WO2012163162A1 - 一种空闲频谱的获取方法和设备 - Google Patents

一种空闲频谱的获取方法和设备 Download PDF

Info

Publication number
WO2012163162A1
WO2012163162A1 PCT/CN2012/073141 CN2012073141W WO2012163162A1 WO 2012163162 A1 WO2012163162 A1 WO 2012163162A1 CN 2012073141 W CN2012073141 W CN 2012073141W WO 2012163162 A1 WO2012163162 A1 WO 2012163162A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
node
sensing
management unit
information
Prior art date
Application number
PCT/CN2012/073141
Other languages
English (en)
French (fr)
Inventor
白文岭
蒋成钢
李媛媛
杨宇
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP12792437.1A priority Critical patent/EP2717499B1/en
Priority to US14/122,618 priority patent/US9071345B2/en
Publication of WO2012163162A1 publication Critical patent/WO2012163162A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an acquisition method and device for an idle spectrum. Background technique
  • CR Cognitive Radio
  • the acquisition of the idle spectrum is a prerequisite for the operation of the wireless communication system, and the wireless communication system needs to ensure the accuracy of acquiring the idle spectrum to avoid harmful interference to the authorized system; and the wireless communication system needs to minimize the introduction of the idle spectrum.
  • Complexity and system overhead reducing the complexity and cost of implementation of wireless communication systems.
  • the acquisition of the idle spectrum is implemented by spectrum sensing, and the deployment is performed.
  • the wireless communication system (such as LTE) in the licensed frequency band determines whether the licensed frequency band is occupied by the authorized system by detecting the energy or signal characteristics of the authorized system, thereby identifying the idle spectrum of the licensed frequency band in a specific time domain and airspace, so as to facilitate wireless communication.
  • the system accesses the idle spectrum and maintains the backup idle spectrum information.
  • the current spectrum sensing method includes single point sensing and cooperative sensing.
  • the sensing node of the wireless communication system detects whether the authorized frequency band is occupied by the authorized system by detecting the energy or signal characteristics of the authorized system, and obtains the idleness in the authorized frequency band. Spectrum, the perceptual result is valid in a local small range; in the cooperative sensing, multiple adjacent sensing nodes of the wireless communication system are perceived in the same frequency band in the licensed frequency band, and the sensing results of the cooperative sensing nodes are merged and processed, and the fusion processing is performed. The post-perceived results are valid in a small local area.
  • Collaborative awareness is designed based on the geographic location information of the sensing nodes, and the neighboring sensing nodes cooperate.
  • the effective range of the sensing results is relatively small, and the wireless communication system needs to perceive the sensing nodes more densely and perceptually.
  • the power consumption and signaling overhead are high, and when the signal strength of the authorized system is very low, close to the detection threshold, the detection accuracy of each cooperative sensing node is not high, and the accuracy after the fusion processing is affected by each sensing node. Limitation of detection accuracy.
  • Embodiments of the present invention provide a method and a device for acquiring an idle spectrum, so as to reduce perceived power consumption and improve accuracy of idle spectrum decision.
  • an embodiment of the present invention provides a method for acquiring an idle spectrum, including:
  • the core management unit obtains deployment information of the transmitter of the authorization system and obtains an alternative Perceive the geographic location information of the node;
  • the core management unit selects a sensing node according to the deployment information and the geographic location information, and notifies the sensing node to perform spectrum sensing;
  • the core management unit receives the sensing result of the spectrum sensing by the sensing node, and acquires information of the idle spectrum according to the sensing result.
  • An embodiment of the present invention provides an apparatus for acquiring an idle spectrum, including:
  • a first acquiring module configured to acquire deployment information of an authorized system transmitter, and obtain geographic location information of the candidate sensing node
  • a selection module configured to select a sensing node according to the deployment information and the geographic location information
  • a sending module configured to notify the sensing node to perform spectrum sensing
  • the receiving module is configured to receive the sensing result of the spectrum sensing by the sensing node, and the second acquiring module is configured to acquire information about the idle spectrum according to the sensing result.
  • the present invention has at least the following advantages:
  • Selecting the sensing node by authorizing the deployment information of the system transmitter and the geographic location information of the candidate sensing node, and acquiring the idle spectrum by the sensing node, thereby reducing the number of sensing nodes performing spectrum sensing in the cognitive radio-based wireless communication system, and reducing Each sensing node needs to perceive the amount of spectrum, reduce the overall power consumption of the wireless communication system, and reduce the signaling overhead of the wireless communication system. Moreover, by selecting a sensing node with higher sensing accuracy, the accuracy of the idle spectrum decision can be improved. Reduce the impact of wireless communication systems on the authorization system.
  • FIG. 1 is a schematic flowchart of a method for acquiring an idle spectrum according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of an apparatus for acquiring an idle spectrum according to Embodiment 2 of the present invention. detailed description The inventors noticed in the process of implementing the embodiments of the present invention:
  • C R can dynamically utilize the idle spectrum of the licensed frequency band without affecting the normal communication of the authorized system, so as to resolve the contradiction between the scarcity of spectrum resources and the idleness of the licensed spectrum resources.
  • the idle spectrum of the licensed band is acquired and the idle spectrum is used; when the authorized system reappears, the licensed spectrum can be released to the authorization system to avoid interference with the authorized system.
  • the method can be implemented in a spectrum sensing manner such as single-point sensing or cooperative sensing.
  • the present invention provides a method and a device for acquiring the idle spectrum.
  • the acquisition of the idle spectrum is performed based on the transmitter deployment information of the authorized system.
  • the sensing node is selected and configured, which can reduce the number of sensing nodes that are spectrum-aware in the wireless communication system, and reduce the number of spectrum that each sensing node needs to perceive.
  • the overall power consumption and cost of the sensing are reduced, and the signaling overhead is reduced.
  • the accuracy of the idle spectrum acquisition can be improved by selecting the sensing node with higher sensing accuracy.
  • the first embodiment of the present invention provides a method for acquiring an idle spectrum, where the method includes a core management unit, a sensing node, and a requesting node, where the core management unit can be located in a relay device, a base station device, and an RNC (Radio Network Controller).
  • the sensing node is a sensing node, and may be located in a terminal device, a relay device, a base station device, or an independently deployed sensing node;
  • the requesting node includes a sensing node and a common node.
  • a common node is a node that is not capable of sensing and needs to use the idle spectrum for wireless transmission, and is located on a terminal device, a relay device, or a base station device.
  • the method includes The following steps:
  • Step 101 The core management unit acquires deployment information of the transmitter of the authorization system.
  • the deployment information includes, but is not limited to, one or any combination of the following: geographic location information of the authorized system transmitter, deployed spectrum information, and deployed transmit power information.
  • the core management unit can obtain the deployment information by accessing the database.
  • the core management unit can obtain the deployment information through the spectrum measurement method (that is, the pre-measurement); or the core management unit can obtain the deployment information through the authorization system assistance manner.
  • the core management unit may divide the deployed spectrum into a plurality of channels, and the channel information may identify the center frequency and the bandwidth information.
  • Step 102 The core management unit acquires geographic location information of the candidate sensing node. There is no sequence relationship between step 101 and step 102, and step 102 can also be located before step 101.
  • each candidate sensing node can obtain its own geographical location information (such as geographic location coordinates) by using a geolocation method (such as using a GPS method or other geographic positioning methods), and report its geographical location information to the core management unit.
  • the geographic location information of each candidate sensing node is received and obtained by the core management unit.
  • Table 1 the message format for reporting the geographic location information for each candidate sensing node.
  • Step 103 The core management unit selects the sensing node according to the deployment information of the transmitter of the authorized system and the geographical location information of the candidate sensing node, that is, selects a sensing node set for the deployed spectrum of each authorized system transmitter.
  • the core management unit calculates, according to the deployed transmit power information P s of the authorized system transmitter and the detection threshold ⁇ ⁇ , the maximum propagation loss ax of the candidate sensing node and the authorized system transmitter satisfying the detection threshold requirement, that is, the core management unit calculates the dB.
  • the core management unit is based on the wireless channel propagation model and the maximum propagation loss ax Calculating a maximum distance d max between the candidate sensing node and the authorized system transmitter satisfying the detection threshold requirement, that is, the core management unit solves d max , W ( . ) by the W Umax ⁇ ax as a wireless channel propagation model function; the wireless channel propagation
  • the model may be a model hata that gives a relationship between propagation loss and propagation distance.
  • the wireless channel propagation model may be reasonably selected according to the characteristics of the authorization system;
  • the core management unit selects the sensing node of each authorized system transmitter according to the geographic location information of the transmitter of the authorized system, the geographical location information of the candidate sensing node, and the maximum distance d max , that is, the core management unit transmits from the candidate sensing node and the authorization system.
  • a candidate sensing node that selects a specified number of the candidate sensing nodes whose distance is not greater than d max is used as the sensing node.
  • the core management unit may perform each channel of each authorized system transmitter according to the geographic location information of the transmitter of the authorized system, the geographical location information of the candidate sensing node, and the maximum distance d max (ie, spectrum, deployment)
  • Step 104 The core management unit notifies the corresponding sensing node of the configuration information, and schedules the corresponding sensing node to perform spectrum sensing.
  • the core management unit sends the sensing node selection and the configuration result of the decision to the corresponding sensing node through the sensing configuration message, and schedules the corresponding sensing node to perform spectrum sensing of the deployed spectrum.
  • Step 105 The core management unit receives the sensing result of the spectrum sensing by the sensing node, and fuses the sensing result to determine whether the authorization system is currently transmitting in the deployed spectrum.
  • the core management unit determines whether the transmitter of the authorized system is transmitting in a certain deployed spectrum. For the same channel of the same transmitter, the core management unit can be traditional The fusion of the sensing results of multiple sensing nodes with the criteria or the criteria may also be used to fuse the sensing results with other fusion criteria to determine whether the transmitter of the authorized system is transmitting in a deployed spectrum.
  • Step 106 The core management unit acquires information of the idle spectrum according to the idle spectrum request message of the requesting node and the decision result.
  • the requesting node sends an idle spectrum request message to the core management unit according to the requirements of the spectrum resource, and the core management unit can receive the idle spectrum request message of the requesting node (including the sensing node and the common node), where the idle spectrum request message can be Carrying the geographic location information of the requesting node; optionally, the idle spectrum request message may include a channel list that the requesting node can support; optionally, the idle spectrum request message may include the maximum transmit power of the requesting node. As shown in Table 2, the message format for the idle spectrum request.
  • the core management unit calculates the geographical location information of the requesting node, The geographical distance d between the geographic location information of the transmitters of the authorized system currently transmitting in the deployed spectrum; that is, the geographical distance d is calculated from the geographic location of the requesting node and all authorized system transmitters deploying the channel and transmitting using the channel ;
  • the core management unit determines that the spectrum is an idle spectrum; otherwise, the core management unit determines that the spectrum is not an idle spectrum (ie, the spectrum is occupied).
  • the core management unit may calculate the currently deployed spectrum by transmitting methods such as networking analysis and simulation.
  • the level of interference of the authorization system ie, all authorized systems that deploy this channel and utilize this channel); this measure of interference level is the loss of coverage of the authorized system transmitter or the dropped call rate or capacity loss of the authorized system;
  • the core management unit determines that the spectrum is an idle spectrum; otherwise, the core management unit determines that the spectrum is not an idle spectrum (i.e., the spectrum is occupied).
  • the core management unit determines the target spectrum set to be determined according to the supported spectrum list, and determines whether each spectrum in the target spectrum set is the idle spectrum. .
  • the core management unit may first determine the target channel set that needs to be determined. If the idle spectrum request information of the requesting node carries the spectrum list that the requesting node can support, the core management unit determines each supported by the requesting node. Whether the channel is idle, otherwise the core management unit determines whether each authorized system channel is idle, thereby acquiring the idle channel set of the node. After that, the core management unit decides whether each channel of each requesting node is idle, and the specific implementation manner may adopt (1) or (2) above.
  • Step 107 The core management unit returns information of the idle spectrum to the requesting node.
  • the core management unit may return the determined idle channel list to the requesting node by using an idle spectrum response message, and the requesting node receives the idle spectrum response message returned by the core management unit, thereby obtaining an idle channel list, and selecting an appropriate one according to its own spectrum requirement. Idle channel access for wireless service transmission.
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • IEEE802.il Institute of Electrical and Electronics Engineers, Tenth Office of Electrical and Electronic Engineers
  • IEEE802 A standard wireless communication system such as .16.
  • the number of sensing nodes that perform spectrum sensing in the cognitive radio-based wireless communication system can be reduced, the number of spectrums that each sensing node needs to perceive is reduced, and the overall function of the wireless communication system is reduced. It reduces the signaling overhead of the wireless communication system; and by selecting the sensing node with higher sensing accuracy, the accuracy of the idle spectrum decision can be improved, and the influence of the wireless communication system on the authorization system can be reduced.
  • an embodiment of the present invention further provides an apparatus for acquiring an idle spectrum.
  • the apparatus includes:
  • the first obtaining module 11 is configured to acquire deployment information of the transmitter of the authorization system, and obtain geographic location information of the candidate sensing node;
  • the selecting module 12 is configured to select a sensing node according to the deployment information and the geographic location information;
  • the sending module 13 is configured to notify the sensing node to perform spectrum sensing, and the receiving module 14 is configured to receive the sensing result of the sensing node for performing spectrum sensing;
  • the second obtaining module 15 is configured to obtain a signal of the idle spectrum according to the sensing result, where the deployment information includes one or any combination of the following: geographic location information of the authorized system transmitter, deployed spectrum information, and deployed transmit power information;
  • the first obtaining module 11 is configured to obtain the deployment information by accessing a database, or obtain the deployment information by using a spectrum measurement manner.
  • the first acquiring module 11 is specifically configured to receive geographic location information reported by each candidate sensing node, where the geographic location information is determined by each candidate sensing node.
  • the bit mode is known.
  • the deployment information includes: the geographic location information of the transmitter of the authorization system, the deployment spectrum information, and the deployment of the transmit power information.
  • the selecting module 12 is specifically configured to use the transmit power information P s according to the deployment of the transmitter of the authorization system.
  • ⁇ ⁇ detection threshold calculated maximum propagation candidate sense node and the authorized system transmitter loss ⁇ ⁇ ⁇ ; according to the maximum propagation loss ⁇ ⁇ ⁇ calculated maximum distance d max between the candidate sense node and the authorized system transmitter; authorization system
  • the geographic location information of the transmitter, the geographic location information of the alternate sensing node, and the maximum distance dmax select the sensing nodes of the transmitters of each authorized system.
  • the selecting module 12 is further configured to select, from the candidate sensing nodes whose distance between the candidate sensing node and the authorized system transmitter is not greater than d max , the selected number of candidate sensing nodes that are closest to the authorized system transmitter as the sensing node. node.
  • the second obtaining module 15 is specifically configured to determine whether the sensing system currently transmits the deployed spectrum according to the sensing result; and obtain the information of the idle spectrum according to the idle spectrum request message of the requesting node and the determination result.
  • the idle spectrum request message carries the geographical location information of the requesting node; the second acquiring module 15 is further configured to calculate the geographic location information of the requesting node, and the authorized system transmitter that is currently transmitting in the deployed spectrum. Using the geographic distance d to calculate the received signal strength P R of the authorized system transmitter to the requesting node; if the received signal strength P R is lower than the detection threshold ⁇ ⁇ , the decision The spectrum is the idle spectrum; otherwise, the spectrum is determined not to be the free spectrum.
  • the idle spectrum request message carries the maximum transmit power of the requesting node.
  • the second obtaining module 15 is further configured to: when the requesting node uses the maximum transmit power, calculate an interference level of an authorized system currently transmitting in the deployed spectrum; if the interference level is lower than a preset threshold, The spectrum is determined to be an idle spectrum; otherwise, the spectrum is determined not to be an idle spectrum.
  • the measure of the level of interference is the loss of coverage of the transmitter of the authorized system or the drop rate or capacity loss of the authorized system.
  • the idle spectrum request message carries a spectrum list that can be supported by the requesting node, and the second acquiring module 15 is further configured to determine, according to the supported spectrum list, a target spectrum set that needs to be determined, and determine the target. Whether each spectrum in the spectrum set is an idle spectrum.
  • the acquisition device of the idle spectrum is a core management unit, and is located on a relay device, a base station device, an RNC device, or a gateway device;
  • the sensing node is a node with sensing capability, and is located at a terminal device, a relay device, a base station device, Or the independently deployed sensor node;
  • the requesting node includes a sensing node and a common node, and the common node is a node that does not have the sensing capability and needs to use the idle spectrum for wireless transmission, and is located in the terminal device, the relay device, or the base station. On the device.
  • modules of the device of the present invention may be integrated or may be deployed separately.
  • the above modules can be combined into one module, or they can be further split into multiple sub-modules.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • modules in the device in the embodiment can follow The embodiment is described as being distributed in the apparatus of the embodiment, and the corresponding change may also be made in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种空闲频谱的获取方法和设备,该方法包括:核心管理单元获取授权系统发射机的部署信息,并获取备选感知节点的地理位置信息;所述核心管理单元根据所述部署信息和所述地理位置信息选择感知节点,并通知所述感知节点进行频谱感知;所述核心管理单元接收所述感知节点进行频谱感知的感知结果,并根据所述感知结果获取空闲频谱的信息。本发明实施例中,可降低基于认知无线电的无线通信系统中进行频谱感知的感知节点数目,降低每个感知节点需要感知的频谱的数量,降低无线通信系统的总体功耗,降低无线通信系统的信令开销。

Description

一种空闲频谱的获取方法和设备 本发明要求于 2011 年 6 月 2 日提交中国专利局, 申请号为 201110147674.0, 发明名称为 "一种空闲频谱的获取方法和设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种空闲频谱的获取方 法和设备。 背景技术
随着无线通信技术的飞速发展, 日益增长的宽带无线通信需 求与有限频谱资源的矛盾日趋明显, 而现有的频谱管理会导致频 谱资源分配方式相对固定, 无法快速自适应的根据需求进行调整; 使得虽然可以通过 MIMO ( Multiple Input Multiple Output , 多输入 多输出)、 高阶调制等数字信号处理技术提高单位频谱的利用率, 但不能解决频谱资源稀缺的问题, 且很多已经分配给现有无线通 信系统的频谱资源存在空闲, 限制了潜在的无线通信系统的接入。
基于上述问题, CR ( Cognitive Radio , 认知无线电 )技术逐渐 受到关注, CR的思想是: 在不影响授权频段的授权系统正常通信 的基础上, 具有认知功能的无线通信设备机会式 (opportunistic ) 地接入授权频段的空闲频谱, 并动态地利用频谱, 使得无线通信 设备具有发现空闲频谱并合理利用的能力, 以解决目前因频谱固 定分配导致的对频谱资源的不合理利用问题。
在 CR技术中, 空闲频谱的获取是无线通信系统工作的前提, 无线通信系统需要保证获取空闲频谱的准确度, 以避免对授权系 统的有害干扰; 而且无线通信系统需要尽量降低获取空闲频谱引 入的复杂度与系统开销, 降低无线通信系统的实现复杂度与成本。
现有技术中, 空闲频谱的获取是通过频谱感知实现的, 部署 在授权频段的无线通信系统 (如 LTE ), 通过检测授权系统的能量 或者信号特征, 判断授权频带是否被授权系统占用, 从而标识出 特定时域和空域的授权频段的空闲频谱, 以便于无线通信系统接 入空闲频谱并维护备份空闲频谱信息。
当前频谱感知的方式包括单点感知与协作感知, 在单点感知 时, 无线通信系统的感知节点通过检测授权系统的能量或者信号 特征, 获取授权频带是否被授权系统占用, 获取授权频带上的空 闲频谱, 该感知结果在本地小范围内有效; 在协作感知时, 无线 通信系统的多个相邻的感知节点在授权频带内同一频带感知, 并 将协作感知节点的感知结果进行融合处理, 融合处理后的感知结 果在本地小范围内有效。
在实现本发明的过程中, 发明人发现现有技术中至少存在以 下问题:
单点感知由于隐藏终端等问题, 感知的准确度不高, 且每个 节点需要进行感知, 提高了系统的实现复杂度及成本。
协作感知由于基于感知节点的地理位置信息进行设计, 邻近 的感知节点之间进行协作, 为了避免干扰授权系统, 感知结果的 有效范围都比较小, 无线通信系统需要进行感知的感知节点比较 密集, 感知的功耗及信令开销较高, 而且当授权系统的信号强度 很低, 接近检测门限时, 导致每个协作感知节点的检测准确度不 高, 融合处理后的准确度受到每个感知节点的检测准确度的制约。
发明内容
本发明实施例提供一种空闲频谱的获取方法和设备, 以降低 感知的功耗, 并提高空闲频谱决策的准确度。
为了达到上述目的, 本发明实施例提供一种空闲频谱的获取 方法, 包括:
核心管理单元获取授权系统发射机的部署信息, 并获取备选 感知节点的地理位置信息;
所述核心管理单元根据所述部署信息和所述地理位置信息选 择感知节点, 并通知所述感知节点进行频谱感知;
所述核心管理单元接收所述感知节点进行频谱感知的感知结 果, 并根据所述感知结果获取空闲频谱的信息。
本发明实施例提供一种空闲频谱的获取设备, 包括:
第一获取模块, 用于获取授权系统发射机的部署信息, 并获 取备选感知节点的地理位置信息;
选择模块, 用于根据所述部署信息和所述地理位置信息选择 感知节点;
发送模块, 用于通知所述感知节点进行频谱感知;
接收模块, 用于接收所述感知节点进行频谱感知的感知结果; 第二获取模块, 用于根据所述感知结果获取空闲频谱的信息。 与现有技术相比, 本发明至少具有以下优点:
通过授权系统发射机的部署信息和备选感知节点的地理位置 信息选择感知节点, 并通过感知节点获取空闲频谱, 从而可以降 低基于认知无线电的无线通信系统中进行频谱感知的感知节点数 目, 降低每个感知节点需要感知的频谱的数量, 降低无线通信系 统的总体功耗, 降低无线通信系统的信令开销; 而且通过选择感 知准确度较高的感知节点, 可以提高空闲频谱决策的准确度, 降 低无线通信系统对于授权系统的影响。 附图说明
图 1 是本发明实施例一提供的一种空闲频谱的获取方法流程 示意图;
图 2是本发明实施例二提供的一种空闲频谱的获取设备结构 示意图。 具体实施方式 发明人在实现本发明实施例的过程中注意到:
C R可以在不影响授权系统正常通信的基础上, 动态地利用授 权频段的空闲频谱, 以解决频谱资源稀缺与已授权频谱资源空闲 的矛盾。在采用 CR的无线通信系统中,获取授权频带的空闲频谱, 并使用空闲频谱; 当授权系统重新出现时, 可以释放授权频谱给 授权系统, 避免对授权系统的干扰。
为了获取空闲频谱, 可通过单点感知或协作感知等频谱感知 方式来完成, 针对现有单点感知和协作感知中存在的问题, 本发 明实施例提供一种空闲频谱的获取方法和设备, 以基于授权系统 发射机部署信息进行空闲频谱的获取。 本发明实施例中, 基于 CR 的无线通信系统获取空闲频谱时进行感知节点的选择与配置, 可 以降低无线通信系统中进行频谱感知的感知节点数目, 降低每个 感知节点需要感知的频谱的数量, 降低感知的总体功耗与成本, 降低信令开销; 通过选择感知准确度较高的感知节点, 可提高空 闲频谱获取的准确度。
下面将结合本发明中的附图, 对本发明中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明的一部分 实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域 普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
实施例一
本发明实施例一提供一种空闲频谱的获取方法, 该方法中包 含核心管理单元、 感知节点与请求节点, 该核心管理单元可位于 中继设备、 基站设备、 RNC ( Radio Network Controller , 无线网络 控制器) 设备、 或网关设备上; 该感知节点是指具备感知能力的 节点, 可位于终端设备、 中继设备、 基站设备或者为独立部署的 传感节点; 该请求节点包括感知节点和普通节点, 普通节点是指 不具备感知能力且需要采用空闲频谱进行无线传输的节点, 位于 终端设备、 中继设备、 或基站设备上。 如图 1 所示, 该方法包括 以下步骤:
步骤 101 , 核心管理单元获取授权系统发射机的部署信息。 该 部署信息包括但不限于以下之一或任意组合: 授权系统发射机的 地理位置信息、 部署频谱信息、 部署发射功率信息。
具体的, 核心管理单元可通过接入数据库方式获取部署信息; 或者, 核心管理单元可通过频谱测量方式 (即预先测量) 获取部 署信息; 或者, 核心管理单元可通过授权系统协助方式获取部署 信息。
本发明实施例中, 核心管理单元可将部署频谱分为若干个频 道, 频道信息可以标识中心频率及带宽信息。
步骤 102, 核心管理单元获取备选感知节点的地理位置信息。 步骤 101与步骤 102之间并没有先后顺序关系, 步骤 102也可以 位于步骤 101之前。
具体的, 各备选感知节点可通过地理定位方式 (如采用 GPS 方式或者其他地理定位方式) 获知自身的地理位置信息 (如地理 位置坐标), 并将自身的地理位置信息上报给核心管理单元, 由核 心管理单元接收并获取各备选感知节点的地理位置信息。 如表 1 所示, 为各备选感知节点上报地理位置信息的消息格式。
表 1
Figure imgf000007_0001
步骤 103 ,核心管理单元根据授权系统发射机的部署信息以及 备选感知节点的地理位置信息选择感知节点, 即为每个授权系统 发射机的部署频谱选择感知节点集合。
具体的, 核心管理单元根据授权系统发射机的部署发射功率 信息 Ps与检测门限 Ρτ计算满足检测门限要求的备选感知节点与授 权系统发射机的最大传播损耗 ax, 即核心管理单元计算 dB] 为 Ps[dB]-PT [dB] ;
核心管理单元根据无线信道传播模型以及最大传播损耗 ax 计算出满足检测门限要求的备选感知节点与授权系统发射机的最 大距离 dmax, 即核心管理单元通过 W Umax ^ ax求解 dmax, W ( . ) 为无线信道传播模型函数; 该无线信道传播模型可以为给出了传 播损耗与传播距离关系的模型 hata,本发明实施例中无线信道传播 模型可根据授权系统的特性进行合理的选取;
核心管理单元根据授权系统发射机的地理位置信息、 备选感 知节点的地理位置信息、 以及最大距离 dmax选择各授权系统发射 机的感知节点, 即核心管理单元从备选感知节点与授权系统发射 机的距离不大于 dmax的备选感知节点中选择指定个数的备选感知 节点作为感知节点。
本发明实施例中, 核心管理单元可根据授权系统发射机的地 理位置信息、 备选感知节点的地理位置信息、 以及最大距离 dmax 进行每个授权系统发射机的每个频道 (即频谱, 部署频谱分为若 干个频道) 的感知节点集合的选择与配置; 对于授权系统发射机 的每个部署频道, 核心管理单元从所有满足与授权系统发射机的 距离小于等于 dmax的备选感知节点中, 选择距离授权系统发射机 最近的若干个感知节点; 每个授权系统发射机的每个部署频道可 以配置多个感知节点, 而同一感知节点也可以进行多个部署频道 的感知。
步骤 104, 核心管理单元将配置信息通知给相应的感知节点, 调度相应的感知节点进行频谱感知。 本发明实施例中, 核心管理 单元将决策的感知节点选择与配置结果通过感知配置消息发送给 相应的感知节点, 调度相应的感知节点进行部署频谱的频谱感知。
步骤 105 ,核心管理单元接收感知节点进行频谱感知的感知结 果, 并融合感知结果判决授权系统当前是否在部署的频谱进行发 射。
具体的, 核心管理单元接收到已配置感知节点上报的感知结 果后, 融合感知结果决策授权系统发射机是否正在某个部署频谱 发射。 对于同一发射机的同一频道, 核心管理单元可采用传统的 与 /或准则进行多个感知节点的感知结果的融合, 也可以采用其他 的融合准则进行感知结果的融合, 从而决策出授权系统发射机是 否正在某个部署的频谱进行发射。
步骤 106,核心管理单元根据请求节点的空闲频谱请求消息以 及判决结果获取空闲频谱的信息。
本步骤之前, 请求节点根据自身的频谱资源需求向核心管理 单元发送空闲频谱请求消息, 核心管理单元可接收请求节点 (包 括感知节点与普通节点) 的空闲频谱请求消息, 该空闲频谱请求 消息中可携带请求节点的地理位置信息; 可选地, 空闲频谱请求 消息中可以包含该请求节点可以支持的频道列表; 可选地, 空闲 频谱请求消息中可以包含该请求节点的最大发射功率。 如表 2 所 示, 为空闲频谱请求的消息格式。
表 2
Figure imgf000009_0001
本步骤中, ( 1 ) 如果空闲频谱请求消息中携带请求节点的地 理位置信息 (假设空闲频谱请求消息中不包含请求节点的最大发 射功率信息), 则核心管理单元计算请求节点的地理位置信息、 当 前在部署的频谱进行发射的授权系统发射机的地理位置信息之间 的地理距离 d; 即根据该请求节点与所有部署该频道并利用此频道 发射的授权系统发射机的地理位置计算地理距离 d;
核心管理单元利用地理距离 d,并采用无线信道传播模型计算 出每个满足条件的授权系统发射机到请求节点的接收信号强度 PR; 其中, 核心管理单元计算 PR[dB]=Ps[dB]-L[dB] , L=W ( d ); W ( . ) 为无线信道传播模型函数, PS为部署发射功率信息;
通过将所有接收信号强度 PR与检测门限 ΡΤ比较,如果接收信 号强度 于检测门限 Ρτ,核心管理单元判决该频谱为空闲频谱; 否则,核心管理单元判决该频谱不是空闲频谱(即该频谱被占用)。
( 2 )如果空闲频谱请求消息中携带请求节点的最大发射功率 信息, 则当请求节点采用最大发射功率时, 核心管理单元可以通 过组网分析与仿真等方法, 计算当前在部署的频谱进行发射的授 权系统 (即所有部署了此频道并利用此频道发射的授权系统) 的 干扰水平; 该干扰水平的衡量指标为授权系统发射机的覆盖率损 失或授权系统的掉话率或容量损失;
如果干扰水平低于预设门限, 核心管理单元判决该频谱为空 闲频谱; 否则, 核心管理单元判决该频谱不是空闲频谱(即该频 谱被占用)。
( 3 )如果空闲频谱请求消息中携带请求节点可支持的频谱列 表, 则核心管理单元根据可支持的频谱列表确定需要判断的目标 频谱集合, 并判断目标频谱集合中的每个频谱是否为空闲频谱。
本发明实施例中, 核心管理单元可首先确定需要判断的目标 频道集合, 如果请求节点的空闲频谱请求信息中携带请求节点可 支持的频谱列表, 则核心管理单元判断该请求节点可支持的每一 个频道是否空闲, 否则核心管理单元判断每一个授权系统频道是 否空闲, 从而获取该节点的空闲频道集合。 之后, 核心管理单元 决策每个请求节点的每个频道是否空闲, 具体实现方式可采用上 述的 (1 ) 或 (2 )。
