WO2012128277A1 - 遠心圧縮機及びその形成方法 - Google Patents

遠心圧縮機及びその形成方法 Download PDF

Info

Publication number
WO2012128277A1
WO2012128277A1 PCT/JP2012/057136 JP2012057136W WO2012128277A1 WO 2012128277 A1 WO2012128277 A1 WO 2012128277A1 JP 2012057136 W JP2012057136 W JP 2012057136W WO 2012128277 A1 WO2012128277 A1 WO 2012128277A1
Authority
WO
WIPO (PCT)
Prior art keywords
width
centrifugal compressor
vaneless diffuser
circumferential
diffuser
Prior art date
Application number
PCT/JP2012/057136
Other languages
English (en)
French (fr)
Inventor
シンチェン ゼン
ルィン リン
ヤンジウィン ザン
チュアンデェ ラン
ウェリン ツーク
知己 川久保
秀明 玉木
Original Assignee
株式会社Ihi
清華大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 清華大学 filed Critical 株式会社Ihi
Priority to US14/006,914 priority Critical patent/US9709062B2/en
Priority to JP2013505982A priority patent/JP5680740B2/ja
Priority to EP12760872.7A priority patent/EP2690289A4/en
Publication of WO2012128277A1 publication Critical patent/WO2012128277A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49243Centrifugal type

Definitions

  • the present invention relates to the technical field of fluid machinery having an impeller, and more particularly to a centrifugal compressor having a vaneless diffuser.
  • a compressor having an impeller such as a centrifugal compressor has advantages such as higher efficiency, smaller size and weight, and stable operation compared to a reciprocating compressor, but has a range of operating conditions related to flow rate. limited.
  • operating conditions with a low flow rate may cause a phenomenon such as large fluid separation in the internal flow field, resulting in unstable operation, resulting in a stall and a surge, and the efficiency and pressure ratio of the compressor. The life is shortened and eventually damaged in a short time.
  • a fixed annular cap part and an annular disk part are used, and the shape thereof is determined according to the operating condition of the design point. This provides the best performance in terms of design and allows the kinetic energy of the fluid at the exit of the impeller to be effectively converted into static pressure energy.
  • All the configurations of the conventional vaneless diffuser are axisymmetric. That is, the width of the vaneless diffuser is uniformly distributed in the circumferential direction.
  • bladeless of the vaneless diffuser means that no vane (blade) is provided in the diffuser that is the flow path.
  • the flow parameter in the circumferential direction inside the vaneless diffuser exhibits non-axisymmetric properties. That is, the flow field inside the vaneless diffuser is non-axisymmetric. Therefore, the conventional method of reducing the back flow by reducing the width of the diffuser and increasing the radial kinetic energy of the fluid is limited, and the non-axisymmetric property of the flow field inside the vaneless diffuser is limited. Since this is not taken into consideration, there is a problem that the stall of the vaneless diffuser cannot be suppressed to the maximum.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • an object of the present invention is to provide a centrifugal compressor that can reduce the asymmetry of the flow field of the fluid inside the centrifugal compressor and expand the stable operating range of the centrifugal compressor.
  • Another object of the present invention is to provide a method for forming the centrifugal compressor.
  • the first casing part and the second casing part coupled to each other are provided, the spiral chamber is provided in the first casing part, and the second casing part is provided.
  • a spiral casing provided with an impeller installation space;
  • An impeller provided in an impeller installation space so as to be rotatable around a rotation axis;
  • a vaneless diffuser having an inlet communicating with the second casing portion and an outlet communicating with the first casing portion;
  • a centrifugal compressor is provided, characterized in that the circumferential distribution of the width of the vaneless diffuser is non-axisymmetric.
  • the centrifugal compressor according to the present invention since the circumferential distribution of the width of the vaneless diffuser is non-axisymmetric, the non-axisymmetricity of the fluid flow field inside the centrifugal compressor can be reduced, and the vane of the centrifugal compressor can be reduced. By suppressing the stall of the diffuser, the stable operating range of the centrifugal compressor can be expanded.
  • the width of the vaneless diffuser at the circumferential position where the airflow angle ⁇ at the inlet of the vaneless diffuser is smaller than the average value in the circumferential direction is such that the airflow angle ⁇ is equal to or greater than the average value in the circumferential direction.
  • the airflow angle ⁇ at the inlet of the vaneless diffuser is a depression angle between the projection velocity V obtained by projecting the airflow velocity at the inlet of the vaneless diffuser on a plane perpendicular to the rotation axis and the circumferential direction at the corresponding circumferential position. is there.
  • the width of the vaneless diffuser is uniform along the radial direction at the same circumferential position.
  • an annular cap portion and an annular disc portion are provided between the first casing portion and the second casing portion, and the vaneless diffuser includes the annular cap portion and the annular disc. It is formed as a flow path partitioned between the two parts.
  • the first casing part, the second casing part, and the annular cap part are integrally formed.
  • the non-axisymmetric property in the circumferential direction of the airflow angle ⁇ at the inlet of the original vaneless diffuser is weakened by the action of the vaneless diffuser structure having an asymmetric width in the circumferential direction.
  • the minimum airflow angle ⁇ in the circumferential direction can be effectively increased, the stall of the vaneless diffuser when the flow rate is small can be suppressed, and the stable operating range of the centrifugal compressor can be expanded.
  • the method for forming a centrifugal compressor of the present invention improves the prototype of a symmetrical centrifugal compressor in which the width of the vaneless diffuser is uniform in the circumferential direction so that the centrifugal compressor of the present invention is obtained.
  • a method for forming the above centrifugal compressor (1) Set the initial position in the circumferential direction, (2) Obtain the distribution in the circumferential direction of the airflow angle ⁇ y at the inlet of the original vaneless diffuser of the symmetric centrifugal compressor by numerical simulation or experiment, and average the airflow angle ⁇ y at the inlet of the vaneless diffuser in the circumferential direction Calculating the value ⁇ y avg and obtaining the width by of the vaneless diffuser, (3) at the inlet of the air flow angle .alpha.y of bladeless prototype symmetric centrifugal compressor diffuser its circumferential average value .alpha.y avg smaller circumferential position, circumferential direction position by reducing the width by the vaneless diffuser The first width b1 at Further, at the inlet of the air flow angle .alpha.y of bladeless prototype symmetric centrifugal compressor diffuser its circumferential average value .alpha.y av
  • the airflow angle ⁇ at the inlet of the vaneless diffuser is between the projected velocity V obtained by projecting the airflow velocity at the inlet of the vaneless diffuser on a plane perpendicular to the rotation axis and the circumferential direction at the corresponding circumferential position. It is the angle of depression.
  • the non-axisymmetricity of the fluid flow field inside the centrifugal compressor can be reduced, and the vaneless diffuser of the centrifugal compressor can be reduced.
  • the stable operating range of the centrifugal compressor can be expanded.
  • FIG. 1 It is sectional drawing of the centrifugal compressor by embodiment of this invention. It is the schematic which looked at the centrifugal compressor from the axial direction, and is a figure for defining the circumferential direction of the centrifugal compressor by embodiment of this invention. It is the partial schematic diagram which looked at the centrifugal compressor from the axial direction, and is a figure for defining air current angle alpha in the entrance of a vaneless diffuser.
  • 3 is a circumferential distribution diagram of an airflow angle ⁇ y at an inlet of a prototype vaneless diffuser of a symmetric centrifugal compressor serving as a basis of a centrifugal compressor according to an embodiment of the present invention. It is a distribution diagram in the circumferential direction of the width b of the vaneless diffuser of the centrifugal compressor according to the embodiment of the present invention. 3 shows a performance comparison between a centrifugal compressor according to an embodiment of the present invention and a conventional symmetrical centrifugal compressor corresponding thereto.
  • the direction around the rotating shaft 3 is the circumferential direction (indicated by an arrow in FIG. 2)
  • the direction parallel to the rotating shaft 3 is the axial direction
  • the radial direction with respect to the rotating shaft 3 is the radial direction
  • the circumferential position is taken as the circumferential position.
  • “distribution is asymmetric or non-axisymmetric” of a certain parameter means that the distribution of the parameter at the circumferential position is non-axisymmetric and the parameter is not uniform in the circumferential direction. .
  • a centrifugal compressor includes a spiral casing 1, an impeller 2, and a vaneless diffuser 4.
  • the spiral casing 1 includes a first casing portion 11 and a second casing portion 12 that are coupled to each other.
  • a spiral chamber (scroll channel) M is provided in the first casing part 11, and an impeller installation space N is provided in the second casing part 12.
  • the impeller 2 is provided in the impeller installation space N so as to be rotatable around the rotation shaft 3.
  • An inlet 41 (lower broken line portion in FIG. 1) of the vaneless diffuser 4 communicates with the second casing portion 12, and an outlet 42 (upper broken line portion of FIG. 1) communicates with the first casing portion 11.
  • the circumferential distribution of the width of the vaneless diffuser 4 is non-axisymmetric so as to adapt to the non-axisymmetricity of the fluid flow inside the centrifugal compressor.
  • the impeller 2 rotates around the rotating shaft 3, sucks fluid into the centrifugal compressor along the direction of the arrow in FIG. 1, and increases the kinetic energy and pressure of the fluid.
  • the fluid kinetic energy is further converted into pressure energy, thereby increasing the pressure of the fluid, and the fluid finally flows out of the vaneless diffuser 4. Then, it enters the spiral chamber M.
  • the centrifugal compressor according to the embodiment of the present invention by designing the circumferential distribution of the width of the vaneless diffuser 4 to be non-axisymmetric, the non-axial symmetry of the fluid flow field inside the centrifugal compressor is improved. Can be reduced. As a result, the stable operating range of the centrifugal compressor can be expanded by suppressing the stall of the vaneless diffuser 4 of the centrifugal compressor.
  • the circumferential angle described in the description of the present invention is an angle shifted from the initial position in the circumferential direction along the circumferential direction.
  • the case of shifting in the clockwise direction will be described as an example.
  • the circumferential angle indicates a phase (circumferential position) around the rotation axis 3 and takes a value from 0 ° to 360 °.
  • the width b of the vaneless diffuser 4 at the circumferential position where the airflow angle ⁇ at the inlet of the vaneless diffuser is smaller than the average value in the circumferential direction is such that the airflow angle ⁇ is the average value in the circumferential direction (ie It is smaller than the width at the other circumferential position that is equal to or greater than the average value of the airflow angle ⁇ in the circumferential direction.
  • the airflow angle ⁇ at the inlet of the vaneless diffuser is obtained by projecting the airflow velocity at the inlet 41 of the vaneless diffuser 4 onto a plane perpendicular to the rotation axis 3 and its circumferential direction. It is defined as the depression angle between the tangential direction (circumferential direction) at the position.
  • the width b of the vaneless diffuser 4 at the same circumferential position is uniform in the radial direction.
  • the annular cap portion 5 and the annular disc portion 6 are provided between the first casing portion 11 and the second casing portion 12 in the radial direction.
  • the vaneless diffuser 4 is formed as a flow path provided between the annular cap portion 5 and the annular disc portion 6.
  • annular cap part 5 are integrally formed, and the cyclic
  • the first casing portion 11 and the second casing portion 12 are detachably provided.
  • the non-axisymmetric property of the spiral casing is the non-axisymmetric property of the fluid flow field inside the vaneless diffuser as shown in FIG. cause. Therefore, the distribution in the circumferential direction of the airflow angle ⁇ at the inlet of the vaneless diffuser has non-axisymmetric property.
  • the vaneless diffuser can cause stalling, and if the flow rate is further reduced, the radial kinetic energy of the fluid is reduced. Insufficient, due to the action of the reverse pressure gradient, the fluid flows backward and a surge phenomenon of the centrifugal compressor occurs.
  • the circumferential distribution of the width b of the vaneless diffuser is designed asymmetrically, while the width b of the vaneless diffuser is unchanged in the radial direction at the same circumferential position.
  • the width b of the corresponding vaneless diffuser should be small at the circumferential position where the airflow angle ⁇ at the inlet of the vaneless diffuser is small.
  • the effect of the configuration of the vaneless diffuser having the asymmetric width in the circumferential direction as described above weakens the non-axisymmetric property in the circumferential direction of the airflow angle ⁇ at the inlet of the original vaneless diffuser.
  • the minimum airflow angle ⁇ in the circumferential direction can be effectively increased, the stall of the vaneless diffuser when the flow rate is small can be suppressed, and the stable operating range of the centrifugal compressor can be expanded.
  • the design of the centrifugal compressor is realized by improving the prototype of the symmetrical centrifugal compressor, and the width of the vaneless diffuser of the prototype of the symmetrical centrifugal compressor is symmetrical (constant) in the circumferential direction.
  • the method for forming a centrifugal compressor according to an embodiment of the present invention includes the following steps.
  • the initial circumferential position (0 ° position) is set.
  • the distribution in the circumferential direction of the airflow angle ⁇ y at the original vaneless diffuser inlet of the symmetrical centrifugal compressor is obtained by numerical simulation or experiment, and the airflow at the inlet of the vaneless diffuser.
  • the average value ⁇ y avg in the circumferential direction of the angle ⁇ y is calculated.
  • the width by of the original vaneless diffuser of the symmetrical centrifugal compressor is obtained.
  • the original performance of the symmetric centrifugal compressor is obtained by the performance test of the centrifugal compressor.
  • the airflow angle ⁇ y at the inlet of the vaneless diffuser is the projection velocity V (projecting the airflow velocity at the inlet of the vaneless diffuser (that is, a three-dimensional airflow velocity expressed by a three-dimensional vector) onto a plane perpendicular to the rotation axis. That is, it is defined as a depression angle between the three-dimensional airflow velocity vertically projected on the plane and the tangential direction (that is, the circumferential direction) at the corresponding circumferential position (the same applies to the airflow angles ⁇ and ⁇ 1). is there).
  • the first width b1 at the circumferential position is obtained by appropriately increasing the width.
  • the circumferential average value b1y of the first width b1 is set to the same value as the width of the original vaneless diffuser of the symmetric centrifugal compressor or a value in the vicinity of the width by. To be.
  • the distribution in the circumferential direction of the first width b1 of the vaneless diffuser (hereinafter referred to as the first vaneless diffuser) of the first centrifugal compressor is obtained. Further, by making the circumferential average value b1y of the first width b1 substantially equal to the width by of the original vaneless diffuser of the symmetric centrifugal compressor, the stability of each performance of the first centrifugal compressor is ensured.
  • the numerical value of the inlet of the first vaneless diffuser of the first centrifugal compressor is obtained by numerical simulation or experiment. to obtain a distribution in the circumferential direction of the air flow angle [alpha] 1, and calculates the circumferential average value [alpha] 1 avg airflow angle [alpha] 1 of the inlet of the first vaneless diffuser, and the first centrifugal compressor by the performance test of the centrifugal compressor The performance of the first centrifugal compressor obtained is compared with the performance of the original centrifugal compressor obtained in step (2).
  • the airflow angle ⁇ 1 at the inlet of the first vaneless diffuser is smaller than the circumferential average value ⁇ 1avg.
  • the first width b1 of the first vaneless diffuser is appropriately reduced to obtain a second width b2 at the circumferential position.
  • the airflow angle [alpha] 1 of the inlet of the first vaneless diffuser is in its circumferential average value [alpha] 1 avg greater than the circumferential position, circumferential direction position properly increasing a first width b1 of the first vaneless diffuser To obtain the second width b2.
  • the circumferential average value b2y of the second width b2 is set to the same value as the width by of the original vaneless diffuser of the symmetric centrifugal compressor or a value in the vicinity of the width by. To be.
  • Step (4) until a circumferential distribution of the width b of the diffuser in which the minimum value ⁇ min in the circumferential direction of the airflow angle ⁇ 1 at the inlet of the first vaneless diffuser is larger than a predetermined critical airflow angle;
  • step (5) to repeat the correction for vaneless diffuser width, obtain the corresponding newly modified centrifugal compressor performance by the centrifugal compressor performance test, and step (2)
  • step (5) In comparison with the original performance of the symmetric centrifugal compressor obtained in the above, it is confirmed that a positive effect is obtained on the performance of the centrifugal compressor by the above-mentioned correction each time.
  • step (4) is not performed based on the above-described circumferential distribution of the first width b1, but the second obtained in the immediately preceding step (5). This is performed based on the circumferential distribution of the width b2.
  • the predetermined critical airflow angle is specifically determined according to different types of centrifugal compressors.
  • centrifugal compressor of the said embodiment and its formation method are based on the prototype of one type of symmetrical centrifugal compressor, it is not restricted to this.
  • a person of ordinary skill in the art can obtain a centrifugal compressor in which the width b of the corresponding vaneless diffuser is non-axisymmetric based on the prototypes of the different types of symmetric centrifugal compressors. I can understand. Any centrifugal compressor obtained by improving a prototype of a symmetrical centrifugal compressor using the same or similar method as the above principle and a method for forming the same are included in the protection scope of the present invention.
  • FIG. 6 shows the performance comparison between the centrifugal compressor according to the embodiment of the present invention obtained by the performance test of the centrifugal compressor and the prototype of the conventional symmetrical centrifugal compressor corresponding thereto.
  • the centrifugal compressor according to the embodiment of the present invention employs a non-axisymmetric bladeless diffuser
  • the prototype of the symmetrical centrifugal compressor employs a conventional symmetrical bladeless diffuser.
  • the triangular mark data indicates the performance characteristics of the centrifugal compressor according to the embodiment of the present invention
  • the square mark data indicates the performance characteristics of the centrifugal compressor employing the conventional symmetrical vaneless diffuser.
  • the horizontal axis represents a corrected flow rate obtained by dimensionally reducing the suction flow rate of the centrifugal compressor with the reference flow rate, and the vertical axis represents the pressure ratio.
  • the centrifugal compressor according to the embodiment of the present invention a wider and stable operating range can be obtained, and a deceleration effect can be obtained even with a small flow rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 互いに結合された第1ケーシング部11と第2ケーシング部12とを有し、第1ケーシング部11内に渦巻室Mが設けられており、かつ、第2ケーシング部12内に羽根車設置スペースNが設けられている渦巻ケーシング1と、回転軸3の周りを回転可能に、羽根車設置スペースN内に設けられている羽根車2と、入口41が第2ケーシング部12内に連通し、出口42が第1ケーシング部11内に連通する羽根なしディフューザ4と、を有する。羽根なしディフューザ4の幅bの周方向分布は、非軸対称である。

Description

遠心圧縮機及びその形成方法
 本発明は、羽根車を有する流体機械の技術分野、特に、羽根なしディフューザを有する遠心圧縮機に関する。
 遠心圧縮機等の羽根車を有する圧縮機は、往復型圧縮機に比べて効率が高く、寸法や重量が小さく、運転が安定している等の長所を有するが、流量に関する稼働条件の範囲が限られている。遠心圧縮機において、低流量の稼働条件では、内部の流れ場において、大きな流体剥離などの現象が生じ、作動が不安定になる現象が現れ、失速ひいてはサージを引き起こし、圧縮機の効率と圧力比の急激な低下を招き、寿命が短縮され、ひいては短期で損傷してしまう。
 遠心圧縮機の羽根なしディフューザの流路の両側は、固定された環状キャップ部と環状ディスク部が用いられ、その形状は、設計点の稼働条件に応じて確定する。これにより、設計点において最も優れた性能が得られ、羽根車の出口の流体の運動エネルギーを効果的に静圧エネルギーに変換できるようにする。従来の羽根なしディフューザの構成はいずれも軸対称である。すなわち、羽根なしディフューザの幅は、周方向において均一に分布する。低流量の場合、羽根なしディフューザ内には大きな流体剥離が発生し、このような失速現象は流動損失の増加をもたらしてディフューザの効率が低下し、流量が更に減少する場合、流体の径方向の運動エネルギーが足りず、逆圧勾配の作用で流体が逆流し、圧縮機にサージ現象が発生する。
 なお、羽根なしディフューザの「羽根なし」とは、流路であるディフューザに羽根(翼)が設けられていないことを意味する。
 羽根なしディフューザの失速の抑制に関する方法において、流量が少ない場合、流体の径方向の運動エネルギーを増大し、かつ逆流を減少するように、ディフューザの幅を減少させることが従来技術として知られている。
 しかしながら、遠心圧縮機の渦巻ケーシングは非軸対称性を有するため、羽根なしディフューザの内部の周方向の流動パラメータが非軸対称性を呈する。すなわち、羽根なしディフューザの内部の流れ場が非軸対称となる。従って、ディフューザの幅を減少させて、流体の径方向の運動エネルギーを増大して逆流を減少する従来の方法には限界があり、羽根なしディフューザの内部の流れ場の非軸対称性の特性が考慮されないため、羽根なしディフューザの失速を最大限に抑制することができないという課題がある。
 本発明は、少なくとも従来技術に存在する技術課題の1つを解決することを目的とする。
 そのために、本発明の目的は、遠心圧縮機内部の流体の流れ場の非対称性を低下でき、遠心圧縮機の安定した作動範囲を拡大する遠心圧縮機を提供することにある。
 本発明の別の目的は、上記遠心圧縮機の形成方法を提供することにある。
 上記課題を解決するために、本発明によると、互いに結合された第1ケーシング部と第2ケーシング部とを含み、第1ケーシング部内に渦巻室が設けられており、かつ、第2ケーシング部内に羽根車設置スペースが設けられている渦巻ケーシングと、
 回転軸の周りを回転可能に、羽根車設置スペース内に設けられている羽根車と、
 入口が第2ケーシング部内に連通し、出口が第1ケーシング部内に連通する羽根なしディフューザと、を有し、
 羽根なしディフューザの幅の周方向分布は、非軸対称である、ことを特徴とする遠心圧縮機が提供される。
 本発明による遠心圧縮機では、羽根なしディフューザの幅の周方向分布は、非軸対称であるので、遠心圧縮機内部の流体の流れ場の非軸対称性を低下でき、遠心圧縮機の羽根なしディフューザの失速を抑制することによって、遠心圧縮機の安定した作動範囲を拡大することができる。
 本発明の好ましい実施形態によると、前記羽根なしディフューザの入口の気流角度αがその周方向平均値より小さい周方向位置における前記羽根なしディフューザの幅は、気流角度αがその周方向平均値以上である他の周方向位置における前記羽根なしディフューザの幅より小さく、
 前記羽根なしディフューザの入口の気流角度αは、前記羽根なしディフューザの入口の気流速度を回転軸に垂直な平面に投影した投影速度Vと、該当する周方向位置における周方向との間の夾角である。
 好ましくは、同一の周方向位置において前記羽根なしディフューザの幅は径方向に沿って均一である。
 本発明の好ましい実施形態によると、第1ケーシング部と第2ケーシング部との間には、環状キャップ部と環状ディスク部が設けられ、かつ、前記羽根なしディフューザは、前記環状キャップ部と環状ディスク部との間に区画された流路として形成されている。
 好ましくは、前記第1ケーシング部と第2ケーシング部と前記環状キャップ部とは一体形成されている。
 本発明の好ましい実施形態による遠心圧縮機では、周方向に非対称の幅の羽根なしディフューザ構造の作用で、本来の羽根なしディフューザの入口の気流角度αの周方向における非軸対称性が弱くなる。これにより、周方向において最小の気流角度αを効果的に増大し、流量が少ない場合の羽根なしディフューザの失速を抑制できるとともに、遠心圧縮機の安定した作動範囲を拡大できる。
 本発明の遠心圧縮機の形成方法は、本発明の遠心圧縮機が得られるように、羽根なしディフューザの幅が周方向に均一である対称遠心圧縮機の原型を改良する。
 すなわち、本発明によると、上述の遠心圧縮機の形成方法であって、
 (1)周方向の初期位置を設定し、
 (2)数値シミュレーション又は実験によって、対称遠心圧縮機の原型の羽根なしディフューザの入口の気流角度αyの周方向における分布を取得し、かつ、当該羽根なしディフューザの入口の気流角度αyの周方向平均値αyavgを算出するとともに、当該羽根なしディフューザの幅byを取得し、
 (3)対称遠心圧縮機の原型の羽根なしディフューザの入口の気流角度αyがその周方向平均値αyavgより小さい周方向位置において、羽根なしディフューザの前記幅byを減少させることにより該周方向位置における第1幅b1を取得し、
 さらに、対称遠心圧縮機の原型の羽根なしディフューザの入口の気流角度αyがその周方向平均値αyavgより大きい周方向位置において、羽根なしディフューザの前記幅byを増大させることにより該周方向位置における第1幅b1を取得し、
 同時に、第1幅b1の周方向平均値b1yが、対称遠心圧縮機の原型の羽根なしディフューザの幅byと同じ値、または、当該幅byの近傍の値になるようにし、
 これにより、第1遠心圧縮機の第1羽根なしディフューザの第1幅b1の周方向における分布を取得し、
 (4)ステップ(3)の第1幅b1の結果に基づいて、数値シミュレーション又は実験によって、第1遠心圧縮機の第1羽根なしディフューザの入口の気流角度α1の周方向における分布を得て、かつ、第1羽根なしディフューザの入口の気流角度α1の周方向平均値α1avgを算出し、
 (5)ステップ(4)の第1羽根なしディフューザの入口の気流角度α1の周方向における分布に基づいて、第1羽根なしディフューザの入口の気流角度α1がその周方向平均値α1avgより小さい周方向位置において、第1羽根なしディフューザの第1幅b1を減少させることにより該周方向位置における第2幅b2を取得し、
 さらに、第1羽根なしディフューザの入口の気流角度α1がその周方向平均値α1avgより大きい周方向位置において、第1羽根なしディフューザの第1幅b1を増大させることにより該周方向位置における第2幅b2を取得し、
 同時に、第2幅b2の周方向平均値b2yが、対称遠心圧縮機の原型の羽根なしディフューザの幅byと同じ値、または、当該幅byの近傍の値になるようにし、
 これにより、第2遠心圧縮機の羽根なしディフューザの第2幅b2の周方向における分布を取得し、
 (6)羽根なしディフューザの入口の気流角度αの周方向における最小値αminが臨界気流角より大きくなるディフューザの幅bの周方向分布が得られるまで、ステップ(4)とステップ(5)を繰り返し、
 (7)ステップ(6)で得られたディフューザの幅bの周方向分布に基づいて遠心圧縮機を得る、ことを特徴とする遠心圧縮機の形成方法が提供される。
 ここで、前記羽根なしディフューザの入口の気流角度αは、前記羽根なしディフューザの入口の気流速度を回転軸に垂直な平面に投影した投影速度Vと、該当する周方向位置における周方向との間の夾角である。
 上述した本発明によると、羽根なしディフューザの幅の周方向分布は、非軸対称であるので、遠心圧縮機内部の流体の流れ場の非軸対称性を低下でき、遠心圧縮機の羽根なしディフューザの失速を抑制することによって、遠心圧縮機の安定した作動範囲を拡大することができる。
 以下、図面を参照して本発明の実施形態を説明して、本発明の付加的な態様と利点を明らかにする。
本発明の実施形態による遠心圧縮機の断面図である。 遠心圧縮機をその軸方向から見た概略図であり、本発明の実施形態による遠心圧縮機の周方向を定義するための図である。 遠心圧縮機をその軸方向から見た部分概略図であり、羽根なしディフューザの入口における気流角度αを定義するための図である。 本発明の実施形態による遠心圧縮機の基礎となる対称遠心圧縮機の原型の羽根なしディフューザの入口における気流角度αyの周方向分布図である。 本発明の実施形態による遠心圧縮機の羽根なしディフューザの幅bの周方向分布図である。 本発明の実施形態による遠心圧縮機とそれに対応する従来の対称遠心圧縮機との性能比較を示す。
 以下、本発明の実施形態について詳細に説明する。実施形態の例示を図面に示したが、各図において、同一又は類似の符号で、同一又は類似の部分、或いは、同一又は類似の機能を有する部分を示した。以下の図面を参照して説明する実施形態は例示的であり、単に本発明を解釈するためのものであって、本発明に対する制限と理解してはならない。
 本発明の説明において、用語「内側」、「外側」、「縦方向」、「横方向」、「上」、「下」、「頂部」、「底部」等の示す方位或いは位置関係は、図面に示す方位或いは位置関係に基づくものであって、単に本発明を説明しやすくするためのものであり、本発明に特定の方位構造と動作を必ずしも要求するものではないので、これらの用語を本発明に対する制限と理解してはならない。
 以下、図1~図3を参照して本発明の実施形態による遠心圧縮機を説明する。ここで、以下の説明において、回転軸3を回る方向を周方向とし(図2に矢印で示す)、回転軸3に平行な方向を軸方向とし、回転軸3に対する半径方向を径方向とし、周方向の位置を周方向位置とする。本発明の説明において、あるパラメータの「分布が非対称或いは非軸対称」であるとは、周方向位置における該パラメータの分布が非軸対称であり、該パラメータが周方向に均一でないことを意味する。
 図1に示すように、本発明の実施形態による遠心圧縮機は、渦巻ケーシング1と、羽根車2と、羽根なしディフューザ4とを含む。渦巻ケーシング1は、互いに結合されている第1ケーシング部11と第2ケーシング部12とを含む。第1ケーシング部11内に渦巻室(スクロール流路)Mが設けられており、かつ、第2ケーシング部12内に羽根車設置スペースNが設けられている。羽根車2は、回転軸3の周りを回転可能に羽根車設置スペースN内に設けられている。羽根なしディフューザ4の入口41(図1の下破線部)は第2ケーシング部12内に連通し、羽根なしディフューザ4の出口42(図1の上破線部)は第1ケーシング部11内に連通する。ここで、遠心圧縮機内部の流体の流動の非軸対称性に適応するように、羽根なしディフューザ4の幅の周方向分布は、非軸対称である。
 作動中において、羽根車2は回転軸3の周りを回転し、図1の矢印方向に沿って流体を遠心圧縮機内に吸入し、かつ流体の運動エネルギーと圧力を増加させる。流体が羽根車2を離れて羽根なしディフューザ4に進入すると、流体の運動エネルギーが更に圧力エネルギーに変換されることによって、流体の圧力が上昇し、流体は、最後に、羽根なしディフューザ4から流出して渦巻室M内に進入する。
 本発明の実施形態による遠心圧縮機では、羽根なしディフューザ4の幅の周方向分布が、非軸対称になるように設計することによって、遠心圧縮機内部の流体の流れ場の非軸対称性を低下できる。その結果、遠心圧縮機の羽根なしディフューザ4の失速を抑制することによって、遠心圧縮機の安定した作動範囲を拡大できる。
 図2に示すように、周方向の初期位置(0°)を仮に設定すると、本発明の説明で述べる周方向角度は、該周方向の初期位置から周方向に沿ってずれる角度である。本発明の説明においては、時計回り方向に沿ってずれるのを例として説明する。すなわち、周方向角度は、回転軸3回りの位相(周方向位置)を示し、0°~360°までの値をとる。
 本発明の1つの実施形態において、羽根なしディフューザの入口の気流角度αがその周方向平均値より小さい周方向位置における羽根なしディフューザ4の幅bは、気流角度αがその周方向平均値(すなわち、周方向における、気流角度αの平均値)以上である他の周方向位置における幅より小さい。ここで、羽根なしディフューザの入口の気流角度αは、図3に示すように、羽根なしディフューザ4の入口41の気流速度を回転軸3に垂直な平面に投影した投影速度Vと、その周方向位置における接線方向(周方向)との間の夾角として定義される。また、同一の周方向位置で羽根なしディフューザ4の幅bは、径方向において大きさが均一である。
 上記の実施形態では、ある周方向位置で、羽根なしディフューザの入口の気流角度αと対応する位置における羽根なしディフューザの幅bとの間の関係がtanα=c/bであり、cは該周方向に対応する1つの定数であるという原理に基づいて設計を行った。
 本発明の実施形態による遠心圧縮機では、径方向に関して、第1ケーシング部11と第2ケーシング部12との間には、環状キャップ部5と環状ディスク部6が設けられる。羽根なしディフューザ4は、環状キャップ部5と環状ディスク部6との間に設けられた流路として形成される。ここで、第1ケーシング部11と第2ケーシング部12と環状キャップ部5とは一体形成され、かつ、環状ディスク部6は、第1ケーシング部11に着脱可能に取り付けられ、または、径方向に関して、第1ケーシング部11と第2ケーシング部12との間に着脱可能に設けられる。
 具体的には、従来の遠心圧縮機では、流量が少ない稼働条件で、図4に示すように、渦巻ケーシングの非軸対称性が、羽根なしディフューザの内部の流体の流れ場の非軸対称性を引き起こす。そのため、羽根なしディフューザの入口の気流角度αの周方向における分布が非軸対称性を有する。一般的に、羽根なしディフューザの入口の気流角度αが所定の臨界気流角より小さい場合、羽根なしディフューザは失速を引き起こす可能性があり、流量が更に減少する場合、流体の径方向の運動エネルギーが足りず、逆圧勾配の作用で、流体が逆流して遠心圧縮機のサージ現象が生じる。
 そこで、本発明の実施形態による遠心圧縮機では、羽根なしディフューザの幅bの周方向分布を非対称に設計する一方で、同一の周方向位置において、径方向で羽根なしディフューザの幅bを不変にする。具体的には、羽根なしディフューザの入口の気流角度αが小さい周方向位置で、対応する羽根なしディフューザの幅bは小さく設計すべきである。上記周方向位置における羽根なしディフューザの入口の気流角度αと対応する位置における羽根なしディフューザの幅bとの関係、即ち、tanα=c/bは、本来の気流角度αが小さい周方向位置において羽根なしディフューザの幅bの値を減少させて、気流角度αを増大させる。
 このような周方向の非対称幅の羽根なしディフューザの構成の作用で、本来の羽根なしディフューザの入口の気流角度αの周方向における非軸対称性が弱くなる。これにより、周方向における最小の気流角度αを効果的に増大し、流量が少ない場合の羽根なしディフューザの失速を抑制でき、そのうえ遠心圧縮機の安定した作動範囲を拡大できる。
 以下、図2~図6を参照して本発明の1つの実施形態による遠心圧縮機の形成方法を説明する。該遠心圧縮機の設計は対称遠心圧縮機の原型を改良することで実現され、該対称遠心圧縮機の原型の羽根なしディフューザの幅は周方向に対称(一定)である。
 本発明の実施形態の遠心圧縮機の形成方法は、以下のステップを含む。
 (1)図2に示すように、周方向の初期位置(0°の位置)を設定する。
 (2)図4に示すように、数値シミュレーション又は実験によって、対称遠心圧縮機の原型の羽根なしディフューザ入口における気流角度αyの周方向における分布を得て、かつ、当該羽根なしディフューザの入口における気流角度αyの周方向平均値αyavgを算出する。これと同時に、当該対称遠心圧縮機の原型の羽根なしディフューザが有する幅byを得る。また、遠心圧縮機の性能テストによって当該対称遠心圧縮機の原型の性能を得る。
 ここで、羽根なしディフューザの入口の気流角度αyは、羽根なしディフューザの入口の気流速度(即ち、3次元ベクトルで表わされる3次元気流速度)を回転軸に垂直な平面に投影した投影速度V(即ち、当該3次元気流速度を当該平面に垂直投影した速度)と、該当する周方向位置における接線方向(即ち、周方向)との間の夾角として定義される(気流角度α、α1も同様である)。
 (3)対称遠心圧縮機の原型の羽根なしディフューザ入口における気流角度αyがその周方向平均値αyavgより小さい各周方向位置において、上記実施形態で説明した設計原理、即ちtanα=c/bに基づいて、羽根なしディフューザの幅byを適切に減少させて該周方向位置における第1幅b1を得る。
 同様に、対称遠心圧縮機の原型の羽根なしディフューザ入口における気流角度αyがその周方向平均値αyavgより大きい各周方向位置において、tanα=c/bに基づいて、羽根なしディフューザの幅byを適切に増大させて該周方向位置における第1幅b1を得る。
 このような第1幅b1の設定において、第1幅b1の周方向平均値b1yが、対称遠心圧縮機の原型の羽根なしディフューザの幅byと同じ値、または、当該幅byの近傍の値になるようにする。
 その結果、第1遠心圧縮機の羽根なしディフューザ(以下、第1羽根なしディフューザという)の第1幅b1の周方向における分布が得られる。また、第1幅b1の周方向平均値b1yと、対称遠心圧縮機の原型の羽根なしディフューザの幅byとをほぼ等しくすることによって、第1遠心圧縮機の各性能の安定を保証する。
 (4)ステップ(3)の第1幅b1(即ち、第1幅b1の周方向分布)の結果に基づいて、数値シミュレーション又は実験によって、第1遠心圧縮機の第1羽根なしディフューザの入口の気流角度α1の周方向における分布を得て、かつ、第1羽根なしディフューザの入口の気流角度α1の周方向平均値α1avgを算出し、かつ、遠心圧縮機の性能テストによって第1遠心圧縮機の性能を得て、得られた第1遠心圧縮機の性能とステップ(2)で得られた対称遠心圧縮機の原型との性能を比較する。
 (5)ステップ(4)の第1羽根なしディフューザの入口の気流角度α1の周方向における分布に基づいて、第1羽根なしディフューザの入口の気流角度α1がその周方向平均値α1avgより小さい各周方向位置において、第1羽根なしディフューザの第1幅b1を適切に減少させて該周方向位置における第2幅b2を得る。
 同様に、第1羽根なしディフューザの入口の気流角度α1がその周方向平均値α1avgより大きい各周方向位置において、第1羽根なしディフューザの第1幅b1を適切に増大させて該周方向位置における第2幅b2を得る。
 このような第2幅b2の設定において、第2幅b2の周方向平均値b2yが、対称遠心圧縮機の原型の羽根なしディフューザの幅byと同じ値、または、当該幅byの近傍の値になるようにする。
 これによって、第2遠心圧縮機の羽根なしディフューザの第2幅b2の周方向における分布を得る。また、第2幅b2の周方向平均値b2yと、対称遠心圧縮機の原型の羽根なしディフューザの幅byとをほぼ等しくすることによって、第2遠心圧縮機の各性能の安定を保証する。
 (6)第1羽根なしディフューザの入口の前記気流角度α1の周方向における最小値αminが所定の臨界気流角より大きくなるディフューザの幅bの周方向分布が得られるまで、ステップ(4)とステップ(5)を繰り返して、羽根なしディフューザの幅に対して修正を繰り返すとともに、遠心圧縮機の性能テストによって対応する新たに修正された遠心圧縮機の性能を得て、かつ、ステップ(2)で得られた対称遠心圧縮機の原型の性能と比較し続け、上記の毎回の修正により、遠心圧縮機の性能に対してプラス効果が得られることを確認する。
 なお、ステップ(4)とステップ(5)の繰り返しにおいて、ステップ(4)は、上述の第1幅b1の周方向分布に基づいて行われる代わりに、直前のステップ(5)で得た第2幅b2の周方向分布に基づいて行われる。
 ここで、前記所定の臨界気流角は、異なるタイプの遠心圧縮機に応じて具体的に定められる。
 (7)ステップ(6)で得られた、図5に示す羽根なしディフューザ4の幅bの周方向分布に基づいて、最終的に最適化した遠心圧縮機を得る。該遠心圧縮機の性能は最適化されている。
 なお、上記実施形態の遠心圧縮機及びその形成方法は、一つのタイプの対称遠心圧縮機の原型に基づいているが、これに限られるものではない。本技術分野の一般的な当業者であれば、異なるタイプの対称遠心圧縮機の原型に基づいて、相応する異なるタイプの羽根なしディフューザの幅bが非軸対称である遠心圧縮機が得られるものと理解できる。上記原理と同一又は類似の方法を用いて、対称遠心圧縮機の原型を改良して得られた遠心圧縮機及びその形成方法は、いずれも本発明の保護範囲内に含まれる。
 図6は、遠心圧縮機の性能テストによって得られた本発明の実施形態による遠心圧縮機と、それに相応する従来の対称遠心圧縮機の原型との性能比較を示す。ここで、本発明の実施形態による遠心圧縮機は非軸対称の羽根なしディフューザを採用し、対称遠心圧縮機の原型は従来の対称羽根なしディフューザを採用している。図6において、三角形マークのデータは、本発明の実施形態による遠心圧縮機の性能特性を示し、正方形マークのデータは、従来の対称羽根なしディフューザを採用した遠心圧縮機の性能特性を示す。図6において、横軸は、遠心圧縮機の吸入流量を、基準流量で無次元した修正流量を示し、縦軸は、圧力比を示す。図6から分かるように、本発明の実施形態による遠心圧縮機では、より広い安定した作動範囲が得られ、少ない流量でも減速効果が得られる。
 本発明の実施形態による遠心圧縮機の他の構成及び動作は、本技術分野の一般的な当業者にとってはすべて公知のものであり、ここでは詳細な説明は省略する。本明細書の説明において、参考用語の「1つの実施形態」、「一部の実施形態」、「概念的実施形態」、「例示」、「具体的な例示」或いは「一部の例示」等の説明は、該実施形態又は例示で説明した具体的な特徴、構成、材料又は特性を示し、少なくとも本発明の1つの実施形態又は例示に含まれていることを意味する。本明細書において、上記用語は、必ずしも同じ実施形態又は例示を示すものではない。また、説明した具体的な特徴、構成、材料又は特性は、いずれかの1つ又は複数の実施形態又は例示において適切な形態で組み合わされてよい。
 以上、本発明について説明したが、本技術分野の当業者は、本発明の原理及び技術的思想を逸脱しない範囲で、上述の実施形態に対して様々な変化、変更、置換え及び変形を行ってもよい。本発明の範囲は、特許請求の範囲とその均等物によって定められる。
1 渦巻ケーシング、2 羽根車、3 回転軸、4 羽根なしディフューザ、5 環状キャップ部、6 環状ディスク部、11 第1ケーシング部、12 第2ケーシング部、41 羽根なしディフューザの入口、42 羽根なしディフューザの出口
 

Claims (7)

  1.  互いに結合された第1ケーシング部と第2ケーシング部とを含み、第1ケーシング部内に渦巻室が設けられており、かつ、第2ケーシング部内に羽根車設置スペースが設けられている渦巻ケーシングと、
     回転軸の周りを回転可能に、羽根車設置スペース内に設けられている羽根車と、
     入口が第2ケーシング部内に連通し、出口が第1ケーシング部内に連通する羽根なしディフューザと、を有し、
     羽根なしディフューザの幅の周方向分布は、非軸対称である、ことを特徴とする遠心圧縮機。
  2.  前記羽根なしディフューザの入口の気流角度αがその周方向平均値より小さい周方向位置における前記羽根なしディフューザの幅は、気流角度αがその周方向平均値以上である他の周方向位置における前記羽根なしディフューザの幅より小さく、
     前記羽根なしディフューザの入口の気流角度αは、前記羽根なしディフューザの入口の気流速度を回転軸に垂直な平面に投影した投影速度Vと、該当する周方向位置における周方向との間の夾角である、ことを特徴とする請求項1記載の遠心圧縮機。
  3.  同一の周方向位置では、前記羽根なしディフューザの幅は径方向において均一である、ことを特徴とする請求項2記載の遠心圧縮機。
  4.  第1ケーシング部と第2ケーシング部との間には、環状キャップ部と環状ディスク部が設けられ、かつ、前記羽根なしディフューザは、前記環状キャップ部と環状ディスク部との間に区画された流路として形成されている、ことを特徴とする請求項1記載の遠心圧縮機。
  5.  第1ケーシング部と第2ケーシング部と前記環状キャップ部とは一体形成されている、ことを特徴とする請求項4記載の遠心圧縮機。
  6.  請求項1に記載の遠心圧縮機の形成方法であって、
     前記遠心圧縮機は、羽根なしディフューザの幅が周方向において均一である対称遠心圧縮機の原型を改良したものであり、
     (1)周方向の初期位置を設定し、
     (2)数値シミュレーション又は実験によって、対称遠心圧縮機の原型の羽根なしディフューザの入口の気流角度αyの周方向における分布を取得し、かつ、当該羽根なしディフューザの入口の気流角度αyの周方向平均値αyavgを算出するとともに、当該羽根なしディフューザの幅byを取得し、
     (3)対称遠心圧縮機の原型の羽根なしディフューザの入口の気流角度αyがその周方向平均値αyavgより小さい周方向位置において、羽根なしディフューザの前記幅byを減少させることにより該周方向位置における第1幅b1を取得し、
     さらに、対称遠心圧縮機の原型の羽根なしディフューザの入口の気流角度αyがその周方向平均値αyavgより大きい周方向位置において、羽根なしディフューザの前記幅byを増大させることにより該周方向位置における第1幅b1を取得し、
     同時に、第1幅b1の周方向平均値b1yが、対称遠心圧縮機の原型の羽根なしディフューザの幅byと同じ値、または、当該幅byの近傍の値になるようにし、
     これにより、第1遠心圧縮機の第1羽根なしディフューザの第1幅b1の周方向における分布を取得し、
     (4)ステップ(3)の第1幅b1の結果に基づいて、数値シミュレーション又は実験によって、第1遠心圧縮機の第1羽根なしディフューザの入口の気流角度α1の周方向における分布を得て、かつ、第1羽根なしディフューザの入口の気流角度α1の周方向平均値α1avgを算出し、
     (5)ステップ(4)の第1羽根なしディフューザの入口の気流角度α1の周方向における分布に基づいて、第1羽根なしディフューザの入口の気流角度α1がその周方向平均値α1avgより小さい周方向位置において、第1羽根なしディフューザの第1幅b1を減少させることにより該周方向位置における第2幅b2を取得し、
     さらに、第1羽根なしディフューザの入口の気流角度α1がその周方向平均値α1avgより大きい周方向位置において、第1羽根なしディフューザの第1幅b1を増大させることにより該周方向位置における第2幅b2を取得し、
     同時に、第2幅b2の周方向平均値b2yが、対称遠心圧縮機の原型の羽根なしディフューザの幅byと同じ値、または、当該幅byの近傍の値になるようにし、
     これにより、第2遠心圧縮機の羽根なしディフューザの第2幅b2の周方向における分布を取得し、
     (6)羽根なしディフューザの入口の気流角度αの周方向における最小値αminが臨界気流角より大きくなるディフューザの幅bの周方向分布が得られるまで、ステップ(4)とステップ(5)を繰り返し、
     (7)ステップ(6)で得られたディフューザの幅bの周方向分布に基づいて遠心圧縮機を得る、ことを特徴とする遠心圧縮機の形成方法。
  7.  前記羽根なしディフューザの入口の気流角度αは、前記羽根なしディフューザの入口の気流速度を回転軸に垂直な平面に投影した投影速度Vと、該当する周方向位置における周方向との間の夾角である、ことを特徴とする請求項6記載の形成方法。 
PCT/JP2012/057136 2011-03-23 2012-03-21 遠心圧縮機及びその形成方法 WO2012128277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/006,914 US9709062B2 (en) 2011-03-23 2012-03-21 Centrifugal compressor and manufacturing method therefor
JP2013505982A JP5680740B2 (ja) 2011-03-23 2012-03-21 遠心圧縮機及びその形成方法
EP12760872.7A EP2690289A4 (en) 2011-03-23 2012-03-21 CENTRIFUGAL COMPRESSOR AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100704881A CN102182710B (zh) 2011-03-23 2011-03-23 具有非对称无叶扩压器的离心压气机及其形成方法
CN201110070488.1 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012128277A1 true WO2012128277A1 (ja) 2012-09-27

Family

ID=44568980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057136 WO2012128277A1 (ja) 2011-03-23 2012-03-21 遠心圧縮機及びその形成方法

Country Status (5)

Country Link
US (1) US9709062B2 (ja)
EP (1) EP2690289A4 (ja)
JP (1) JP5680740B2 (ja)
CN (1) CN102182710B (ja)
WO (1) WO2012128277A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053359A (ja) * 2014-09-02 2016-04-14 マン・ディーゼル・アンド・ターボ・エスイー 遠心圧縮機段
WO2019097640A1 (ja) * 2017-11-16 2019-05-23 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
CN116557320A (zh) * 2023-06-05 2023-08-08 远东双诚风机(江苏)有限公司 一种主动消声式高速离心风机

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948892B2 (ja) 2012-01-23 2016-07-06 株式会社Ihi 遠心圧縮機
CN103244209B (zh) * 2012-02-06 2015-12-16 中国科学院工程热物理研究所 一种汽轮机单侧排汽系统扩压器端壁
CN104471204B (zh) * 2012-07-27 2018-02-23 博格华纳公司 一种涡轮增压器和用于内燃发动机的涡轮增压器
CN103148021B (zh) * 2013-03-22 2016-06-08 清华大学 具有进口导叶的离心压气机及涡轮增压器
CN103277324B (zh) * 2013-05-27 2016-01-20 清华大学 具有非对称无叶扩压器的离心压气机及具有其的汽车
WO2015019909A1 (ja) 2013-08-06 2015-02-12 株式会社Ihi 遠心圧縮機及び過給機
JP6244547B2 (ja) * 2013-09-24 2017-12-13 パナソニックIpマネジメント株式会社 片吸込み型遠心送風機
FR3014029B1 (fr) * 2013-12-04 2015-12-18 Valeo Systemes Thermiques Pulseur d'aspiration destine a un dispositif de chauffage, ventilation et/ou climatisation d'un vehicule automobile
CN105571809B (zh) * 2015-12-11 2017-10-31 中国北方发动机研究所(天津) 离心压气机内部流动柔性测试装置
CN106762747B (zh) * 2017-03-15 2018-12-11 清华大学 采用周向可变叶片高度非对称有叶扩压器的离心压气机
EP3739219A4 (en) * 2018-04-04 2020-12-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. RADIAL COMPRESSORS AND TURBOCHARGERS WITH THE RADIAL COMPRESSOR
CN108561327B (zh) * 2018-04-09 2021-03-19 张家港市海工船舶机械制造有限公司 一种闭式叶轮制造方法
US11098650B2 (en) 2018-08-10 2021-08-24 Pratt & Whitney Canada Corp. Compressor diffuser with diffuser pipes having aero-dampers
US10823196B2 (en) * 2018-08-10 2020-11-03 Pratt & Whitney Canada Corp. Compressor diffuser with diffuser pipes varying in natural vibration frequencies
CN110826270A (zh) * 2019-10-25 2020-02-21 天津大学 一种离心压气机旋转失速过程中能量损失的分析方法
CN113931879B (zh) * 2021-10-19 2023-12-22 中国科学院工程热物理研究所 一种高压比离心压气机径向叶片扩压器参数化设计方法
CN115978005B (zh) * 2023-03-17 2023-07-18 潍柴动力股份有限公司 导流叶片及其设计方法、扩压器、压气机及增压器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212097U (ja) * 1988-07-08 1990-01-25
JPH078597U (ja) * 1993-07-06 1995-02-07 三菱重工業株式会社 遠心圧縮機
JPH10176699A (ja) * 1996-12-18 1998-06-30 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289921A (en) * 1965-10-08 1966-12-06 Caterpillar Tractor Co Vaneless diffuser
US4181466A (en) * 1977-03-17 1980-01-01 Wallace Murray Corp. Centrifugal compressor and cover
JPS54104007A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Diffuser for centrifugal compressor
JPS56138499A (en) * 1980-04-01 1981-10-29 Toyota Motor Corp Compressor structure for turbocharger
JPH0212097A (ja) 1988-06-30 1990-01-17 Toshiba Corp 再循環ポンプの運転方法
US5372551A (en) 1993-06-21 1994-12-13 Brunswick Bowling & Billiards Energy conserving pinsetter with minimized pin overflow
JP2000213496A (ja) 1999-01-20 2000-08-02 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
US6550574B2 (en) * 2000-12-21 2003-04-22 Dresser-Rand Company Acoustic liner and a fluid pressurizing device and method utilizing same
GB0223756D0 (en) 2002-10-14 2002-11-20 Holset Engineering Co Compressor
GB0313143D0 (en) * 2003-06-07 2003-07-09 Boc Group Plc Sewage aeration
CN100427768C (zh) * 2006-12-29 2008-10-22 清华大学 离心压气机可控型面无叶扩压器
JP5233436B2 (ja) * 2008-06-23 2013-07-10 株式会社日立プラントテクノロジー 羽根無しディフューザを備えた遠心圧縮機および羽根無しディフューザ
CN201330717Y (zh) * 2009-01-05 2009-10-21 珠海格力电器股份有限公司 可调离心式压缩机
CN201582215U (zh) * 2009-12-10 2010-09-15 湖南天雁机械有限责任公司 涡轮增压器无叶扩压管宽度调节机构
CN104428538B (zh) * 2012-07-06 2017-07-04 丰田自动车株式会社 内燃机的增压器的压缩机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212097U (ja) * 1988-07-08 1990-01-25
JPH078597U (ja) * 1993-07-06 1995-02-07 三菱重工業株式会社 遠心圧縮機
JPH10176699A (ja) * 1996-12-18 1998-06-30 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690289A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053359A (ja) * 2014-09-02 2016-04-14 マン・ディーゼル・アンド・ターボ・エスイー 遠心圧縮機段
WO2019097640A1 (ja) * 2017-11-16 2019-05-23 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
CN110573747A (zh) * 2017-11-16 2019-12-13 三菱重工发动机和增压器株式会社 离心压缩机以及具有该离心压缩机的涡轮增压器
JPWO2019097640A1 (ja) * 2017-11-16 2020-04-23 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
US11092165B2 (en) 2017-11-16 2021-08-17 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger including the same
CN116557320A (zh) * 2023-06-05 2023-08-08 远东双诚风机(江苏)有限公司 一种主动消声式高速离心风机
CN116557320B (zh) * 2023-06-05 2024-01-02 远东双诚风机(江苏)有限公司 一种主动消声式高速离心风机

Also Published As

Publication number Publication date
JP5680740B2 (ja) 2015-03-04
EP2690289A1 (en) 2014-01-29
US20140255175A1 (en) 2014-09-11
JPWO2012128277A1 (ja) 2014-07-24
EP2690289A4 (en) 2014-12-10
CN102182710A (zh) 2011-09-14
CN102182710B (zh) 2013-07-17
US9709062B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
JP5680740B2 (ja) 遠心圧縮機及びその形成方法
US11085461B2 (en) Centrifugal compressor and turbocharger
JP6071394B2 (ja) 遠心式ファン
JP5809859B2 (ja) 遠心式ファン
JP5439423B2 (ja) 遠心圧縮機のスクロール形状
JP5430685B2 (ja) 非軸対称自己循環ケーシングトリートメントを有する遠心圧縮機
JP2012154278A (ja) 遠心式ファン
JP6971564B2 (ja) ターボ機械およびそのためのタービンノズル
JP2012202323A5 (ja)
JP2008151022A (ja) 軸流圧縮機の翼列
JP2014047775A (ja) ディフューザ、そのディフューザが備わる遠心圧縮機および送風機
CN103277324A (zh) 具有非对称无叶扩压器的离心压气机及具有其的汽车
JP5430684B2 (ja) 非軸対称自己循環ケーシングトリートメントを有する遠心圧縮機
JP2014173580A (ja) 送風装置
JP2009133267A (ja) 圧縮機のインペラ
US20080170938A1 (en) Centrifugal compressor
JP5705805B2 (ja) 遠心式ファン
JP6282720B2 (ja) 遠心式ファン
JP2016075204A (ja) 遠心圧縮機及び遠心圧縮機の設計方法
JP5430683B2 (ja) 非軸対称自己循環ケーシングトリートメントを有する遠心圧縮機
WO2020075378A1 (ja) 遠心式流体機械
JP6113250B2 (ja) 遠心式ファン
JP2019070338A (ja) 遠心圧縮機インペラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505982

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012760872

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14006914

Country of ref document: US