JP2016509801A - ロング・ターム・エボリューション(lte)ネットワークの妨害器検出及び回避の方法 - Google Patents

ロング・ターム・エボリューション(lte)ネットワークの妨害器検出及び回避の方法 Download PDF

Info

Publication number
JP2016509801A
JP2016509801A JP2015553904A JP2015553904A JP2016509801A JP 2016509801 A JP2016509801 A JP 2016509801A JP 2015553904 A JP2015553904 A JP 2015553904A JP 2015553904 A JP2015553904 A JP 2015553904A JP 2016509801 A JP2016509801 A JP 2016509801A
Authority
JP
Japan
Prior art keywords
signal
performance information
jamming signal
potential
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015553904A
Other languages
English (en)
Inventor
イメンドーフ,チャズ
ジュンナム ユン,
ジュンナム ユン,
イーモン ゴームリー,
イーモン ゴームリー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Eden Rock Communications LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/137,920 external-priority patent/US10104559B2/en
Application filed by Eden Rock Communications LLC filed Critical Eden Rock Communications LLC
Publication of JP2016509801A publication Critical patent/JP2016509801A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/22Countermeasures against jamming including jamming detection and monitoring
    • H04K3/224Countermeasures against jamming including jamming detection and monitoring with countermeasures at transmission and/or reception of the jammed signal, e.g. stopping operation of transmitter or receiver, nulling or enhancing transmitted power in direction of or at frequency of jammer
    • H04K3/226Selection of non-jammed channel for communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/22Countermeasures against jamming including jamming detection and monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線ネットワークの妨害信号をハンドリングする方法は、無線ネットワーク要素によって収集されたネットワーク測定データを取得することを含む。キー・パフォーマンス・インディケーター(KPI)、沈黙時間の間に収集されたデータ、又は偽の物理的ランダム・アクセス・チャンネル信号についてのレポート、又はその組み合わせに関する第1性能情報を前記ネットワーク測定データから選択する。第1基準情報に照らして前記第1性能情報を試験する。前記第1性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始する。また記載されるのは、無線ネットワーク性能についてのネットワーク測定データを取得し、第1性能情報を算出し、所定の値に照らして前記第1性能を試験する、ことを含む無線ネットワークの妨害信号をハンドリングする方法である。アラートは、潜在的妨害信号の存在を示すために発行されてもよい。【選択図】図8

Description

関連出願の相互参照
本発明は、2013年1月21日に出願された米国出願第61,754,713号、2013年1月22日に出願された米国出願第61/755,431号、2013年12月20日に出願された米国出願第14/137,920号、及び2014年1月21日に出願された米国出願第14/160,447号の優先権を主張し、全ての目的において上記出願の全てが援用される。
無線データ通信事業者は、専用通信周波数スペクトラム上でライセンスされブロードキャストをするために、膨大なリソースを展開することが多い。理論的には、このライセンスは、特定の地理的地域又は領域にかけてライセンスされたスペクトラムに排他的にアクセスすることを事業者は許される。事業者の排他的権利に基づき、ネットワーク・コントローラー(例えば、ネットワーク・スイッチング・センター及び/又はネットワーク・マネージャー)、データベース、データ・ステーション、ゲートウェイ、信号中継器などを含むが、これらに限定されない、ネットワーク・リソースを何処にどの様に事業者が割り当てることを望むのかを、事業者が有利に計画してもよい。あるネットワークにおいて、事業者は、特定のネットワーク・トポロジーの中において、それぞれの基地局でどの周波数を採用するか決定することについての事業者の所有権を用いてもよい。このように、ライセンスを受けた事業者は、システム・インテグリティとスループットを最大化するために、事業者はデータ通信ネットワークの設計を効果的に最適化することができる。
広帯域ロング・ターム・エボリューション(Long−Term Evolution、LTE)無線通信ネットワークの場合、ダウンリンクの同期チャンネルや報知チャンネル及びアップリンクの制御チャンネルやランダム・アクセス・チャンネルなどの周波数帯域の一部に対する特定の周波数や時間リソースを攻撃するように設計された意図的な妨害信号に対して、ネットワークは脆弱であるかもしれない。廉価な妨害信号装置は、それらの周波数に使われるタイムスロットや周波数で送信することが可能であり、それによりチャンネルを使用不能にする。それらの妨害信号が検出されて回避されない限りは、妨害信号の近くの広い帯域のユーザーは、サービス拒否(Denial of Service(DoS))を受ける。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法は、無線ネットワーク性能についてのネットワーク測定データと無線ネットワーク要素によって収集されたネットワーク測定データを取得することを含む。無線ネットワーク性能についての第1性能情報は、取得されたネットワーク測定データに基いて算出される。第1性能情報は、所定の値に照らして試験される。アラートは、第1性能情報の試験の結果に基づく潜在的妨害信号の存在を示すように、発行される。
ある実施形態に従えば、無線ネットワークの妨害信号をハンドリングする方法は、無線ネットワーク性能についてのネットワーク測定データを取得し、ネットワーク測定データは無線ネットワーク要素によって収集されたデータであって、取得されたネットワーク測定データに基づく無線ネットワーク性能についての第1性能情報を算出し、所定の値に照らして第1性能情報を試験し、第1性能情報の試験の結果に基づく潜在的妨害信号の存在を示すアラートを発行することを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、第1性能情報は、キー・パフォーマンス・インディケーター(Key Performance Indicator、KPI)に関連し、無線ネットワークはLTEネットワークに関する。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、KPIは、基地局に接続するアクティブなユーザー・イクイップメント(UE)の数、地域のセルスループット、地域の通話切断率、及び地域のハンドオーバー失敗率から選択される1つである。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、所定の値は、履歴のKPIデータに基づく閾値である。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、試験ステップは、第1性能情報が閾値に達するか又は閾値を超えるかどうか判断することを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、潜在的妨害信号は、潜在的ダウンリンク送信妨害信号である。方法は、更に、アラートが発行されたならば追加的なネットワーク測定データを取得し、潜在的ダウンリンク送信妨害信号が追加的なネットワーク測定データに基づく妨害信号であるかどうか判定する、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、方法は、更に、潜在的アップリンク送信妨害信号が妨害信号ではないと判定されるならば所定の値をアップデートすることを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、方法は、更に、潜在的ダウンリンク送信妨害信号源の位置を調べ、潜在的ダウンリンク送信妨害信号が妨害信号であると判定されるならば無線ネットワークをリコンフィグレーションすることを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、妨害信号は、偽のPSS、偽のSSS、偽のBCH信号、ホワイトノイズ、又はその組み合わせである。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、ネットワーク測定データは、下記のうち任意の1つを含む:KPI、周波数の特定のセットである地域の基地局が送信してはならない沈黙時間測定についてのレポート、基地局においてなされるダウンリンク測定、及び偽の同期信号についてのレポート。
ある実施形態に従えば、無線ネットワークの妨害信号をハンドリングするシステムは、プロセッサーとコンピューター実行可能な命令が記録される一時的ではないコンピューター読み取り可能な媒体とを有する。命令がプロセッサーによって実行される時、命令は、無線ネットワーク性能についてのネットワーク測定データを収集し、ネットワーク測定データは、無線ネットワーク要素によって収集されたデータであり、取得されたネットワーク測定データに基づく無線ネットワーク性能についての第1性能情報を算出し、所定の値に照らして第1性能情報を試験し、第1性能情報の試験の結果に基づく潜在的妨害信号の存在を示すアラートを発行することを含む方法を行う。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、ネットワーク測定データは、基地局及び移動局を有する複数の無線ネットワーク要素から取得される。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、システムは、妨害器検出及び位置特定サーバーを含み、一時的ではないコンピューター読み取り可能な媒体は、妨害器検出及び位置特定サーバーに提供される、
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、第1性能情報は、KPIに関連し、所定の値は、履歴のKPIデータに基づく閾値である。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、潜在的妨害信号は、潜在的ダウンリンク送信妨害信号である。命令によって行われる方法は、プロセッサーによって実行され、方法は、アラートが発行されたならば追加的なネットワーク測定データを取得し、潜在的ダウンリンク送信妨害信号が追加的なネットワーク測定データに基づく妨害信号であるかどうか判定する、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、命令によって行われる方法は、プロセッサーによって実行され、方法は、潜在的ダウンリンク送信妨害信号が妨害信号ではないと判定されるならば所定の値をアップデートする、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、命令によって行われる方法は、プロセッサーによって実行され、方法は、潜在的ダウンリンク送信妨害信号源の位置を調べ、潜在的アップリンク送信妨害信号が妨害信号であると判定されるならば無線ネットワークをリコンフィグレーションする、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、妨害信号は、偽のPSS、偽のSSS、偽のBCH信号、ホワイトノイズ、又はその組み合わせである。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、ネットワーク測定データは、下記のうち任意の1つを含む:KPI、周波数の特定のセットである地域の基地局が送信してはならない沈黙時間測定についてのレポート、基地局においてなされるダウンリンク測定、及び偽の同期信号についてのレポート。
ある実施形態に従えば、一時的ではないコンピューター読み取り可能な媒体には、コンピューター実行可能な命令が記録される。命令がプロセッサーによって実行される時、命令は、無線ネットワーク性能についてのネットワーク測定データを収集し、ネットワーク測定データは、無線ネットワーク要素によって収集されたデータであり、取得されたネットワーク測定データに基づく無線ネットワーク性能についての第1性能情報を算出し、所定の値に照らして第1性能情報を試験し、第1性能情報の試験の結果に基づく潜在的妨害信号の存在を示すアラートを発行することを含む方法を行う。
ある実施形態においては、一時的ではないコンピューター読み取り可能な媒体において、無線ネットワークの妨害信号をハンドリングする方法は、無線ネットワーク要素によって収集されたネットワーク測定データを取得することを含む。キー・パフォーマンス・インディケーター(Key Performance Indicator、KPI)、沈黙時間の間に収集されたデータ、又は偽の物理的ランダム・アクセス・チャンネル(Physical Random Access Channel)信号についてのレポート、又はその組み合わせに関する第1性能情報をネットワーク測定データから選択する。第1基準情報に照らして第1性能情報を試験する。第1性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始する。
ある実施形態に従えば、無線ネットワークの妨害信号をハンドリングする方法は、無線ネットワーク要素によって収集されたネットワーク測定データを取得し、取得されたネットワーク測定データから第1性能情報を選択し、第1性能情報は、KPI、沈黙時間の間に収集されたデータ、又は偽のPRACH信号についてのレポート、又はその組み合わせに関連し、第1基準情報に照らして第1性能情報を試験し、第1性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始する、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、第1性能情報は、KPIに関連し、無線ネットワークはLTEネットワークに関連し、方法は、更に、取得されたネットワーク測定データから第2性能情報を選択し、第2性能情報は、沈黙時間に収集されたデータに関連し、沈黙時間は、周波数の特定のセットのアップリンク送信のスケジュールをしないように基地局が命令された期間であり、第2基準情報に照らして第2性能情報を試験し、第2基準情報は、無線装置の既に知られた信号特徴に関連し、第2性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始する、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、第1性能情報は、KPIに関連し、無線ネットワークはLTEネットワークに関連し、KPIは、地域のセルスループット、地域のPRACH検出失敗率、地域のPRACHランダムアクセス失敗率、及びPUSCH受信失敗率、から選択された1つであり、開始されるアクションは、潜在的妨害信号の存在を示すアラートの発行である。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、第1性能情報は、KPIに関連し、無線ネットワークはLTEネットワークに関連し、第1基準情報は、履歴のKPIデータに基づく閾値である。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、潜在的妨害信号は、潜在的アップリンク送信妨害信号であり、方法は、更に、第1性能情報の試験が潜在的妨害信号の存在を示すならば追加的なネットワーク測定データを取得し、潜在的アップリンク送信妨害信号が追加的なネットワーク測定データに基づく妨害信号であるかどうか判定する、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、方法は、更に、潜在的アップリンク送信妨害信号が妨害信号ではないと判定されるならば第1基準情報をアップデートする、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、開始されるアクションは、潜在的妨害信号の存在を示すアラートの発行であり、方法は、更に、潜在的アップリンク送信妨害信号源の位置を調べ、潜在的アップリンク送信妨害信号が妨害信号であると判定されるならば無線ネットワークをリコンフィグレーションする、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、妨害信号は、PUCCH信号、PRACH信号、ホワイトノイズ、又はその組み合わせである。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングする方法において、開始されるアクションは、潜在的妨害信号の存在を示すアラートの発行であり、沈黙時間は、周波数の特定のセットのアップリンク送信のスケジュールをしないように基地局が命令された期間に関する。
ある実施形態に従えば、無線ネットワークの妨害信号をハンドリングするシステムは、プロセッサーと、コンピューター実行可能な命令が記録される一時的ではないコンピューター読み取り可能な媒体を含み、プロセッサーによって実行される時、命令は、無線ネットワーク要素によって収集されたネットワーク測定データを取得し、取得されたネットワーク測定データから第1性能情報を選択し、第1性能情報は、KPI、沈黙時間の間に収集されたデータ、又は偽のPRACH信号についてのレポート、又はその組み合わせに関連し、第1基準情報に照らして第1性能情報を試験し、第1性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始する、を含む方法を行う。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、ネットワーク測定データは、基地局及び移動局を有する複数の無線ネットワーク要素から取得される。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、システムは、妨害器検出及び位置特定サーバーを含み、一時的ではないコンピューター読み取り可能な媒体は、妨害器検出及び位置特定サーバーに提供される。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、第1性能情報は、KPIに関連し、第1基準情報は、履歴のKPIデータに基づく閾値であり、方法は、更に、取得されたネットワーク測定データから第2性能情報を選択し、第2性能情報は、沈黙時間に収集されたデータに関連し、沈黙時間は、周波数の特定のセットのアップリンク送信のスケジュールをしないように基地局が命令された期間であり、第2基準情報に照らして第2性能情報を試験し、第2基準情報は、既に知られた無線装置の信号特徴に関連し、第2性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始する、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、潜在的妨害信号は、潜在的アップリンク送信妨害信号であり、方法は、更に、第1性能情報の試験が潜在的妨害信号の存在を示すならば追加的なネットワーク測定データを取得し、潜在的アップリンク送信妨害信号が追加的なネットワーク測定データに基づく妨害信号であるかどうか判定する、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、方法は、更に、潜在的アップリンク送信妨害信号が妨害信号ではないと判定されるならば第1基準情報をアップデートする、ことを含む。
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、開始されるアクションは、潜在的妨害信号の存在を示すアラートの発行であり、方法は、更に、潜在的アップリンク送信妨害信号源の位置を調べ、潜在的アップリンク送信妨害信号が妨害信号であると判定されるならば無線ネットワークをリコンフィグレーションする、
ある実施形態においては、無線ネットワークの妨害信号をハンドリングするシステムにおいて、妨害信号は、PUCCH信号、PRACH信号、ホワイトノイズ、又はその組み合わせである。
ある実施形態に従えば、コンピューター実行可能な命令が記録される一時的ではないコンピューター読み取り可能な媒体において、プロセッサーによって実行される時、命令は、無線ネットワーク要素によって収集されたネットワーク測定データを取得し、取得されたネットワーク測定データから第1性能情報を選択し、第1性能情報は、KPI、沈黙時間の間に収集されたデータ、又は偽のPRACH信号についてのレポート、又はその組み合わせに関連し、第1基準情報に照らして第1性能情報を試験し、第1性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始する、を含む方法を行う。
ある実施形態においては、コンピューター実行可能な命令が記録される一時的ではないコンピューター読み取り可能な媒体において、第1性能情報は、KPIに関連し、第1基準情報は、履歴のKPIデータに基づく閾値であり、方法は、更に、取得されたネットワーク測定データから第2性能情報を選択し、第2性能情報は、沈黙時間に収集されたデータに関連し、沈黙時間は、周波数の特定のセットのアップリンク送信のスケジュールをしないように基地局が命令された期間であり、第2基準情報に照らして第2性能情報を試験し、第2基準情報は、既に知られた無線装置の信号特徴に関連し、第2性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始する、ことを含む。
下記の詳細な説明においては、当業者にとって下記の詳細な説明から様々な変更や変形が明白となる為、実施形態は例示としてのみ記載される。
図1は、本開示のある実施形態に従ったネットワーク化されたコンピューティング・システムを示す。
図2は、ある実施形態における基地局の例示的ブロック図を示す。
図3A〜3Dは、ある実施形態におけるサーバー・コンピューターの例示的ブロック図を示す。
図4は、ある実施形態における移動局の例示的ブロック図を示す。
図5は、ある実施形態における基地局によるダウンリンク無線フレーム・ブロードキャストの構造を示す。
図6は、ある実施形態における同期信号チャンネル及びブロードキャスティング・チャンネルに対する周波数及び時間リソースの割当を示す。
図7は、ある実施形態におけるLTEネットワークの構成のシステム図を示す。
図8は、ある実施形態に従ったある実施形態における妨害信号検出及び回避のためのプロセスを示す。
図9Aは、ある実施形態に従った妨害信号のハンドリングのためのプロセスを示す。
図9Bは、ある実施形態に従った潜在的妨害信号アラートの除去のためのプロセスを示す。
図9C及び9Dは、ある実施形態に従った周波数再割当て及び分割を示す。
図10は、ある実施形態に従ったネットワーク測定を分析するためのプロセスを示す。
図11は、ある実施形態に従ったネットワーク測定データを分析するためのプロセスを示す。
図12A及び12Bは、ある実施形態に従った同期信号レポートのハンドリングのためのプロセスを示す。
図13は、ある実施形態に従った、基地局によるアップリンク無線フレーム・ブロードキャストの構造を示す。
図14は、ある実施形態における制御及びランダム・アクセス・チャンネルに対する周波数及び時間リソース割当を示す。
図15は、ある実施形態におけるLTEネットワークの構成のシステム図を示す。
図16は、ある実施形態に従った妨害信号検出及び回避のためのプロセスを示す。
図17Aは、ある実施形態に従った妨害信号のハンドリングのためのプロセスを示す。
図17Bは、ある実施形態に従った潜在的妨害信号アラートの除去のためのプロセスを示す。
図17C及び17Dは、ある実施形態に従った周波数再割当て及び分割を示す。
図18は、ある実施形態に従ったネットワーク測定を分析するためのプロセスを示す。
図19は、ある実施形態に従ったネットワーク測定データを分析するためのプロセスを示す。
下記の詳細な説明において、説明の部分を構成する添付される図面が参照される。詳細な説明に記載される実施形態、図面、及び請求項は、制限的であるとは意図されない。ここに示される主題の趣旨又は範囲から逸脱することなく、他の実施形態が用いられてもよく、また他の変更がなされてもよい。ここに一般的に記載されて図面に示される本開示の様態は、様々に異なる構成に、配置、置き換え、組み合わせ、分割、及び設計されてもよいと解されるべきである。
図1は、本開示のある実施形態に従ったネットワーク化されたコンピューティング・システム100を示す。示されるように、システム100は、データ通信ネットワーク102、1つまたは複数の基地局(又はeNodeB)106a〜e、1つまたは複数のネットワーク・コントローラー装置110a〜c、及び1つまたは複数のユーザー・イクイップメント(User Equipment、UE)108a〜mを含む。ここにおいての使用では、「基地局」という単語は、無線ネットワークのハブとなる場所に配設される無線基地局を意味する。基地局は、マクロセル、マイクロセル、ピコセル、及びフェムトセルを含む。「ネットワーク・コントローラー装置」という単語は、ネットワークのリソースを管理する装置を意味する。ネットワーク・コントローラー装置は、ネットワーク・リソース・コントローラー(NRC)を含み、NRCは、従来のNRC、及び自己構成、自己最適化及び/又は自己修復を行うことができる自己組織化ネットワーク(Self−Organizing Network、SON)コントローラーを含む。「ユーザー・イクイップメント」という単語は、エンドユーザーによって直接使われる装置を意味する。ユーザー・イクイップメントは、携帯電話、ラップトップコンピュータ、タブレット、無線通信機能を有するハンドヘルド電子装置などを含む。「移動局」、「モバイル装置」、「モバイル端末」、「加入者装置」、「加入者」などの単語は、「ユーザー・イクイップメント」と置き換え可能に使用される。
システム100において、データ通信ネットワーク102は、ネットワーク・コントローラー装置110a〜cの1つ及び基地局106a〜eの1つの間の分散ネットワーク通信を容易にするバックホール部分を含んでもよい。ネットワーク・コントローラー装置110a〜cのそれぞれは、基地局から離れて配設される又は基地局に配設される専用のNRCであってよい。ネットワーク・コントローラー装置110a〜cのそれぞれは、特にNRC機能を提供する非専用装置であってよい。1つまたは複数のUE108a〜mは、携帯電話装置108a−i、ラップトップコンピュータ108j〜k、携帯ゲーム機108l、電子書籍装置又はタブレットPC108m、及び基地局106a〜eのいずれかによって無線通信サービスが提供されるあらゆる種類の一般的なポータブル無線コンピューティング装置を含んでもよい。
当業者によって理解されるように、ほとんどのデジタル通信ネットワークにおいて、データ通信ネットワーク102のバックホール部分は、一般的には有線のネットワークのバックボーンとネットワークの周囲に位置するサブネットワーク又は基地局106a〜eとの間の中間リンクを含んでもよい。例えば、1つまたは複数の基地局106a〜eと通信する携帯電話のユーザー・イクイップメント(例えば、UE108a〜mのいずれか)は、ローカル・サブネットワークを構成してもよい。基地局106a〜eのいずれかと残りの世界のネットワーク接続は、アクセスプロバイダのデータ通信ネットワーク102のバックホール部分(例えば、ポイント・オブ・プレゼンス(Point Of Presence)経由)へのリンクをもって開始されてもよい。
ある実施形態においては、NRC(SONコントローラーなど)は、それが実施可能なプロセスによって定義されうるプレゼンスと機能を有する。従って、NRCである概念エンティティは、本開示の実施形態に関連づけられるプロセスを行うその役目によって一般的に定義されうる。従って、特定の実施形態によれば、NRCエンティティは、ネットワーク化されたコンピューティング・システム100の中の1つまたは複数の通信装置の揮発性又は不揮発性メモリーなどの、コンピューター読み取り可能な媒体に記録されたハードウェア・コンポーネント及び/又はソフトウェア・コンポーネントであると考えられうる。
ある実施形態においては、ネットワーク・コントローラー装置110a〜c及び/又は基地局106a〜eのいずれかは、本開示の様々な実施形態に関連づけられるプロセスのいずれかを独立的又は協調的に実装するように機能してもよい。標準的なLTEネットワークにおいて、(選択的にNRC機能を有する)ネットワーク・コントローラー装置110a〜cのいずれかは、基地局(又はeNodeB)、モビリティ・マネジメント・ エンティティ(Mobility Management Entity、MME)、又は米国特許第8,229,368に記載されるレディオ・リソース・マネージャー(Radio Resource Manager、RRM)などの、当該技術分野で知られるその他の一般的なネットワーク・コントローラー装置に関連づけられてもよく、その米国特許第8,229,368はここに援用される。
無線ネットワークにおいて、特定の基地局に配属されるUEの数は、基地局のカバーエリアのアクティブなユーザーの数の関数である。もし、多くの数のユーザーが隣接する基地局よりもある特定の基地局に近ければ、たとえUEの一部が隣接する基地局の圏内に居るとしても、隣接する基地局よりもより多くの数のUEが当該特定の基地局に配属されてもよい。例えば、図1の要素を参照すると、基地局106aは、隣接する基地局106b及び106eよりも、アクティブに配属されるUEが少ない。
ある実施形態においては、ネットワーク・コントローラー装置110a〜c、基地局106a〜eのいずれか、及びUE108a〜mのいずれかは、Microsoft(登録商標)Windows(登録商標)、Mac OS(登録商標)、Google(登録商標)Chrome(登録商標)、Linux(登録商標)、Unix(登録商標)を含み、これらに限定されないよく知られたあらゆるオペレーティング・システム、又はSymbian(登録商標)、Palm(登録商標)、Windows Mobile(登録商標)、Google(登録商標)Android(登録商標)、Mobile Linux(登録商標)を含むあらゆるモバイルオペレーティングシステムを実行するように構成されてもよい。ネットワーク・コントローラー装置110a〜cのいずれか又は基地局106a〜eのいずれかは、任意の数の一般的なサーバー、デスクトップ、ラップトップ、及びパーソナルコンピューティング装置を採用してよい。
ある実施形態においては、UE108a〜mのいずれかは、GSM、UMTS、3GPP LTE、LTEAdvanced、WiMAXなどを含むが、それに限定されない、一般的な無線データ通信技術を採用することができる無線通信性能を有する一般的なモバイルコンピューティング装置(例えば、ラップトップコンピュータ、タブレットコンピューター、携帯電話、携帯ゲーム機、電子書籍装置、個人用音楽プレーヤー、MiFi(商標)装置、ビデオ・レコーダーなど)のいかなる組み合わせに関連づけられてもよい。
ある実施形態においては、図1のデータ通信ネットワーク102のバックホール部分は、光ファイバー、同軸ケーブル、ツイストペアケーブル、イーサネットケーブル、及び電源ケーブル、並びに当該技術分野で知られる、その他のあらゆる無線通信技術の一般的な通信技術のいずれかを採用してもよい。発明の様々な実施形態の文脈において、様々なデータ通信技術(例えば、基地局106a〜e)に関連付けられた無線通信範囲(カバレッジ)は、ネットワークのタイプ及びネットワークの特定の地域の中で採用されるシステム・インフラストラクチャ(例えば、GSM、UMTS、LTE、LTE Advanced、及びWiMAXに基づくネットワーク及び各ネットワークタイプにおいて採用される技術の差異)に基づく異なるサービスプロバイダー・ネットワークごとに、異なると解されるべきである。
図2は、ある実施形態に従った、基地局200(例えば、フェムトセル、ピコセル、マイクロセル、又はマクロセル)のブロック図を示す。基地局200は、図1の基地局106a〜eの代表例であってもよい。ある実施形態においては、基地局200は、少なくとも1つの中央処理装置(Central Processing Unit、CPU)202を含むベースバンド処理回路を含む。CPU202は、算術及び論理演算を行う演算論理装置(ALU、図示されない)、及びプログラム実行時に必要な時ALUを呼び出して、メモリーから命令及び記憶されたコンテンツを抽出しそして当該命令及び記憶されたコンテンツを実行及び/又は処理する1つまたは複数の制御装置(CU、図示されない)を含んでもよい。CPU202は、揮発性(RAM)及び不揮発性(ROM)システムメモリー204に記憶されるコンピュータープログラムの実行を担うものである。
基地局200は、ネットワークへデータを送信し、ネットワークからデータを受信する無線回路201を含む。無線回路201は、システムバス220からのデジタル信号を送信されるアナログ信号に変換するデジタル/アナログ変換器210、アナログ信号の周波数を設定するアップコンバータ208、及びアンテナ212に送られて信号として送信されるアナログ信号を増幅する送信増幅器206を含む送信パスを含んでもよい。加えて、無線回路201は、アンテナ212で受信した信号を増幅する受信増幅器214、受信した信号の周波数を低減するダウンコンバーター216、及び受信した信号をシステムバス220に出力するアナログ/デジタル変換器218を含む受信パスを含んでもよい。システムバス220は、基地局200のハードウェアリソース間のデータ通信を容易にする。実装によっては、複数のデジタル/アナログ変換器、アップコンバータ、及び送信増幅器、並びに複数のアナログ/デジタル変換器、ダウンコンバーター、及び受信増幅器を有する、任意の数の送信/受信パス230、232、及び234があってもよい。更に、アンテナ212は、送信ビームフォーム通信のための複数の物理的アンテナを含んでもよい。
ある実施形態においては、基地局200は、妨害器検出及び位置特定サーバーを含むネットワーク・コントローラー装置110a〜cに関連づけられるある機能を含んでいてもよく、妨害器検出及び位置特定サーバーの機能は、図7から図19と関連して下記により詳細に説明される。
基地局200は、ユーザーインターフェース222、操作及び保守インターフェース224、アプリケーション及びプロトコル処理ソフトウェアを記憶するメモリー226、及び、バックホールネットワークのLAN及び/又はWAN部分(例えば、図1のデータ通信ネットワーク102)を介した通信を容易にするネットワークインターフェース回路228も含んでもよい。
ある実施形態においては、基地局200は、二位相偏移変調(1ビット/シンボルを有するBPSK)、四位相偏移変調(2ビット/シンボルを有するQPSK)、及び直角位相振幅変調(例えば、4ビット/シンボル、6ビット/シンボルなどを有する16−QAM、64−QAM)などの、当該技術分野で知られるいかなる変調/エンコーディングスキームを用いてもよい。ある実施形態においては、基地局200は、LTEプロトコルを介してUE108a〜mと通信するように構成される。
図3A及び3Bは、ある実施形態に従った、サーバー・コンピューター300及び330のブロック図を示す。サーバー・コンピューター300及び330は、ネットワーク・コントローラー装置110a〜cのいずれか及びここに記載される他のサーバーの代表例であってよい。ネットワーク・コントローラー装置は、実装によっては、専用サーバー又は基地局の一部として実装されてもよい。サーバー・コンピューター300及び330は、中央処理装置(CPU)304又は334を含む1つまたは複数のプロセッサー装置を含む。CPU304又は334は、それぞれ、算術及び論理演算を行う演算論理装置(ALU、図示されない)、及びプログラム実行時に必要な時ALUを呼び出して、メモリーから命令及び記憶されたコンテンツを抽出しそして当該命令及び記憶されたコンテンツを実行及び/又は処理する1つまたは複数の制御装置(CU、図示されない)を含んでもよい。CPU304又は334は、揮発性(RAM)及び不揮発性(ROM)メモリー302又は332及び記憶装置310又は340(例えば、HDD又はSDD)に記憶されるコンピュータープログラムの実行を担うものである。
ある実施形態においては、ネットワーク・コントローラー装置110a、110b、110cを代表するサーバー・コンピューター300又は330は、SONコントローラー、RRM、又は、妨害器検出及び位置特定サーバー(Jammer Detection and Location Server、JDLS)と以下で称される、妨害信号の検出、位置特定及び/又は適切な対抗策を実行するサーバーであってもよい。JDLS及びその動作は、図7〜図19と関連して下記により詳細に説明される。ある実施形態においては、サーバー・コンピューター330は、図3Bに示される記憶装置340に記憶されるJDLS機能342及び/又はRRM機能性344を具備する。
サーバー・コンピューター300又は330は、オプションとして、サーバー管理者がサーバー・コンピューターのソフトウェア及びハードウェアリソースとやりとりすることを許許し、ネットワーク化されたコンピューティング・システム100の性能及び動作を表示するユーザーインターフェース320又は350をも含んでもよい。更に、サーバー・コンピューター300又は330は、ネットワーク化されたコンピューターシステムの他のネットワーク要素と通信するネットワークインターフェース306又は336、及びサーバー・コンピューター300又は330のハードウェアリソース間のデータ通信を容易にするシステムバス322又は352含んでもよい。
ネットワーク・コントローラー装置110a〜cに加えて、サーバー・コンピューター300又は330を、アンテナコントローラー、RFプランニング・エンジン(RF Planning Engine)、コアネットワーク要素、データベースシステムなどの他の種類のサーバー装置を実装するのに使用しても良い。サーバー・コンピューターによって提供される機能に基づいて、そのようなサーバー・コンピューターの記憶装置は、サーバー・コンピューターへのソフトウェア及びデータベースのレポジトリとしての機能を果たす。例えば、もし、ネットワーク・コントローラー装置110が実装されれば、記憶装置310又は340は、隣接する無線基地局のリストとその瞬間的送信位相調整を有する位相調整マップ(Phase Adjustment Map)、サーバー・コンピューター又は基地局に関連づけられた移動局への送信データのためのキャリア・フェーズ・エスティメーション(Carrier Phase Estimation、CPE)位相管理テーブルを生成するスケジュール部、特定の移動局への送信のためのビームフォーミングされた信号を生成するビームフォーミング部、及び隣接する干渉する基地局に関連づけられた干渉の優先度を決定する優先度決定部を含んでもよい。
図3C及び3Dは、ある実施形態に従った、サーバー・コンピューター350及び370のブロック図を示す。サーバー・コンピューター350及び370は、ネットワーク・コントローラー装置110a〜cのいずれかの代表例及びここに記載される他のサーバーであってもよい。ネットワーク・コントローラー装置は、実装によって、専用サーバー又は基地局の一部として実装されてもよい。ある実装において、サーバー・コンピューター350及び370は、ソフトウェアモジュールとして実装されるJDLS352又は372を含む。
ある実施形態においては、JDLS352又は372は、ネットワーク測定データコレクター354又は374、データアナライザー356又は376、アラームジェネレーター358又は378、妨害信号ロケーター及びリポーター360又は380、及びネットワーク・リコンフィグレーション・コントローラー362又は382を含む。ある実施形態においては、サーバー・コンピューター350のアラームジェネレーター358によって生成されたアラームは、基地局、ユーザー・イクイップメント及びRRMへ送信され、一方、アラームジェネレーター378によって生成されたアラームは、RRM390に提供される。
ある実装においては、JDLSは、ネットワーク・リソース管理(又は無線リソース管理)などのその他の機能を行うサーバー・コンピューターに含まれる。ある実施形態においては、サーバー・コンピューター370は、沈黙時間イニシエーター(Quiet Time Initiator)392及びアラーム・ステータス・アナライザー394を含むソフトウェアモジュールとして実装されるRRM390も含む。ある実装においては、沈黙時間イニシエーター(Quiet Time Initiator)によって生成された命令は、基地局及びユーザー・イクイップメントに送信される。
図4は、ある実施形態に従った、移動局400のブロック図を示す。移動局は、図1に示されるUE108のいずれかの代表例であってもよい。移動局400は、基地局200に関連する、上述されたものに近いコンポーネントを含んでもよい。移動局400は、図2の無線回路201に対応する無線回路404、メモリー226に対応するメモリー406、システムバス220に対応するシステムバス408、ユーザーインターフェース222に対応するユーザーインターフェース410、操作及び保守インターフェース224に対応する操作及び保守インターフェース412、及びプロセッサー(又はCPU)414含んでもよい。
無線ネットワークは、ダウンリンク無線フレームの同期チャンネル及びブロードキャストチャンネル及び、アップリンク無線フレームの制御チャンネル及びランダム・アクセス・チャンネルなどの、特定の周波数及び周波数帯域の一部の時間リソースを攻撃するように設計された故意の妨害信号に対して脆弱かもしれない。ここに用いられるように、「妨害信号」という単語は、基地局及び移動局などの無線ネットワーク要素の間の無線通信を破綻させるように試みる故意に送信される無線ノイズ(又は「ホワイトノイズ」)又は特定の信号を意味する。もちろん、妨害信号はLTE無線フレームのどの周波数及び時間リソースにも存在しうるものであるが、アップリンク(又はダウンリンク)のチャンネルを妨害する信号は、破綻のための有効な手段であり、妨害信号の近くの広い帯域のサービス拒否(Denial of Service(DoS))を受けるユーザー・イクイップメントを生み出す結果となる。
図5は、ある実施形態における、基地局によるダウンリンク無線フレーム・ブロードキャストの構造を示す。図5の構造は、LTEダウンリンク送信のために使われるものと類似する。ある実装においては、ひとつのフレーム500は、10ミリ秒の長さであり、10個のサブフレーム510に分割されもよい。それぞれのサブフレーム510は、スロット520に更に分割されてもよい。従って、フレーム500は、10個のサブフレーム510及び20個のスロット520(0〜19の番号が付される)を有してもよく、スロット0及び1で始まる1対のスロットのそれぞれは、1つのサブフレームに等しい。例として、スロット530及び540が、第1サブフレーム510を構成する。更に、それぞれのスロットは、7個の直交周波数分割多重方式(Orthogonal Frequency−Division Multiplexing、OFDM)シンボル(0〜6の符号が付される)を含み、それらのシンボルは時間領域で連続している。当業者によって理解されるように、シンボルの垂直次元は周波数スペクトラムを示す。
ある実施形態においては、ダウンリンクフレーム500は、移動局を基地局に同期させるために3個の異なる同期チャンネルを用いる。初期のアクセス手順において、移動局は、初期スロット同期及びセル・アイデンティティのためのプライマリ同期信号(Primary Synchronization Signal、PSS)を検出し、その後、フレーム同期、セル・アイデンティティ・グループ、及びサイクリックプレフィックス長(Cyclic Prefix Length)のためのセカンダリ同期信号(Secondary Synchronization Signal、SSS)を検出する。基地局との同期の後、移動局は、基準信号の位置を判断することができ、報知チャンネル(BCH)に含まれるマスター情報ブロックを検出及びデコードすることができる。
ある実施形態においては、PSSは、第1サブフレームの第1スロットの最終シンボルで検出されることができ、また、SSSは、第1サブフレームの第1スロットの第2〜最終シンボルで検出されることができる。PSS及びSSSは、フレーム内の第6サブフレームで同様に繰り返されることができる。BCHは、フレームで1回だけあってもよく、第1サブフレームの第2スロットの第1の4つのシンボルで検出されてもよい。
図5に示されるように、ある実施形態においては、プライマリ同期信号は、シンボル534、すなわちスロット0(スロット530)のシンボル6に含まれる。PSSは、スロット10(スロット522)のシンボル6で繰り返される。セカンダリ同期信号は、シンボル532、すなわちスロット0(スロット530)のシンボル5に含まれる。SSSは、スロット10(スロット522)のシンボル5で繰り返される。報知チャンネルは、シンボル542、すなわちスロット1(スロット540)のシンボル0〜3に含まれる。BCHは、フレーム500で1回だけ含まれる。
図6は、ある実施形態による、同期信号チャンネルに割当てられた周波数及び時間リソースを示す、つまり、図6は、スロット0のシンボル5及び6(シンボル532及び534)、及びスロット1のシンボル0〜3(シンボル542)を示す。PSS、SSS及びBCHは、0〜5の符号を付される中央の6つの周波数リソースブロック(RB)610にマッピングされる。それぞれのRB610は、12個のサブキャリアを含み、それらのサブキャリアは図6において順番に番号が付されている。PSS及びSSSは、中央のDCサブキャリア630を除けば、中央の62個のサブキャリア620にマップされている。BCHは、DCサブキャリア630を除けば、中央の72個のサブキャリア620にマップされている。非限定例として、15kHzのサブキャリアを有する6個のRB610を搬送するのに必要な帯域は、1.080MHzである。
同期信号を含むダウンリンク送信は、ネットワーク・リコンフィグレーションによって回避することができる干渉を受けうる。測定されたネットワークデータが干渉信号の存在を示す時、その他の種類の干渉源と意図的な妨害信号とを区別するために、干渉信号の更なる調査が望まれることがある。
同期チャンネルに関しては、故意の破綻は、中央の63個のサブキャリアに渡るノイズ波形によってもたらされることがあり、PSS及びSSSへの移動局同期に干渉することに使われることがある。妨害ノイズ信号は、PSS及びSSSで使われる周波数において、比較的高出力のスペクトル密度、又は比較的高い妨害対信号比(Jammer−To−Signal Ratio)を有していても良い。なぜならば、PSSは、高い干渉レベルを検出するように設計されているからである。
同期チャンネルもまた、PSS、SSS、BCH、又はそれらの信号の組み合わせを含む偽の同期信号によって意図的に攻撃されるかもしれない。偽の同期信号は、基地局に新たに接続しようとする移動局又はセル再選択をしている移動局によって検出されるうる。例えば、無線ネットワークの場所とは異なるOFDMシンボルにある偽のPSSは、移動局がフレームの境界を発見することを妨げ、これによってセル選択の失敗が起こる。他の例としては、移動局が偽のPSSに同期すると、移動局はSSS及びBCHを検出するが、移動局は、セル再選択の失敗を経験する。セル再選択の失敗は、偽のSSS及びBCH信号でも起こり、やがては、全ての移動局が無線ネットワークから切断されるかもしれない。もし移動局が事前に同期されていたとしても、移動局は、セル再選択においてサービス拒否(Denial of Service(DoS)を受けるかもしれない。
図7は、ある実施形態における、LTEネットワーク700の構成のシステム図を示す。ある実装においては、基地局(すなわちeNodeB)760及び762がUE740にサービスを提供している間、妨害源710は2つの隣接するセルの間の境界720を超える妨害信号を送る。妨害信号730は、UE740によって測定され、妨害信号750は基地局(すなわちeNodeB)760及び762によって測定される。ある実施形態においては、JDLS770は、UE740又は基地局(又はeNodeB)760及び762、又はその両方からの妨害信号測定レポートをモニターする。ある実装においては、測定レポートが潜在的妨害信号を示す時、JDLS770は妨害アラートを生成する。JDLS770は、潜在的妨害信号源をローカライズ、つまり、潜在的妨害信号源の場所を特定してもよい。ある実施形態においては、JDLS770は、専用サーバーとして実装される。しかしながら、JDLS770は、ネットワーク・コントローラー装置の一部(例えば、図1の参照符号110又は図3Bの参照符号342)、或いは、例えば、記憶装置に記憶されたソフトウェアモジュールとしてなど、基地局の一部として実装されてもよい。
ある実施形態においては、妨害アラートが提起される時、RRM780(又はネットワーク・コントローラー装置)がデータスケジューラーに通知を行う。データスケジューラーは、RRM780から受信した命令に従って、無線リソースの使用のスケジュールを行う。RRM780は、また、データスケジューラーに周期的に、ダウンリンクにおいて一定の無線時間及び周波数リソースに対してのネットワーク沈黙時間(Network Quiet Time)をスケジュールするよう命令してもよい。これにより、ネットワーク沈黙時間の間に潜在的妨害信号の特徴を調べて確認することができる。実装によっては、RRM780は、専用サーバーとして採用されてよく、又は、RRM780は、ネットワーク・コントローラー装置の一部(例えば、図1の参照符号110又は図3Bの参照符号344)として採用されてよく、又は、RRM780は、基地局の一部として採用されてもよい。
図8は、ある実施形態に従った、妨害信号検出及び回避のためのプロセス800を示す。810において、非限定例として、妨害信号検出に対する測定レポート(例えば、ネットワーク測定データ)が、基地局及びUEなどの無線ネットワーク要素から取得される。ある実施形態においては、測定レポートは、基地局によってJDLSに提供される。820において、測定レポートのデータが潜在的妨害信号の存在を示す時、アラートがJDLSによって発行される。ある実施形態においては、潜在的妨害信号を検出することに使われる測定レポートのデータは、下記のうち1つまたは複数を含む:(1)KPI、(2)基地局760及び762が特定の周波数で送信しない沈黙時間測定の間に収集されたデータ、(3)基地局760及び762におけるダウンリンク測定、及び(4)偽の同期信号レポート。
830において、妨害信号源の存在を確認するために、例えばUE及び基地局による追加的な測定レポートを取得することによって、追加的な分析が行われる。ある実施形態においては、追加的な分析は、JDLS、RRM、又はその両者の協力によって行われる。840において、810及び830において集められた測定レポートにもとづいて妨害信号が存在するかどうか判定が行われる。もし、妨害信号の存在が確認されれば、無線ネットワークは、妨害信号による破綻を回避し破綻を防ぐように、リコンフィグレーションされる。ある実施形態においては、JDLS又はRRMによって、無線ネットワークのリコンフィグレーションが行われる。そうでない場合は、プロセス800は、ステップ810に戻り、無線ネットワークをモニターし潜在的妨害信号を探し続ける。
図9Aは、ある実施形態に従った、妨害信号のハンドリングのプロセス900を示す。潜在的妨害信号は、多くの異なる方法を使って検出することができる。902において、潜在的妨害信号の存在を検出するためにネットワーク測定データが取得される。ネットワーク測定データは、無線ネットワーク要素から継続的に収集されて、潜在的妨害信号の兆候を探すために分析される。収集されたネットワーク測定データは、(1)KPIデータ、(2)基地局が特定の周波数で送信しない沈黙時間測定の間に収集されたデータを有するUEレポート、(3)基地局におけるダウンリンク測定(例えば、周波数分割多重(Frequency Division Duplexing)システムでの基地局における無線スニファー(sniffer)、及びTDDシステムでのダウンリンク・サブフレームにおけるeNodeB聴取モード)、及び(4)偽の同期信号についてのUEレポート、を含む。ネットワーク測定データの収集は、図9〜12に関連して下記により詳細に説明される。当業者によって理解されるように、実装によって、その他の種類のデータが、潜在的妨害信号を検出するために収集されてもよい。
904において、潜在的妨害信号の兆候があるかどうか判断するために、ネットワーク測定データが分析される。ある実施形態においては、分析は、それぞれの種類のネットワーク測定データを、事前に定義された対応する閾値と比較することを含む。
例えば、キー・パフォーマンス・インディケーター(Key Performance Indicator、KPI)データが用いられる実装においては、ステップ902で取得された現在のKPIデータが、履歴のKPI値に基いて定義された対応する閾値と比較される。閾値は、通常の動作条件のもとでの現在のKPIの想定される範囲を定義する。もし、現在のKPIが対応する閾値によって定義される想定範囲の外にあるならば、潜在的妨害信号がネットワークに存在すると看做される。閾値は、増分又は減分値であってもよい。KPIは、アクティブなユーザー・イクイップメント(UE)の数、セルスループット、通話切断率、及びハンドオーバー失敗率を含むが、これらに限定されることはない。ある実施形態においては、KPIのそれぞれのセットが特定の基地局又は地理的領域に関連付けられていてもよく、その場合、KPIは無線ネットワークの基地局のために収集されてもよい。地理的領域は、1つの基地局のカバーエリアに対応するか、又は、複数の基地局の範囲(カバレッジ)領域の少なくとも一部分を含んでもよい。
ある実施形態においては、ある期間から別の期間の、アクティブなUEの数又はセルスループットの突然な減少は、潜在的妨害信号の存在を示してもよい。減少の率は、履歴の統計に基づき事前に定義された対応する閾値と比較される。もし、突然の減少の率がアクティブなUEの数又はセルスループットに関する閾値よりも大きければ、潜在的妨害信号の兆候が検出される。同様に、潜在的妨害信号の兆候を検出するために、通話切断率又はハンドオーバー失敗率の突然の増加を、対応する履歴の統計又は閾値に関して分析してもよい。
ある実施形態においては、KPIデータが基地局及びUEによって収集され、統計的分析のためにJDLSなどのサーバーに提供される。まとめられた履歴のKPIデータ及びKPIについての履歴の統計は、JDLSに記憶される。それらの履歴のKPI統計は、それぞれの種類のKPIの閾値を定義するのに使われる。例えば、特定の期間(例えば、前年、又は過去3ヶ月、又は過去1ヶ月)において妨害ではない関連イベントであると判定されたKPIの最大の増分/減分率を、そのKPIの閾値として使用してもよい。例えば、サッカーの試合中のサッカースタジアムの近くの地域ではセルスループットが異常に低くなると予期されるなど、特定の期間又は地理的地域で発生する特定のイベントに従って、閾値が調整されてもよい。ある実施形態においては、閾値は、KPIの複数の標準偏差に基いていてもよい。実装によって、閾値は、KPIの値の許容可能な範囲を提供してもよい。
上記において、ステップ904で分析されるKPIに関するネットワーク測定データを説明したが、図10〜12に関連して下記に説明するように、その他の種類のネットワーク測定データを使用してもよい。
904に戻り、もしネットワーク測定データがどの閾値にも達しないならば、プロセス900は、902に戻り、無線ネットワーク要素からのネットワーク測定データを取得し続ける。
906において、もしネットワーク測定データがいずれかの閾値に達するならば、潜在的妨害器アラートが発行される。ある実施形態においては、そのアラートは、非限定例として図7のJDLS770などの、JDLSによって発行される。潜在的妨害信号が、意図的な妨害の結果なのか、その他の干渉源の結果なのかを判断するために、更なる潜在的妨害器アラートの原因の調査が行われてもよい。アラートは、サービスプロバイダーにレポートされてもよい。オプションとして、アラートは、事業者にレポートされてもよい。その場合、事業者は、潜在的妨害信号又はネットワークのその他の強い干渉源の存在を知ることになる。
908において、JDLS又はRRMは、基地局及びUEに、潜在的妨害信号及びその源の特徴を調べて特定するために追加的なネットワーク測定データを取得するように命令する。JDLS又はRRMは、基地局に、周波数及び時間領域において潜在的妨害信号の特徴をより詳しく調べるために測定を行うことができるように更なる沈黙時間をスケジュールするように命令してもよい。
910において、潜在的妨害信号が本当に妨害信号であるかどうか判定される。もし潜在的妨害信号は妨害信号であると判定されるならば、潜在的妨害信号によって影響を受ける時間及び周波数リソース情報が914においてRRMにレポートされる。916において、潜在的妨害信号アラートを引き起こした閾値は新しい値にアップデートされてもよい。アップデートは、自動的に又は管理者の補助によって手動でなされてもよい。オプションとして、潜在的妨害信号によって影響を受ける時間及び周波数リソースは、潜在的妨害アラートが除去されるまで、RRMによってダウンリンク送信のために割り当てられないようにしてもよい。
図9Bは、ある実施形態に従って、潜在的妨害信号アラートを除去するプロセス930を示す。ネットワーク測定データは周期的にモニター可能であり、全てのアラート条件が通常に戻った時に、潜在的妨害器アラートを除去するようにすることもできる。932において、ネットワーク測定データへの周期的アップデートが取得される。934において、潜在的妨害器アラートを発生させた条件がまだあるかどうか判定するために、アップデートされたネットワーク測定データが分析される。ある実施形態においては、もし、アップデートされたネットワーク測定値が対応する閾値によって定義される想定範囲の外に留まるならば、プロセスは932のネットワーク測定データの周期的モニタリングに戻る。もし、アップデートされたネットワーク測定データが閾値の中にある場合は、936において潜在的妨害器アラートが除去される。ネットワーク測定データをモニターする周期は管理者によって設定されてもよく、周期は、それぞれのアップデートの後選択的にアップデートされてもよい。潜在的妨害器アラートが除去されると、システムは、例えば、図9Aの902などネットワーク測定データの取得に戻る。
910に戻って、もし、潜在的妨害信号が妨害信号であると判定されるならば、912において故意の妨害信号の存在はサービスプロバイダーにレポートされる。オプションとして、918において、妨害信号源は位置を特定されて、サービスプロバイダーにレポートされてもよい。潜在的妨害器の地理上の場所は、902及び908で収集されたデータ及びUE及び基地局によって提供される地理情報に基づいた三角測量又は三辺測量法を使って、見つけられてもよい。干渉信号源の位置を調べる方法は、米国特許第8,229,368に示され、その米国特許第8,229,368はここに援用される。
オプションとして、910及び918において、潜在的妨害信号が意図的で不明な外部干渉ではなく既知の事前に特徴を特定されたチャンネル間干渉であるかどうかを判定するために、信号フィンガープリント(fingerprint)が使われてもよい。信号の振幅及び位相コンポーネントが、フィンガープリント(fingerprint)として使われてもよい。信号の周波数及び時間領域特徴も、フィンガープリント(fingerprint)として使われてもよい。もし信号フィンガープリント(fingerprint)が既知の干渉を反映し、潜在的妨害信号の地理上の場所が他のネットワーク要素の場所に適合するならば、潜在的妨害信号がチャンネル間干渉であると特定することができる。
920において、ネットワークが自動的なリコンフィグレーションを行うことができるかどうか、それにより妨害信号によるネットワークの破綻を防ぐことができるかどうかが、判定される。922において、もし、自動的なリコンフィグレーションが可能でない場合は、サービスプロバイダーが通知を受けて、それによりネットワークが手動でリコンフィグレーションされてもよい。一部の実施形態において、通知には、例えば妨害信号について集められた情報に基いて、なされるべき可能な設定変更の推奨を含む。
924において、もし、自動的なリコンフィグレーションが可能とされているならば、RRMは、例えば、周波数再割当て又は分割によってネットワークシステムリコンフィグレーションを行う。もし、周波数割当が可能ならば、妨害信号によって影響をうけた周波数を避けるように同期信号周波数割当が変更されてもよい。例えば、図9Cを参照して、もし、同期信号周波数954の信号952が妨害信号956を受けるならば、妨害信号956の破綻させる効果を避けるために、同期信号周波数960を有する新しい周波数帯域958がそれに再度割り当てられる。あるいは、信号952が、同期信号周波数964を有する新しい周波数帯域962に再度割り当てられてもよい。
他方、図9Dを参照し、もし、周波数割当が不可能ならば、動作帯域周波数が2つの動作システム帯域に分割されてもよい。例えば、信号952は、同期信号周波数970及び972をそれぞれ有する2つの小さな周波数帯域966及び968に分割されてもよく、これにより、妨害信号956によって使われる周波数を避ける。
ネットワークをリコンフィグレーションした後、プロセス900はステップ902に戻り、無線ネットワークをモニターし潜在的妨害信号を探し続ける。潜在的妨害器アラートは、選択的に除去されるかキャンセルされる。
図10は、ある実施形態に従った、ネットワーク測定を分析するプロセス1000を示す。分析されたネットワーク測定データは、ある周波数で基地局が送信しない期間に取得されたデータを含む。
1010において、JDLS又はRRMサーバーは、周波数に基づく沈黙時間の間、選択周波数で送信しないように特定のネットワーク地域にある基地局に命令する。例えば、RRMサーバーは、データスケジューラー・コンポーネントが定期的にダウンリンクに周波数ベースの沈黙時間をスケジュールするよう命令することができる。その間、特定のネットワーク領域内の基地局は、独自のネットワーク周波数の特定のセットまたは範囲にわたってデータと同期信号を含む任意の信号を送信しないように命令される。他の例においては、基地局は、PSS、SSS又はBCH、又は周期的ベースに一般的に送信されるその他の制御信号を送信しないように命令されてもよい。もし、地域になんらかの妨害信号源があるならば、基地局が沈黙している間にも、妨害信号源は妨害信号を送信し続ける。妨害信号の近くのUEは、妨害信号についての情報を検出及び収集する。
1020において、JDLSによって課される沈黙時間の間、信号アクティビティについてのUEからのレポートを受信する。レポートは、沈黙時間の間送信される信号の信号特徴を含む。1030において、沈黙時間の信号アクティビティが干渉信号又は妨害信号によってもたらされるかどうか、信号特徴が分析される。JDLSは、信号のフィンガープリント(fingerprint)を、データベースにある既に知られて許可された装置のフィンガープリント(fingerprint)と比較する。もし、フィンガープリント(fingerprint)が事前に特徴を特定された干渉信号を持つ既に知られて許可された装置のフィンガープリント(fingerprint)に適合しないならば、故意の妨害信号の存在が示唆されることになり、潜在的妨害アラートが発行される(1040及び1050)。従って、もし、フィンガープリント(fingerprint)がブラックリストの装置のフィンガープリント(fingerprint)に適合するならば、潜在的妨害器アラートが発行されてもよい。
図11は、ある実施形態に従った、ネットワーク測定データを分析するプロセス1100を示す。分析されたネットワーク測定データは、基地局から収集されたダウンリンク測定レポートを含む。ピコセル又はフェムトセル基地局などの一部の周波数分割多重(FDD)基地局では、基地局は、パケットアナライザー又は無線環境スキャナー(Radio Environment Scanner、RES)を使って隣接セルから同期信号及びシステム情報を受信してもよい。パケットアナライザーは、最適な無線パラメーター設定のための初期設定段階の間に同期信号及びシステム情報を取得し、FDD基地局によって使われるオプションのパラメーターを維持するために周期的に隣接セル信号を検出するように構成されてもよい。
1110において、JDLSは、パケットアナライザー又はRES聴取期間の間に通常の動作周波数で全てのダウンリンク送信を中止するよう基地局に命令する。1120において、聴取期間の間に特定の周波数のセットで送信されるデータ及び同期信号を含む信号についての情報を収集するために、パケットアナライザー又はRESが使われる。1130において、集められた情報は、潜在的妨害信号があるかどうか判断するために、分析される。1140及び1150において、収集された情報がダウンリンク送信を中止するように命令された基地局に関連づけられたカバーエリアにおいて、聴取期間に上述の動作周波数で信号が送信されたことを示す時、潜在的妨害アラートが発行されて、サービスプロバイダーにレポートされる。さもなければ、プロセスは、1110に戻ってプロセスが繰り返される。
ある実施形態においては、基地局は、潜在的妨害信号を検出するために、RESを使う代わりに基地局自身の受信機に依存してもよい。例えば、一部の時分割多重(Time−Division Duplex、TDD)基地局では、JDLSは、選択されたダウンリンク・サブフレームにおいてある動作周波数で基地局の受信機を作動させ送信を停止するように、基地局に命令することができる。
図12A及び12Bは、ある実施形態における、偽の同期信号レポートのハンドリングのプロセスを示す。一部の実施形態では、UEは、妨害信号を避ける間、セル再選択の能力を有してもよい。UEは、全ての同期信号の相互相関における時間遅延を常時記録してもよい。プロセス1200において、例えばセル再選択の失敗などにより1210において偽の同期信号が検出される時、UEは、1220において同期信号をそのフィンガープリント(fingerprint)とともにブラックリストに入れてもよい。ある実施形態においては、フィンガープリント(fingerprint)は、フレーム境界からの時間遅延を含んでもよい。1230において、ブラックリストに入れられた信号は、基地局又はJDLSにレポートされて、潜在的妨害信号アラートが出されてもよい。
ある実施形態においては、プロセス1240において、UEが1250において同期信号を検出する時、1260においてUEは検出された信号フィンガープリント(fingerprint)がブラックリストに入れられているかどうか判定するために既知の干渉フィンガープリント(fingerprint)のブラックリストを調べてもよい。もし検出された同期信号がブラックリストにあるならば、UEは同期プロセスを停止し、1270において偽の同期信号レポートを、受け持っている基地局に送ってもよく、また、潜在的妨害信号アラートを出すことができる。頻繁なレポートを避けるために、ブラックリストに入れられた偽の同期信号のそれぞれに時間がリンクされてもよい。
もし、UEにおいて偽の同期信号検出によって潜在的妨害器アラートが引き起こされるならば、JDLSは、同期信号に使われる周波数においてより頻繁な沈黙時間をスケジュールしてもよい。これにより、妨害器同期信号及びその地理上の場所を検出することができる。
LTEアップリンク送信において、物理的チャンネルは、物理的アップリンク制御チャンネル(Physical Uplink Control Channel、PUCCH)、物理的アップリンク共有チャンネル(Physical Uplink Shared Channel、PUSCH)、及びPRACHを含んでもよい。特にスケジュール要求(Scheduling Request、SR)、ハイブリッド自動再送要求(Hybrid Automatic Repeat Request、HARQ)アクノレッジメントメント(Acknowledgement、ACK)、及びチャンネル品質インディケーター(Channel Quality Indicator、CQI)レポートを含む様々なアップリンク制御情報を送るのに、PUCCH信号が使われる。PUCCHリソースは、システム帯域のエッジにあってもよく、これによって、PUCCH信号が妨害信号攻撃の標的となる。PUCCH信号の意図的な妨害は、HARQ ACK、CQIレポート、及びSRが基地局に到達するのを妨げ、これによって、再送信、劣悪なリンク適応、及びサービスの劣化を招くことがある。
PUSCH信号は、データ送信に使われることが多く、アップリンク帯域の中央に見られることができる。PUSCH信号はアップリンク制御シグナリングに使われることができるものの、ユーザー・イクイップメントがデータを送信する必要がある時、妨害信号の存在下においてPUCCHの代わりにPUSCHを使うことも、PUSCHリソースの受信失敗の増加を招くことになる。
PRACH信号は、ランダムアクセス機能に使われ、PUSCH信号リージョンにおける割り当てられたリソースになることができる。PRACH信号は、他の目的に加え、無線リンクを確立するときの初期アクセス、目的のセルへのアップリンク同期が確立される必要があるときのハンドオーバー、UEのためのアップリンク同期の保持、アップリンク測定に基づく方法を使った位置特定、及びPUCCHリソースで設定された専用スケジュール・リクエスト・リソースが無い場合のスケジュール・リクエストに使うことができる。故意の妨害信号によってPRACHリソースが攻撃される時、ランダムアクセス性能が劣化し、ユーザー・イクイップメントはランダムアクセスの失敗が増加する。
図13は、ある実施形態に従った、基地局によるアップリンク無線フレーム・ブロードキャストの構造を示す。図13の構造は、LTEアップリンク送信に使われるものに類似している。ある実装においては、ひとつのフレーム1300は、10ミリ秒の長さであり、10個のサブフレーム1310に分割されもよい。それぞれのサブフレーム1310は、スロット1320に更に分割されてもよい。従って、フレーム1300は、10個のサブフレーム1310及び20個のスロット1320(0〜19の番号が付される)を有してもよく、スロット0及び1で始まる1対のスロットのそれぞれは、1つのサブフレームに等しい。例として、スロット1330及び540が、スロット2及び3を有する、第2サブフレーム510を構成する。更に、1340及び1350などの、それぞれのスロットは、7個の直交周波数分割多重方式(Orthogonal Frequency−Division Multiplexing、OFDM)シンボル(0〜6の符号が付される)を含み、それらのシンボルは時間領域で連続している。当業者によって理解されるように、シンボルの垂直次元は周波数スペクトラムを示す。
図14は、ある実施形態に従った、サブフレーム1330のスロット2及び3に対応するスロット1340及び1350のシステムアップリンクチャンネル帯域への周波数及び時間リソース割当を示す。システム帯域は、リソースブロック1410から構成され、リソースブロック1410のそれぞれは、1つ又は複数のアップリンクサブフレームの中の72個の隣接するサブキャリアを含む。ある実装では、PUCCHリソースは、リソースブロック1420のシステム帯域のエッジにある。ある実装においては、PRACH信号は、システムアップリンクチャンネル帯域の中に位置するスロット1340及び1350にわたる6個の隣接するリソースブロック1430にマッピングされる。システムアップリンクチャンネル帯域のPRACHの場所は、PRACHプリアンブル検出を向上させるために隣接する基地局内で変更してもよい。
アップリンク送信は、ネットワーク・リコンフィグレーションをもって避けることができる干渉を受けるかもしれない。測定されたネットワークデータが干渉信号の存在を示す時には、干渉信号が意図的な妨害信号によってもたらされているかどうか、又は干渉信号が偶発的であり意図的ではないその他の種類の干渉源によって発せられるかどうかを判断するために、更なる干渉信号の調査が望まれる。
PUCCHチャンネルに関して、故意の破綻は、システムアップリンク帯域のエッジのリソースブロックにわたるノイズ波形によってもたらされているか、又は特定のPUCCH時間及び周波数リソースを攻撃する干渉信号によってもたらされているかもしれない。より頻繁な再送信、サービスの劣化、無線リソースの利用可能性の減少、及びセルスループットの減少は、更なる分析を必要とする妨害信号の存在を示すKPIに対するネットワーク測定データに反映されうるサービス問題の非限定例である。
PRACHのチャンネルに関してもまた、故意の破綻は、PRACHに割り当てられたリソースブロックにわたるノイズ波形によってもたらされる可能性がある。故意の妨害ノイズ信号は、PRACHによって用いられる周波数において、比較的高出力のスペクトル密度又は妨害対信号比(Jammer−to−Signal Ratio)を有するかもしれない。意図的な干渉信号もまた、PRACHの時間及び周波数リソースを攻撃するかもしれない。PRACHリソースも、偽のPRACH信号を含む妨害信号によって意図的に攻撃されるかもしれない。妨害信号がPRACHリソース中に偽のRACH信号を含む場合、プリアンブル検出の後のランダムアクセス手順が失敗するかもしれない。なぜならば、受信する基地局がランダムアクセス応答メッセージに対するアクノレッジメント(acknowledgement)を受信しないからである。妨害信号の検出及びハンドリングは、図15〜図19に関連して下記により詳細に説明される。
図15は、ある実施形態における、LTEネットワーク1500の構成のシステム図を示す。ある実装においては、基地局(又はeNodeB)1560及び1562がUE1540にサービスを提供している間に、妨害源1510は、2つの隣接するセルの境界1520を超える妨害信号を送信する。妨害信号1550は、基地局(又はeNodeB)1560及び1562によって測定される。ある実施形態においては、JDLS1570は、基地局(又はeNodeB)1560及び1562からの妨害信号測定レポートをモニターする。ある実装においては、測定レポートが潜在的妨害信号を示す時、JDLS1570は、妨害アラートを生成する。JDLS1570は、潜在的妨害信号源をローカライズ、つまり、潜在的妨害信号源の場所を特定してもよい。ある実施形態においては、JDLS1570は、専用サーバーとして実装される。しかしながら、JDLS1570は、ネットワーク・コントローラー装置の一部(例えば、図1の参照符号110又は図3Bの参照符号342又は図3Cの参照符号352)、或いは、例えば、記憶装置に記憶されたソフトウェアモジュールとしてなど基地局の一部として実装されてもよい。
ある実施形態においては、妨害アラートが提起される時、RRM1580(又はネットワーク・コントローラー装置)がデータスケジューラーに通知を行う。データスケジューラーは、RRM1580から受信した命令に従って、無線リソースの使用のスケジュールを行う。RRM1580は、また、データスケジューラーに周期的に、アップリンクにおいて一定の無線時間及び周波数リソースに対してのネットワーク沈黙時間をスケジュールするよう命令してもよい。これにより、ネットワーク沈黙時間の間に潜在的妨害信号の特徴を調べて確認することができる。実装によっては、RRM1580は、専用サーバーとして採用されてよく、又は、RRM1580は、ネットワーク・コントローラー装置の一部(例えば、図1の参照符号110又は図3Bの参照符号344又は図3Dの参照符号390)として採用されてよく、又は、RRM1580は、基地局の一部として採用されてもよい。
図16は、ある実施形態に従った、妨害信号検出及び回避のためのプロセス1600を示す。1610において、妨害信号検出に対する測定レポート(例えば、ネットワーク測定データ)が、基地局などの無線ネットワーク要素から取得される。1620において、測定レポートのデータが潜在的妨害信号の存在を示す時、アラートがJDLSによって発行される。ある実施形態においては、潜在的妨害信号を検出することに使われる測定レポートのデータは、下記のうち1つまたは複数を含む:(1)KPI、(2)基地局1560及び1562が特定の周波数のアップリンク送信をスケジュールしない沈黙時間測定の間に収集されたデータ、及び(3)偽のPRACH信号レポート。
1630において、妨害信号源の存在を確認するために、例えば基地局による追加的な測定レポートを取得することによって、追加的な分析が行われる。ある実施形態においては、追加的な分析は、JDLS、RRM、又はその両者の協力によって行われる。1640において、1610及び1630において集められた測定レポートにもとづいて妨害信号が存在するかどうか判定が行われる。もし、妨害信号の存在が確認されれば、無線ネットワークは、妨害信号による破綻を回避し破綻を防ぐように、リコンフィグレーションされる。ある実施形態においては、JDLS又はRRMによって、無線ネットワークのリコンフィグレーションが行われる。そうでない場合は、プロセス1800は、ステップ1610に戻り、無線ネットワークをモニターし潜在的妨害信号を探し続ける。
図17Aは、ある実施形態に従った、妨害信号のハンドリングのプロセス1700を示す。潜在的妨害信号は、多くの異なる方法を使って検出することができる。1702において、潜在的妨害信号の存在を検出するためにネットワーク測定データが取得される。ネットワーク測定データは、無線ネットワーク要素から継続的に収集されて、潜在的妨害信号の兆候を探すために分析される。収集されたネットワーク測定データは、(1)KPIデータ、(2)基地局が特定の周波数で送信しない沈黙時間測定の間に収集されたデータを有する基地局測定レポート、及び(3)偽のPRACH信号についての基地局レポート、を含む。ネットワーク測定データの収集は、図17〜19に関連して下記により詳細に説明される。当業者によって理解されるように、実装によって、その他のデータの種類は、潜在的妨害信号を検出するために収集されてもよい。
1704において、潜在的妨害信号の兆候があるかどうか判断するために、ネットワーク測定データが分析される。ある実施形態においては、分析は、それぞれの種類のネットワーク測定データを、事前に定義された対応する閾値と比較することを含む。
例えば、KPIデータが用いられる実装においては、ステップ1702で取得された現在のKPIデータが、履歴のKPI値に基いて定義された対応する閾値と比較される。閾値は、通常の動作条件のもとでの現在のKPIの想定される範囲を定義する。もし、現在のKPIが対応する閾値によって定義される想定範囲の外にあるならば、潜在的妨害信号がネットワークに存在すると看做される。閾値は、増分又は減分値であってもよい。KPIは、セルスループット、PRACH検出失敗率、PRACHランダムアクセス失敗率、及びPUCCH使用を含むが、これらに限定されることはない。
ある実施形態においては、ある期間から別の期間の、セルスループットの突然な減少は、潜在的妨害信号の存在を示してもよい。減少の率は、履歴の統計に基づき事前に定義された対応する閾値と比較される。もし、突然の減少の率がセルスループットに関する閾値よりも大きければ、潜在的妨害信号の兆候が検出される。
同様に、潜在的妨害信号の兆候を検出するために、PRACH検出失敗率又はPRACHランダムアクセス失敗率の突然の増加又はPUSCH受信失敗の突然の増加を、対応する履歴の統計又は閾値に関して分析してもよい。
ある実施形態においては、KPIデータ基地局及びUEによって収集されて、統計的分析のためにJDLSなどのサーバーに提供される。まとめられた履歴のKPIデータ及びKPIについての履歴の統計は、JDLSに記憶される。それらの履歴のKPI統計は、それぞれの種類のKPIの閾値を定義するのに使われる。
例えば、特定の期間(例えば、前年、又は過去3ヶ月、又は過去1ヶ月)において妨害ではない関連イベントであると判定されたKPIの最大の増分/減分率を、そのKPIの閾値として使用意してもよい。例えば、サッカーの試合中のサッカースタジアムの近くの地域ではセルスループットが以上に低くなると予期されるなど、特定の期間又は地理的地域で発生する特定のイベントに従って、閾値が調整されてもよい。
ある実施形態においては、閾値は、KPIの複数の標準偏差に基いていてもよい。実装によって、閾値は、KPIの値の許容可能な範囲を提供してもよい。
ある実施形態においては、PUCCH時間及び周波数リソースに妨害信号が存在する時に、セルスループット率が閾値に達する又は閾値を超えることがあり、HARQ ACKが基地局に到達するのを妨げ、再送信及びサービスの劣化を招くことになる。更に、PUCCHリソースに存在する妨害信号が基地局のCQIレポートの受信を妨げる時も、セルスループット率が閾値に達する又は閾値を超えることがあり、劣悪なリンク適応、及び更なるサービスの劣化を招くことがある。
ある実施形態においては、PRACHリソースの高出力ノイズ妨害信号は、基地局が本物のPRACH信号を検出するのを妨げ、PRACHランダムアクセス失敗の増加に加えPRACH検出失敗率の増加を招くかもしれない。同様に、他の実施形態では、偽のPRACH信号が受信される時、偽のPRACHに対して基地局によって送信されるメッセージへの応答が受信されない時、PRACHランダムアクセス失敗が増加する。
ある実施形態においては、PUCCH妨害信号の結果、使用可能なPUCCHリソースが減少する時、PUSCH受信失敗率が増加するかもしれない。
ある実施形態において、KPIのそれぞれのセットが特定の基地局又は地理的領域に関連付けられている場合、無線ネットワークの基地局のためにKPIを収集してもよい。地理的領域は、1つの基地局のカバーエリアに対応するか、又は、複数の基地局のカバーエリアの少なくとも一部分を含んでもよい。
ステップ1704において分析されるネットワーク測定データはKPIに関して上記に説明されたが、図18及び19に関連して下記に説明されるように、その他の種類のネットワーク測定データを使用してもよい。
1704に戻り、ネットワーク測定データがどの閾値にも達しないならば、プロセス1700は1702に戻り、無線ネットワーク要素からネットワーク測定データを取得し続ける。
1706において、例えば、ネットワーク測定データがいずれかの閾値に達するなど、ネットワーク測定データと閾値の比較に基いて、潜在的妨害器アラートが発行される。ある実施形態においては、非限定例として図15のJDLS1570などの、JDLSによってアラートが発行される。潜在的妨害信号が意図的な妨害又は他の種類の干渉源の結果であるかどうか判定するために、潜在的妨害器アラートの原因の更なる調査が行われてもよい。アラートは、サービスプロバイダーにレポートされてもよい。オプションとして、アラートは、事業者にレポートされてもよい。その場合、事業者は、潜在的妨害信号又はネットワークのその他の強い干渉源の存在を知ることになる。
1708において、JDLS又はRRMは、基地局に、潜在的妨害信号及びその源の特徴を調べて特定するために追加的なネットワーク測定データを取得するように命令する。JDLS又はRRMは、基地局に、周波数及び時間領域において潜在的妨害信号の特徴をより詳しく調べるために測定を行うことができるように更なる沈黙時間をスケジュールするように命令してもよい。
ある実施形態においては、1708において、KPIに関連するか、又は基地局によるPUCCH又はPRACH干渉レベルの測定に関連するネットワーク測定データによって潜在的妨害器アラートが引き起こされる時、PUCCH時間及び周波数の間、更なる沈黙時間がスケジュールされる。沈黙時間の間のPUCCHリソースブロックに加えて、全てのリソースブロックに測定が行われてもよい。ある例では、沈黙時間の間に検出された連続的又は周期的な時間の未確認の干渉源が、妨害信号の存在を確認するかもしれない。
ある実施形態においては、1708において、PRACH検出失敗に関連したネットワーク測定データによって潜在的妨害器アラートが引き起こされる時、PRACH時間及び周波数の間、更なる沈黙時間がスケジュールされる。もし、PRACH周波数オフセットが隣接する基地局で異なるならば、JDLSは、基地局に、隣接する基地局がそのPRACHリソースで送信しない間に、それらのPRACHリソースで測定を行うように命令してもよい。ある実施形態においては、それぞれのリソースブロックのエネルギーレベルを測定するために沈黙時間はシステム帯域全体にわたってもよい。システム帯域全体が沈黙時間である時に、あるリソースブロックのエネルギーレベルが閾値レベルを超えるならば、妨害信号の存在が確認される。
ある実施形態においては、1708において、PRACHランダムアクセス失敗によって潜在的妨害器アラートが引き起こされる時、JDLSは、基地局に、偽のプリアンブルの存在を確認するために他のランダムアクセス応答を送信するように命令してもよい。偽のプリアンブルの存在は、妨害信号の存在を確認し得る。
1710において、潜在的妨害信号が本当に妨害信号なのかどうか判定される。もし潜在的妨害信号は妨害信号であると判定されるならば、潜在的妨害信号によって影響を受ける時間及び周波数リソース情報が1714においてRRMにレポートされる。1716において、潜在的妨害信号アラートを引き起こした閾値は新しい値にアップデートされてもよい。アップデートは、自動的に又は管理者の補助によって手動でなされてもよい。オプションとして、潜在的妨害信号によって影響を受ける時間及び周波数リソースは、潜在的妨害アラートが除去されるまで、RRMによってアップリンク送信のために割り当てられないようにしてもよい。
図17Bは、ある実施形態に従って、潜在的妨害信号アラートを除去するプロセス1730を示す。ネットワーク測定データは周期的にモニター可能であり、全てのアラート条件が通常に戻った時に潜在的妨害器アラートを除去することもできる。1732において、ネットワーク測定データへの周期的アップデートが取得される。1734において、潜在的妨害器アラートを発生させた条件がまだあるかどうか判定するために、アップデートされたネットワーク測定データが分析される。ある実施形態においては、もし、アップデートされたネットワーク測定値が対応する閾値によって定義される想定範囲の外に留まるならば、プロセスは932のネットワーク測定データの周期的モニタリングに戻る。もし、アップデートされたネットワーク測定データが閾値の中にある場合は、1736において潜在的妨害器アラートが除去される。ネットワーク測定データをモニターする周期は管理者によって設定されてもよく、周期は、それぞれのアップデートの後選択的にアップデートされてもよい。潜在的妨害器アラートが除去されると、システムは、例えば、図17Aの1702などネットワーク測定データの取得に戻る。
1710に戻って、もし、潜在的妨害信号が妨害信号であると判定されるならば、1712において故意の妨害信号の存在はサービスプロバイダーにレポートされる。オプションとして、1718において、妨害信号源は位置を調べられて、サービスプロバイダーにレポートされてもよい。潜在的妨害器の地理上の場所は、1702及び1708で収集されたデータ及び基地局によって提供される地理情報に基づいた三角測量又は三辺測量法を使って見つけてもよい。ある実施形態においては、PRACHランダムアクセスの失敗によって潜在的妨害器アラートが引き起こされる場合、潜在的妨害器の地理上の場所を探す際に、基地局は特定の偽のランダムアクセスプリアンブルを使用してもよい。干渉信号源の位置を調べる方法は、米国特許第8,229,368に示され、その米国特許第8,229,368はここに援用される。
オプションとして、1710及び1718において、潜在的妨害信号が意図的で不明な外部干渉ではなくむしろ既知の事前に特徴を特定されたチャンネル間干渉であるかどうかを判定するために、信号フィンガープリント(fingerprint)が使われてもよい。信号の振幅及び位相コンポーネントが、フィンガープリント(fingerprint)として使われてもよい。信号の周波数及び時間領域特徴も、フィンガープリント(fingerprint)として使われてもよい。もし信号フィンガープリント(fingerprint)が既知の干渉を反映し、潜在的妨害信号の地理上の場所が他のネットワーク要素の場所に適合するならば、潜在的妨害信号がチャンネル間干渉であると特定することができる。
1720において、ネットワークが自動的なリコンフィグレーションを行うことができるかどうか、それにより妨害信号によるネットワークの破綻を防ぐことができるかどうかが、判定される。1722において、もし、自動的なリコンフィグレーションが可能でない場合は、サービスプロバイダーが通知を受けて、それによりネットワークが手動でリコンフィグレーションされてもよい。一部の実施形態において、通知は、例えば妨害信号について集められた情報に基いて、なされるべき可能な設定変更の推奨を含む。
1724において、もし、自動的なリコンフィグレーションが可能とされているならば、RRMは、例えば、周波数再割当て又は分割によってネットワークシステムリコンフィグレーションを行う。もし、周波数割当が可能ならば、妨害信号によって影響をうけた周波数を避けるように同期信号周波数割当が変更されてもよい。例えば、図17Cを参照して、もし、システム帯域1740のPUCCH信号1742及びPRACH信号1744が妨害信号1746を受けるならば、妨害信号1746の破綻させる効果を避けるために、PUCCH信号1748及びPRACH信号1752を有する新しい周波数帯域1750がそれに再度割り当てられる。または、信号1740は、PUCCH信号1754及びPRACH信号1756を有する新しい周波数帯域1758に再度割り当てられてもよい。
他方、図17Dを参照し、もし、周波数割当が不可能ならば、動作帯域周波数が2つの動作システム帯域に分割されてもよい。例えば、信号1740は、PUCCH信号1762及び1766及びPRACH信号1764及び1768をそれぞれ有する2つの小さな周波数帯域1760及び1770(正寸で図示されない)に分割されてもよく、これにより、妨害信号1746によって使われる周波数を避ける。
ネットワークをリコンフィグレーションした後、プロセス1700はステップ1702に戻り、無線ネットワークをモニターし潜在的妨害信号を探し続ける。潜在的妨害器アラートは、選択的に除去されるかキャンセルされる。
図18は、ある実施形態に従った、ネットワーク測定を分析するプロセス1800を示す。分析されたネットワーク測定データは、ある周波数で基地局が送信しない期間に取得されたデータを含む。
1810において、JDLS又はRRMサーバーは、周波数に基づく沈黙時間の間、選択周波数でのアップリンク送信をスケジュールしないように特定のネットワーク地域にある基地局に命令する。例えば、RRMサーバーは、データスケジューラー・コンポーネントが定期的にダウンリンクに周波数ベースの沈黙時間をスケジュールするよう命令することができる。その間、特定のネットワーク領域内の基地局は、独自のネットワーク周波数の特定のセットまたは範囲にわたってデータと同期信号を含む任意の信号を送信しないように命令される。他の例においては、基地局は、PUCCH、PRACH、又は周期的ベースにUEから一般的に送信されるその他の制御信号を送信しないように命令されてもよい。もし、地域になんらかの妨害信号源があるならば、その地域の基地局に関連づけられるUEが沈黙している間にも、妨害信号源は妨害信号を送信し続ける。妨害信号の近くの基地局は、妨害信号についての情報を検出及び収集する。
1820において、JDLSによって課される沈黙時間の間、信号アクティビティについての基地局からのレポートを受信する。レポートは、沈黙時間の間送信される信号の信号特徴を含む。1830において、沈黙時間の信号アクティビティが干渉信号又は妨害信号によってもたらされるかどうか、信号特徴が分析される。JDLSは、信号のフィンガープリント(fingerprint)を、データベースにある既に知られて許可された装置のフィンガープリント(fingerprint)と比較する。もし、フィンガープリント(fingerprint)が事前に特徴を特定された干渉信号を持つ既に知られて許可された装置のフィンガープリント(fingerprint)に適合しないならば、故意の妨害信号の存在が示唆されることになり、潜在的妨害アラートが発行される(1840及び1850)。従って、もし、フィンガープリント(fingerprint)がブラックリストの装置のフィンガープリント(fingerprint)に適合するならば、潜在的妨害器アラートが発行されてもよい。
図19は、ある実施形態における、偽のPRACH信号のハンドリングのプロセス1900を示す。一部の実施形態において、1910で偽のPRACH信号を受信した後、基地局は、プリアンブル・アイデンティフィケーション(Preamble Identification)を有するランダムアクセス応答メッセージ、タイミング調整(Timing Adjustment)、及びテンポラリー・アイデンティティ(TC−RNTI)、及びスケジュール許可(scheduling grant)を1920で送信する。もし、検出されたプリアンブルが偽のプリアンブルならば、1930においてランダムアクセス応答メッセージへの応答を基地局は受信しない。この場合、1950において基地局は、ブラックリストにプリアンブルID及びタイミング調整(Timing Adjustment)を記録してもよく、1960において潜在的妨害器アラートを発行してもよい。もし、基地局が応答を受信するならば、プロセスは1940のKPIのモニタリングに戻り、ランダムアクセス失敗率結果の増加を判定する。
上記から、本開示の様々な実施形態が例示のためにここに記載され、本開示の範囲及び趣旨から離れることなく様々な変形がなされてもよいことが理解される。従って、ここに開示される様々な実施形態は限定的であると意図されない。

Claims (21)

  1. 無線ネットワークの妨害信号をハンドリングする方法であって、
    前記方法は、
    無線ネットワーク要素によって収集されたネットワーク測定データを取得することと、
    前記取得されたネットワーク測定データから第1性能情報を選択することと、
    第1基準情報に照らして前記第1性能情報を試験することと、
    前記第1性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始することと、を有し、
    前記第1性能情報は、キー・パフォーマンス・インディケーター(KPI)、沈黙時間の間に収集されたデータ、又は偽の物理的ランダム・アクセス・チャンネル(PRACH)信号についてのレポート、又はその組み合わせに関連する、方法。
  2. 前記第1性能情報は、KPIに関連し、前記無線ネットワークはLTEネットワークに関連しており、
    前記方法は、
    前記取得されたネットワーク測定データから第2性能情報を選択することと、
    第2基準情報に照らして前記第2性能情報を試験することと、
    前記第2性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始することと、を更に有し、
    前記第2性能情報は、前記沈黙時間に収集された前記データに関連し、前記沈黙時間は、周波数の特定のセットのアップリンク送信のスケジュールをしないように基地局が命令された期間であり、
    前記第2基準情報は、無線装置の既に知られた信号特徴に関連する、請求項1に記載の方法。
  3. 前記第1性能情報は、KPIに関連し、前記無線ネットワークはLTEネットワークに関連し、
    KPIは、地域のセルスループット、地域のPRACH検出失敗率、地域のPRACHランダムアクセス失敗率、及びPUSCH受信失敗率、から選択された1つであり、
    前記開始されるアクションは、潜在的妨害信号の存在を示すアラートの発行である、請求項1に記載の方法。
  4. 前記第1性能情報は、KPIに関連し、前記無線ネットワークはLTEネットワークに関連し、
    前記第1基準情報は、履歴のKPIデータに基づく閾値である、請求項1に記載の方法。
  5. 前記試験ステップは、第1性能情報が前記閾値に達するか又は前記閾値を超えるかどうか判断することを含む、請求項4に記載の方法。
  6. 前記潜在的妨害信号は、潜在的アップリンク送信妨害信号であり、
    前記方法は、
    前記第1性能情報の試験が潜在的妨害信号の存在を示すならば追加的なネットワーク測定データを取得することと、
    前記潜在的アップリンク送信妨害信号が前記追加的なネットワーク測定データに基づく妨害信号であるかどうか判定することと、を更に有する、請求項1に記載の方法。
  7. 前記方法は、
    前記潜在的アップリンク送信妨害信号が妨害信号ではないと判定されるならば前記第1基準情報をアップデートすることを更に有する、請求項6に記載の方法。
  8. 前記開始されるアクションは、潜在的妨害信号の存在を示すアラートの発行であり、
    前記方法は、
    前記潜在的アップリンク送信妨害信号源の位置を調べることと、
    前記潜在的アップリンク送信妨害信号が妨害信号であると判定されるならば前記無線ネットワークをリコンフィグレーションすることと、を更に有する、請求項6に記載の方法。
  9. 前記妨害信号は、PUCCH信号、PRACH信号、ホワイトノイズ、又はその組み合わせである、請求項8に記載の方法。
  10. 前記開始されるアクションは、潜在的妨害信号の存在を示すアラートの発行であり、
    前記沈黙時間は、周波数の特定のセットのアップリンク送信のスケジュールをしないように基地局が命令された期間に関する、請求項1に記載の方法。
  11. 無線ネットワークの妨害信号をハンドリングするシステムであって、
    前記システムは、
    プロセッサーと、
    コンピューターによって実行可能な命令が記録される一時的ではないコンピューター読み取り可能な媒体と、を有し、
    前記命令は、前記プロセッサーによって実行される時、、
    無線ネットワーク要素によって収集されたネットワーク測定データを取得することと、
    前記取得されたネットワーク測定データから第1性能情報を選択することと、
    第1基準情報に照らして前記第1性能情報を試験することと、
    前記第1性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始することと、を有する方法を実行し、
    前記第1性能情報は、キー・パフォーマンス・インディケーター(KPI)、沈黙時間の間に収集されたデータ、又は偽の物理的ランダム・アクセス・チャンネル(PRACH)信号についてのレポート、又はその組み合わせに関連する、システム。
  12. 前記ネットワーク測定データは、基地局及び移動局を有する複数の無線ネットワーク要素から取得される、請求項11に記載のシステム。
  13. 前記システムは、妨害器検出及び位置特定サーバーを含み、
    前記一時的ではないコンピューター読み取り可能な媒体は、前記妨害器検出及び位置特定サーバーに提供される、請求項11に記載のシステム。
  14. 前記第1性能情報は、KPIに関連し、前記第1基準情報は、履歴のKPIデータに基づく閾値であって、
    前記方法は、
    前記取得されたネットワーク測定データから第2性能情報を選択することと、
    第2基準情報に照らして前記第2性能情報を試験することと、
    前記第2性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始することと、を更に有し、
    前記第2性能情報は、前記沈黙時間に収集された前記データに関連し、前記沈黙時間は、周波数の特定のセットのアップリンク送信のスケジュールをしないように基地局が命令された期間であり、
    前記第2基準情報は、既に知られた無線装置の信号特徴に関連する、請求項11に記載のシステム。
  15. 前記潜在的妨害信号は、潜在的アップリンク送信妨害信号であり、
    前記方法は、
    前記第1性能情報の試験が潜在的妨害信号の存在を示すならば追加的なネットワーク測定データを取得することと、
    前記潜在的アップリンク送信妨害信号が前記追加的なネットワーク測定データに基づく妨害信号であるかどうか判定することと、を有する、請求項11に記載のシステム。
  16. 前記方法は、
    前記潜在的アップリンク送信妨害信号が妨害信号ではないと判定されるならば前記第1基準情報をアップデートすることを更に有する、請求項15に記載のシステム。
  17. 前記開始されるアクションは、潜在的妨害信号の存在を示すアラートの発行であり、
    前記方法は、
    前記潜在的アップリンク送信妨害信号源の位置を調べることと、
    前記潜在的アップリンク送信妨害信号が妨害信号であると判定されるならば前記無線ネットワークをリコンフィグレーションすることと、を更に有する、請求項15に記載のシステム。
  18. 前記妨害信号は、PUCCH信号、PRACH信号、ホワイトノイズ、又はその組み合わせである、請求項15に記載のシステム。
  19. コンピューターによって実行可能な命令が記録される一時的ではないコンピューター読み取り可能な媒体であって、
    前記命令は、プロセッサーによって実行される時、
    無線ネットワーク要素によって収集されたネットワーク測定データを取得することと、
    前記取得されたネットワーク測定データから第1性能情報を選択することと、
    第1基準情報に照らして前記第1性能情報を試験することと、
    前記第1性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始することと、を有する方法を実行し、
    前記第1性能情報は、キー・パフォーマンス・インディケーター(KPI)、沈黙時間の間に収集されたデータ、又は偽の物理的ランダム・アクセス・チャンネル(PRACH)信号についてのレポート、又はその組み合わせに関連する、一時的ではないコンピューター読み取り可能な媒体。。
  20. 前記第1性能情報は、KPIに関連し、前記第1基準情報は、履歴のKPIデータに基づく閾値であり、
    前記方法は、
    前記取得されたネットワーク測定データから第2性能情報を選択することと、
    第2基準情報に照らして前記第2性能情報を試験することと、
    前記第2性能情報の試験が潜在的妨害信号の存在を示すならばアクションを開始することと、を更に有し、
    前記第2性能情報は、前記沈黙時間に収集された前記データに関連し、前記沈黙時間は、周波数の特定のセットのアップリンク送信のスケジュールをしないように基地局が命令された期間であり、
    前記第2基準情報は、既に知られた無線装置の信号特徴に関連する、請求項19に記載の一時的ではないコンピューター読み取り可能な媒体。
  21. 無線ネットワークの妨害信号をハンドリングする方法であって、
    前記方法は、
    無線ネットワーク性能についてのネットワーク測定データを取得することと、
    前記取得されたネットワーク測定データに基づく前記無線ネットワーク性能についての第1性能情報を算出することと、
    所定の値に照らして前記第1性能情報を試験することと、
    前記第1性能情報の試験の結果に基づく潜在的妨害信号の存在を示すアラートを発行することと、を有し、
    前記ネットワーク測定データは無線ネットワーク要素によって収集されたデータである、方法。
JP2015553904A 2013-01-21 2014-01-21 ロング・ターム・エボリューション(lte)ネットワークの妨害器検出及び回避の方法 Pending JP2016509801A (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201361754713P 2013-01-21 2013-01-21
US61/754,713 2013-01-21
US201361755431P 2013-01-22 2013-01-22
US61/755,431 2013-01-22
US14/137,920 US10104559B2 (en) 2013-01-21 2013-12-20 Method for downlink jammer detection and avoidance in long-term evolution (LTE) networks
US14/137,920 2013-12-20
PCT/US2014/012402 WO2014113818A1 (en) 2013-01-21 2014-01-21 Method for jammer detection and avoidance in long term evolution (lte) networks
US14/160,447 2014-01-21
US14/160,447 US9819441B2 (en) 2013-01-21 2014-01-21 Method for uplink jammer detection and avoidance in long-term evolution (LTE) networks

Publications (1)

Publication Number Publication Date
JP2016509801A true JP2016509801A (ja) 2016-03-31

Family

ID=51208083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015553904A Pending JP2016509801A (ja) 2013-01-21 2014-01-21 ロング・ターム・エボリューション(lte)ネットワークの妨害器検出及び回避の方法

Country Status (3)

Country Link
US (1) US9819441B2 (ja)
JP (1) JP2016509801A (ja)
WO (1) WO2014113818A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066260A (ko) * 2017-12-05 2019-06-13 주식회사 케이티 Lte 셀간 간섭 회피 장치 및 방법
JP2021524719A (ja) * 2018-07-22 2021-09-13 ディ−フェンド・ソリューションズ・エイディ・リミテッドD−Fend Solutions Ad Ltd. 時分割複信通信における干渉
JP2022549458A (ja) * 2019-09-24 2022-11-25 中興通訊股▲ふん▼有限公司 信号干渉の位置を認識する方法、装置、電子機器及び記憶媒体

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288683B2 (en) 2013-03-15 2016-03-15 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management
US11646918B2 (en) 2013-03-15 2023-05-09 Digital Global Systems, Inc. Systems, methods, and devices for electronic spectrum management for identifying open space
US10271233B2 (en) 2013-03-15 2019-04-23 DGS Global Systems, Inc. Systems, methods, and devices for automatic signal detection with temporal feature extraction within a spectrum
US10231206B2 (en) 2013-03-15 2019-03-12 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management for identifying signal-emitting devices
US9288007B2 (en) 2013-11-15 2016-03-15 At&T Intellectual Property I, L.P. Endpoint device antenna beam forming based jamming detection and mitigation
US9787424B2 (en) * 2014-08-06 2017-10-10 Google Inc. Systems and methods for detecting wireless communication jamming in a network
JP6459508B2 (ja) * 2014-12-26 2019-01-30 日本電気株式会社 無線通信装置およびその制御方法
WO2016184505A1 (en) 2015-05-19 2016-11-24 Telefonaktiebolaget Lm Ericsson (Publ) Identifying a misbehaving ue initiating a random access procedure
US10004089B2 (en) * 2015-06-24 2018-06-19 Electronics And Telecommunications Research Institute Method and apparatus for controlling random access opportunity in mobile communication system
KR102128947B1 (ko) 2015-09-15 2020-07-01 엘지전자 주식회사 무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말
CN107294747B (zh) * 2016-03-31 2020-04-28 华为技术有限公司 一种用于电信网络系统的kpi/kqi模式发掘方法及装置
US11304055B2 (en) * 2016-08-12 2022-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Detecting network jamming
US10498951B2 (en) 2017-01-23 2019-12-03 Digital Global Systems, Inc. Systems, methods, and devices for unmanned vehicle detection
US10529241B2 (en) 2017-01-23 2020-01-07 Digital Global Systems, Inc. Unmanned vehicle recognition and threat management
US10459020B2 (en) 2017-01-23 2019-10-29 DGS Global Systems, Inc. Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time within a spectrum
US10700794B2 (en) 2017-01-23 2020-06-30 Digital Global Systems, Inc. Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time within an electromagnetic spectrum
CN109361487B (zh) * 2018-07-10 2021-02-26 浙江三维通信科技有限公司 一种手机信号的信令型管控方法
CN108737015B (zh) * 2018-07-26 2023-08-15 浙江三维通信科技有限公司 一种gsm手机信号的屏蔽方法及系统
US10943461B2 (en) 2018-08-24 2021-03-09 Digital Global Systems, Inc. Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time
CN110677832A (zh) * 2019-09-30 2020-01-10 北京摩拜科技有限公司 车辆的网络连接控制方法、装置及车辆、车辆系统
US11700533B2 (en) 2020-05-01 2023-07-11 Digital Global Systems, Inc. System, method, and apparatus for providing dynamic, prioritized spectrum management and utilization
US11395149B2 (en) 2020-05-01 2022-07-19 Digital Global Systems, Inc. System, method, and apparatus for providing dynamic, prioritized spectrum management and utilization
US11665547B2 (en) 2020-05-01 2023-05-30 Digital Global Systems, Inc. System, method, and apparatus for providing dynamic, prioritized spectrum management and utilization
US11638160B2 (en) 2020-05-01 2023-04-25 Digital Global Systems, Inc. System, method, and apparatus for providing dynamic, prioritized spectrum management and utilization
US11653213B2 (en) 2020-05-01 2023-05-16 Digital Global Systems. Inc. System, method, and apparatus for providing dynamic, prioritized spectrum management and utilization
US11882448B2 (en) * 2021-06-07 2024-01-23 Sr Technologies, Inc. System and method for packet detail detection and precision blocking
US11751064B1 (en) 2022-08-02 2023-09-05 Digital Global Systems, Inc. System, method, and apparatus for providing optimized network resources
US11659401B1 (en) 2022-08-02 2023-05-23 Digital Global Systems, Inc. System, method, and apparatus for providing optimized network resources
US11843953B1 (en) 2022-08-02 2023-12-12 Digital Global Systems, Inc. System, method, and apparatus for providing optimized network resources
US11570627B1 (en) 2022-08-02 2023-01-31 Digital Global Systems, Inc. System, method, and apparatus for providing optimized network resources
WO2024096763A1 (en) * 2022-10-31 2024-05-10 Telefonaktiebolaget Lm Ericsson (Publ) User equipment assisted jamming detection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI97658C (fi) * 1994-06-06 1997-01-27 Nokia Telecommunications Oy Menetelmä häiriöön reagoimiseksi matkaviestinjärjestelmässä
US8138975B2 (en) * 2008-12-30 2012-03-20 Trueposition, Inc. Interference detection, characterization and location in a wireless communications or broadcast system
US20110122761A1 (en) * 2009-11-23 2011-05-26 Sundar Sriram KPI Driven High Availability Method and apparatus for UMTS radio access networks
KR101789328B1 (ko) * 2010-01-13 2017-11-21 엘지전자 주식회사 무선통신 시스템에서의 이벤트 발생 알림 방법 및 장치
EP2403186B1 (en) * 2010-07-02 2017-12-27 Vodafone IP Licensing limited Telecommunication networks
GB2485588B (en) * 2010-11-22 2015-11-11 Fujitsu Ltd Cell edge coverage hole detection in cellular wireless networks
US8768339B2 (en) 2010-12-15 2014-07-01 At&T Intellectual Property I, L.P. Method and apparatus for providing long term evolution service outage and degradation management
US8509762B2 (en) 2011-05-20 2013-08-13 ReVerb Networks, Inc. Methods and apparatus for underperforming cell detection and recovery in a wireless network
US9001678B2 (en) * 2012-02-29 2015-04-07 Hong Kong Applied Science And Technology Research Institute Co., Ltd. False alarm reduction with search windowing and peak suppression
US9621207B2 (en) * 2012-08-06 2017-04-11 Google Technology Holdings LLC Methods and apparatus for detecting presence of a jamming signal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066260A (ko) * 2017-12-05 2019-06-13 주식회사 케이티 Lte 셀간 간섭 회피 장치 및 방법
KR102177054B1 (ko) 2017-12-05 2020-11-10 주식회사 케이티 Lte 셀간 간섭 회피 장치 및 방법
JP2021524719A (ja) * 2018-07-22 2021-09-13 ディ−フェンド・ソリューションズ・エイディ・リミテッドD−Fend Solutions Ad Ltd. 時分割複信通信における干渉
JP2022549458A (ja) * 2019-09-24 2022-11-25 中興通訊股▲ふん▼有限公司 信号干渉の位置を認識する方法、装置、電子機器及び記憶媒体
JP7238209B2 (ja) 2019-09-24 2023-03-13 中興通訊股▲ふん▼有限公司 信号干渉の位置を認識する方法、装置、電子機器及び記憶媒体

Also Published As

Publication number Publication date
WO2014113818A1 (en) 2014-07-24
US20140206343A1 (en) 2014-07-24
US9819441B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
JP2016509801A (ja) ロング・ターム・エボリューション(lte)ネットワークの妨害器検出及び回避の方法
US10104559B2 (en) Method for downlink jammer detection and avoidance in long-term evolution (LTE) networks
US10098060B2 (en) Device, network, and method of cell discovery
EP2721896B1 (en) Methods and nodes for random access
CN108293258B (zh) 用于混合干扰管理的系统和方法
JP6096310B2 (ja) 干渉が緩和された実効的な測定に関係する方法及びデバイス
JP5726442B2 (ja) 基地局及び動作方法
US10893427B2 (en) Communication terminal, radio network node and methods therein
EP2466945B1 (en) Interference Detection in Mobile Telecommunications Networks
JP2016504800A (ja) 強力かつ/または大きく変動する干渉が存在する状態で測定を取得する方法
US10728787B2 (en) Devices and method for measurement of wireless conditions of frequency bands
EP3182750B1 (en) Radio signal measurement method and device
KR20180081549A (ko) 네트워크 노드, 무선 디바이스, 방법들 및 컴퓨터 프로그램들
US20140211735A1 (en) Small cell base station and victim terminal device detection method
US10880017B2 (en) Detecting a pulsed signal
Vlachou et al. Lteradar: Towards lte-aware wi-fi access points
WO2016088879A1 (ja) 基地局装置
JP6068613B2 (ja) 基地局装置
JP5538486B2 (ja) 基地局装置
CN105338558A (zh) 一种用于lte通信系统干扰处理的方法、设备与系统