步骤 107 , 核心管理单元将空闲频谱的信息返回给请求节点。 核心管理单元可将决策的空闲频道列表通过空闲频谱响应消息返 回给请求节点, 该请求节点接收核心管理单元返回的空闲频谱响 应消息, 从而获取空闲频道列表, 并根据自身的频谱需求从中选 择合适的空闲频道接入, 进行无线业务传输。
本发明实施例提供的技术方案,可以应用于 TD-SCDMA( Time Division- Synchronous Code Division Multiple Access , 时分同步码 分多址)、 WCDMA ( Wideband Code Division Multiple Access , 宽 带码分多址)、 LTE ( Long Term Evolution , 长期演进)、 LTE-A ( LTE- Advanced,高级 LTE ), IEEE802.i l ( Institute of Electrical and Electronics Engineers , 电气和电子工程师十办会)、 IEEE802.16等标 准的无线通信系统。
而且通过采用本发明实施例提供的技术方案, 可以降低基于 认知无线电的无线通信系统中进行频谱感知的感知节点数目, 降 低每个感知节点需要感知的频谱的数量, 降低无线通信系统的总 体功耗, 降低无线通信系统的信令开销; 而且通过选择感知准确 度较高的感知节点, 可以提高空闲频谱决策的准确度, 降低无线 通信系统对于授权系统的影响。
实施例二
基于与上述方法同样的发明构思, 本发明实施例中还提供了 一种空闲频谱的获取设备, 如图 2所示, 该设备包括:
第一获取模块 11 , 用于获取授权系统发射机的部署信息, 并 获取备选感知节点的地理位置信息;
选择模块 12, 用于根据所述部署信息和所述地理位置信息选 择感知节点;
发送模块 13 , 用于通知所述感知节点进行频谱感知; 接收模块 14, 用于接收所述感知节点进行频谱感知的感知结 果;
第二获取模块 15 , 用于根据所述感知结果获取空闲频谱的信 所述部署信息包括以下之一或任意组合: 所述授权系统发射 机的地理位置信息、 部署频谱信息、 部署发射功率信息; 所述第 一获取模块 11 ,具体用于通过接入数据库方式获取所述部署信息; 或者, 通过频谱测量方式获取所述部署信息; 或者, 通过授权系 统协助方式获取所述部署信息。
所述第一获取模块 11 , 具体用于接收各备选感知节点上报的 地理位置信息, 所述地理位置信息由各备选感知节点通过地理定 位方式获知。
所述部署信息包括: 所述授权系统发射机的地理位置信息、 部署频谱信息、 部署发射功率信息; 所述选择模块 12, 具体用于 根据所述授权系统发射机的部署发射功率信息 Ps与检测门限 Ρτ 计算备选感知节点与授权系统发射机的最大传播损耗 Ι^χ;根据所 述最大传播损耗 Ι^χ计算备选感知节点与授权系统发射机的最大 距离 dmax; 根据授权系统发射机的地理位置信息、备选感知节点的 地理位置信息、 以及所述最大距离 dmax选择各授权系统发射机的 感知节点。
所述选择模块 12, 进一步用于计算 axWB] 为 Ps[dB]-PT [dB]; 以及通过 W(dmax) = ax求解所述 dmax, 其中, W(.) 为 无线信道传播模型函数。
所述选择模块 12, 进一步用于从备选感知节点与授权系统发 射机的距离不大于 dmax的备选感知节点中, 选择距离授权系统发 射机最近的指定个数的备选感知节点为感知节点。
所述第二获取模块 15, 具体用于融合所述感知结果判决授权 系统当前是否在部署的频谱进行发射; 根据请求节点的空闲频谱 请求消息以及判决结果获取空闲频谱的信息。
所述空闲频谱请求消息中携带所述请求节点的地理位置信 息; 所述第二获取模块 15, 进一步用于计算所述请求节点的地理 位置信息、 当前在部署的频谱进行发射的授权系统发射机的地理 位置信息之间的地理距离 d; 利用所述地理距离 d计算授权系统发 射机到所述请求节点的接收信号强度 PR; 如果所述接收信号强度 PR低于检测门限 Ρτ, 判决该频谱为空闲频谱; 否则, 判决该频谱 不是空闲频谱。
所述第二获取模块 15,进一步用于计算 PR[dB]=Ps[dB]-L[dB], L=W(d); 其中, W(.) 为无线信道传播模型函数, Ps为部署发 射功率信息。
所述空闲频谱请求消息中携带所述请求节点的最大发射功率 信息; 所述第二获取模块 15 , 进一步用于当所述请求节点采用最 大发射功率时, 计算当前在部署的频谱进行发射的授权系统的干 扰水平; 如果所述干扰水平低于预设门限, 判决该频谱为空闲频 谱; 否则, 判决该频谱不是空闲频谱。
所述干扰水平的衡量指标为授权系统发射机的覆盖率损失或 授权系统的掉话率或容量损失。 所述空闲频谱请求消息中携带所 述请求节点可支持的频谱列表; 所述第二获取模块 15 , 进一步用 于根据所述可支持的频谱列表确定需要判断的目标频谱集合, 并 判断所述目标频谱集合中的每个频谱是否为空闲频谱。
所述空闲频谱的获取设备为核心管理单元, 位于中继设备、 基站设备、 RNC设备、 或网关设备上; 所述感知节点为具备感知 能力的节点, 位于终端设备、 中继设备、 基站设备、 或独立部署 的传感节点上; 所述请求节点包括感知节点和普通节点, 所述普 通节点为不具备感知能力且需要采用空闲频谱进行无线传输的节 点, 位于终端设备、 中继设备、 或基站设备上。
其中, 本发明装置的各个模块可以集成于一体, 也可以分离 部署。 上述模块可以合并为一个模块, 也可以进一步拆分成多个 子模块。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地 了解到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基 于这样的理解, 本发明的技术方案本质上或者说对现有技术做出 贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品 存储在一个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各 个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意 图, 附图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照 实施例描述进行分布于实施例的装置中, 也可以进行相应变化位 于不同于本实施例的一个或多个装置中。 上述实施例的模块可以 合并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 非局限于此, 任何本领域的技术人员能思之的变化都应落入本发 明的保护范围。

Claims

权利要求
1、 一种空闲频谱的获取方法, 其特征在于, 包括:
核心管理单元获取授权系统发射机的部署信息,并获取备选感知 节点的地理位置信息;
所述核心管理单元根据所述部署信息和所述地理位置信息选择 感知节点, 并通知所述感知节点进行频谱感知;
所述核心管理单元接收所述感知节点进行频谱感知的感知结果, 并根据所述感知结果获取空闲频谱的信息。
2、 如权利要求 1所述的方法, 其特征在于, 所述部署信息包括 以下之一或任意组合: 所述授权系统发射机的地理位置信息、部署频 谱信息、 部署发射功率信息;
所述核心管理单元获取授权系统发射机的部署信息, 包括: 所述核心管理单元通过接入数据库方式获取所述部署信息; 或 者,
所述核心管理单元通过频谱测量方式获取所述部署信息; 或者, 所述核心管理单元通过授权系统协助方式获取所述部署信息。
3、 如权利要求 1所述的方法, 其特征在于, 所述核心管理单元 获取备选感知节点的地理位置信息, 包括:
所述核心管理单元接收各备选感知节点上报的地理位置信息 ,所 述地理位置信息由各备选感知节点通过地理定位方式获知。
4、 如权利要求 1所述的方法, 其特征在于, 所述部署信息包括: 所述授权系统发射机的地理位置信息、部署频谱信息、部署发射功率 信息;
所述核心管理单元根据所述部署信息和所述地理位置信息选择 感知节点, 包括:
所述核心管理单元根据所述授权系统发射机的部署发射功率信 息 Ps与检测门限 Ρτ计算备选感知节点与授权系统发射机的最大传播 损耗
所述核心管理单元根据所述最大传播损耗 Ι^χ计算备选感知节 点与授权系统发射机的最大距离(1皿;
所述核心管理单元根据授权系统发射机的地理位置信息、备选感 知节点的地理位置信息、以及所述最大距离(1皿选择各授权系统发射 机的感知节点。
5、 如权利要求 4所述的方法, 其特征在于, 所述核心管理单元 根据所述授权系统发射机的部署发射功率信息 Ps与检测门限 Ρτ计算 备选感知节点与授权系统发射机的最大传播损耗 Ι^χ, 包括:
所述核心管理单元计算 I^JdB] 为 Ps[dB]-PT [dB];
所述核心管理单元根据所述最大传播损耗 Ι^χ计算备选感知节 点与授权系统发射机的最大距离(1皿, 包括:
所述核心管理单元通过 W ( ( X ) = Ι^Χ求解所述 (1皿, 其中, W
( . ) 为无线信道传播模型函数。
6、 如权利要求 4所述的方法, 其特征在于, 所述核心管理单元 根据授权系统发射机的地理位置信息、 备选感知节点的地理位置信 息、以及所述最大距离(1皿选择各授权系统发射机的感知节点,包括: 所述核心管理单元从备选感知节点与授权系统发射机的距离不 大于(1 的备选感知节点中,选择距离授权系统发射机最近的指定个 数的备选感知节点为感知节点。
7、 如权利要求 1所述的方法, 其特征在于, 所述核心管理单元 根据所述感知结果获取空闲频谱的信息, 包括:
所述核心管理单元融合所述感知结果判决授权系统当前是否在 部署的频谱进行发射;
所述核心管理单元根据请求节点的空闲频谱请求消息以及判决 结果获取空闲频谱的信息。
8、 如权利要求 7所述的方法, 其特征在于, 所述空闲频谱请求 消息中携带所述请求节点的地理位置信息;
所述核心管理单元根据请求节点的空闲频谱请求消息以及判决 结果获取空闲频谱的信息, 包括:
所述核心管理单元计算所述请求节点的地理位置信息、 当前在部 署的频谱进行发射的授权系统发射机的地理位置信息之间的地理距 离 d;
所述核心管理单元利用所述地理距萬 d计算授权系统发射机到所 述请求节点的接收信号强度 PR;
如果所述接收信号强度 P]^ 于检测门限 Ρτ, 所述核心管理单元 判决该频谱为空闲频谱; 否则, 所述核心管理单元判决该频谱不是空 闲频谱。
9、 如权利要求 8所述的方法, 其特征在于, 所述核心管理单元 利用所述地理距离 d计算授权系统发射机到所述请求节点的接收信 号强度 PR, 包括:
所述核心管理单元计算 PR[dB]=Ps[dB]-L[dB], L=W ( d ); 其中, W ( . ) 为无线信道传播模型函数, Ps为部署发射功率信息。
10、 如权利要求 7所述的方法, 其特征在于, 所述空闲频谱请求 消息中携带所述请求节点的最大发射功率信息;
所述核心管理单元根据请求节点的空闲频谱请求消息以及判决 结果获取空闲频谱的信息, 包括:
当所述请求节点采用最大发射功率时,所述核心管理单元计算当 前在部署的频谱进行发射的授权系统的干扰水平;
如果所述干扰水平低于预设门限,所述核心管理单元判决该频谱 为空闲频谱; 否则, 所述核心管理单元判决该频谱不是空闲频谱。
11、 如权利要求 10所述的方法, 其特征在于, 所述干扰水平的 衡量指标为授权系统发射机的覆盖率损失或授权系统的掉话率或容 量损失。
12、 如权利要求 7所述的方法, 其特征在于, 所述空闲频谱请求 消息中携带所述请求节点可支持的频谱列表;
所述核心管理单元根据请求节点的空闲频谱请求消息以及判决 结果获取空闲频谱的信息, 包括:
所述核心管理单元根据所述可支持的频谱列表确定需要判断的 目标频谱集合,并判断所述目标频谱集合中的每个频谱是否为空闲频 谱。
13、 如权利要求 7所述的方法, 其特征在于, 所述核心管理单元 位于中继设备、 基站设备、 RNC设备、 或网关设备上;
所述感知节点为具备感知能力的节点,位于终端设备、中继设备、 基站设备、 或独立部署的传感节点上;
所述请求节点包括感知节点和普通节点,所述普通节点为不具备 感知能力且需要采用空闲频谱进行无线传输的节点, 位于终端设备、 中继设备、 或基站设备上。
14、 一种空闲频谱的获取设备, 其特征在于, 包括:
第一获取模块, 用于获取授权系统发射机的部署信息, 并获取备 选感知节点的地理位置信息;
选择模块,用于根据所述部署信息和所述地理位置信息选择感知 节点?
发送模块, 用于通知所述感知节点进行频谱感知;
接收模块, 用于接收所述感知节点进行频谱感知的感知结果; 第二获取模块, 用于根据所述感知结果获取空闲频谱的信息。
15、 如权利要求 14所述的设备, 其特征在于, 所述部署信息包 括以下之一或任意组合: 所述授权系统发射机的地理位置信息、 部署 频谱信息、 部署发射功率信息;
所述第一获取模块,具体用于通过接入数据库方式获取所述部署 信息;
或者, 通过频谱测量方式获取所述部署信息; 或者,
通过授权系统协助方式获取所述部署信息。
16、 如权利要求 14所述的设备, 其特征在于, 所述第一获取模块,具体用于接收各备选感知节点上报的地理位 置信息, 所述地理位置信息由各备选感知节点通过地理定位方式获 知。
17、 如权利要求 14所述的设备, 其特征在于, 所述部署信息包 括: 所述授权系统发射机的地理位置信息、 部署频谱信息、 部署发射 功率信息;
所述选择模块,具体用于根据所述授权系统发射机的部署发射功 率信息 Ps与检测门限 Ρτ计算备选感知节点与授权系统发射机的最大 传播损耗 Ι^χ
根据所述最大传播损耗 Ι^χ计算备选感知节点与授权系统发射 机的最大距离( x;
根据授权系统发射机的地理位置信息、备选感知节点的地理位置 信息、 以及所述最大距离(1皿选择各授权系统发射机的感知节点。
18、 如权利要求 17所述的设备, 其特征在于,
所述选择模块, 进一步用于计算 UdB] 为 Ps[dB]-PT [dB]; 以 及
通过 W ( ( X ) = Ι^Χ求解所述 (1皿, 其中, w ( . )为无线信道传 播模型函数。
19、 如权利要求 17所述的设备, 其特征在于,
所述选择模块,进一步用于从备选感知节点与授权系统发射机的 距离不大于(1皿的备选感知节点中,选择距离授权系统发射机最近的 指定个数的备选感知节点为感知节点。
20、 如权利要求 14所述的设备, 其特征在于,
所述第二获取模块,具体用于融合所述感知结果判决授权系统当 前是否在部署的频谱进行发射;根据请求节点的空闲频谱请求消息以 及判决结果获取空闲频谱的信息。
21、 如权利要求 20所述的设备, 其特征在于, 所述空闲频谱请 求消息中携带所述请求节点的地理位置信息;
所述第二获取模块,进一步用于计算所述请求节点的地理位置信 息、当前在部署的频谱进行发射的授权系统发射机的地理位置信息之 间的地理距离 d;
利用所述地理距离 d计算授权系统发射机到所述请求节点的接收 信号强度 PR;
如果所述接收信号强度 P]^ 于检测门限 Ρτ, 判决该频谱为空闲 频谱; 否则, 判决该频谱不是空闲频谱。
22、 如权利要求 21所述的设备, 其特征在于,
所述第二获取模块, 进一步用于计算 PR[dB]=Ps[dB]-L[dB] , I^W ( d ); 其中, W ( . )为无线信道传播模型函数, Ps为部署发射功率信 息。
23、 如权利要求 20所述的设备, 其特征在于, 所述空闲频谱请 求消息中携带所述请求节点的最大发射功率信息;
所述第二获取模块,进一步用于当所述请求节点采用最大发射功 率时, 计算当前在部署的频谱进行发射的授权系统的干扰水平; 如果所述干扰水平低于预设门限,判决该频谱为空闲频谱;否则, 判决该频谱不是空闲频谱。
24、 如权利要求 23所述的设备, 其特征在于, 所述干扰水平的 衡量指标为授权系统发射机的覆盖率损失或授权系统的掉话率或容 量损失。
25、 如权利要求 20所述的设备, 其特征在于, 所述空闲频谱请 求消息中携带所述请求节点可支持的频谱列表;
所述第二获取模块,进一步用于根据所述可支持的频谱列表确定 需要判断的目标频谱集合,并判断所述目标频谱集合中的每个频谱是 否为空闲频谱。
26、 如权利要求 20所述的设备, 其特征在于,
所述空闲频谱的获取设备为核心管理单元, 位于中继设备、 基站 设备、 RNC设备、 或网关设备上;
所述感知节点为具备感知能力的节点,位于终端设备、中继设备、 基站设备、 或独立部署的传感节点上;
所述请求节点包括感知节点和普通节点,所述普通节点为不具备 感知能力且需要采用空闲频谱进行无线传输的节点, 位于终端设备、 中继设备、 或基站设备上。
PCT/CN2012/073141 2011-06-02 2012-03-27 一种空闲频谱的获取方法和设备 WO2012163162A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12792437.1A EP2717499B1 (en) 2011-06-02 2012-03-27 Method and device for acquiring idle frequency spectrum
US14/122,618 US9071345B2 (en) 2011-06-02 2012-03-27 Method and system for obtaining an idle spectrum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110147674.0A CN102223191B (zh) 2011-06-02 2011-06-02 一种空闲频谱的获取方法和设备
CN201110147674.0 2011-06-02

Publications (1)

Publication Number Publication Date
WO2012163162A1 true WO2012163162A1 (zh) 2012-12-06

Family

ID=44779628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073141 WO2012163162A1 (zh) 2011-06-02 2012-03-27 一种空闲频谱的获取方法和设备

Country Status (4)

Country Link
US (1) US9071345B2 (zh)
EP (1) EP2717499B1 (zh)
CN (1) CN102223191B (zh)
WO (1) WO2012163162A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115268A (zh) * 2021-04-29 2021-07-13 广州杰赛科技股份有限公司 基于多个路侧单元的车联网最大吞吐量获取方法及装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223191B (zh) 2011-06-02 2014-11-05 电信科学技术研究院 一种空闲频谱的获取方法和设备
US9473969B2 (en) 2011-10-26 2016-10-18 Nokia Technologies Oy Spectrum sensing
WO2013131267A1 (en) * 2012-03-08 2013-09-12 5Renesas Mobile Corporation Spectrum sensing and cross-carrier scheduling
CN103428706B (zh) * 2012-05-17 2016-09-21 普天信息技术研究院有限公司 协作频谱感知节点的选择方法
CN103428703B (zh) * 2012-05-21 2018-08-21 北京邮电大学 频谱资源获取方法与系统
CN103517320B (zh) * 2012-06-21 2019-02-15 中兴通讯股份有限公司 认知无线电系统邻区关系、基站及邻区关系的控制方法
US9071152B2 (en) 2012-07-03 2015-06-30 Cognipower, Llc Power converter with demand pulse isolation
CN103686827B (zh) * 2012-09-18 2016-12-07 电信科学技术研究院 频谱感知及其控制方法、装置以及一种基站
CN103812583B (zh) * 2012-11-15 2016-01-13 电信科学技术研究院 一种基于认知无线电系统的协作频谱感知方法和设备
WO2014146257A1 (en) * 2013-03-19 2014-09-25 Harman International Industries, Incorporated Collaborative spectrum sensing in cognitive radio network
CN104254142A (zh) * 2013-06-26 2014-12-31 华为技术有限公司 一种链接建立方法及相关设备、系统
EP3079281B1 (en) * 2014-01-10 2019-06-19 Huawei Technologies Co., Ltd. Frequency spectrum detection method and apparatus and base station
CN105636072A (zh) * 2014-10-31 2016-06-01 中国移动通信集团公司 一种检测频谱资源的方法、装置、终端及基站
US20180295507A1 (en) * 2014-11-12 2018-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Radio Device Hardware Security System for Wireless Spectrum Usage
US20160345165A1 (en) * 2015-05-22 2016-11-24 Qualcomm Incorporated Collecting data from a statistically significant group of mobile devices
CN105162539B (zh) * 2015-07-31 2017-07-28 南京邮电大学 一种基于节点信息的认知无线传感器网络频谱检测方法
CN109644346B (zh) * 2016-06-24 2023-09-26 诺基亚技术有限公司 用于分布式动态频谱分配的方法、源设备和功率节点
CN106027118B (zh) * 2016-07-07 2018-06-29 苏州大学 一种认知无线电网络的信道交汇方法及系统
CN106992825A (zh) * 2017-04-01 2017-07-28 南京邮电大学 一种基于频谱感知的频谱使用情况在线检测平台
CN110267275B (zh) * 2019-06-17 2024-01-09 达闼机器人股份有限公司 频谱检测系统及方法
CN112839386A (zh) * 2019-11-22 2021-05-25 中兴通讯股份有限公司 基于laa的无线传输接入方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667872A (zh) * 2008-09-04 2010-03-10 上海无线通信研究中心 一种基于分区感知的无线通信系统频谱感知方法
CN101667874A (zh) * 2008-09-05 2010-03-10 三星电子株式会社 部分协作频谱感知的方法和系统
US20100137014A1 (en) * 2008-12-03 2010-06-03 Motorola, Inc. Method to improve diversity gain in a cooperative spectrum sensing network
CN101754402A (zh) * 2008-12-01 2010-06-23 三星电子株式会社 寻找空闲工作频段的方法和系统
CN102223191A (zh) * 2011-06-02 2011-10-19 电信科学技术研究院 一种空闲频谱的获取方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003277375A1 (en) * 2002-10-16 2004-05-04 Andrew Corporation Network overlay geo-location system with smart antennas
US8086258B2 (en) * 2007-09-28 2011-12-27 Ntt Docomo, Inc. Base station, receiving device, mobile terminal, and frequency sharing method
US7949357B2 (en) * 2007-12-11 2011-05-24 Nokia Corporation Method and apparatus to select collaborating users in spectrum sensing
JP2009177410A (ja) * 2008-01-23 2009-08-06 Toshiba Corp 移動通信システム、基地局制御装置、基地局及び、通信接続方法
CN102057736B (zh) * 2008-06-04 2014-04-09 艾利森电话股份有限公司 与频谱感知有关的方法和设备
US8494513B2 (en) * 2008-10-28 2013-07-23 Qualcomm Incorporated Spatio-temporal random voting scheme for cognitive networks
US8107887B2 (en) * 2009-02-27 2012-01-31 Motorola Solutions, Inc. Narrowband system and method for defining narrowband wideband channels in unused wideband channels
US8160004B2 (en) * 2009-06-30 2012-04-17 Motorola Solutions, Inc. Method for optimizing spatial diversity gain of a set of nodes used for cooperative sensing
CN101990231B (zh) * 2009-07-31 2014-02-19 华为技术有限公司 确定空闲频段的方法和系统、中心节点和感知节点
CN101917738B (zh) * 2010-07-20 2012-10-31 重庆大学 一种无线网络的在线测量节点选择方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667872A (zh) * 2008-09-04 2010-03-10 上海无线通信研究中心 一种基于分区感知的无线通信系统频谱感知方法
CN101667874A (zh) * 2008-09-05 2010-03-10 三星电子株式会社 部分协作频谱感知的方法和系统
CN101754402A (zh) * 2008-12-01 2010-06-23 三星电子株式会社 寻找空闲工作频段的方法和系统
US20100137014A1 (en) * 2008-12-03 2010-06-03 Motorola, Inc. Method to improve diversity gain in a cooperative spectrum sensing network
CN102223191A (zh) * 2011-06-02 2011-10-19 电信科学技术研究院 一种空闲频谱的获取方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115268A (zh) * 2021-04-29 2021-07-13 广州杰赛科技股份有限公司 基于多个路侧单元的车联网最大吞吐量获取方法及装置
CN113115268B (zh) * 2021-04-29 2022-06-17 广州杰赛科技股份有限公司 基于多个路侧单元的车联网最大吞吐量获取方法及装置

Also Published As

Publication number Publication date
US20140185653A1 (en) 2014-07-03
CN102223191B (zh) 2014-11-05
EP2717499B1 (en) 2018-11-21
EP2717499A1 (en) 2014-04-09
US9071345B2 (en) 2015-06-30
CN102223191A (zh) 2011-10-19
EP2717499A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2012163162A1 (zh) 一种空闲频谱的获取方法和设备
EP3737194B1 (en) Communication device, communication method and computer program
WO2022011565A1 (zh) 相对定位的方法、终端、基站、通信设备及存储介质
CN114868412B (zh) 一种测量信息的上报、收集方法及装置
CN108307409B (zh) 一种实现cbr测量的方法及装置
EP2896259B1 (en) Network node and method for managing radio resources dedicated to beacon signalling for d2d discovery
CN105532049B (zh) 用于减小网络间干扰的方法和网络实体
JP6517921B2 (ja) ユーザ装置、移動通信システム及び通信制御方法
CA2900286A1 (en) Wireless communication method, base station and wireless communication device for performing device-to-device direct communication
TW201116121A (en) Multichannel dynamic frequency selection
WO2018173418A1 (ja) 装置、方法及び記録媒体
KR102265455B1 (ko) 무선 통신 시스템에서 간섭을 완화하기 위한 장치 및 방법
JP6423452B2 (ja) 少なくとも2つのユーザ装置の間の地理的距離を推定する又は地理的距離の範囲を推定するための方法及びシステム、移動通信ネットワーク、ユーザ装置、プログラム及びコンピュータプログラム製品
CN105338534B (zh) 无线通信系统中的装置和方法
EP4236600A2 (en) Communication device, communication method and computer program
WO2014075588A1 (zh) 协作频谱感知方法和设备
CN106604207B (zh) M2m通信中基于分组的小区接入与选择方法
WO2016045568A1 (zh) 一种d2d资源分配方法及装置
CN103763777A (zh) 一种异构网络的控制方法及基站
CN104581830A (zh) 一种终端设备的接入方法和设备
JP6953505B2 (ja) 通信方法、端末デバイス及びネットワークデバイス
JP2016541170A (ja) 移動性管理方法、装置及びシステム
WO2022117087A1 (zh) 副链路sl上的定位方法、装置及终端
US10306646B2 (en) Method for device-to-device communication, base station and user equipment
WO2016070701A1 (zh) 无线资源分配方法、通信节点和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14122618

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE