing node transmits according to the actual height of the primary user transmitter transmitting antenna. Determine the height of the two transmit antennas in the historical field strength value of the channel model between the machine and the sensing node, and obtain the corresponding frequency at the height corresponding to the height reference values of the two transmitting antennas by frequency interpolation respectively. The field strength value is then obtained according to the field strength value corresponding to the occupied frequency and the unoccupied frequency, and the frequency occupied by the actual height of the primary user transmitter is respectively obtained by interpolating the actual height of the transmitting antenna of the primary user transmitter.
  • the sensing node may perform field strength curve correction on the difference between the actual height value of the receiving node receiving antenna and the receiving antenna height reference value in the empirical field strength value, respectively obtaining the occupied frequency and the unoccupied frequency corresponding to Correction value; finally, the sensing node can be based on the occupied frequency pair at the actual height
  • the field strength value and the correction value corresponding to the occupied frequency calculated
  • the path loss corresponding to the occupied frequency; the path loss corresponding to the unoccupied frequency is calculated according to the correction value corresponding to the field strength value corresponding to the unoccupied frequency at the actual height; and the path loss corresponding to the occupied frequency is not
  • the path loss corresponding to the occupied frequency is calculated, and the path loss difference between the occupied frequency and the unoccupied frequency of the primary user transmitter is calculated.
  • the occupied frequency in the target frequency band is the frequency that the primary user transmitter is using or has used in the target frequency band.
  • the sensing node pairs are measured to determine that the sensing node is The received signal strength on fl is Si, then Si can be used as the detection threshold, ie
  • Sensing threshold (fj) Sj ( 1 )
  • the detection threshold of f is represented by Sensing threshold (f ) in the following description.
  • the sensing node may detect threshold f 2, the following description to sensing threshold (f 2) f represents the detection threshold of the received signal strength on Si f, 2 is determined in accordance with. specifically,
  • Sensing threshold (f 2 ) Sensing threshold (f ) + AL(ff 2 ) + AP(ff 2 ) ( 2 )
  • AL(ff 2 ) refers to the same primary user transmitter and f 2
  • the difference in path loss between ⁇ P(ff 2 ) refers to the difference in transmit power between the same primary user transmitter.
  • sensing node calculates the detection threshold of f 2 according to Sensing threshold (f ).
  • the sensing node can directly calculate the detection threshold of f 2 using the formula.
  • the risk formula of the Okumura-Hata channel model is as follows:
  • Urban area L 69.55 + 26.161g(f) - 13.821g(h t ) - a(h r ) + [44.9 - 6.551g (h t )]lg(d) (3)
  • Suburb L L Urban Area - 2[lg(f/28)] 2 - 5.4
  • Rural L L Urban Area - 4.78(logf) 2 +18.331og( f)- 40.98 ( 5 )
  • f denotes the carrier frequency
  • h t and h r denote the heights of the transmitting antenna and the receiving antenna, respectively
  • d is the distance between the transmitter and the receiver
  • a(hj is the mobile antenna correction factor, its data Depending on the environment, it looks like this:
  • the path loss difference due to the frequency difference is:
  • Sensing threshold (f 2 ) Sensing threshold (fi) + AL(fi,f 2 )
  • the channel model between the primary user transmitter and the sensing node cannot be represented by a uniform formula, for example: ITU-RP.1546-4 channel model, several typical frequency points (100MHz, 600MHz or 2000MHz) are given. Empirical field strength values in different terrains.
  • Step 1 According to the actual height of the transmitting antenna of the primary user transmitter, select two suitable transmitting antenna height reference values h refl and h ref 2 among the empirical field strength values of the above channel model, and obtain the two by frequency interpolation respectively.
  • E ( f 2 ,h refl ) E inf ' hrefi + (E sup , hre E_ )log(f 2 /f inf )/log(f sup/f mf ) (8)
  • E(f 15 h t ) E(f 15 h refl ) + (E(f 15 h ref2 ) - E(f 15 h refl ))log(h t I h refl ) I log(h ref2 1 h refl )
  • E(f 2 ,h t ) E(f 2 ,h refl ) + (E(f 2 ,h ref2 ) ⁇ E(f 2 ,h refl ))log(h t I h refl ) I log(h ref2 1 h refl )
  • Step 3 Perform field strength curve correction on the difference between the actual height h r of the receiving node of the sensing node and the receiving antenna height reference value h ref in the empirical field strength value, and obtain the correction values corresponding to fi and f 2 respectively.
  • r 30m
  • Step 5 Calculate the location of the sensing node (d)
  • the detection threshold at the target frequency f 2 is:
  • Sensing threshold (f 2 ) Sensing threshold ( ) + AL (f 15 f 2 , d)
  • the sensing node measures the target frequency band, determines the received signal strength of the occupied frequency in the target frequency band, and according to the occupied The received signal strength of the frequency determines the detection threshold of the unoccupied frequency, so that the sensing node can determine an appropriate detection threshold for the unoccupied frequency, and can set the detection threshold according to the actual environment in which the sensing node is located, without knowing the primary user to transmit in advance.
  • the transmitting power of the machine can effectively shield the terrain information and other factors, and avoid the defects of the circular planning in the prior art.
  • the method provided in this embodiment can be used without the prior information of the primary user transmitter.
  • FIG. 3 is a flowchart of another embodiment of a method for determining a detection threshold according to the present invention. This embodiment describes a method for determining a detection threshold in a case where a primary user transmitter prior information can be obtained.
  • the information measures the received signal strength of the frequency being used.
  • the method for determining the detection threshold may include:
  • Step 301 The sensing node queries the database to obtain information such as a site address, a usage frequency, a signal format, and a transmission power of the primary user transmitter.
  • Step 302 The sensing node measures the frequency of use of the primary user transmitter, obtains the received signal strength of the sensing node at the used frequency, and determines the received signal strength of the primary user transmitter, the used frequency, and the sensing node at the used frequency. Correspondence.
  • Step 303 The sensing node determines, according to the received signal strength of the sensing node on the used frequency, a detection threshold of an unoccupied frequency in the target frequency band.
  • the sensing node may obtain a primary user transmitter that uses an unoccupied frequency in the target frequency band by querying the database, and determine the received signal strength of the sensing node according to the used frequency.
  • the sensing node when the sensing node is unable to determine the primary user transmitter that uses the unoccupied frequency in the target frequency band, the sensing node may determine the surrounding of the sensing node according to the received signal strength of the sensing node at the used frequency. All primary user transmitters use the detection threshold when the unoccupied frequency in the target frequency band is used, and select the lowest detection threshold as the detection threshold of the unoccupied frequency in the target frequency band among the determined detection thresholds.
  • the sensing node if the signal received by the sensing node on a frequency is a superimposed signal from a plurality of primary user transmitters, the sensing node cannot distinguish the received signal strengths of the different primary user transmitters at the frequency. , it is impossible to determine the detection threshold on the unoccupied frequency in the target frequency band.
  • the sensing node can obtain the prior information of the primary user transmitter, and then it can be known. Which primary user transmitters around the location of the sensing node use the same frequency, and when the frequency of use of the primary user transmitter is measured to obtain the received signal strength of the sensing node at the frequency of use of the primary user transmitter, You can do one of the following:
  • the sensing node determines, according to the obtained frequency of use of the primary user transmitter, that at least one common frequency exists in the frequency of use of the at least two primary user transmitters, and at least two primary users send
  • Measuring determining the received signal strength of the at least two primary user transmitters at frequencies other than the common frequency
  • the primary user transmitter 1 is used at frequencies f 2 and f 3 , ie ⁇ primary user transmitter 1 , ( ff 2 , f 3 ) , ( Sj , S 2 , ?) >, where s 2
  • the primary user transmitter 2 is used at frequencies f 3 , f 4 and f 5 , ie ⁇ primary user transmitter 2, ( f 3 , f 4 , f 5 ), (?, S 4 , S 5 ) >, where S 4 and S 5 are the received signal strengths of the sensing nodes on f 4 and f 5 respectively, at which time the common frequency f 3 may not be measured, for the primary user to transmit
  • the sensing node may measure f 2 or f 3 to determine the received signal strength of the sensing node on f 2 or f 3 ; for the primary user transmitter 2, the sensing node may measure f 4 or f 5 , The received signal strength of
  • the sensing node determines, according to the obtained frequency of use of the primary user transmitter, that all frequencies used by the first primary user transmitter around the sensing node are the same as those used by the second primary user transmitter around the sensing node, The sensing node measures any frequency of use of the second primary user transmitter that is different from the frequency of use of the first primary user transmitter, and determines that the sensing node is at the use frequency of the second primary user transmitter. Receiving the signal strength; and according to the received signal strength of any of the above-mentioned use frequencies, using the manner provided in the embodiment shown in FIG.
  • the sensing node determines that the sensing node is the same as the first primary user transmitter and the second primary user transmitter Using the received signal strength at the frequency, subtracting the perceived node from the second master user transmitter from the superimposed signal strength received by the sensing node on the same frequency of use of the first primary user transmitter and the second primary user transmitter At the same received frequency as the first primary user transmitter, the received signal strength is obtained first. User transmitter received signal strength on the same frequency.
  • the primary user transmitter 1 is used at the same frequency as f 2 , ie ⁇ primary user Shooter 1, ( ff 2 ) , (?, ?) >; Assume that the primary user transmitter 2 is used at frequencies f, f 2 and f 3 , ie ⁇ primary user transmitter 2, ( fj , f 2 , f 3 ), (?, ?, S 3 ) >, where S 3 is the received signal strength of the sensing node on f 3 , at which time the sensing node can measure f 3 and determine that the sensing node is at the primary user transmitter 2 The received signal strength of f 3 is then determined according to the manner of the received signal strength of the primary user transmitter 2 at f 3 according to the manner provided in the embodiment shown in FIG.
  • the sensing node is determined to be the primary user transmitter 2 and Received signal strength, and then subtracted the received signal strength of the sensing node from the primary user transmitter 2 from the received signal strength of the sensing node, and obtains the received signal strength of the sensing node to the primary user transmitter 1 Similarly, from the superimposed signal strength received by the sensing node at f 2 , the received signal strength of the sensing node to the primary user transmitter 2 at f 2 is subtracted, and the sensing node is obtained for the primary user transmitter 1 at f 2 . Receive signal strength.
  • the sensing node determines that at least two primary user transmitters around the sensing node use exactly the same frequency according to the obtained frequency of use of the primary user transmitter, and the sensing node cannot distinguish the transmitter corresponding to each primary user.
  • FCC TV Signal Communication Committee
  • the foregoing embodiment may implement that the sensing node determines an appropriate detection threshold for the unoccupied frequency, and may set the detection threshold according to the actual environment in which the sensing node is located, without knowing the transmitting power of the primary user transmitter in advance, and may obtain terrain information, etc.
  • the effective shielding of the factors avoids the defects of the circular programming in the prior art; in addition, the method provided in this embodiment can relatively easily realize the setting and optimization of the detection threshold without the prior information of the primary user transmitter; And based on the prior information of the existing primary user transmitter, the detection thresholds of the plurality of primary user transmitters can be simultaneously set and optimized.
  • FIG. 4 is a flowchart of still another embodiment of a method for determining a detection threshold according to the present invention.
  • This embodiment describes a method for determining a detection threshold in a case where a primary user transmitter prior information cannot be obtained.
  • the information on the use of TV signals is non-public, that is, the sensing nodes cannot know the location, frequency of use and transmission power of all TV towers in advance.
  • the sensing node needs to perform full-band measurement on the primary user transmitter to measure which frequencies are being used, and to sense the received signal strength of the node at these frequencies, thereby determining the perception.
  • the method for determining the detection threshold may include:
  • Step 401 The sensing node measures the target frequency band, determines the frequency of use of the primary user transmitter at the current location of the sensing node, and the received signal strength of the sensing node at the used frequency, and determines the primary user transmitter, the frequency of use, and the sensing. The correspondence between the received signal strengths of the nodes at the frequency of use.
  • Step 402 The sensing node determines, according to the received signal strength of the sensing node on the used frequency, a detection threshold of an unoccupied frequency in the target frequency band.
  • the sensing node since the sensing node cannot determine the primary user transmitter that uses the unoccupied frequency in the target frequency band, the sensing node needs to determine all primary user transmissions around the sensing node according to the received signal strength of the sensing node at the used frequency.
  • the machine uses the detection threshold when the frequency is not occupied in the target frequency band, and selects the lowest detection threshold as the detection threshold of the unoccupied frequency in the target frequency band in the determined detection threshold.
  • the sensing node cannot distinguish the respective received signal strengths of the different primary user transmitters at the frequency, and thus cannot determine The detection threshold on the unoccupied frequency in the target frequency band.
  • the sensing node can only set the detection threshold to the lowest value specified by the protocol. For example, the FCC specifies that the lowest value of the TV signal detection threshold is -114 dBm.
  • the foregoing embodiment may implement that the sensing node determines an appropriate detection threshold for the unoccupied frequency, and may set the detection threshold according to the actual environment in which the sensing node is located, without knowing the transmitting power of the primary user transmitter in advance, and may obtain terrain information, etc.
  • the effective shielding of the factors avoids the defects of the circular programming in the prior art; in addition, the method provided in this embodiment can relatively easily realize the setting and optimization of the detection threshold without the prior information of the primary user transmitter; And based on the prior information of the existing primary user transmitter, the detection thresholds of the plurality of primary user transmitters can be simultaneously set and optimized.
  • the readable storage medium when executed, executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 5 is a schematic structural diagram of an embodiment of a sensing node device according to the present invention.
  • the sensing node device in this embodiment may implement the process of the embodiment shown in FIG. 1 of the present invention.
  • the sensing node device may include:
  • the measuring module 51 is configured to measure the target frequency band, determine the occupied frequency in the target frequency band, and the received signal strength of the sensing node device on the occupied frequency; wherein the occupied frequency in the target frequency band includes the primary user in the target frequency band The frequency that the transmitter is using or has used;
  • a determining module 52 configured to determine, according to the received signal strength on the occupied frequency determined by the measuring module 51, a detection threshold of an unoccupied frequency in the target frequency band; wherein the unoccupied frequency includes a frequency in the target frequency band that is not used by the primary user transmitter .
  • the measurement module 51 can measure the target frequency band to determine the received signal strength of the occupied frequency in the target frequency band, and the determining module 52 can determine the unoccupied frequency detection according to the received signal strength of the occupied frequency determined by the measurement module 51. Thresholding, so that the sensing node device can determine a suitable detection threshold for the unoccupied frequency, and can set the detection threshold according to the actual environment in which the sensing node device is located, without knowing the transmitting power of the primary user transmitter in advance, and simultaneously The information and other factors are effectively shielded, and the defects of the circular programming in the prior art are avoided.
  • the sensing node device provided in this embodiment can implement the detection threshold more easily without the prior information of the primary user transmitter. And optimization; and based on the prior information of the existing primary user transmitter, the detection thresholds of multiple primary user transmitters can be simultaneously set and optimized.
  • FIG. 6 is a schematic structural diagram of another embodiment of the sensing node device according to the present invention.
  • the sensing node device in this embodiment can implement the process of the embodiment shown in FIG. 1, FIG. 3 and FIG. 4, and the sensing shown in FIG.
  • the difference is the path loss difference of the sensing node device shown in FIG. 6, and the received signal strength on the occupied frequency, and the path between the occupied frequency and the unoccupied frequency of the primary user transmitter.
  • the sum of the path loss difference and the transmit power difference is used as the detection threshold of the unoccupied frequency in the target frequency band.
  • the determining module 52 may first determine a channel model formula between the primary user transmitter and the sensing node device, and then calculate another implementation manner of the primary embodiment according to the formula.
  • the determining module 52 can include:
  • the field strength obtaining sub-module 521 is configured to determine two transmitting antenna height reference values in a historical field strength value of a channel model between the primary user transmitter and the sensing node device according to the actual height of the primary user transmitter transmitting antenna,
  • the field strength values corresponding to the occupied frequency and the unoccupied frequency at the height corresponding to the height reference values of the two transmitting antennas are respectively obtained by frequency interpolation; and the field strength value corresponding to the occupied frequency and the unoccupied frequency according to the above-mentioned occupied frequency is passed to the main Interpolating the actual height of the transmitter antenna of the user transmitter respectively obtains the field strength value corresponding to the occupied frequency at the actual height and the unoccupied frequency;
  • the correction sub-module 522 is configured to perform field strength curve correction on the difference between the actual height value of the receiving node device and the receiving antenna height reference value in the empirical field strength value, and obtain the correction values corresponding to the occupied frequency and the unoccupied frequency respectively. ;
  • a calculation sub-module 523 configured to obtain, according to the field strength value, a field strength value corresponding to the occupied frequency obtained by the sub-module 521 and a correction value corresponding to the occupied frequency obtained by the calibration sub-module 522, and calculate a path loss corresponding to the occupied frequency;
  • the field strength value obtains the correction value corresponding to the unoccupied frequency obtained by the unoccupied frequency obtained by the sub-module 521 and the unoccupied frequency obtained by the correction sub-module 522, calculates the path loss corresponding to the unoccupied frequency, and calculates the path loss corresponding to the occupied frequency. Calculating a path loss difference between the occupied frequency and the unoccupied frequency of the primary user transmitter according to the path loss corresponding to the unoccupied frequency; and calculating the receiving on the occupied frequency determined by the measuring module 51
  • the sum of the difference in transmit power between the rates, the sum of the received signal strength, the difference in path loss, and the difference in transmit power is used as a detection threshold of an unoccupied frequency in the target frequency band.
  • the sensing node device may further include:
  • the query module 53 is configured to query the database to obtain the address, frequency of use, signal system, and transmit power of the primary user transmitter.
  • the measurement module 51 can use the frequency of the primary user transmitter.
  • the rate is measured to obtain the received signal strength of the sensing node device at the used frequency.
  • the query module 53 can also obtain the primary user transmitter using the unoccupied frequency in the target frequency band by querying the database, and the determining module 52 can be based on the sensing.
  • the received signal strength of the node device at the above-mentioned use frequency determines the detection threshold when the primary user transmitter using the unoccupied frequency in the target frequency band uses the unoccupied frequency.
  • the determining module 52 can measure the target frequency band, determine the frequency of use of the primary user transmitter at the current location of the sensing node device, and the received signal strength of the sensing node device at the above-mentioned usage frequency.
  • the determining module 52 may determine, when the primary user transmitter that uses the unoccupied frequency in the target frequency band is used, the primary signal transmission around the sensing node device according to the received signal strength of the sensing node device at the used frequency.
  • the machine uses the detection threshold when the frequency is not occupied in the target frequency band, and selects the lowest detection threshold as the detection threshold of the unoccupied frequency in the target frequency band in the determined detection threshold.
  • the measurement module 51 can be used according to the frequency of use of the obtained primary user transmitter.
  • the measurement is performed to determine the received signal strength of the at least two primary user transmitters on the frequency other than the common frequency of the at least two primary user devices; or, the measurement module 51 may determine the sensing according to the obtained frequency of use of the primary user transmitter.
  • the frequency used by the first primary user transmitter around the node device is the same as the frequency used by the second primary user transmitter around the sensing node device
  • the frequency of use of the second primary user transmitter is the same as the first primary user Measuring, using any frequency of use of the transmitter with different frequency of use, determining the received signal strength of the second primary user transmitter at any frequency of use by the sensing node device; and determining the sensing node device pair according to the received signal strength of any used frequency
  • the detection threshold can be set according to the actual environment in which the sensing node device is located, without knowing the transmitting power of the main user transmitter in advance, and the terrain information and other factors can be effectively shielded, thereby avoiding the defects of the circular planning in the prior art;
  • the sensing node device provided in this embodiment can implement the setting and optimization of the detection threshold relatively simply without the a priori information of the primary user transmitter; and based on the a priori information of the currently existing primary user transmitter,
  • the detection thresholds of multiple primary user transmitters can be set and optimized simultaneously.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the embodiment description, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种检测门限的确定方法和感知节点设备,所述检测门限的确定方法包括:感知节点对目标频段进行测量,确定所述目标频段中的已占用频率以及所述感知节点在所述已占用频率上的接收信号强度,所述目标频段中的已占用频率包括所述目标频段中主用户发射机正在使用或已使用过的频率;所述感知节点根据所述已占用频率上的接收信号强度,确定所述目标频段中未占用频率的检测门限,所述未占用频率包括所述目标频段中未被主用户发射机使用的频率。本发明实施例可以实现感知节点为未占用频率确定合适的检测门限。

Description

检测门限的确定方法和感知节点设备
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种检测门限的确定方法 和感知节点设备。 背景技术
随着无线通信业务需求的高速增长, 目前可用的频谱资源正变得越来 越稀缺。 但大量的频谱实测结果表明: 频谱资源的"短缺,,并不是由于频谱 本身的缺乏, 而是由于目前采用的固定频谱管理政策导致频谱资源没有被 充分利用造成的。 认知无线电 ( Cognitive Radio; 以下简称: CR ) 能够感 知无线通信环境,动态检测和有效利用空闲频谱资源,允许次用户在时间、 频率以及空间上与主用户进行多维频谱复用, 这将大大降低频谱和带宽限 制对无线技术发展的束縛。 这一技术被认为是未来最热门的无线技术之 频谱感知是认知无线电的关键技术之一。 频谱感知的目的是监视和检 测特定频段上主用户信号的活动情况: 当检测到空闲频谱存在时, 认知无 线电系统可以使用该频段; 而当检测到主用户信号出现时, 认知无线电系 统必须在规定时间内退出该频段。 频谱感知性能主要取决于以下几个因 素:
检测门限: 检测门限是指感知节点需要检测到的最低主用户信号强 度。 如果在一频率上, 感知节点检测到主用户信号强度超过检测门限, 则 可以认为该频率上主用户出现; 反之则可以判断该频率空闲, 可以使用; 主用户保护时间, 即主用户允许的最大干扰时间, 是指从主用户出现 到次系统检测到, 并退出该频率的时间。
感知性能, 包括检测概率和虚警概率; 其中, 检测概率越高, 对主用 户的保护越充分; 虚警概率越低, 对次系统的业务连续性越有利。 定的信道模型, 计算出特定位置的接收信号强度, 作为该位置上的实际检 测门限。 目前已有的信道模型都是针对某种地形的通用信道模型, 即对于某个 特定的地形 (城市、 郊区、 开阔地以及山区等) , 只要距离主用户发射机 的距离相同, 无论感知节点实际处于何种地理环境, 就具有相同的检测门 限, 这会导致计算出的检测门限与实际的检测门限不符合。 如果基于现有 的方法来确定检测门限, 或者会把检测门限设置的过高, 导致检测概率降 低; 或者会把检测门限设置的过低, 导致感知开销增加, 虚警概率提高。 因此, 现有的确定检测门限的方法存在很大缺陷。
采用现有的方法确定检测门限时, 需要知道电视( Television; 以下 简称: TV ) 发射机的位置以及发射功率等信息, 这些信息不是在任何国 家和地区都可以随意获取到的。 如果无法事先获得上述信息, 就难以确定 出感知节点所在位置的检测门限, 只能采用统一的最低检测门限来约束感 知节点的行为, 从而造成检测门限设置过低。 发明内容
本发明实施例提供一种检测门限的确定方法和感知节点设备, 以实现 感知节点通过测量主用户发射机已占用频率的接收信号强度, 为未占用频 率确定合适的检测门限。
本发明实施例提供一种检测门限的确定方法, 包括:
感知节点对目标频段进行测量, 确定所述目标频段中的已占用频率以 及所述感知节点在所述已占用频率上的接收信号强度, 所述目标频段中的 已占用频率包括所述目标频段中主用户发射机正在使用或已使用过的频 率;
所述感知节点根据所述已占用频率上的接收信号强度, 确定所述目标 频段中未占用频率的检测门限, 所述未占用频率包括所述目标频段中未被 主用户发射机使用的频率。
本发明实施例还提供一种感知节点设备, 包括:
测量模块, 用于对目标频段进行测量, 确定所述目标频段中的已占用 频率以及所述感知节点设备在所述已占用频率上的接收信号强度, 所述目 标频段中的已占用频率包括所述目标频段中主用户发射机正在使用或已 使用过的频率; 确定模块, 用于根据所述测量模块确定的已占用频率上的接收信号强 度, 确定所述目标频段中未占用频率的检测门限, 所述未占用频率包括所 述目标频段中未被主用户发射机使用的频率。
通过本发明实施例, 感知节点对目标频段进行测量, 确定目标频段中 已占用频率的接收信号强度, 并根据已占用频率的接收信号强度确定未占 用频率的检测门限, 从而可以实现感知节点为未占用频率确定合适的检测 门限。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明检测门限的确定方法一个实施例的流程图;
图 2为本发明路径损耗差异曲线一个实施例的示意图;
图 3为本发明检测门限的确定方法另一个实施例的流程图;
图 4为本发明检测门限的确定方法再一个实施例的流程图;
图 5为本发明感知节点设备一个实施例的结构示意图;
图 6为本发明感知节点设备另一个实施例的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动的前 提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明检测门限的确定方法一个实施例的流程图, 以下为本实 施例的应用场景:
同一个主用户发射机每次使用相同的频率时, 均采用相同的发射功 率; 同一个主用户发射机的相同制式的发射信号在所有频率上的发射功率 均相同。 本实施例提供的检测门限的确定方法的应用场景是对 TV信号等 主用户信号的感知。
如图 1所示, 该检测门限的确定方法可以包括:
步骤 101 , 感知节点对目标频段进行测量, 确定目标频段中的已占用 频率以及该感知节点在已占用频率上的接收信号强度; 其中, 目标频段中 的已占用频率包括目标频段中主用户发射机正在使用或已使用过的频率。
步骤 102, 感知节点根据已占用频率上的接收信号强度, 确定目标频 段中未占用频率的检测门限; 其中, 未占用频率包括目标频段中未被主用 户发射机使用的频率。
具体地, 感知节点可以计算主用户发射机在已占用频率与未占用频率 之间的路径损耗差异, 然后计算已占用频率上的接收信号强度, 主用户发 射机在已占用频率与未占用频率之间的路径损耗差异, 以及主用户发射机 在已占用频率与未占用频率之间的发射功率差异之和, 以上述接收信号强 度、 路径损耗差异与发射功率差异之和作为目标频段中未占用频率的检测 门限。
其中, 本实施例一种实现方式中, 计算主用户发射机在已占用频率与 未占用频率之间的路径损耗差异可以为: 感知节点确定主用户发射机与感 知节点之间的信道模型公式, 根据该公式计算主用户发射机在已占用频率 与未占用频率之间的路径损耗差异。
本实施例的另一种实现方式中, 计算主用户发射机在已占用频率与未 占用频率之间的路径损耗差异可以为: 感知节点根据主用户发射机发射天 线的实际高度, 在主用户发射机与感知节点之间的信道模型的历史场强值 中确定两个发射天线高度参考值, 通过频率内插分别获得在两个发射天线 高度参考值对应的高度上已占用频率与未占用频率对应的场强值; 然后根 据上述已占用频率与未占用频率对应的场强值, 通过对主用户发射机发射 天线的实际高度的内插分别获得在实际高度上已占用频率与未占用频率 对应的场强值; 接下来, 感知节点可以对该感知节点接收天线的实际高度 值与经验场强值中的接收天线高度参考值的差异进行场强曲线校正, 分别 获得已占用频率与未占用频率对应的校正值; 最后, 该感知节点可以根据 在实际高度上已占用频率对应的场强值与已占用频率对应的校正值, 计算 已占用频率对应的路径损耗; 根据在实际高度上未占用频率对应的场强值 与未占用频率对应的校正值, 计算未占用频率对应的路径损耗; 以及根据 已占用频率对应的路径损耗与未占用频率对应的路径损耗, 计算主用户发 射机在已占用频率与未占用频率之间的路径损耗差异。
下面通过具体实例对本实施例提供的检测门限的确定方法的实现过 程进行介绍。
1、 假设 为目标频段中的已占用频率, 即 为目标频段中主用户发射机 正在使用或已使用过的频率, 在主用户发射机正在使用 f 时, 感知节点对 进 行测量, 确定感知节点在 fl上的接收信号强度为 Si, 则可以 Si作为 的检测门 限, 即
Sensing threshold (fj) = Sj ( 1 ) 以下描述中以 Sensing threshold (f )表示 f 的检测门限。
2、 假设 f2为未占用频率, 即 f2为目标频段中未被主用户发射机使用的频 率, 且感知节点并不知道什么时候主用户发射机会使用 f2, 通过本发明图 1所 示实施例提供的方法, 感知节点可以根据 f 上的接收信号强度 Si, 确定 f2的检 测门限, 以下描述中以 Sensing threshold (f2)表示 f2的检测门限。 具体地,
Sensing threshold (f2) = Sensing threshold (f ) + AL(f f2) + AP(f f2) ( 2 ) 式( 2 )中, AL(f f2)是指同一主用户发射机在 与 f2之间的路径损耗差异; △P(f f2)是指同一主用户发射机在 与 之间的发射功率差异, 对于 TV信号而 言, 如果 与 上的 TV信号制式相同, 那么 =
下面以两种信道模型为例, 说明感知节点如何根据 Sensing threshold (f ) 计算 f2的检测门限。
a、 若主用户发射机和感知节点之间的信道模型有明确的公式, 则感知节 点可以利用该公式直接计算 f2的检测门限。
以 Okumura-Hata信道模型为例, Okumura-Hata信道模型的经险公式如下: 市区 L = 69.55 + 26.161g(f) - 13.821g(ht) - a(hr) + [44.9 - 6.551g(ht)]lg(d) (3 ) 郊区 L = L市区- 2[lg(f/28)]2- 5.4 (4) 农村 L = L市区- 4.78(logf)2+18.331og(f)- 40.98 ( 5 ) 式(3 )〜式(5 ) 中, f表示载频, ht和 hr分别表示发射天线和接收天线的 高度, d是发射机与接收机之间的距离, a(hj是移动天线修正因子, 其数据 取决于环境, 如下所示:
大城市
大城市
中小城市
Figure imgf000008_0001
根据上述信道模型, 在不同环境中, 对于同一主用户发射机和感知节点, 由于频率差异导致的路径损耗差异为:
市区
'26.161g(f /f2) 大城市
AL(f15f2)
(27.72-1.1^)^/^) 中小城市 )]2 大城市
lg(f2 /28)]2 中小城市 大城市
Figure imgf000008_0002
8(lgf2)2 中小城市 基于上述公式, 可以计算出同一主用户发射机在 f2上对应的检测门限为:
Sensing threshold (f2) = Sensing threshold (fi) + AL(fi,f2)
b、 若主用户发射机与感知节点之间的信道模型无法用统一的公式来表 示,例如: ITU-RP.1546-4信道模型,给出了几个典型频点( 100MHz、 600MHz 或 2000MHz )在不同地形的经验场强值。在利用该信道模型来确定 f2的检测门 限时, 可采用以下步骤:
步骤 1, 根据主用户发射机发射天线的实际高度, 在上述信道模型的经验 场强值中选择两个合适的发射天线高度参考值 hrefl和 href 2 ,通过频率内插分别 获得这两个高度上 f 与 f 2对应的场强值。
E ( fijhrefl) = (6)
E ( fl href 2 ) = Einf,href2
Figure imgf000008_0003
(7)
E ( f2,hrefl) = Einf'hrefi + (Esup,hre E_ )log(f2/finf)/log(f sup/fmf) (8)
E (f2, ref2) = Em£h_ + (E sup,hre Emf,„)l g(f2/fmf)/log(fssuupp/fmf) (9) 步骤 2, 根据式(6)〜式(9)得到的场强值, 通过对主用户发射机发射 天线的实际高度的内插分别获得在实际高度 ht上 与 f2对应的场强值。 E(f15ht) = E(f15hrefl) + (E(f15href2) - E(f15hrefl))log(ht I hrefl) I log(href21 hrefl)
( 10)
E(f2,ht) = E(f2,hrefl) + (E(f2,href2)― E(f2,hrefl))log(ht I hrefl) I log(href21 hrefl)
( 11 ) 步骤 3 , 对感知节点接收天线的实际高度 hr与经验场强值中接收天线高度 参考值 href的差异进行场强曲线校正, 分别获得 f i与 f2对应的校正值。
△C(f1,hr) = (3.2 + 6.21g(f1))*lg(hr/href) ( 12)
AC(f2,hr) = (3.2 + 6.21g(f2)) * lg(hr / href ) ( 13) 步骤 4, 计算 和 对应的路径损耗, 以及 与 之间的路径损耗差异。
Ηί,) = 139.3 - E(f15ht) - AC(f15hr) + 20^) ( 14)
L(f2) = 139.3 -E(f2,ht)-AC(f2,hr) + 201g(f2) ( 15) 八1^2) = 1^)-1^2) ( 16) 图 2为本发明路径损耗差异曲线一个实施例的示意图, 图 2给出了主 用户发射机(例如: TV发射机)发射天线的实际高度 ht=200m, 感知节 点接收天线的实际高度 hr=30m时, 两组不同频率的路径损耗差异曲线。 该路径损耗差异是随着收发机距离的不同而变化的。 但是, 当两个频率差 异较小时, 如图 2中的 800MHz和 772MHz这两个频率, 在不同位置上的 路径损耗差异不超过 0.5dB。 随着频率差异的增大, 这种损耗差异逐渐变 大。
步骤 5, 计算感知节点所在位置 (d) 在目标频率 f2的检测门限为:
Sensing threshold (f2) = Sensing threshold ( )+ AL(f15f2,d) 上述实施例中, 感知节点对目标频段进行测量, 确定目标频段中已占 用频率的接收信号强度, 并根据已占用频率的接收信号强度确定未占用频 率的检测门限, 从而可以实现感知节点为未占用频率确定合适的检测门 限, 并且可以实现根据感知节点所处的实际环境来设置检测门限, 无需事 先知道主用户发射机的发射功率, 同时可以将地形信息等因素有效屏蔽, 避免了现有技术中圆形规划的缺陷; 另外, 本实施例提供的方法可以在没 有主用户发射机先验信息的情况下, 较简单地实现检测门限的设定和优 化; 并且基于目前已有的主用户发射机的先验信息, 可以同时实现对多个 主用户发射机的检测门限进行设定和优化。 图 3为本发明检测门限的确定方法另一个实施例的流程图, 本实施例 介绍可以获得主用户发射机先验信息情况下的检测门限的确定方法。 目前 在一些国家, 例如: 欧美的大部分国家, TV信号的使用信息是公开的, 即每个 TV塔的位置、 使用频率及每个 TV塔对应的发射功率等信息都是 已知的,且同一个 TV塔在所有频率上具有相同的发射功率, 即式(2 )中, AP(f f2) = 0, 因此对于正在使用的 TV频率, 感知节点总是可以^^据这些 公开的先验信息测量出正在使用的频率的接收信号强度。
如图 3所示, 该检测门限的确定方法可以包括:
步骤 301 , 感知节点查询数据库, 获得主用户发射机的站址、 使用频 率、 信号制式和发射功率等信息。
步骤 302, 感知节点对主用户发射机的使用频率进行测量, 获得感知 节点在上述使用频率上的接收信号强度, 并确定主用户发射机、 使用频率 与感知节点在上述使用频率上的接收信号强度的对应关系。
步骤 303 , 感知节点根据该感知节点在上述使用频率上的接收信号强 度, 确定目标频段中未占用频率的检测门限。
具体地, 本实施例的一种实现方式中, 感知节点可以通过查询上述数 据库, 获得使用目标频段中未占用频率的主用户发射机, 并根据感知节点 在上述使用频率上的接收信号强度, 确定使用目标频段中未占用频率的主 用户发射机使用该未占用频率时的检测门限。
本实施例的另一种实现方式中, 感知节点无法确定使用目标频段中未 占用频率的主用户发射机时, 感知节点可以根据该感知节点在上述使用频 率上的接收信号强度, 确定感知节点周围的所有主用户发射机使用目标频 段中未占用频率时的检测门限, 并在确定的检测门限中选择最低检测门限 作为目标频段中未占用频率的检测门限。
其中, 确定检测门限的方式可以参考本发明图 1所示实施例中提供的 方式, 在此不再赘述。
本实施例中, 若感知节点在一频率上接收到的信号是来自多个主用户发 射机的迭加信号, 该感知节点就无法区分出不同主用户发射机在该频率上各 自的接收信号强度, 也就不能确定出目标频段中未占用频率上的检测门限。
本实施例中, 感知节点可以获得主用户发射机的先验信息, 就可以知道 该感知节点所在位置周围有哪几个主用户发射机使用了相同的频率, 在对主 用户发射机的使用频率进行测量, 获得感知节点在主用户发射机的使用频率 上的接收信号强度时, 可以采用以下方式之一:
( 1 ) 感知节点根据获得的主用户发射机的使用频率, 确定至少两个 主用户发射机的使用频率中存在至少一个公共频率, 且至少两个主用户发
测量, 确定感知节点对至少两个主用户发射机在除公共频率之外的频率上 的接收信号强度;
举例来说, 假设主用户发射机 1的使用频率为 、 f2和 f3, 即<主用户 发射机 1 , ( f f2, f3 ) , ( Sj , S2, ?) >, 其中 s2分别为感知节点 在 和 f2上的接收信号强度; 假设主用户发射机 2的使用频率为 f3、 f4和 f5, 即<主用户发射机 2, ( f3, f4, f5 ) , (?, S4, S5 ) >, 其中 S4和 S5 分别为感知节点在 f4和 f5上的接收信号强度, 这时可以不对公共频率 f3 进行测量, 对于主用户发射机 1 , 感知节点可以对 f2或 f3进行测量, 确定 该感知节点在 f2或 f3上的接收信号强度; 对于主用户发射机 2, 感知节点 可以对 f4或 f5进行测量, 确定该感知节点在 f4或 f5上的接收信号强度。
( 2 ) 感知节点根据获得的主用户发射机的使用频率, 确定该感知节 点周围的第一主用户发射机使用的所有频率与感知节点周围的第二主用 户发射机使用的部分频率相同时, 该感知节点对第二主用户发射机的使用 频率中与第一主用户发射机的使用频率不同的任一使用频率进行测量, 确 定感知节点对第二主用户发射机在上述任一使用频率的接收信号强度; 并 根据上述任一使用频率的接收信号强度, 采用本发明图 1所示实施例中提 供的方式, 确定感知节点对第二主用户发射机在与第一主用户发射机相同 的使用频率上的接收信号强度, 再从感知节点在第一主用户发射机与第二 主用户发射机的相同使用频率上接收的迭加信号强度中, 减去感知节点对 第二主用户发射机在与第一主用户发射机相同的使用频率上的接收信号 强度, 获得感知节点对第一主用户发射机在相同使用频率上的接收信号强 度。
举例来说, 假设主用户发射机 1的使用频率为 和 f2, 即<主用户发 射机 1 , ( f f2 ) , (?, ?) >; 假设主用户发射机 2的使用频率为 f 、 f2 和 f3 , 即<主用户发射机 2, ( fj , f2, f3 ) , (?, ?, S3 ) >, 其中 S3为感 知节点在 f3上的接收信号强度, 这时, 感知节点可以对 f3进行测量, 确定 该感知节点对主用户发射机 2在 f3的接收信号强度, 然后根据感知节点对 主用户发射机 2在 f3的接收信号强度, 采用本发明图 1所示实施例中提供 的方式, 确定感知节点对主用户发射机 2在 和 的接收信号强度, 再从 感知节点在 接收到的迭加信号强度中, 减去感知节点对主用户发射机 2 在 的接收信号强度, 获得感知节点对主用户发射机 1在 的接收信号 强度, 同理从感知节点在 f2接收到的迭加信号强度中, 减去感知节点对主 用户发射机 2在 f2的接收信号强度, 即可获得感知节点对主用户发射机 1 在 f2的接收信号强度。
( 3 ) 感知节点根据获得的主用户发射机的使用频率, 确定该感知节 点周围的至少两个主用户发射机使用完全相同的频率, 则该感知节点无法 区分出对应于每个主用户发射机的接收信号强度, 这时感知节点只能将检 测门限设置为协议规定的最低值, 例如: 联邦通信委员会(Federal
Communication Committee; 以下简称: FCC )规定 TV信号检测门限的最 低值为 -114dBm。
上述实施例可以实现感知节点为未占用频率确定合适的检测门限, 并 且可以实现根据感知节点所处的实际环境来设置检测门限, 无需事先知道 主用户发射机的发射功率, 同时可以将地形信息等因素有效屏蔽, 避免了 现有技术中圆形规划的缺陷; 另外, 本实施例提供的方法可以在没有主用 户发射机先验信息的情况下, 较简单地实现检测门限的设定和优化; 并且 基于目前已有的主用户发射机的先验信息, 可以同时实现对多个主用户发 射机的检测门限进行设定和优化。
图 4为本发明检测门限的确定方法再一个实施例的流程图, 本实施例 介绍无法获得主用户发射机先验信息情况下的检测门限的确定方法。 目前 在一些国家和地区, 例如: 中国, TV信号的使用信息是非公开的, 即感 知节点事先无法准确知道所有 TV塔的位置、使用频率和发射功率等信息。 感知节点需要对主用户发射机进行全频段的测量, 以测量出有哪些频率正 在被使用, 以及感知节点在这些频率上的接收信号强度, 进而确定该感知 节点所在位置上目标频段中未占用频率的检测门限。
如图 4所示, 该检测门限的确定方法可以包括:
步骤 401 , 感知节点对目标频段进行测量, 确定在感知节点的当前位 置上主用户发射机的使用频率以及感知节点在该使用频率上的接收信号 强度, 并确定主用户发射机、 使用频率与感知节点在该使用频率上的接收 信号强度的对应关系。
步骤 402,感知节点根据该感知节点在该使用频率上的接收信号强度, 确定目标频段中未占用频率的检测门限。
本实施例中, 由于感知节点无法确定使用目标频段中未占用频率的主 用户发射机, 因此感知节点需要根据该感知节点在该使用频率上的接收信 号强度, 确定感知节点周围的所有主用户发射机使用目标频段中未占用频 率时的检测门限, 并在确定的检测门限中选择最低检测门限作为目标频段 中未占用频率的检测门限。
其中, 确定检测门限的方式可以参考本发明图 1所示实施例中提供的 方式, 在此不再赘述。
若感知节点在一频率上接收到的信号是来自多个主用户发射机的迭 加信号, 该感知节点就无法区分出不同主用户发射机在该频率上各自的接 收信号强度, 也就不能确定出目标频段中未占用频率上的检测门限。 本实 施例中, 由于感知节点无法获得主用户发射机的先验信息, 因此感知节点 只能将检测门限设置为协议规定的最低值, 例如: FCC规定 TV信号检测 门限的最低值为 -114dBm。
上述实施例可以实现感知节点为未占用频率确定合适的检测门限, 并 且可以实现根据感知节点所处的实际环境来设置检测门限, 无需事先知道 主用户发射机的发射功率, 同时可以将地形信息等因素有效屏蔽, 避免了 现有技术中圆形规划的缺陷; 另外, 本实施例提供的方法可以在没有主用 户发射机先验信息的情况下, 较简单地实现检测门限的设定和优化; 并且 基于目前已有的主用户发射机的先验信息, 可以同时实现对多个主用户发 射机的检测门限进行设定和优化。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。
图 5为本发明感知节点设备一个实施例的结构示意图, 本实施例中的 感知节点设备可以实现本发明图 1所示实施例的流程, 如图 5所示, 该感 知节点设备可以包括:
测量模块 51 , 用于对目标频段进行测量, 确定目标频段中的已占用频 率以及感知节点设备在已占用频率上的接收信号强度; 其中, 该目标频段 中的已占用频率包括目标频段中主用户发射机正在使用或已使用过的频 率;
确定模块 52, 用于根据测量模块 51确定的已占用频率上的接收信号 强度, 确定目标频段中未占用频率的检测门限; 其中, 未占用频率包括目 标频段中未被主用户发射机使用的频率。
上述实施例中, 测量模块 51可以对目标频段进行测量, 确定目标频 段中已占用频率的接收信号强度, 确定模块 52可以根据测量模块 51确定 的已占用频率的接收信号强度确定未占用频率的检测门限, 从而可以实现 感知节点设备为未占用频率确定合适的检测门限, 并且可以实现根据感知 节点设备所处的实际环境来设置检测门限, 无需事先知道主用户发射机的 发射功率, 同时可以将地形信息等因素有效屏蔽, 避免了现有技术中圆形 规划的缺陷; 另外, 本实施例提供的感知节点设备可以在没有主用户发射 机先验信息的情况下, 较简单地实现检测门限的设定和优化; 并且基于目 前已有的主用户发射机的先验信息, 可以同时实现对多个主用户发射机的 检测门限进行设定和优化。
图 6为本发明感知节点设备另一个实施例的结构示意图, 本实施例中 的感知节点设备可以实现本发明图 1、 图 3和图 4所示实施例的流程, 与 图 5所示的感知节点设备相比, 不同之处在于, 图 6所示的感知节点设备 的路径损耗差异, 以及计算已占用频率上的接收信号强度, 主用户发射机 在已占用频率与未占用频率之间的路径损耗差异, 以及主用户发射机在已 占用频率与未占用频率之间的发射功率差异之和, 以上述接收信号强度、 路径损耗差异与发射功率差异之和作为目标频段中未占用频率的检测门 限。
具体地, 本实施例的一种实现方式中, 确定模块 52可以先确定主用 户发射机与感知节点设备之间的信道模型公式, 然后根据该公式计算主用 本实施例的另一实现方式中, 确定模块 52可以包括:
场强值获得子模块 521 ,用于根据主用户发射机发射天线的实际高度, 在主用户发射机与感知节点设备之间的信道模型的历史场强值中确定两 个发射天线高度参考值, 通过频率内插分别获得在两个发射天线高度参考 值对应的高度上已占用频率与未占用频率对应的场强值; 以及根据上述已 占用频率与未占用频率对应的场强值, 通过对主用户发射机发射天线的实 际高度的内插分别获得在实际高度上已占用频率与未占用频率对应的场 强值;
校正子模块 522 , 用于对感知节点设备接收天线的实际高度值与经验 场强值中的接收天线高度参考值的差异进行场强曲线校正, 分别获得已占 用频率与未占用频率对应的校正值;
计算子模块 523 , 用于根据场强值获得子模块 521获得的已占用频率 对应的场强值与校正子模块 522获得的已占用频率对应的校正值, 计算已 占用频率对应的路径损耗; 根据场强值获得子模块 521获得的未占用频率 对应的场强值与校正子模块 522获得的未占用频率对应的校正值, 计算未 占用频率对应的路径损耗; 以及根据已占用频率对应的路径损耗与未占用 频率对应的路径损耗, 计算主用户发射机在已占用频率与未占用频率之间 的路径损耗差异; 以及计算所述测量模块 51确定的已占用频率上的接收
率之间的发射功率差异之和, 以所述接收信号强度、 所述路径损耗差异与 所述发射功率差异之和作为所述目标频段中未占用频率的检测门限。
进一步地, 本实施例中, 感知节点设备还可以包括:
查询模块 53 ,用于查询数据库,获得主用户发射机的站址、使用频率、 信号制式和发射功率; 这时, 测量模块 51可以对主用户发射机的使用频 率进行测量, 获得感知节点设备在该使用频率上的接收信号强度; 另外, 查询模块 53还可以通过查询上述数据库, 获得使用目标频段 中未占用频率的主用户发射机, 确定模块 52可以根据感知节点设备在上 述使用频率上的接收信号强度, 确定使用目标频段中未占用频率的主用户 发射机使用上述未占用频率时的检测门限。
另外, 确定模块 52可以对目标频段进行测量, 确定在感知节点设备 的当前位置上主用户发射机的使用频率以及感知节点设备在上述使用频 率上的接收信号强度。
本实施例中, 确定模块 52可以当无法确定使用目标频段中未占用频 率的主用户发射机时, 根据感知节点设备在使用频率上的接收信号强度, 确定该感知节点设备周围的所有主用户发射机使用目标频段中未占用频 率时的检测门限, 并在确定的检测门限中选择最低检测门限作为目标频段 中未占用频率的检测门限。
本实施例中, 测量模块 51可以在根据获得的主用户发射机的使用频
率进行测量, 确定该感知节点设备对至少两个主用户发射机在除公共频率 之外的频率上的接收信号强度; 或者, 测量模块 51可以根据获得的主用 户发射机的使用频率, 确定感知节点设备周围的第一主用户发射机使用的 所有频率与该感知节点设备周围的第二主用户发射机使用的部分频率相 同时, 对第二主用户发射机的使用频率中与第一主用户发射机的使用频率 不同的任一使用频率进行测量, 确定感知节点设备对第二主用户发射机在 任一使用频率的接收信号强度; 并根据任一使用频率的接收信号强度, 确 定感知节点设备对第二主用户发射机在与第一主用户发射机相同的使用 频率上的接收信号强度, 然后从感知节点设备在第一主用户发射机与第二 主用户发射机的相同使用频率上接收的迭加信号强度中, 减去感知节点设 备对第二主用户发射机在与第一主用户发射机相同的使用频率上的接收 信号强度, 获得感知节点设备对第一主用户发射机在上述相同使用频率上 的接收信号强度。 可以实现根据感知节点设备所处的实际环境来设置检测门限, 无需事先知 道主用户发射机的发射功率, 同时可以将地形信息等因素有效屏蔽, 避免 了现有技术中圆形规划的缺陷; 另外, 本实施例提供的感知节点设备可以 在没有主用户发射机先验信息的情况下, 较简单地实现检测门限的设定和 优化; 并且基于目前已有的主用户发射机的先验信息, 可以同时实现对多 个主用户发射机的检测门限进行设定和优化。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中 的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例 描述进行分布于实施例的装置中, 也可以进行相应变化位于不同于本实施 例的一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以 进一步拆分成多个子模块。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种检测门限的确定方法, 其特征在于, 包括:
感知节点对目标频段进行测量, 确定所述目标频段中的已占用频率以 及所述感知节点在所述已占用频率上的接收信号强度, 所述目标频段中的 已占用频率包括所述目标频段中主用户发射机正在使用或已使用过的频 率;
所述感知节点根据所述已占用频率上的接收信号强度, 确定所述目标 频段中未占用频率的检测门限, 所述未占用频率包括所述目标频段中未被 主用户发射机使用的频率。
2、 根据权利要求 1所述的方法, 其特征在于, 所述感知节点根据所 述已占用频率上的接收信号强度, 确定所述目标频段中未占用频率的检测 门限包括: 率之间的路径损耗差异;
所述感知节点计算所述已占用频率上的接收信号强度, 所述主用户发
之和, 以所述接收信号强度、 所述路径损耗差异与所述发射功率差异之和 作为所述目标频段中未占用频率的检测门限。
3、 根据权利要求 2所述的方法, 其特征在于, 所述计算所述主用户 所述感知节点确定所述主用户发射机与所述感知节点之间的信道模 型公式;
所述感知节点根据所述公式计算所述主用户发射机在所述已占用频 率与所述未占用频率之间的路径损耗差异。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述计算所述主 括:、 ' ' " 1
所述感知节点根据所述主用户发射机发射天线的实际高度, 在所述主 用户发射机与所述感知节点之间的信道模型的历史场强值中确定两个发 射天线高度参考值, 通过频率内插分别获得在所述两个发射天线高度参考
用户发射机发射天线的实际高度的内插分别获得在所述实际高度上所述 已占用频率与所述未占用频率对应的场强值;
对所述感知节点接收天线的实际高度值与所述经验场强值中的接收 天线高度参考值的差异进行场强曲线校正, 分别获得所述已占用频率与所 述未占用频率对应的校正值;
根据在所述实际高度上所述已占用频率对应的场强值与所述已占用 频率对应的校正值, 计算所述已占用频率对应的路径损耗; 根据在所述实 际高度上所述未占用频率对应的场强值与所述未占用频率对应的校正值, 计算所述未占用频率对应的路径损耗;
根据所述已占用频率对应的路径损耗与所述未占用频率对应的路径 路径损耗差异。
5、 根据权利要求 1所述的方法, 其特征在于, 感知节点对目标频段 占用频率上的接收信号强度之前, 还包括:
所述感知节点查询数据库 ,获得所述主用户发射机的站址、使用频率、 信号制式和发射功率;
所述感知节点对目标频段进行测量, 确定所述目标频段中主用户发射 机的已占用频率以及所述感知节点在所述已占用频率上的接收信号强度 包括:
所述感知节点对所述主用户发射机的使用频率进行测量, 获得所述感 知节点在所述使用频率上的接收信号强度。
6、 根据权利要求 5所述的方法, 其特征在于, 所述感知节点根据所 述已占用频率上的接收信号强度, 确定所述目标频段中未占用频率的检测 门限包括:
所述感知节点通过查询所述数据库, 获得使用所述目标频段中未占用 频率的主用户发射机, 并根据所述感知节点在所述使用频率上的接收信号 强度, 确定使用所述目标频段中未占用频率的主用户发射机使用所述未占 用频率时的检测门限。
7、 根据权利要求 1所述的方法, 其特征在于, 所述感知节点对目标 频段进行测量,
Figure imgf000020_0001
述已占用频率上的接收信号强度包括:
所述感知节点对所述目标频段进行测量, 确定在所述感知节点的当前 位置上主用户发射机的使用频率以及所述感知节点在所述使用频率上的 接收信号强度。
8、 根据权利要求 5或 7所述的方法, 其特征在于, 所述感知节点根 据所述已占用频率上的接收信号强度, 确定所述目标频段中未占用频率的 检测门限包括: 射机时, 所述感知节点根据所述感知节点在所述使用频率上的接收信号强 度, 确定所述感知节点周围的所有主用户发射机使用所述目标频段中未占 用频率时的检测门限, 并在所述检测门限中选择最低检测门限作为所述目 标频段中未占用频率的检测门限。
9、 根据权利要求 5所述的方法, 其特征在于, 所述感知节点对目标 述已占用频率上的接收信号强度包括:
所述感知节点根据获得的主用户发射机的使用频率, 确定至少两个主 用户发射机的使用频率中存在至少一个公共频率, 且所述至少两个主用户
Figure imgf000020_0002
个频率时, 所述感 知节点
Figure imgf000020_0003
的频率进行测量, 确定所述感知节点对所述至少两个主用户发射机在所述 除所述公共频率之外的频率上的接收信号强度; 或者,
所述感知节点根据获得的主用户发射机的使用频率, 确定所述感知节 点周围的第一主用户发射机使用的所有频率与所述感知节点周围的第二 主用户发射机使用的部分频率相同时, 所述感知节点对所述第二主用户发 射机的使用频率中与所述第一主用户发射机的使用频率不同的任一使用 频率进行测量, 确定所述感知节点对所述第二主用户发射机在所述任一使 用频率的接收信号强度; 并根据所述任一使用频率的接收信号强度, 确定 所述感知节点对所述第二主用户发射机在与所述第一主用户发射机相同 的使用频率上的接收信号强度, 从所述感知节点在所述第一主用户发射机 与所述第二主用户发射机的相同使用频率上接收的迭加信号强度中, 减去 所述感知节点对所述第二主用户发射机在与所述第一主用户发射机相同 的使用频率上的接收信号强度, 获得所述感知节点对所述第一主用户发射 机在所述相同使用频率上的接收信号强度。
10、 一种感知节点设备, 其特征在于, 包括:
测量模块, 用于对目标频段进行测量, 确定所述目标频段中的已占用 频率以及所述感知节点设备在所述已占用频率上的接收信号强度, 所述目 标频段中的已占用频率包括所述目标频段中主用户发射机正在使用或已 使用过的频率;
确定模块, 用于根据所述测量模块确定的已占用频率上的接收信号强 度, 确定所述目标频段中未占用频率的检测门限, 所述未占用频率包括所 述目标频段中未被主用户发射机使用的频率。
11、 根据权利要求 10所述的设备, 其特征在于, 所述确定模块具体 损耗差异, 以及计算所述已占用频率上的接收信号强度, 所述主用户发射
和, 以所述接收信号强度、 所述路径损耗差异与所述发射功率差异之和作 为所述目标频段中未占用频率的检测门限。
12、 根据权利要求 11所述的设备, 其特征在于, 所述确定模块具体 用于确定所述主用户发射机与所述感知节点设备之间的信道模型公式, 根 之间的路径损耗差异。
13、 根据权利要求 11或 12所述的设备, 其特征在于, 所述确定模块 包括:
场强值获得子模块, 用于根据所述主用户发射机发射天线的实际高 度, 在所述主用户发射机与所述感知节点设备之间的信道模型的历史场强 值中确定两个发射天线高度参考值, 通过频率内插分别获得在所述两个发 射天线高度参考值对应的高度上所述已占用频率与所述未占用频率对应 过对所述主用户发射机发射天线的实际高度的内插分别获得在所述实际 校正子模块, 用于对所述感知节点设备接收天线的实际高度值与所述 经验场强值中的接收天线高度参考值的差异进行场强曲线校正, 分别获得 计算子模块, 用于根据所述场强值获得子模块获得的所述已占用频率 对应的场强值与所述校正子模块获得的所述已占用频率对应的校正值, 计 算所述已占用频率对应的路径损耗; 根据所述场强值获得子模块获得的在 所述实际高度上所述未占用频率对应的场强值与所述校正子模块获得的 所述未占用频率对应的校正值, 计算所述未占用频率对应的路径损耗; 以 及根据所述已占用频率对应的路径损耗与所述未占用频率对应的路径损 径损耗差异; 以及计算所述已占用频率上的接收信号强度, 所述主用户发
之和, 以所述接收信号强度、 所述路径损耗差异与所述发射功率差异之和 作为所述目标频段中未占用频率的检测门限。
14、 根据权利要求 10所述的设备, 其特征在于, 还包括:
查询模块, 用于查询数据库, 获得所述主用户发射机的站址、 使用频 率、 信号制式和发射功率;
所述测量模块, 具体用于对所述主用户发射机的使用频率进行测量, 获得所述感知节点设备在所述使用频率上的接收信号强度。
15、 根据权利要求 14所述的设备, 其特征在于,
所述查询模块, 还用于通过查询所述数据库, 获得使用所述目标频段 中未占用频率的主用户发射机;
所述确定模块具体用于根据所述感知节点设备在所述使用频率上的 接收信号强度, 确定使用所述目标频段中未占用频率的主用户发射机使用 所述未占用频率时的检测门限。
16、 根据权利要求 10所述的设备, 其特征在于, 所述确定模块具体 用于对所述目标频段进行测量, 确定在所述感知节点设备的当前位置上主 用户发射机的使用频率以及所述感知节点设备在所述使用频率上的接收 信号强度。
17、 根据权利要求 14或 16所述的设备, 其特征在于, 所述确定模块 根据所述感知节点设备在所述使用频率上的接收信号强度, 确定所述感知 检测门限, 并在所述检测门限中选择最低检测门限作为所述目标频段中未 占用频率的检测门限。
18、 根据权利要求 14所述的设备, 其特征在于,
所述测量模块具体用于在根据获得的主用户发射机的使用频率, 确定 至少两个主用户发射机的使用频率中存在至少一个公共频率, 且所述至少
频率进行测量, 确定所述感知节点设备对所述至少两个主用户发射机在所 述除所述公共频率之外的频率上的接收信号强度; 或者,
所述测量模块具体用于根据获得的主用户发射机的使用频率, 确定所 述感知节点设备周围的第一主用户发射机使用的所有频率与所述感知节 点设备周围的第二主用户发射机使用的部分频率相同时, 对所述第二主用 户发射机的使用频率中与所述第一主用户发射机的使用频率不同的任一 使用频率进行测量, 确定所述感知节点设备对所述第二主用户发射机在所 述任一使用频率的接收信号强度; 并根据所述任一使用频率的接收信号强 度, 确定所述感知节点设备对所述第二主用户发射机在与所述第一主用户 发射机相同的使用频率上的接收信号强度, 从所述感知节点设备在所述第 一主用户发射机与所述第二主用户发射机的相同使用频率上接收的迭加 信号强度中, 减去所述感知节点设备对所述第二主用户发射机在与所述第 一主用户发射机相同的使用频率上的接收信号强度, 获得所述感知节点设 备对所述第一主用户发射机在所述相同使用频率上的接收信号强度。
PCT/CN2011/083834 2011-03-31 2011-12-12 检测门限的确定方法和感知节点设备 WO2012129932A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11862504.5A EP2680646B1 (en) 2011-03-31 2011-12-12 Method for determining detection threshold and sensing node device
US14/035,606 US9210707B2 (en) 2011-03-31 2013-09-24 Sensing threshold determining method and sensor node device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110079885.5A CN102724002B (zh) 2011-03-31 2011-03-31 检测门限的确定方法和感知节点设备
CN201110079885.5 2011-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/035,606 Continuation US9210707B2 (en) 2011-03-31 2013-09-24 Sensing threshold determining method and sensor node device

Publications (1)

Publication Number Publication Date
WO2012129932A1 true WO2012129932A1 (zh) 2012-10-04

Family

ID=46929391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083834 WO2012129932A1 (zh) 2011-03-31 2011-12-12 检测门限的确定方法和感知节点设备

Country Status (4)

Country Link
US (1) US9210707B2 (zh)
EP (1) EP2680646B1 (zh)
CN (1) CN102724002B (zh)
WO (1) WO2012129932A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888951B (zh) * 2012-12-21 2017-06-23 电信科学技术研究院 一种认知无线电系统中的干扰处理方法和系统
CN104811943A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 认知无线电系统频谱资源配置方法和装置
US9775102B2 (en) * 2014-07-29 2017-09-26 Aruba Networks, Inc. Estimating a relative difference between signal strengths of wireless signals received by a device
CN105871486B (zh) * 2015-01-20 2018-01-30 中国科学院上海高等研究院 无线传感器网络的信道模型构建方法及仿真方法
JP6728961B2 (ja) * 2016-05-18 2020-07-22 日本電気株式会社 受信電力推定装置、受信電力推定方法および受信電力推定プログラム
CN111683413B (zh) * 2020-08-12 2020-11-10 成都极米科技股份有限公司 多链路连接建立的方法、终端、网络接入设备及存储介质
CN117560774A (zh) * 2021-03-24 2024-02-13 深圳洲斯移动物联网技术有限公司 冷藏设备采用interbow协议的通信频率选择方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487414B1 (en) * 2000-08-10 2002-11-26 Schema Ltd. System and method for frequency planning in wireless communication networks
CN101577564A (zh) * 2009-06-04 2009-11-11 南通大学 基于判决门限自适应的信号频谱感知与检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564816B2 (en) * 2006-05-12 2009-07-21 Shared Spectrum Company Method and system for determining spectrum availability within a network
US8208391B2 (en) * 2007-11-30 2012-06-26 Motorola Solutions, Inc. Method and apparatus for operating a node within a mobile ad hoc cognitive radio network
US8140017B2 (en) * 2008-09-29 2012-03-20 Motorola Solutions, Inc. Signal detection in cognitive radio systems
US8780828B2 (en) * 2008-09-29 2014-07-15 Koninklijke Philips N.V. Cognitive radio device and method for determining channel occupancy
CN101521526A (zh) * 2009-03-30 2009-09-02 哈尔滨工业大学 认知无线电中最优联合空闲频谱检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487414B1 (en) * 2000-08-10 2002-11-26 Schema Ltd. System and method for frequency planning in wireless communication networks
CN101577564A (zh) * 2009-06-04 2009-11-11 南通大学 基于判决门限自适应的信号频谱感知与检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2680646A4 *
SUN, PEIPEI ET AL.: "Analysis on Aggregation Interference in Cognitive Networks Based on In-band Spectrum Sensing", JOURNAL OF NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS (NATURAL SCIENCE EDITION), vol. 30, no. 6, 31 December 2010 (2010-12-31), pages 26 - 29, XP008170852 *

Also Published As

Publication number Publication date
EP2680646A1 (en) 2014-01-01
EP2680646B1 (en) 2018-02-28
CN102724002A (zh) 2012-10-10
US9210707B2 (en) 2015-12-08
CN102724002B (zh) 2014-10-08
US20140024405A1 (en) 2014-01-23
EP2680646A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US10225804B2 (en) Power control for uplink transmissions
WO2012129932A1 (zh) 检测门限的确定方法和感知节点设备
US7158759B2 (en) Dynamic frequency selection in a wireless communication network
US7626969B2 (en) Relative location of a wireless node in a wireless network
KR101506262B1 (ko) 텔레비젼 백색 공간(tvws) 인에이블먼트 신호에 기초하여 tvws에서 통신하기 위한 방법들 및 장치들
US9924519B2 (en) Channel availability coordination for Wi-Fi and unlicensed bands using radio access network
RU2562250C2 (ru) Способ управления мощностью передачи в беспроводной локальной сети, контроллер и точка доступа
US9380480B2 (en) Minimization drive test with reduced wireless device memory usage
JP2016509801A (ja) ロング・ターム・エボリューション(lte)ネットワークの妨害器検出及び回避の方法
WO2012163162A1 (zh) 一种空闲频谱的获取方法和设备
JP6339227B2 (ja) セル干渉の調査方法及びシステム、ネットワークマネージャ
JP5780619B2 (ja) ネットワーク品質を改善するための方法およびデバイス、無線ネットワーク制御装置、ならびにチップ
KR20160054899A (ko) 무선 통신 시스템에서 안테나 파라미터를 최적화하기 위한 장치 및 방법
US20100311434A1 (en) Interference mitigation in hybrid mobile radio communication networks
CN104115541A (zh) Wlan发送模式和共存
JP2018529266A (ja) 信号処理方法および関連装置
EP2874441A1 (en) Network access point, network controller, network device, and load control method thereof
WO2015062014A1 (zh) 无线通信方法及装置
JP2008153821A (ja) 無線通信システム、端末、基地局及び制御プログラム
CN111788844B (zh) 无线通信控制方法、无线通信系统以及管理服务器
US20160212716A1 (en) Method for detecting a terminal by a base station, base station, and network entity
CN103209421B (zh) 一种避免干扰授权用户隐终端通信的方法
WO2017070956A1 (zh) 一种数据传输方法及装置
CN104255072B (zh) 功率控制方法及设备
WO1998033344A1 (en) Measuring usage of cellular mobile telephones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011862504

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE