WO2012128184A1 - Device for measuring surface stress of glass and method for measuring surface stress of glass - Google Patents

Device for measuring surface stress of glass and method for measuring surface stress of glass Download PDF

Info

Publication number
WO2012128184A1
WO2012128184A1 PCT/JP2012/056745 JP2012056745W WO2012128184A1 WO 2012128184 A1 WO2012128184 A1 WO 2012128184A1 JP 2012056745 W JP2012056745 W JP 2012056745W WO 2012128184 A1 WO2012128184 A1 WO 2012128184A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
glass
tempered glass
surface stress
measuring
Prior art date
Application number
PCT/JP2012/056745
Other languages
French (fr)
Japanese (ja)
Inventor
山本 宏行
満幸 舘村
誠 白鳥
雄一 飯田
一秀 久野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280013501.2A priority Critical patent/CN103443603B/en
Priority to JP2013505936A priority patent/JP5892156B2/en
Publication of WO2012128184A1 publication Critical patent/WO2012128184A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses

Definitions

  • the present invention relates to a glass surface stress measuring apparatus and a glass surface stress measuring method for nondestructively measuring the amount of compressive stress on the surface of an object of tempered glass.
  • a method of forming a compressive stress layer on the glass surface is generally known.
  • Alkali metal ions typically Li ions and Na ions
  • alkali ions typically Na ions or K ions for Li ions.
  • a typical chemical strengthening method is to exchange K ions for Na ions.
  • JP 2011-084456 A JP-A-53-136886
  • the apparatus for measuring CS and DOL in a nondestructive manner emits light propagated through the surface layer of the glass and observes it, it cannot measure the above-described colored glass having a low visible transmittance such as black. The problem was newly confirmed. In this case, it is necessary to perform a strength measurement test with breakage such as bending strength, crack initiation, load, or sample processing for measuring birefringence, or use EPMA (Electron Probe Micro Analyzer) for chemically strengthened glass. There is no method for measuring the amount of compressive stress or strength of glass other than using a very time-consuming method such as measuring the depth of the diffusion layer of potassium, and the accuracy of the measurement data is low and the reliability is poor.
  • An object of this invention is to provide the apparatus and method which measure the surface stress of the colored glass with the low transmittance
  • the present invention provides a light source, a light supply member that causes light from the light source to enter the surface layer of the tempered glass, and a light extraction member that emits light propagated in the surface layer of the tempered glass to the outside of the tempered glass.
  • a light conversion member that separates the emitted light into two types of light components that vibrate parallel and perpendicular to the boundary surface between the tempered glass and the light extraction member, and converts the light into a bright line row or a dark line row;
  • the light incident on the light conversion member is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm ⁇ 1 or less. (Hereinafter, it may be called the surface stress measuring device of the glass of the present invention).
  • the said tempered glass is colored glass, It is characterized by the above-mentioned.
  • the light from the light source is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm ⁇ 1 or less.
  • the glass surface stress measuring apparatus according to the present invention comprises a bandpass filter or a monochromator for extracting monochromatic light in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm ⁇ 1 or less from the emitted light. It is provided between the light source and the tempered glass, or between the light extraction member and the light conversion member.
  • the light from the light source is monochromatic light in a wavelength region of 700 nm or more.
  • the light from the light source is monochromatic light in a wavelength region of 2000 nm or less.
  • the light source is a light emitting diode.
  • the light source is a laser.
  • the tempered glass has a minimum value of an extinction coefficient at a wavelength of 550 nm to 650 nm exceeding 1.7 mm ⁇ 1 .
  • the surface stress measuring apparatus of the glass of this invention Comprising:
  • the said tempered glass is colored by containing a metal ion, It is characterized by the above-mentioned.
  • the tempered glass is colored by depositing a metal colloid.
  • the tempered glass is colored by precipitating crystals.
  • the tempered glass is chemically strengthened.
  • the glass surface stress measurement apparatus is an image pickup device that picks up an image of a bright line row or dark line row converted by the light conversion member, and an image obtained by the image pickup device, and the bright line row or dark line row. And an image processing device for emphasizing the image.
  • the glass surface stress measuring apparatus comprises a measuring means for measuring the surface stress of the tempered glass based on the bright line array or dark line array converted by the light conversion member, the measuring means comprising: The photoelastic constant of the tempered glass at a wavelength substantially the same as that of monochromatic light having a central wavelength in a wavelength range of 4.5 mm ⁇ 1 or less is used.
  • the present invention is a method for measuring the surface stress of a tempered glass, the step of entering light from a light source into the surface layer of the tempered glass, and the step of propagating the light in the surface layer of the tempered glass.
  • the step of converting into a dark line array or bright line array and the step of measuring the surface stress of the tempered glass based on the dark line array or bright line array, and the light separated in the separating step is the tempered glass
  • a method for measuring the surface stress of glass that is monochromatic light having a central wavelength in a wavelength range of 4.5 mm ⁇ 1 or less (hereinafter sometimes referred to as the method for measuring the surface stress of glass of the present invention) is provided.
  • the glass surface stress measurement method of the present invention is characterized in that the tempered glass is colored. Further, in the glass surface stress measurement method of the present invention, the light from the light source is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm ⁇ 1 or less. And The glass surface stress measurement method of the present invention is also characterized in that the tempered glass taken out by using a bandpass filter or a monochromator emits monochromatic light having a wavelength range of 4.5 mm ⁇ 1 or less of the tempered glass. It enters into the surface layer of this.
  • the glass surface stress measurement method of the present invention is also characterized in that the tempered glass taken out using a bandpass filter or a monochromator is irradiated with monochromatic light having a wavelength range of 4.5 mm ⁇ 1 or less on the glass surface. It is characterized by being separated into two types of light components that vibrate in parallel and perpendicularly.
  • the monochromatic light is monochromatic light having a wavelength region of 700 nm or more.
  • the light from the light source is monochromatic light in a wavelength region of 2000 nm or less.
  • the tempered glass is characterized in that the minimum value of the extinction coefficient at a wavelength of 550 nm to 650 nm exceeds 1.7 mm ⁇ 1 .
  • the tempered glass is colored by containing metal ions.
  • the tempered glass is colored by depositing a metal colloid.
  • the tempered glass is colored by precipitating crystals.
  • the glass surface stress measurement method of the present invention is characterized in that the tempered glass is chemically strengthened. Further, the method for measuring the surface stress of the glass of the present invention, the step of imaging the converted bright line row or dark line row, and image processing for enhancing the bright line row or dark line row from the image obtained by the imaging. And measuring the surface stress of the tempered glass based on the emphasized bright line array or the dark line array. Further, in the glass surface stress measurement method of the present invention, the step of measuring the surface stress of the tempered glass includes monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm ⁇ 1 or less. And using the photoelastic constant of the tempered glass at substantially the same wavelength.
  • the present invention it is possible to nondestructively measure the surface compressive stress and the surface compressive stress layer depth even with a colored tempered glass having a low transmittance in the visible region.
  • FIG. 1 the schematic of the surface stress measuring apparatus 10 of the glass of the 1st Embodiment of this invention is shown.
  • a prism made of optical glass is placed in optical contact with the surface of the tempered glass as a medium (light supply member) that makes light incident on the surface of the tempered glass that is the object to be measured.
  • a prism made of optical glass is placed in a state of being in optical contact with the surface of the tempered glass as a medium (light extraction member) for emitting light propagating through the surface layer of the tempered glass to the outside of the tempered glass.
  • light optically enters and exits through the prisms on the surface of the tempered glass those having a refractive index larger than that of the tempered glass are used.
  • a light source is arrange
  • the light conversion member is disposed in a direction in which light propagating through the surface layer of tempered glass is emitted from a prism that is a light extraction member.
  • the light conversion member vibrates in the emission direction of light propagated through the surface layer of tempered glass, parallel and perpendicular to the boundary surface between the tempered glass surface and the prism that is the light supply member, that is, the emission surface.
  • Each of these components is converted into a bright line row or a dark line row, respectively.
  • a means for observing the bright line array or the dark line array as an interference fringe image is provided. Using these apparatus configurations, the amount of compressive stress (CS, DOL) of the tempered glass is measured.
  • Chemically strengthened or air-cooled tempered glass has a compressive stress layer on the surface. These compressive stress layers have a higher refractive index than glass portions other than the compressive stress layer. These refractive indexes increase monotonously from the bottom to the surface of the compressive stress layer. Further, the birefringence of the compressive stress layer also monotonously increases toward the surface. Therefore, there are two depth versus refractive index curves for light oscillating perpendicular to the glass surface and light parallel to the glass surface, resulting in different optical waveguide effects and comparing the resulting interference fringe images. Thus, the surface compressive stress and the surface compressive stress layer depth of the tempered glass can be obtained.
  • the surface stress measuring apparatus 10 using the optical waveguide effect described above it is possible to obtain an interference fringe image composed of a bright line array or a dark line array by light oscillating perpendicularly to the glass surface and light oscillating parallel to the glass surface. It is essential.
  • the wavelength of light from the light source incident on the light supply member is centered in the wavelength region where the extinction coefficient of the tempered glass as the object to be measured is 4.5 mm ⁇ 1 or less.
  • a light source capable of emitting monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the to-be-measured object is 4.5 mm ⁇ 1 or less.
  • the incident light is absorbed by the influence of the contained metal ions and metal colloids, so that the emitted light may be very weak or unrecognizable.
  • the light source by making the light source as described above, the influence of light absorption by the tempered glass is reduced, and therefore, the surface stress layer can be measured with high accuracy.
  • the emitted light becomes weak for the reasons described above and it is difficult to recognize the interference fringe image, which is not preferable as the light source of the present invention.
  • any light source may be used as long as the light source itself can emit monochromatic light having a center wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm ⁇ 1 or less. Moreover, even if the light source is not monochromatic light, the light from the light source incident on the tempered glass is converted into monochromatic light by using means for monochromatic light such as a bandpass filter or a monochromator between the light source and the tempered glass. Also good. Even if the light source is monochromatic light, means for monochromatic light such as a bandpass filter or a monochromator may be used in order to make the light from the light source a monochromatic light with a narrower half-value width. By using monochromatic light with a narrow half-value width as the light source, the influence of other wavelengths can be eliminated as much as possible, and a clearer interference fringe image can be obtained.
  • means for monochromatic light such as a bandpass filter or a monochromator
  • the light from the light source is preferably monochromatic light having a wavelength range of 700 nm or more. This makes it possible to accurately measure the CS and DOL of the surface stress layer even with glass that does not substantially transmit visible light, such as black. In addition, in the conventional surface stress measuring apparatus and method, even a colored glass that transmits a part of visible light for which an interference fringe image could not be recognized due to the measurement wavelength can be measured.
  • the light from the light source can be used as long as it is monochromatic light in a wavelength region of 700 nm or more, but it is preferable to use a shorter wavelength in the infrared region.
  • the light from the light source is preferably monochromatic light having a wavelength range of 2000 nm or less, more preferably monochromatic light having a wavelength range of 1500 nm or less. Most preferred is monochromatic light having a wavelength range of 950 nm or less.
  • any kind of light source can be used as long as it can obtain a desired monochromatic light.
  • a light emitting diode or a laser can be preferably used. Since light emitting diodes having various center wavelengths are available, a light source corresponding to the extinction coefficient characteristic of the tempered glass can be appropriately selected. Further, since the life of the light source is long, the replacement frequency can be lowered.
  • Laser has high output, narrow half width, and can obtain linearly polarized monochromatic light. Therefore, it is possible to improve measurement accuracy without using a bandpass filter or the like. Further, by using a laser line filter, which is a kind of bandpass filter, in combination with a laser, it is possible to obtain monochromatic light with a very narrow half-value width.
  • a light source such as a xenon lamp, a metal halide lamp, or a mercury lamp can be used.
  • the light supply member and the light extraction member can each be a prism made of optical glass having a refractive index higher than that of tempered glass. Further, the light supply member prism and the light extraction member prism may be separate as shown in FIG. 1 or may be integrated. Further, the light shielding means may be sandwiched between these prisms and integrated. The light shielding means is used for the purpose of eliminating unnecessary ambient light from entering a prism that is a light extraction member. As the light shielding means, a shielding plate made of metal or the like, or a shielding film made of a metal thin film can be used.
  • a liquid whose refractive index is similar to that of each prism is interposed between the tempered glass and each prism. And may be optically contacted.
  • the light conversion member is for observing light emitted from the surface layer by the light from the light source being incident on the surface layer of the tempered glass, propagating through the surface layer.
  • the light emitted from the tempered glass causes birefringence between the light whose direction of vibration is along the glass surface and the light perpendicular to the surface due to the surface compressive stress of the surface layer. Both have the same refractive index gradient, but have different refractive angles because of different effective refractive indexes. Therefore, it is possible to measure CS and DOL by observing both the dark line caused by the light oscillating in the direction perpendicular to the dark line caused by the light oscillating in the direction parallel to the incident surface of the emitted light.
  • a single or a plurality of polarizing plates are used.
  • a method of manually reading the scale using an eyepiece micrometer a solid-state image pickup device such as a CCD or CMOS arranged on the focal plane is obtained.
  • a method of calculating CS or DOL by analyzing the interference fringe image can be used.
  • a band pass filter, a monochromator, or the like may be disposed in front of the polarizing plate.
  • a structure of a light conversion member not only the said form but a well-known thing can be used.
  • FIG. 2 the schematic of the surface stress measuring apparatus 20 of the glass of the 2nd Embodiment of this invention is shown.
  • the glass surface stress measuring device 20 of the second embodiment is a band-pass filter that extracts monochromatic light in a wavelength region where the extinction coefficient of the tempered glass to be measured is 4.5 mm ⁇ 1 or less from the light emitted from the light extraction member.
  • the surface stress of the glass according to the first embodiment described with reference to FIG. 1 except that a monochromator is provided between the light extraction member and the light conversion member, and light from the light source is not limited to monochromatic light. Since the configuration is the same as that of the measuring apparatus 10, the description thereof is omitted.
  • a light source When measuring glass that hardly transmits visible light, for example, black, it is preferable to use a light source with a large amount of light in order to use light in a wavelength region that can pass through the glass for measurement. At that time, even if the light source itself does not emit monochromatic light, it is equipped with a band-pass filter or monochromator that takes out monochromatic light of a specific wavelength between the light extraction member and the light conversion member, so that a monochromatic light with a certain amount or more is obtained. Light can be obtained, whereby a clear interference fringe image can be obtained.
  • the monochromatic light extracted by the bandpass filter or the monochromator needs to be light in a wavelength region where the extinction coefficient of the tempered glass to be measured is 4.5 mm ⁇ 1 or less.
  • Use of monochromatic light having a wavelength range in which the extinction coefficient of the tempered glass exceeds 4.5 mm ⁇ 1 is not preferable because light entering the light conversion member becomes weak and makes it difficult to recognize an interference fringe image.
  • the light source having a large light amount a known light source such as a xenon lamp, a metal halide lamp, or a mercury lamp can be used. Further, in order to eliminate the influence other than the desired wavelength from the light emitted from the light extraction member, it is preferable that the bandpass filter or the monochromator can extract monochromatic light having a half-value width as narrow as possible.
  • monochromatic light extracted using a bandpass filter or a monochromator monochromatic light having a wavelength range of 700 nm or more is preferably used. This makes it possible to accurately measure the CS and DOL of the surface stress layer even with glass that does not substantially transmit visible light, such as black. In addition, in the conventional surface stress measuring apparatus and method, even a colored glass that transmits a part of visible light for which an interference fringe image could not be recognized due to the measurement wavelength can be measured. Note that monochromatic light extracted using a band-pass filter or a monochromator can be used as long as it is monochromatic light having a wavelength region of 700 nm or more, but it is preferable to use a shorter wavelength in the infrared region.
  • the monochromatic light is preferably monochromatic light having a wavelength range of 2000 nm or less, and more preferably monochromatic light having a wavelength range of 1500 nm or less. Most preferred is monochromatic light having a wavelength range of 950 nm or less.
  • FIG. 3 is a schematic view of a glass surface stress measuring apparatus 30 according to a third embodiment of the present invention.
  • the glass surface stress measuring device 30 and the glass surface stress measuring method of the third embodiment of the present invention will be described.
  • Colored glass has lower light transmittance than conventional transparent glass, so the boundary between bright line or dark line array obtained by the light conversion member is blurred, and accurate surface stress (CS, DOL) May not be calculated.
  • the surface compressive stress depth (DOL) is specified by interference fringes formed by light reflected from the deepest portion in the depth direction.
  • the obtained bright line array or dark line array image is subjected to image processing, and the bright line array or dark line array is emphasized to calculate a more accurate surface stress amount (CS, DOL). I am doing so.
  • the configuration of the glass surface stress measuring apparatus 30 according to the third embodiment will be described with reference to FIG. 3, but the glass according to the first and second embodiments described with reference to FIGS.
  • symbol is attached
  • the glass surface stress measurement device 30 includes a light source 2, a bandpass filter 3, a light supply member 4, a light extraction member 5, a light conversion member 6 ⁇ / b> A, and an image processing device 11. .
  • FIG. 4 is a schematic diagram showing the configuration of the light conversion member 6A provided in the glass surface stress measurement device 30.
  • the light conversion member 6A includes a lens 6a, a polarizing plate 6b, an image sensor 6c, and a housing 6d.
  • the lens 6 a converges the light emitted from the light extraction member 5.
  • the polarizing plate 6 b separates two types of light components that vibrate in parallel and perpendicular to the boundary surface between the tempered glass 1 and the light extraction member 5 from the light emitted from the light extraction member 5.
  • the light that has passed through the polarizing plate 6b is recognized as a bright line array or a dark line array.
  • IR infrared
  • the imaging element 6c is an image sensor (for example, a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor) for observing a bright line array or a dark line array as an interference fringe image.
  • the image sensor 6c photoelectrically converts the received light and outputs the luminance value for each of the plurality of pixels constituting the image to the image processing apparatus 11 as digital image data.
  • FIG. 5 is a schematic diagram showing the configuration of the image processing apparatus 11 provided in the glass surface stress measurement apparatus 30.
  • the image processing apparatus 11 includes an image correction unit 11a, an enhancement unit 11b, a D / A converter 11c, and a display 11d.
  • the image correction unit 11a performs white balance adjustment and ⁇ correction on the digital image data output from the image sensor 6c.
  • the emphasis unit 11b emphasizes the contrast of the digital image data after correction, and emphasizes the bright line row or the dark line row.
  • the following method can be adopted as a method for enhancing the contrast of the bright line array or the dark line array.
  • the following method may be applied to the entire interference fringe image obtained by the imaging device 6c, or may be applied only to a specific image area where light attenuation is large.
  • image processing that emphasizes only the image area corresponding to the periphery of the deepest part may be performed.
  • the bright line row or the dark line row is emphasized by binarizing the luminance value of each pixel constituting the image with a threshold value stored in advance. For example, when the luminance value is set from 0 (minimum luminance: black) to 255 (maximum luminance: white), the luminance value of a pixel having a luminance value exceeding the threshold value (for example, 127) is set to 255, and the threshold value (for example, 127) It can be binarized by setting the luminance value of a pixel having a luminance value equal to or less than 0 to 0.
  • the bright line row or the dark line row is emphasized by enhancing the outline (edge).
  • an existing edge enhancement filter for example, a sharpness filter
  • the D / A converter 11c converts the digital image data in which the bright line row or dark line row is emphasized into analog image data that can be displayed on the display 11d.
  • the display 11d is, for example, a liquid crystal display or a CRT (Cathode Ray Tube), and displays an image corresponding to the analog image data output from the D / A converter 11c on the screen.
  • FIG. 6 is a schematic diagram of bright line rows or dark line rows displayed on the display 11d.
  • the bright line row or dark line row on the left side of FIG. 6 is the bright line row or dark line row of the light component that vibrates perpendicularly to the boundary surface between the tempered glass 1 and the light extraction member 5.
  • the bright line row or dark line row on the right side of FIG. 6 is the bright line row or dark line row of the light component that vibrates parallel to the boundary surface between the tempered glass 1 and the light extraction member 5.
  • the surface compressive stress (CS) and the surface compressive stress layer depth (DOL) can be calculated. Specifically, the distance difference ⁇ t between the bright line array or the dark line array of two types of light components that vibrate parallel and perpendicular to the boundary surface between the tempered glass 1 and the light extraction member 5 separated by the light conversion member 6A.
  • the surface compressive stress (CS) can be calculated from (see FIG. 6).
  • the surface compressive stress layer depth (DOL) can be calculated from the number of bright line rows or dark line rows.
  • the photoelastic constant Kc is used for the calculation of the surface compressive stress (CS) and the surface compressive stress layer depth (DOL), this photoelastic constant Kc is actually substantially the same as the light source incident on the tempered glass.
  • the photoelastic constant of the tempered glass at a wavelength is preferred. That is, it is the photoelastic constant of the tempered glass at substantially the same wavelength as the monochromatic light having the central wavelength in the wavelength region where the extinction coefficient of the tempered glass incident on the light conversion member is 4.5 mm ⁇ 1 or less. This is because the photoelastic constant obtained depends on the wavelength used.
  • the substantially same wavelength means a wavelength within a range of several nm to several tens of nm centering on the same wavelength.
  • the photoelastic constant Kc is a constant representing the relationship between the stress F and the optical path difference ⁇ due to birefringence, and satisfies the relationship of the following equation (1), where d is the thickness of the glass.
  • Kc ⁇ d ⁇ F (1)
  • the tempered glass which is a measuring object of the surface compressive stress (CS) and the surface compressive stress layer depth (DOL) is a colored glass
  • the tempered glass passes through the tempered glass.
  • the amount of light to be performed is not sufficient and the photoelastic constant Kc cannot be measured, or an accurate value of the photoelastic constant Kc cannot be obtained.
  • the tempered glass is thin, the tempered glass cannot withstand the applied stress and may be damaged.
  • FIG. 7 is a diagram for explaining a method of measuring the photoelastic constant Kc in the present invention.
  • a method for measuring the photoelastic constant Kc in the present embodiment will be described with reference to FIG.
  • a method for measuring the photoelastic constant Kc will be described by taking as an example a four-point bending method in which force F is applied from four points to the tempered glass 1 having the photoelastic constant Kc to apply a bending stress.
  • the tempered glass 1 From the light source 101, the tempered glass 1 has a central wavelength in a wavelength region where the extinction coefficient is 4.5 mm ⁇ 1 or less, and monochromatic light in a wavelength region of 700 nm to 2000 nm, more preferably 700 nm to 1500 nm. Monochromatic light is emitted.
  • the wavelength of the monochromatic light of the light source 101 is substantially the same as the wavelength of the light incident on the light conversion member of the glass surface stress measurement device.
  • the polarizing plates 102 and 104 are arranged so that they are orthogonal to each other, that is, have a phase difference of 90 degrees, with the tempered glass 1 and the Babinet correction plate 103 that are the objects of measurement of the photoelastic constant Kc interposed therebetween.
  • the polarizing plate 102 allows only the light component polarized in a specific direction out of the light emitted from the light source 101.
  • the polarizing plate 104 allows only the light component polarized in the direction orthogonal to the polarizing direction of the polarizing plate 102 among the light transmitted through the tempered glass 1 to pass therethrough.
  • the Babinet correction plate 103 is a compensation plate made of quartz.
  • the photodetector 105 receives the light that has passed through the polarizing plate 104.
  • the force F is applied by a load application mechanism (not shown) such as a loader.
  • the thickness of the tempered glass 1 is set to a thickness that allows light from the light source 101 to pass therethrough, and the load application direction is not the thickness direction of the tempered glass 1, but the tempered glass 1
  • the force F is applied from the thick side. For this reason, it is possible to suppress the possibility that the amount of light passing through the tempered glass is not sufficient and the photoelastic constant Kc cannot be measured and that the accurate value of the photoelastic constant Kc cannot be obtained. Further, the tempered glass 1 cannot withstand the load to which it is applied and can be prevented from being damaged.
  • the surface stress amount (CS, DOL) of the tempered glass 1 can be measured more accurately.
  • the photoelastic constant Kc used when calculating the surface compressive stress (CS) and the surface compressive stress layer depth (DOL) the light is actually incident on the light conversion member of the surface stress measuring device of the tempered glass 1.
  • Light having substantially the same wavelength as the light to be emitted that is, monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of tempered glass is 4.5 mm ⁇ 1 or less and having a wavelength region of 700 nm to 2000 nm.
  • the light used for measuring the photoelastic constant Kc is more preferably monochromatic light having a wavelength range of 700 nm to 2000 nm.
  • the object of the present invention is to measure the surface stress of tempered glass in which the glass itself is colored.
  • Examples of the colored tempered glass include the following forms.
  • the glass As a 1st form, it is glass which contains a metal ion in tempered glass and was colored by absorption of the light of the specific wavelength by a metal ion.
  • the transition metal element or rare earth element contained in the glass is an element having a plurality of valences
  • the glass has a specific color due to the influence of the wavelength of light that is selectively absorbed by the transition of electrons. Since the transition metal ion dissolved in the glass is strongly influenced by the anion adjacent to the outer shell, the wavelength of light that is selectively absorbed is influenced by factors such as the basic glass composition, the melting atmosphere, and the additive components.
  • the rare earth element atoms are completely filled with electrons in the electron orbit close to the outer shell, and incomplete in the electron orbits inside, the electron transition occurs in the inner orbits and light Since selective absorption of the wavelength is performed, the color is almost constant without being affected by the basic glass or the molten atmosphere.
  • the glass can be colored blue by containing Cu 2+ in the glass.
  • rare earth elements it can be set as the glass colored pink by containing Er3 + in glass.
  • glass containing metal colloid in tempered glass and colored with metal colloid As a second form, glass containing metal colloid in tempered glass and colored with metal colloid.
  • colloids smaller than the wavelength of light are present in the glass, the glass is colored by absorbing specific (wavelength) light. For example, a colloid of gold or copper is precipitated in the glass, whereby a red colored glass can be obtained.
  • a third form is a glass that is recognized as milky white by scattering incident light by precipitating crystalline particles on tempered glass.
  • the colored tempered glass described above has different wavelengths to be absorbed depending on coloring components and the like.
  • the wavelength of light from the light source is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm ⁇ 1 or less.
  • the incident fringe image can be clearly recognized from the emitted light without being absorbed by the coloring component when the incident light propagates through the surface layer.
  • the tempered glass may have a minimum value of an extinction coefficient of light having a wavelength of 550 nm to 650 nm exceeding 1.7 mm ⁇ 1 . Glass having such an extinction coefficient cannot recognize an interference fringe image with a conventional surface stress measurement device.
  • the interference fringe image can be recognized, there is a problem that it is unclear and it is difficult to automatically process the image.
  • the present inventor measured a colored tempered glass having a minimum extinction coefficient of light having a wavelength of 550 nm to 650 nm slightly exceeding 1.7 mm ⁇ 1 using a conventional surface stress measuring device, and found an interference fringe image. I could't recognize it.
  • the interference fringe image can be clearly recognized and accurately detected. It is possible to measure the surface stress.
  • the air-cooling strengthening method is a method in which a cold wind is applied to a glass plate once heat-treated to cool it, thereby forming a compressive stress on the surface.
  • the chemical strengthening method for example, by placing soda lime glass in a potassium nitrate molten salt heated to about 380 ° C., ion exchange of alkali ions (sodium ions as glass components in molten salt having a larger ion radius) This is a method of forming compressive stress on the glass surface by ion exchange with potassium ions.
  • each of the strengthening treatments forms a surface compression layer on the surface layer of the glass, and they have a refractive index different from that of the glass portion other than the surface compression layer. Therefore, any tempered glass subjected to any tempering treatment can be measured by the surface compression measuring apparatus and method of the present invention using the optical waveguide effect of the surface layer.
  • the tempered glass includes a glass having a multilayer structure in which glasses having different thermal expansion coefficients are laminated, and the case where the surface layer glass is colored glass is also included in the form.
  • the glass in which the surface of the glass serving as the core is coated with a colored soot having a different thermal expansion coefficient from that of the glass serving as the core is also included in the form of the colored glass.
  • the glasses A to D were immersed in KNO 3 molten salt at 450 ° C. for 6 hours to be chemically strengthened.
  • these glasses A to D were analyzed for potassium concentration in the depth direction using EPMA, ion exchange occurred from the surface to a depth of about 30 ⁇ m, and a compressive stress layer was formed.
  • FIG. 8 shows the relationship between the absorption coefficient and the wavelength of Glass A and Glass B.
  • glass A to glass D it was confirmed whether or not an interference fringe image could be observed with a surface stress measurement device when a sodium lamp was used as the light source and a wavelength of 600 nm was used as the measurement light.
  • the absorption coefficient of glass A at a wavelength of 600 nm is 5.7 mm ⁇ 1
  • the absorption coefficient of glass B at a wavelength of 600 nm is 1.37 mm ⁇ 1
  • the absorption coefficient of glass C at a wavelength of 600 nm is 5.47 mm ⁇ 1
  • the absorption coefficient of glass D at a wavelength of 600 nm is 1.37 mm ⁇ 1 .
  • glass B was able to observe an interference fringe image, whereas glass A could not confirm the interference fringe image. This is presumably because the incident light having a wavelength of 600 nm is absorbed when propagating through the surface layer of the glass A, and the emitted light is extremely weak.
  • a xenon lamp was used as the light source, a bandpass filter was placed between the light extraction member (prism) and the light conversion member, and it was confirmed whether an interference fringe image could be observed with a surface stress measurement device.
  • the band pass filter used what selectively permeate
  • an interference fringe image of glass A could be confirmed. This is presumably because incident light with a wavelength of 850 nm was partially absorbed when propagating through the surface layer of glass A, but its attenuation was small and could be recognized as emitted light.
  • interference fringe images observed with the surface stress measuring apparatus for glass C and glass D are shown in FIGS.
  • the glass C could not observe an interference fringe image.
  • Glass D was able to confirm an interference fringe image.
  • the boundary on the right side of the interference fringe image (the portion indicating the depth of the compressive stress layer) is unclear, and an accurate value cannot be obtained by calculating DOL using the automatic processing of the surface stress measurement device. It was.
  • the absorption coefficient at a wavelength of 790nm of the glass C is 1.12 mm -1 and the absorption coefficient at a wavelength of 790nm of the glass D is 0.16 mm -1.
  • FIGS. 11 and 12 show interference fringe images observed with a surface stress measuring device for glass C and glass D.
  • FIG. As a result, both the glass C and the glass D were able to confirm interference fringe images.
  • an accurate value could be obtained by calculating the DOL using the automatic processing of the surface stress measuring device.
  • each optical system such as the light source and the light conversion member, and the combination of these components are not limited to those illustrated, but can be changed within the scope of the measurement principle.
  • CS, DOL surface stress amount
  • the surface stress amount (CS, DOL) of the colored tempered glass having low transmittance in the visible region can be accurately measured nondestructively. Is possible.

Abstract

Disclosed is a device for measuring surface stress of a glass provided with: a light source; a light supply member that allows light from the light source to enter in a surface layer of a tempered glass; a light extraction member that allows light traveling in the surface layer of the tempered glass to emit outside the tempered glass; and light conversion member that separates the emitted light into two types of light components vibrating parallel to and perpendicular to a boundary surface of the tempered glass and the light extraction member, and converts the light components as an emission line or a dark line. In the device, the tempered glass is a colored glass, and the light from the light source is monochromatic light having the center wavelength in a wavelength range where an absorption coefficient of the tempered glass is 4.5 mm-1 or less.

Description

ガラスの表面応力測定装置およびガラスの表面応力測定方法Glass surface stress measuring apparatus and glass surface stress measuring method
 本発明は、強化ガラスの物体表面の圧縮応力量を非破壊的に測定するガラス表面応力測定装置およびガラスの表面応力測定方法に関する。 The present invention relates to a glass surface stress measuring apparatus and a glass surface stress measuring method for nondestructively measuring the amount of compressive stress on the surface of an object of tempered glass.
 従来から、AV機器・OA機器等の操作パネルや開閉扉などには、金属調パネルや黒色パネルが多用されている。これらパネルは、樹脂や金属に対し所望の色の塗料にて塗装されているため、長期間の使用により剥離する等、耐久性に問題点がある。また、構造材としてこれらパネルを用いる場合や開閉扉として使用する場合には、高い強度を備えたものが求められる。このような耐久性と高い強度との両立が要求される用途に適した黒色を呈するガラスとして、本出願人は特許文献1に記載のガラスを出願している。 Conventionally, metallic panels and black panels have been widely used for operation panels and open / close doors of AV and OA devices. Since these panels are coated with a paint of a desired color on a resin or metal, there are problems in durability such as peeling off after long-term use. Moreover, when using these panels as a structural material, or when using as an opening-and-closing door, what was provided with high intensity | strength is calculated | required. The present applicant has applied for the glass described in Patent Document 1 as a glass exhibiting a black color suitable for applications in which both durability and high strength are required.
 ところで、ガラスの強度を高める方法として、ガラス表面に圧縮応力層を形成させる手法が一般的に知られている。ガラス表面に圧縮応力層を形成させる手法としては、軟化点付近まで加熱したガラス板表面を風冷などにより急速に冷却する風冷強化法(物理強化法)と、ガラス転移点以下の温度でイオン交換によりガラス板表面のイオン半径が小さなアルカリ金属イオン(典型的にはLiイオン、Naイオン)をイオン半径のより大きいアルカリイオン(典型的にはLiイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)に交換する化学強化法が代表的である。 Incidentally, as a method for increasing the strength of glass, a method of forming a compressive stress layer on the glass surface is generally known. There are two methods for forming a compressive stress layer on the glass surface: a wind-cooling strengthening method (physical strengthening method) in which the glass plate surface heated to near the softening point is rapidly cooled by air cooling, etc., and ions at temperatures below the glass transition point. Alkali metal ions (typically Li ions and Na ions) having a small ionic radius on the glass plate surface by exchange are alkali ions (typically Na ions or K ions for Li ions). A typical chemical strengthening method is to exchange K ions for Na ions.
 前記ガラス表面に圧縮応力層を形成することにより得たガラスは、品質管理上、一定以上の強度を備えることを確認する目的で圧縮応力量を測定することが重要である。ガラスの圧縮応力量である表面圧縮応力(以下、CSということがある)および表面圧縮応力層深さ(以下、DOLということがある)を非破壊で測定する方法が提案され実用化されている(例えば、特許文献2)。この測定法は、ガラス表面に形成された圧縮応力層が圧縮応力層が存在しない他のガラス部分と屈折率が相違することで光導波路効果を示すことを利用したものである。 It is important to measure the amount of compressive stress for the purpose of confirming that the glass obtained by forming a compressive stress layer on the glass surface has a certain strength or more in terms of quality control. A nondestructive method for measuring surface compressive stress (hereinafter sometimes referred to as CS) and surface compressive stress layer depth (hereinafter also referred to as DOL), which is the amount of compressive stress of glass, has been proposed and put into practical use. (For example, patent document 2). This measurement method utilizes the fact that the compressive stress layer formed on the glass surface exhibits an optical waveguide effect due to the difference in refractive index from other glass portions where the compressive stress layer does not exist.
特開2011-084456号公報JP 2011-084456 A 特開昭53-136886号公報JP-A-53-136886
 しかしながら、非破壊でCSおよびDOLを測定する前記装置は、ガラスの表面層を伝播した光を射出させて観察するため、前述の黒色を呈するような可視域の透過率の低い着色ガラスは測定できないという問題が新たに確認された。この場合、曲げ強度やクラック・イニシエーション・ロード等の破壊を伴う強度測定試験や、複屈折を測定するための試料加工が必要であったり、化学強化ガラスにおいてはEPMA(Electron Probe Micro Analyzer)を用いてカリウムの拡散層深さを測定する等、非常に手間のかかる方法を用いる以外にガラスの圧縮応力量や強度を測定する方法はなく、また測定データの精度も低く信頼性に乏しい。本発明は、可視域の透過率の低い着色ガラスの表面応力を測定する装置、方法の提供を目的とする。 However, since the apparatus for measuring CS and DOL in a nondestructive manner emits light propagated through the surface layer of the glass and observes it, it cannot measure the above-described colored glass having a low visible transmittance such as black. The problem was newly confirmed. In this case, it is necessary to perform a strength measurement test with breakage such as bending strength, crack initiation, load, or sample processing for measuring birefringence, or use EPMA (Electron Probe Micro Analyzer) for chemically strengthened glass. There is no method for measuring the amount of compressive stress or strength of glass other than using a very time-consuming method such as measuring the depth of the diffusion layer of potassium, and the accuracy of the measurement data is low and the reliability is poor. An object of this invention is to provide the apparatus and method which measure the surface stress of the colored glass with the low transmittance | permeability of visible region.
 本発明は、光源と、強化ガラスの表面層内に前記光源からの光を入射させる光供給部材と、前記強化ガラスの表面層内を伝播した光を前記強化ガラスの外へ射出させる光取出し部材と、前記射出された光を前記強化ガラスと前記光取出し部材との境界面に対して平行および垂直に振動する二種の光成分に分離し輝線列もしくは暗線列として変換する光変換部材と、を備え、前記光変換部材へ入射される光は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光であることを特徴とするガラスの表面応力測定装置(以下、本発明のガラスの表面応力測定装置ということがある)を提供する。 The present invention provides a light source, a light supply member that causes light from the light source to enter the surface layer of the tempered glass, and a light extraction member that emits light propagated in the surface layer of the tempered glass to the outside of the tempered glass. A light conversion member that separates the emitted light into two types of light components that vibrate parallel and perpendicular to the boundary surface between the tempered glass and the light extraction member, and converts the light into a bright line row or a dark line row; And the light incident on the light conversion member is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm −1 or less. (Hereinafter, it may be called the surface stress measuring device of the glass of the present invention).
 また、本発明のガラスの表面応力測定装置であって、前記強化ガラスは、着色ガラスであることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記光源からの光は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光であることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記射出された光から前記強化ガラスの吸光係数が4.5mm-1以下の波長域の単色光を取り出すバンドパスフィルタもしくはモノクロメータを、前記光源と前記強化ガラスとの間、又は前記光取出し部材と前記光変換部材との間に備えることを特徴とする。 Moreover, it is a surface stress measuring apparatus of the glass of this invention, Comprising: The said tempered glass is colored glass, It is characterized by the above-mentioned. Further, in the glass surface stress measuring apparatus according to the present invention, the light from the light source is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm −1 or less. And Further, the glass surface stress measuring apparatus according to the present invention comprises a bandpass filter or a monochromator for extracting monochromatic light in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm −1 or less from the emitted light. It is provided between the light source and the tempered glass, or between the light extraction member and the light conversion member.
 また、本発明のガラスの表面応力測定装置であって、前記光源からの光は、700nm以上の波長域の単色光であることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記光源からの光は、2000nm以下の波長域の単色光であることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記光源は、発光ダイオードであることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記光源は、レーザーであることを特徴とする。 Further, in the glass surface stress measurement apparatus of the present invention, the light from the light source is monochromatic light in a wavelength region of 700 nm or more. In the glass surface stress measuring apparatus according to the present invention, the light from the light source is monochromatic light in a wavelength region of 2000 nm or less. In the glass surface stress measuring apparatus according to the present invention, the light source is a light emitting diode. In the glass surface stress measurement apparatus of the present invention, the light source is a laser.
 また、本発明のガラスの表面応力測定装置であって、前記強化ガラスは、波長550nm~650nmにおける吸光係数の最小値が1.7mm-1を超えることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記強化ガラスは、金属イオンを含有することにより着色されていることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記強化ガラスは、金属コロイドを析出することにより着色されていることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記強化ガラスは、結晶を析出することにより着色されていることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記強化ガラスは、化学強化されていることを特徴とする。 In the glass surface stress measuring apparatus according to the present invention, the tempered glass has a minimum value of an extinction coefficient at a wavelength of 550 nm to 650 nm exceeding 1.7 mm −1 . Moreover, it is the surface stress measuring apparatus of the glass of this invention, Comprising: The said tempered glass is colored by containing a metal ion, It is characterized by the above-mentioned. In the glass surface stress measuring apparatus according to the present invention, the tempered glass is colored by depositing a metal colloid. In the glass surface stress measuring apparatus of the present invention, the tempered glass is colored by precipitating crystals. In the glass surface stress measuring apparatus according to the present invention, the tempered glass is chemically strengthened.
 また、本発明のガラスの表面応力測定装置であって、前記光変換部材により変換された輝線列もしくは暗線列を撮像する撮像素子と、前記撮像素子で得られる画像から、前記輝線列もしくは暗線列を強調する画像処理装置をさらに備えることを特徴とする。また、本発明のガラスの表面応力測定装置であって、前記光変換部材で変換された前記輝線列もしくは暗線列に基づいて前記強化ガラスの表面応力を測定する測定手段を備え、前記測定手段は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光と略同一の波長における前記強化ガラスの光弾性定数を用いることを特徴とする。 In addition, the glass surface stress measurement apparatus according to the present invention is an image pickup device that picks up an image of a bright line row or dark line row converted by the light conversion member, and an image obtained by the image pickup device, and the bright line row or dark line row. And an image processing device for emphasizing the image. Further, the glass surface stress measuring apparatus according to the present invention comprises a measuring means for measuring the surface stress of the tempered glass based on the bright line array or dark line array converted by the light conversion member, the measuring means comprising: The photoelastic constant of the tempered glass at a wavelength substantially the same as that of monochromatic light having a central wavelength in a wavelength range of 4.5 mm −1 or less is used.
 本発明は、強化ガラスの表面応力を測定する方法であって、光源からの光を前記強化ガラスの表面層内に入射する工程と、前記光を前記強化ガラスの表面層内を伝播させる工程と、伝播後の光を外部に射出させる工程と、前記射出した光をガラス面に対して平行および垂直に振動する二種の光成分に分離する工程と、前記分離した二種の光成分をそれぞれ暗線列または輝線列に変換する工程と、前記暗線列または輝線列に基づいて前記強化ガラスの表面応力を測定する工程と、を有し、前記分離する工程で分離される光は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光であるガラスの表面応力測定方法(以下、本発明のガラスの表面応力測定方法ということがある)を提供する。 The present invention is a method for measuring the surface stress of a tempered glass, the step of entering light from a light source into the surface layer of the tempered glass, and the step of propagating the light in the surface layer of the tempered glass. The step of emitting the light after propagation to the outside, the step of separating the emitted light into two types of light components that vibrate parallel and perpendicular to the glass surface, and the two types of separated light components, respectively The step of converting into a dark line array or bright line array and the step of measuring the surface stress of the tempered glass based on the dark line array or bright line array, and the light separated in the separating step is the tempered glass A method for measuring the surface stress of glass that is monochromatic light having a central wavelength in a wavelength range of 4.5 mm −1 or less (hereinafter sometimes referred to as the method for measuring the surface stress of glass of the present invention) is provided.
 また、本発明のガラスの表面応力測定方法であって、前記強化ガラスは、着色されていることを特徴とする。また、本発明のガラスの表面応力測定方法であって、前記光源からの光は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光であることを特徴とする。また、本発明のガラスの表面応力測定方法であって、バンドパスフィルタもしくはモノクロメータを用いて取り出した前記強化ガラスの吸光係数が4.5mm-1以下の波長域の単色光を、前記強化ガラスの表面層内に入射することを特徴とする。 The glass surface stress measurement method of the present invention is characterized in that the tempered glass is colored. Further, in the glass surface stress measurement method of the present invention, the light from the light source is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm −1 or less. And The glass surface stress measurement method of the present invention is also characterized in that the tempered glass taken out by using a bandpass filter or a monochromator emits monochromatic light having a wavelength range of 4.5 mm −1 or less of the tempered glass. It enters into the surface layer of this.
 また、本発明のガラスの表面応力測定方法であって、バンドパスフィルタもしくはモノクロメータを用いて取り出した前記強化ガラスの吸光係数が4.5mm-1以下の波長域の単色光を、ガラス面に対して平行および垂直に振動する二種の光成分に分離することを特徴とする。また、本発明のガラスの表面応力測定方法であって、前記単色光は、700nm以上の波長域の単色光を用いることを特徴とする。また、本発明のガラスの表面応力測定方法であって、前記光源からの光は、2000nm以下の波長域の単色光であることを特徴とする。 The glass surface stress measurement method of the present invention is also characterized in that the tempered glass taken out using a bandpass filter or a monochromator is irradiated with monochromatic light having a wavelength range of 4.5 mm −1 or less on the glass surface. It is characterized by being separated into two types of light components that vibrate in parallel and perpendicularly. In the glass surface stress measurement method of the present invention, the monochromatic light is monochromatic light having a wavelength region of 700 nm or more. In the glass surface stress measurement method of the present invention, the light from the light source is monochromatic light in a wavelength region of 2000 nm or less.
 また、本発明のガラスの表面応力測定方法であって、前記強化ガラスは、波長550nm~650nmにおける吸光係数の最小値が1.7mm-1を超えることを特徴とする。また、本発明のガラスの表面応力測定方法であって、前記強化ガラスは、金属イオンを含有することにより着色されることを特徴とする。また、本発明のガラスの表面応力測定方法であって、前記強化ガラスは、金属コロイドを析出することにより着色されることを特徴とする。また、本発明のガラスの表面応力測定方法であって、前記強化ガラスは、結晶を析出することにより着色されることを特徴とする。 In the glass surface stress measurement method of the present invention, the tempered glass is characterized in that the minimum value of the extinction coefficient at a wavelength of 550 nm to 650 nm exceeds 1.7 mm −1 . In the glass surface stress measurement method of the present invention, the tempered glass is colored by containing metal ions. In the glass surface stress measurement method of the present invention, the tempered glass is colored by depositing a metal colloid. In the glass surface stress measurement method of the present invention, the tempered glass is colored by precipitating crystals.
 また、本発明のガラスの表面応力測定方法であって、前記強化ガラスは、化学強化されていることを特徴とする。また、本発明のガラスの表面応力測定方法であって、前記変換された輝線列もしくは暗線列を撮像する工程と、前記撮像により得られる画像から、前記輝線列もしくは前記暗線列を強調する画像処理を行う工程と、を有し、前記強調された前記輝線列もしくは前記暗線列にもとづいて強化ガラスの表面応力を測定することを特徴とする。また、本発明のガラスの表面応力測定方法であって、前記強化ガラスの表面応力を測定する工程は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光と略同一の波長における前記強化ガラスの光弾性定数を用いることを特徴とする。 The glass surface stress measurement method of the present invention is characterized in that the tempered glass is chemically strengthened. Further, the method for measuring the surface stress of the glass of the present invention, the step of imaging the converted bright line row or dark line row, and image processing for enhancing the bright line row or dark line row from the image obtained by the imaging. And measuring the surface stress of the tempered glass based on the emphasized bright line array or the dark line array. Further, in the glass surface stress measurement method of the present invention, the step of measuring the surface stress of the tempered glass includes monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm −1 or less. And using the photoelastic constant of the tempered glass at substantially the same wavelength.
 本発明によれば、可視域の透過率の低い着色された強化ガラスであっても、表面圧縮応力および表面圧縮応力層深さを非破壊的に測定することが可能である。 According to the present invention, it is possible to nondestructively measure the surface compressive stress and the surface compressive stress layer depth even with a colored tempered glass having a low transmittance in the visible region.
本発明におけるガラスの表面応力測定装置およびガラスの表面応力測定方法の第1の実施形態を示す概略図である。It is the schematic which shows 1st Embodiment of the surface stress measuring apparatus of the glass in this invention, and the surface stress measuring method of glass. 本発明におけるガラスの表面応力測定装置およびガラスの表面応力測定方法の第2の実施形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the surface stress measuring apparatus of the glass in this invention, and the surface stress measuring method of glass. 本発明におけるガラスの表面応力測定装置およびガラスの表面応力測定方法の第3の実施形態を示す概略図である。It is the schematic which shows 3rd Embodiment of the surface stress measuring apparatus of the glass in this invention, and the surface stress measuring method of glass. 本発明におけるガラスの表面応力測定装置が備える光変換部材の構成を示す概略図である。It is the schematic which shows the structure of the light conversion member with which the surface stress measuring apparatus of the glass in this invention is provided. 本発明におけるガラスの表面応力測定装置が備える画像処理装置の構成を示す概略図である。It is the schematic which shows the structure of the image processing apparatus with which the surface stress measuring apparatus of the glass in this invention is provided. 本発明におけるガラスの表面応力測定装置が備えるディスプレイに表示される干渉縞(輝線列もしくは暗線列)の模式図である。It is a schematic diagram of the interference fringe (bright line row or dark line row) displayed on the display provided in the surface stress measuring apparatus for glass in the present invention. 本発明における光弾性定数Kcの測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the photoelastic constant Kc in this invention. 実施例で用いた着色ガラスの吸光係数と波長との関係を示す図である。It is a figure which shows the relationship between the light absorption coefficient of the colored glass used in the Example, and a wavelength. 実施例の着色ガラスCの波長600nmにおける干渉縞の画像である。It is an image of the interference fringe in wavelength 600nm of the colored glass C of an Example. 実施例の着色ガラスDの波長600nmにおける干渉縞の画像である。It is an image of the interference fringe in wavelength 600nm of the colored glass D of an Example. 実施例の着色ガラスCの波長790nmにおける干渉縞の画像である。It is an image of the interference fringe in wavelength 790nm of the colored glass C of an Example. 実施例の着色ガラスDの波長790nmにおける干渉縞の画像である。It is an image of the interference fringe in wavelength 790nm of the colored glass D of an Example.
(第1の実施形態)
 図1に、本発明の第1の実施形態のガラスの表面応力測定装置10の概略図を示す。
(First embodiment)
In FIG. 1, the schematic of the surface stress measuring apparatus 10 of the glass of the 1st Embodiment of this invention is shown.
 被測定体である強化ガラスの表面に光を入射させる媒体(光供給部材)として、光学ガラス製のプリズムが強化ガラスの表面に光学的に接触した状態で載置される。同様に、強化ガラスの表面層を伝播した光を強化ガラスの外に射出させる媒体(光取出し部材)として、光学ガラス製のプリズムが強化ガラスの表面に光学的に接触した状態で載置される。強化ガラスの表面において光がこれらプリズムを介して光学的に入射および射出するため、これらプリズムの屈折率は強化ガラスの屈折率よりも大きいものが用いられる。光源は、光供給部材であるプリズムから強化ガラスの表面層に光を入射するように配置される。光変換部材は、強化ガラスの表面層を伝播した光が光取出し部材であるプリズムから射出する方向に配置される。光変換部材は、強化ガラスの表面層を伝播した光の射出方向に、その伝播光を強化ガラス表面と光供給部材であるプリズムとの間の境界面つまり射出面に対して平行および垂直に振動する2種の光成分に分離し、これら各成分をそれぞれ輝線列もしくは暗線列として変換する。そして、輝線列もしくは暗線列を干渉縞像として観察する手段を備える。これら装置構成を用い、強化ガラスの圧縮応力量(CS、DOL)を測定する。 A prism made of optical glass is placed in optical contact with the surface of the tempered glass as a medium (light supply member) that makes light incident on the surface of the tempered glass that is the object to be measured. Similarly, a prism made of optical glass is placed in a state of being in optical contact with the surface of the tempered glass as a medium (light extraction member) for emitting light propagating through the surface layer of the tempered glass to the outside of the tempered glass. . Since light optically enters and exits through the prisms on the surface of the tempered glass, those having a refractive index larger than that of the tempered glass are used. A light source is arrange | positioned so that light may inject into the surface layer of tempered glass from the prism which is a light supply member. The light conversion member is disposed in a direction in which light propagating through the surface layer of tempered glass is emitted from a prism that is a light extraction member. The light conversion member vibrates in the emission direction of light propagated through the surface layer of tempered glass, parallel and perpendicular to the boundary surface between the tempered glass surface and the prism that is the light supply member, that is, the emission surface. Are separated into two types of light components, and each of these components is converted into a bright line row or a dark line row, respectively. A means for observing the bright line array or the dark line array as an interference fringe image is provided. Using these apparatus configurations, the amount of compressive stress (CS, DOL) of the tempered glass is measured.
 化学強化もしくは風冷強化された強化ガラスは表面に圧縮応力層を備える。これら圧縮応力層は、圧縮応力層以外のガラス部分と比較し屈折率が高い。そして、これら屈折率は圧縮応力層の底から表面に向けて単調に増す。また、この圧縮応力層の複屈折も表面に向けて単調に絶対値を増す。従って、ガラス表面に垂直に振動する光とガラス表面に平行する光とのそれぞれに対する二つの深さ対屈折率曲線があって、異なる光導波路効果が生じ、これらによってできた干渉縞像を比較することにより、強化ガラスの表面圧縮応力、表面圧縮応力層深さを求めることができる。 Chemically strengthened or air-cooled tempered glass has a compressive stress layer on the surface. These compressive stress layers have a higher refractive index than glass portions other than the compressive stress layer. These refractive indexes increase monotonously from the bottom to the surface of the compressive stress layer. Further, the birefringence of the compressive stress layer also monotonously increases toward the surface. Therefore, there are two depth versus refractive index curves for light oscillating perpendicular to the glass surface and light parallel to the glass surface, resulting in different optical waveguide effects and comparing the resulting interference fringe images. Thus, the surface compressive stress and the surface compressive stress layer depth of the tempered glass can be obtained.
 そのため前述の光導波路効果を用いた表面応力測定装置10においては、ガラス表面に垂直に振動する光とガラス表面に平行に振動する光とによる輝線列もしくは暗線列からなる干渉縞像を得ることが必須である。 Therefore, in the surface stress measuring apparatus 10 using the optical waveguide effect described above, it is possible to obtain an interference fringe image composed of a bright line array or a dark line array by light oscillating perpendicularly to the glass surface and light oscillating parallel to the glass surface. It is essential.
 しかしながら、既存のガラスの表面応力測定装置においては、強化ガラスが着色されている場合、光源からの光が強化ガラスの表面層を伝播する際に着色成分である金属イオン等に吸収され、射出した光を用いて干渉縞像を認識し難いという問題があった。 However, in the existing glass surface stress measuring device, when the tempered glass is colored, when the light from the light source propagates through the surface layer of the tempered glass, it is absorbed by the metal ions or the like as the coloring component and emitted. There is a problem that it is difficult to recognize interference fringe images using light.
 これに対し、本発明の表面応力測定装置10では、光供給部材に入射する光源からの光の波長を、被測定体である強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光を用いることで、着色された強化ガラスであっても明瞭に干渉縞像を観察でき、よって強化ガラスのCSおよびDOLを非破壊で精度良く測定できる。 In contrast, in the surface stress measurement apparatus 10 of the present invention, the wavelength of light from the light source incident on the light supply member is centered in the wavelength region where the extinction coefficient of the tempered glass as the object to be measured is 4.5 mm −1 or less. By using monochromatic light having a wavelength, an interference fringe image can be clearly observed even with a colored tempered glass, and thus CS and DOL of the tempered glass can be accurately measured in a non-destructive manner.
 本発明における吸光係数の算出方法は、以下のとおりである。ガラス板の両面を鏡面研磨し、厚さtを測定する。このガラス板の分光透過率Tを測定する(例えば、日本分光株式会社製、紫外可視近赤外分光光度計V-570を用いる)。そして、吸光係数βをT=10-βtの関係式を用いて算出する。 The calculation method of the extinction coefficient in the present invention is as follows. Both surfaces of the glass plate are mirror-polished and the thickness t is measured. The spectral transmittance T of this glass plate is measured (for example, using a UV-visible near-infrared spectrophotometer V-570 manufactured by JASCO Corporation). Then, the extinction coefficient β is calculated using a relational expression of T = 10− βt .
 光源は、前述のとおり被測定体である強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光を射出できるものを用いることが好ましい。強化ガラスが着色されている場合、含有する金属イオンや金属コロイドの影響で入射した光が吸収されることで、射出した光が非常に微弱となるか、もしくは認識できないことがある。これに対し、光源を前述のようにすることで、強化ガラスでの光の吸収の影響を少なくし、よって精度のよい表面応力層の測定が可能となる。強化ガラスの吸光係数が4.5mm-1を超える波長の光を光源に用いると、前述の理由により射出した光が微弱となり干渉縞像を認識し難くなるため、本発明の光源としては好ましくない。また、強化ガラスの吸光係数が4mm-1以下の波長の光を光源に用いることが好ましく、強化ガラスの吸光係数が3mm-1以下の波長の光を光源に用いることがより好ましく、強化ガラスの吸光係数が2mm-1以下の波長の光を光源に用いることがさらに好ましい。 As described above, it is preferable to use a light source capable of emitting monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the to-be-measured object is 4.5 mm −1 or less. When the tempered glass is colored, the incident light is absorbed by the influence of the contained metal ions and metal colloids, so that the emitted light may be very weak or unrecognizable. On the other hand, by making the light source as described above, the influence of light absorption by the tempered glass is reduced, and therefore, the surface stress layer can be measured with high accuracy. If light having a wavelength of the tempered glass having an extinction coefficient exceeding 4.5 mm −1 is used as the light source, the emitted light becomes weak for the reasons described above and it is difficult to recognize the interference fringe image, which is not preferable as the light source of the present invention. . Further, it is preferable to use light having a wavelength extinction coefficient of 4 mm -1 or less tempered glass to the light source, the absorption coefficient of tempered glass that is more preferable to use light having a wavelength of 3 mm -1 or less as the light source, the tempered glass More preferably, light having an extinction coefficient of 2 mm −1 or less is used as the light source.
 光源は、光源自体が強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光を射出できるものであればよい。また、光源が単色光でなくとも、光源と強化ガラスとの間にバンドパスフィルタやモノクロメータ等の光を単色化する手段を用いることで、強化ガラスに入射する光源からの光を単色光としてもよい。また、光源が単色光であっても、光源からの光をより半値幅の狭い単色光とするために、バンドパスフィルタやモノクロメータ等の光を単色化する手段を用いてもよい。光源として半値幅の狭い単色光を用いることで、他の波長の影響を極力排除し、より鮮明な干渉縞像を得ることができる。 Any light source may be used as long as the light source itself can emit monochromatic light having a center wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm −1 or less. Moreover, even if the light source is not monochromatic light, the light from the light source incident on the tempered glass is converted into monochromatic light by using means for monochromatic light such as a bandpass filter or a monochromator between the light source and the tempered glass. Also good. Even if the light source is monochromatic light, means for monochromatic light such as a bandpass filter or a monochromator may be used in order to make the light from the light source a monochromatic light with a narrower half-value width. By using monochromatic light with a narrow half-value width as the light source, the influence of other wavelengths can be eliminated as much as possible, and a clearer interference fringe image can be obtained.
 光源からの光は、700nm以上の波長域の単色光を用いることが好ましい。これによれば、可視光をほぼ透過しない、例えば黒色を呈するガラスであっても、表面応力層のCSやDOLを精度よく測定することが可能となる。また、従来の表面応力測定装置や方法では、測定波長の関係で干渉縞像を認識できなかった可視光の一部を透過する着色ガラスであっても、測定が可能となる。なお、光源からの光は700nm以上の波長域の単色光であれば、使用が可能であるが、赤外域の波長においてより短い波長を用いることが好ましい。理由として、長い波長の光を光源に用いるとガラスの屈折率変動に対する変化が鈍くなり、得られる干渉縞の本数が少なくDOLの測定精度が落ちる傾向がある。また、撮像素子の感度は、赤外域において波長が短いほど感度が良好であり、装置の精度を高めることができる。さらに、バンドパスフィルタを用いる場合、波長が短い方が半値幅の狭いフィルタを得ることが可能であり、装置の精度を高めることができる。以上から、光源からの光は、好ましくは2000nm以下の波長域の単色光であり、より好ましくは1500nm以下の波長域の単色光である。最も好ましくは950nm以下の波長域の単色光である。 The light from the light source is preferably monochromatic light having a wavelength range of 700 nm or more. This makes it possible to accurately measure the CS and DOL of the surface stress layer even with glass that does not substantially transmit visible light, such as black. In addition, in the conventional surface stress measuring apparatus and method, even a colored glass that transmits a part of visible light for which an interference fringe image could not be recognized due to the measurement wavelength can be measured. The light from the light source can be used as long as it is monochromatic light in a wavelength region of 700 nm or more, but it is preferable to use a shorter wavelength in the infrared region. As a reason, when light having a long wavelength is used as a light source, the change with respect to the refractive index fluctuation of the glass becomes dull, and the number of interference fringes obtained is small, and the DOL measurement accuracy tends to be lowered. Further, the sensitivity of the image sensor is better as the wavelength is shorter in the infrared region, and the accuracy of the apparatus can be increased. Furthermore, when a bandpass filter is used, it is possible to obtain a filter having a narrower half-value width when the wavelength is shorter, and the accuracy of the apparatus can be improved. From the above, the light from the light source is preferably monochromatic light having a wavelength range of 2000 nm or less, more preferably monochromatic light having a wavelength range of 1500 nm or less. Most preferred is monochromatic light having a wavelength range of 950 nm or less.
 光源は、所望の単色光を得ることができればどのような種類のものでも使用可能であるが、例えば発光ダイオードやレーザーを好適に用いることが可能である。発光ダイオードは、中心波長が様々なものが入手可能であるため、強化ガラスの吸光係数特性に応じた光源を適宜選択できる。また、光源の寿命が長いため、交換頻度を低くすることが可能である。 As the light source, any kind of light source can be used as long as it can obtain a desired monochromatic light. For example, a light emitting diode or a laser can be preferably used. Since light emitting diodes having various center wavelengths are available, a light source corresponding to the extinction coefficient characteristic of the tempered glass can be appropriately selected. Further, since the life of the light source is long, the replacement frequency can be lowered.
 レーザーは、出力が高く、半値幅の狭く、直線偏光の単色光を得ることができるため、バンドパスフィルタ等を用いなくても測定の精度を高めることが可能である。また、バンドパスフィルタの一種であるレーザーラインフィルタをレーザーと併用することで、非常に半値幅の狭い単色光とすることも可能である。その他、バンドパスフィルタやモノクロメータ等の光を単色化する手段を用いる場合は、キセノンランプ、メタルハライドランプ、水銀灯等の光源を用いることが可能である。 Laser has high output, narrow half width, and can obtain linearly polarized monochromatic light. Therefore, it is possible to improve measurement accuracy without using a bandpass filter or the like. Further, by using a laser line filter, which is a kind of bandpass filter, in combination with a laser, it is possible to obtain monochromatic light with a very narrow half-value width. In addition, when using means for monochromatic light, such as a bandpass filter or a monochromator, a light source such as a xenon lamp, a metal halide lamp, or a mercury lamp can be used.
 光供給部材、光取出し部材は、強化ガラスよりも屈折率の高い光学ガラス製のプリズムをそれぞれ用いることができる。また、光供給部材用プリズムと光取出し部材プリズムとは、図1のように別体であってもよいし、一体構造としてもよい。また、これらプリズムの間に遮光手段を挟持した上で、一体化してもよい。遮光手段は、周囲の不要な光が光取出し部材であるプリズムに入射することを排除する目的で用いる。遮光手段は、金属等からなる遮蔽板や金属薄膜からなる遮蔽膜を用いることができる。また、強化ガラスの表面と各プリズムとを密着させただけでは、光がうまく入射しない、もしくは射出しない場合には、各プリズムと屈折率が近似する液体を強化ガラスと各プリズムとの間に介在させて光学的に接触させてもよい。 The light supply member and the light extraction member can each be a prism made of optical glass having a refractive index higher than that of tempered glass. Further, the light supply member prism and the light extraction member prism may be separate as shown in FIG. 1 or may be integrated. Further, the light shielding means may be sandwiched between these prisms and integrated. The light shielding means is used for the purpose of eliminating unnecessary ambient light from entering a prism that is a light extraction member. As the light shielding means, a shielding plate made of metal or the like, or a shielding film made of a metal thin film can be used. If the surface of the tempered glass and each prism are in close contact, and light does not enter or exit well, a liquid whose refractive index is similar to that of each prism is interposed between the tempered glass and each prism. And may be optically contacted.
 光変換部材は、光源からの光が強化ガラスの表面層に入射され、表面層を伝播し、表面層から射出した光を観測するものである。強化ガラスから射出した光は、表面層の表面圧縮応力によって、振動面がガラス表面に沿う方向の光と、それに垂直な方向の光との間に複屈折を生じる。この両者は屈折率こう配は同じであるが、実効屈折率が異なるので屈折角が異なる。したがって、射出する光の入射面に平行な方向に振動する光による暗線と垂直な方向に振動する光による暗線の両者を観察することで、CSやDOLを測定できる。射出した光から、これら2種の光成分を取り出す方法としては、単一もしくは複数の偏光板を用いる。また、得られた暗線列からなる干渉縞像を観察する手段としては、接眼微測計を用いて手動で目盛を読み取る方法、焦点面にCCDやCMOS等の固体撮像素子を配置し、得られた干渉縞像を画像解析することでCSやDOLを算出する方法等を用いることができる。また、射出した光から特定波長の単色光のみを取り出すことを目的として、偏光板の前にバンドパスフィルタやモノクロメータ等を配置してもよい。なお、光変換部材の構成については、上記形態に限らず、公知のものを用いることが可能である。 The light conversion member is for observing light emitted from the surface layer by the light from the light source being incident on the surface layer of the tempered glass, propagating through the surface layer. The light emitted from the tempered glass causes birefringence between the light whose direction of vibration is along the glass surface and the light perpendicular to the surface due to the surface compressive stress of the surface layer. Both have the same refractive index gradient, but have different refractive angles because of different effective refractive indexes. Therefore, it is possible to measure CS and DOL by observing both the dark line caused by the light oscillating in the direction perpendicular to the dark line caused by the light oscillating in the direction parallel to the incident surface of the emitted light. As a method of extracting these two kinds of light components from the emitted light, a single or a plurality of polarizing plates are used. Moreover, as a means of observing the interference fringe image consisting of the obtained dark line array, a method of manually reading the scale using an eyepiece micrometer, a solid-state image pickup device such as a CCD or CMOS arranged on the focal plane is obtained. A method of calculating CS or DOL by analyzing the interference fringe image can be used. Further, for the purpose of extracting only monochromatic light having a specific wavelength from the emitted light, a band pass filter, a monochromator, or the like may be disposed in front of the polarizing plate. In addition, about a structure of a light conversion member, not only the said form but a well-known thing can be used.
(第2の実施形態)
 次に、本発明の第2の実施形態のガラスの表面応力測定装置20およびガラスの表面応力測定方法について説明する。図2に、本発明の第2の実施形態のガラスの表面応力測定装置20の概略図を示す。
(Second Embodiment)
Next, the glass surface stress measuring apparatus 20 and the glass surface stress measuring method according to the second embodiment of the present invention will be described. In FIG. 2, the schematic of the surface stress measuring apparatus 20 of the glass of the 2nd Embodiment of this invention is shown.
 第2の実施形態のガラスの表面応力測定装置20は、光取出し部材を射出した光から測定対象である強化ガラスの吸光係数が4.5mm-1以下の波長域の単色光を取り出すバンドパスフィルタもしくはモノクロメータを光取出し部材と光変換部材との間に備えること、および光源からの光は単色光に限定されない以外は、図1を参照して説明した第1の実施形態のガラスの表面応力測定装置10と構成が同じであるため説明を省略する。 The glass surface stress measuring device 20 of the second embodiment is a band-pass filter that extracts monochromatic light in a wavelength region where the extinction coefficient of the tempered glass to be measured is 4.5 mm −1 or less from the light emitted from the light extraction member. Alternatively, the surface stress of the glass according to the first embodiment described with reference to FIG. 1 except that a monochromator is provided between the light extraction member and the light conversion member, and light from the light source is not limited to monochromatic light. Since the configuration is the same as that of the measuring apparatus 10, the description thereof is omitted.
 可視光をほぼ透過しない、例えば黒色を呈するガラスを測定する場合、ガラスを透過することができる波長域の光を測定に用いるため、光量の大きな光源を使用することが好ましい。その際、光源自体が単色光を発するものでなくとも、光取出し部材と光変換部材との間に特定波長の単色光を取り出すバンドパスフィルタもしくはモノクロメータを備えることで、一定以上の光量の単色光を得ることができ、これにより鮮明な干渉縞像を得ることができる。また、光変換部材の直前で測定と関係ない波長の光をカットすることで、測定と関係ない波長の光に起因するノイズを排除し、鮮明な干渉縞像を得ることができる。バンドパスフィルタもしくはモノクロメータで取り出す単色光は、測定対象である強化ガラスの吸光係数が4.5mm-1以下の波長域の光である必要がある。強化ガラスの吸光係数が4.5mm-1を超える波長域の単色光を用いると、光変換部材に入る光が微弱となり干渉縞像を認識し難くなるため好ましくない。光量の大きい光源としては、キセノンランプ、メタルハライドランプ、水銀灯等の公知の光源を用いることが可能である。また、光取出し部材で射出した光から所望の波長以外の影響を排除するため、バンドパスフィルタもしくはモノクロメータは、半値幅の極力狭い単色光を取り出せるものが好ましい。 When measuring glass that hardly transmits visible light, for example, black, it is preferable to use a light source with a large amount of light in order to use light in a wavelength region that can pass through the glass for measurement. At that time, even if the light source itself does not emit monochromatic light, it is equipped with a band-pass filter or monochromator that takes out monochromatic light of a specific wavelength between the light extraction member and the light conversion member, so that a monochromatic light with a certain amount or more is obtained. Light can be obtained, whereby a clear interference fringe image can be obtained. Further, by cutting light having a wavelength that is not related to the measurement just before the light conversion member, noise caused by light having a wavelength that is not related to the measurement is eliminated, and a clear interference fringe image can be obtained. The monochromatic light extracted by the bandpass filter or the monochromator needs to be light in a wavelength region where the extinction coefficient of the tempered glass to be measured is 4.5 mm −1 or less. Use of monochromatic light having a wavelength range in which the extinction coefficient of the tempered glass exceeds 4.5 mm −1 is not preferable because light entering the light conversion member becomes weak and makes it difficult to recognize an interference fringe image. As the light source having a large light amount, a known light source such as a xenon lamp, a metal halide lamp, or a mercury lamp can be used. Further, in order to eliminate the influence other than the desired wavelength from the light emitted from the light extraction member, it is preferable that the bandpass filter or the monochromator can extract monochromatic light having a half-value width as narrow as possible.
 バンドパスフィルタもしくはモノクロメータを用いて取り出す単色光は、700nm以上の波長域の単色光を用いることが好ましい。これによれば、可視光をほぼ透過しない、例えば黒色を呈するガラスであっても、表面応力層のCSやDOLを精度よく測定することが可能となる。また、従来の表面応力測定装置や方法では、測定波長の関係で干渉縞像を認識できなかった可視光の一部を透過する着色ガラスであっても、測定が可能となる。なお、バンドパスフィルタもしくはモノクロメータを用いて取り出す単色光は700nm以上の波長域の単色光であれば、使用が可能であるが、赤外域の波長においてより短い波長を用いることが好ましい。理由として、長い波長の光を光源に用いるとガラスの屈折率変動に対する変化が鈍くなり、得られる干渉縞の本数が少なくDOLの測定精度が落ちる傾向がある。また、撮像素子の感度は、赤外域において波長が短いほど感度が良好であり、装置の精度を高めることができる。さらに、バンドパスフィルタを用いる場合、波長が短い方が半値幅の狭いフィルタを得ることが可能であり、装置の精度を高めることができる。以上から、単色光は、好ましくは2000nm以下の波長域の単色光であり、より好ましくは1500nm以下の波長域の単色光である。最も好ましくは950nm以下の波長域の単色光である。 As the monochromatic light extracted using a bandpass filter or a monochromator, monochromatic light having a wavelength range of 700 nm or more is preferably used. This makes it possible to accurately measure the CS and DOL of the surface stress layer even with glass that does not substantially transmit visible light, such as black. In addition, in the conventional surface stress measuring apparatus and method, even a colored glass that transmits a part of visible light for which an interference fringe image could not be recognized due to the measurement wavelength can be measured. Note that monochromatic light extracted using a band-pass filter or a monochromator can be used as long as it is monochromatic light having a wavelength region of 700 nm or more, but it is preferable to use a shorter wavelength in the infrared region. As a reason, when light having a long wavelength is used as a light source, the change with respect to the refractive index fluctuation of the glass becomes dull, and the number of interference fringes obtained is small, and the DOL measurement accuracy tends to be lowered. Further, the sensitivity of the image sensor is better as the wavelength is shorter in the infrared region, and the accuracy of the apparatus can be increased. Furthermore, when a bandpass filter is used, it is possible to obtain a filter having a narrower half-value width when the wavelength is shorter, and the accuracy of the apparatus can be improved. From the above, the monochromatic light is preferably monochromatic light having a wavelength range of 2000 nm or less, and more preferably monochromatic light having a wavelength range of 1500 nm or less. Most preferred is monochromatic light having a wavelength range of 950 nm or less.
(第3の実施形態)
 図3は、本発明の第3の実施形態のガラスの表面応力測定装置30の概略図である。ここでは、本発明の第3の実施形態のガラスの表面応力測定装置30およびガラスの表面応力測定方法について説明する。着色ガラスでは、従来の透明なガラスに比べて、光の透過率が低くなるため、光変換部材で得られる輝線列もしくは暗線列の境界がぼけてしまい、正確な表面応力量(CS、DOL)を算出できない虞がある。例えば、表面圧縮応力深さ(DOL)は、深さ方向の最深部から反射した光にて形成された干渉縞にて特定する。しかしながら、最深部から反射した光はガラス中を伝播する光路長が長いため、光(輝度)の減衰が大きくなり干渉縞として明確に認識し難い。そこで、この第3の実施形態では、得られた輝線列もしくは暗線列の画像を画像処理し、輝線列もしくは暗線列を強調することにより、より正確な表面応力量(CS、DOL)を算出するようにしている。以下、図3を参照して、第3の実施形態のガラスの表面応力測定装置30の構成について説明するが、図1,図2を参照して説明した第1,2の実施形態のガラスの表面応力測定装置10と同じ構成については、同一の符号を付して重複した説明を省略する。
(Third embodiment)
FIG. 3 is a schematic view of a glass surface stress measuring apparatus 30 according to a third embodiment of the present invention. Here, the glass surface stress measuring device 30 and the glass surface stress measuring method of the third embodiment of the present invention will be described. Colored glass has lower light transmittance than conventional transparent glass, so the boundary between bright line or dark line array obtained by the light conversion member is blurred, and accurate surface stress (CS, DOL) May not be calculated. For example, the surface compressive stress depth (DOL) is specified by interference fringes formed by light reflected from the deepest portion in the depth direction. However, since the light reflected from the deepest part has a long optical path length propagating in the glass, the attenuation of light (luminance) becomes large and it is difficult to clearly recognize it as an interference fringe. Therefore, in the third embodiment, the obtained bright line array or dark line array image is subjected to image processing, and the bright line array or dark line array is emphasized to calculate a more accurate surface stress amount (CS, DOL). I am doing so. Hereinafter, the configuration of the glass surface stress measuring apparatus 30 according to the third embodiment will be described with reference to FIG. 3, but the glass according to the first and second embodiments described with reference to FIGS. About the same structure as the surface stress measuring apparatus 10, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
(ガラスの表面応力測定装置30の構成)
 第3の実施形態のガラスの表面応力測定装置30は、光源2と、バンドパスフィルタ3と、光供給部材4と、光取出し部材5と、光変換部材6Aと、画像処理装置11とを備える。
(Configuration of Glass Surface Stress Measuring Device 30)
The glass surface stress measurement device 30 according to the third embodiment includes a light source 2, a bandpass filter 3, a light supply member 4, a light extraction member 5, a light conversion member 6 </ b> A, and an image processing device 11. .
 図4は、ガラスの表面応力測定装置30が備える光変換部材6Aの構成を示す概略図である。光変換部材6Aは、レンズ6aと、偏光板6bと、撮像素子6cと、筐体6dとを備える。レンズ6aは、光取出し部材5から射出される光を収束させる。偏光板6bは、光取出し部材5から射出される光から強化ガラス1と光取出し部材5との境界面に対して平行及び垂直に振動する二種の光成分を分離する。偏光板6bを通過した光は、輝線列もしくは暗線列として認識される。分離した光成分を通過させる場合は輝線列として認識され、分離した光成分以外の光成分を通過させる場合は暗線列として認識される。なお、偏光板6bには、IR(赤外線)偏光板を用いることが好ましい。 FIG. 4 is a schematic diagram showing the configuration of the light conversion member 6A provided in the glass surface stress measurement device 30. As shown in FIG. The light conversion member 6A includes a lens 6a, a polarizing plate 6b, an image sensor 6c, and a housing 6d. The lens 6 a converges the light emitted from the light extraction member 5. The polarizing plate 6 b separates two types of light components that vibrate in parallel and perpendicular to the boundary surface between the tempered glass 1 and the light extraction member 5 from the light emitted from the light extraction member 5. The light that has passed through the polarizing plate 6b is recognized as a bright line array or a dark line array. When the separated light component is passed, it is recognized as a bright line row, and when the light component other than the separated light component is passed, it is recognized as a dark line row. Note that an IR (infrared) polarizing plate is preferably used for the polarizing plate 6b.
 撮像素子6cは、輝線列もしくは暗線列を干渉縞像として観察するためのイメージセンサ(例えば、CCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ)である。撮像素子6cは、受光した光を光電変換して、画像を構成する複数の画素毎の輝度値をデジタル画像データとして画像処理装置11に出力する。 The imaging element 6c is an image sensor (for example, a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor) for observing a bright line array or a dark line array as an interference fringe image. The image sensor 6c photoelectrically converts the received light and outputs the luminance value for each of the plurality of pixels constituting the image to the image processing apparatus 11 as digital image data.
 図5は、ガラスの表面応力測定装置30が備える画像処理装置11の構成を示す概略図である。画像処理装置11は、画像補正部11aと、強調部11bと、D/Aコンバータ11cと、ディスプレイ11dとを備える。 FIG. 5 is a schematic diagram showing the configuration of the image processing apparatus 11 provided in the glass surface stress measurement apparatus 30. The image processing apparatus 11 includes an image correction unit 11a, an enhancement unit 11b, a D / A converter 11c, and a display 11d.
 画像補正部11aは、撮像素子6cから出力されるデジタル画像データに対して、ホワイトバランス調整及びγ補正を行う。 The image correction unit 11a performs white balance adjustment and γ correction on the digital image data output from the image sensor 6c.
 強調部11bは、補正後のデジタル画像データのコントラストを強調して、輝線列もしくは暗線列を強調する。輝線列もしくは暗線列のコントラストを強調する方法には、例えば、以下の方法を採用することができる。なお、以下の方法は、撮像装置6cで得られた干渉縞像の全体に適用してもよいし、光の減衰の大きい特定の画像エリアのみに適用してもよい。例えば、表面圧縮応力深さの最深部を特定するため、最深部周辺に該当する画像エリアのみを強調する画像処理を行ってもよい。 The emphasis unit 11b emphasizes the contrast of the digital image data after correction, and emphasizes the bright line row or the dark line row. For example, the following method can be adopted as a method for enhancing the contrast of the bright line array or the dark line array. Note that the following method may be applied to the entire interference fringe image obtained by the imaging device 6c, or may be applied only to a specific image area where light attenuation is large. For example, in order to specify the deepest part of the surface compressive stress depth, image processing that emphasizes only the image area corresponding to the periphery of the deepest part may be performed.
(第1の方法)
 第1の方法では、画像を構成する各画素の輝度値を、予め記憶されている閾値と比較して二値化することにより、輝線列もしくは暗線列を強調する。例えば、輝度値が0(最小輝度:黒)~255(最大輝度:白)に設定されている場合、閾値(例えば、127)を超える輝度値を持つ画素の輝度値を255とし、閾値(例えば、127)以下の輝度値を持つ画素の輝度値を0とすることで二値化することができる。
(First method)
In the first method, the bright line row or the dark line row is emphasized by binarizing the luminance value of each pixel constituting the image with a threshold value stored in advance. For example, when the luminance value is set from 0 (minimum luminance: black) to 255 (maximum luminance: white), the luminance value of a pixel having a luminance value exceeding the threshold value (for example, 127) is set to 255, and the threshold value (for example, 127) It can be binarized by setting the luminance value of a pixel having a luminance value equal to or less than 0 to 0.
(第2の方法)
 第2の方法では、輪郭(エッジ)を強調することにより輝線列もしくは暗線列を強調する。この輪郭強調では、既存のエッジ強調フィルタ(例えば、シャープネスフィルタ)を用いればよい。
(Second method)
In the second method, the bright line row or the dark line row is emphasized by enhancing the outline (edge). In this edge enhancement, an existing edge enhancement filter (for example, a sharpness filter) may be used.
 D/Aコンバータ11cは、輝線列もしくは暗線列が強調されたデジタル画像データを、ディスプレイ11dで表示可能なアナログ画像データに変換する。ディスプレイ11dは、例えば、液晶ディスプレイやCRT(Cathode Ray Tube))であり、D/Aコンバータ11cから出力されるアナログ画像データに対応する画像を画面に表示する。 The D / A converter 11c converts the digital image data in which the bright line row or dark line row is emphasized into analog image data that can be displayed on the display 11d. The display 11d is, for example, a liquid crystal display or a CRT (Cathode Ray Tube), and displays an image corresponding to the analog image data output from the D / A converter 11c on the screen.
(CS及びDOLの算出)
 図6は、ディスプレイ11dに表示される輝線列もしくは暗線列の模式図である。なお、図6の左側の輝線列もしくは暗線列が、強化ガラス1と光取出し部材5との境界面に対して垂直に振動する光成分の輝線列もしくは暗線列である。また、図6の右側の輝線列もしくは暗線列が、強化ガラス1と光取出し部材5との境界面に対して平行に振動する光成分の輝線列もしくは暗線列である。
(Calculation of CS and DOL)
FIG. 6 is a schematic diagram of bright line rows or dark line rows displayed on the display 11d. Note that the bright line row or dark line row on the left side of FIG. 6 is the bright line row or dark line row of the light component that vibrates perpendicularly to the boundary surface between the tempered glass 1 and the light extraction member 5. Further, the bright line row or dark line row on the right side of FIG. 6 is the bright line row or dark line row of the light component that vibrates parallel to the boundary surface between the tempered glass 1 and the light extraction member 5.
 ディスプレイ11dに表示される干渉縞からは、表面圧縮応力(CS)及び表面圧縮応力層深さ(DOL)を算出することができる。具体的には、光変換部材6Aにより分離された強化ガラス1と光取出し部材5との境界面に対して平行および垂直に振動する二種の光成分の輝線列もしくは暗線列との距離差Δt(図6参照)から表面圧縮応力(CS)を算出することができる。また、輝線列もしくは暗線列の数から表面圧縮応力層深さ(DOL)を算出することができる。 From the interference fringes displayed on the display 11d, the surface compressive stress (CS) and the surface compressive stress layer depth (DOL) can be calculated. Specifically, the distance difference Δt between the bright line array or the dark line array of two types of light components that vibrate parallel and perpendicular to the boundary surface between the tempered glass 1 and the light extraction member 5 separated by the light conversion member 6A. The surface compressive stress (CS) can be calculated from (see FIG. 6). Further, the surface compressive stress layer depth (DOL) can be calculated from the number of bright line rows or dark line rows.
 なお、表面圧縮応力(CS)及び表面圧縮応力層深さ(DOL)の算出には、光弾性定数Kcを用いるが、この光弾性定数Kcは、実際に、強化ガラスに入射する光源と略同じ波長における前記強化ガラスの光弾性定数であることが好ましい。すなわち、光変換部材に入射される強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光と略同一の波長における前記強化ガラスの光弾性定数である。これは、使用する波長によって得られる光弾性定数が異なるためである。なお、ここでいう略同一の波長とは、同一の波長を中心として数nm~数十nmの範囲内にある波長のこという。 In addition, although the photoelastic constant Kc is used for the calculation of the surface compressive stress (CS) and the surface compressive stress layer depth (DOL), this photoelastic constant Kc is actually substantially the same as the light source incident on the tempered glass. The photoelastic constant of the tempered glass at a wavelength is preferred. That is, it is the photoelastic constant of the tempered glass at substantially the same wavelength as the monochromatic light having the central wavelength in the wavelength region where the extinction coefficient of the tempered glass incident on the light conversion member is 4.5 mm −1 or less. This is because the photoelastic constant obtained depends on the wavelength used. Here, the substantially same wavelength means a wavelength within a range of several nm to several tens of nm centering on the same wavelength.
(光弾性定数Kcの測定方法)
 ここで、光弾性定数Kcとは、応力Fと複屈折による光路差δとの関係を表す定数であり、ガラスの厚さをdとすると、以下の(1)式の関係を満たす。
δ=Kc・d・F・・・(1)
(Measuring method of photoelastic constant Kc)
Here, the photoelastic constant Kc is a constant representing the relationship between the stress F and the optical path difference δ due to birefringence, and satisfies the relationship of the following equation (1), where d is the thickness of the glass.
δ = Kc · d · F (1)
 つまり、強化ガラスの光弾性定数Kcを測定しようとした場合、強化ガラスに応力を加えて光弾性定数Kcを測定する必要がある。しかし、本実施形態のように、表面圧縮応力(CS)及び表面圧縮応力層深さ(DOL)の測定対象である強化ガラスが着色ガラスである場合、強化ガラスが厚すぎると、強化ガラスを通過する光の量が十分ではなく光弾性定数Kcを測定できない虞や、正確な光弾性定数Kcの値を得ることができない虞がある。一方、強化ガラスが薄いと、強化ガラスが印加される応力に耐えきれず、破損する虞がある。 That is, when attempting to measure the photoelastic constant Kc of the tempered glass, it is necessary to measure the photoelastic constant Kc by applying stress to the tempered glass. However, like this embodiment, when the tempered glass which is a measuring object of the surface compressive stress (CS) and the surface compressive stress layer depth (DOL) is a colored glass, if the tempered glass is too thick, it passes through the tempered glass. There is a possibility that the amount of light to be performed is not sufficient and the photoelastic constant Kc cannot be measured, or an accurate value of the photoelastic constant Kc cannot be obtained. On the other hand, if the tempered glass is thin, the tempered glass cannot withstand the applied stress and may be damaged.
 図7は、本発明における光弾性定数Kcの測定方法を説明するための図である。以下、図7を参照して本実施形態における光弾性定数Kcの測定方法について説明する。なお、ここでは、光弾性定数Kcである強化ガラス1に対して4点から力Fを加えて曲げ応力を与える4点曲げ法に例に、光弾性定数Kcの測定方法について説明する。 FIG. 7 is a diagram for explaining a method of measuring the photoelastic constant Kc in the present invention. Hereinafter, a method for measuring the photoelastic constant Kc in the present embodiment will be described with reference to FIG. Here, a method for measuring the photoelastic constant Kc will be described by taking as an example a four-point bending method in which force F is applied from four points to the tempered glass 1 having the photoelastic constant Kc to apply a bending stress.
 光源101からは、強化ガラス1の吸光係数が4.5mm-1以下の波長域に中心波長を有し、700nm以上2000nm以下の波長域の単色光、より好ましくは、700nm以上1500nm以下の波長域の単色光が射出される。なお、光源101の単色光の波長は、ガラスの表面応力測定装置の光変換部材に入射される光の波長と略同一である。 From the light source 101, the tempered glass 1 has a central wavelength in a wavelength region where the extinction coefficient is 4.5 mm −1 or less, and monochromatic light in a wavelength region of 700 nm to 2000 nm, more preferably 700 nm to 1500 nm. Monochromatic light is emitted. The wavelength of the monochromatic light of the light source 101 is substantially the same as the wavelength of the light incident on the light conversion member of the glass surface stress measurement device.
 偏光板102,104は、光弾性定数Kcの測定対象である強化ガラス1及びバビネ補正板103を挟み、互いに直交、つまり位相が90度異なるように配置されている。偏光板102は、光源101から射出される光のうち特定の方向に偏光した光成分のみを通過させる。また、偏光板104は、強化ガラス1を透過した光のうち、偏光板102の偏光方向と直交する方向に偏光した光成分のみを通過させる。バビネ補正板103は、水晶から構成される補償板である。フォトディテクタ105は、偏光板104を通過した光を受光する。なお、力Fは、ローダー等の負荷印加機構(不図示)により印加される。 The polarizing plates 102 and 104 are arranged so that they are orthogonal to each other, that is, have a phase difference of 90 degrees, with the tempered glass 1 and the Babinet correction plate 103 that are the objects of measurement of the photoelastic constant Kc interposed therebetween. The polarizing plate 102 allows only the light component polarized in a specific direction out of the light emitted from the light source 101. Further, the polarizing plate 104 allows only the light component polarized in the direction orthogonal to the polarizing direction of the polarizing plate 102 among the light transmitted through the tempered glass 1 to pass therethrough. The Babinet correction plate 103 is a compensation plate made of quartz. The photodetector 105 receives the light that has passed through the polarizing plate 104. The force F is applied by a load application mechanism (not shown) such as a loader.
 図7に示すように、本発明では、強化ガラス1の厚みを、光源101からの光が透過する程度の厚みとし、負荷の印可方向を強化ガラス1の厚さ方向ではなく、強化ガラス1が厚い側面から力Fを印可している。このため、強化ガラスを通過する光の量が十分ではなく光弾性定数Kcを測定できない虞や、正確な光弾性定数Kcの値を得ることができない虞を抑制することができる。また、強化ガラス1が印加される負荷に耐えきれず、破損する虞を抑制することができる。 As shown in FIG. 7, in the present invention, the thickness of the tempered glass 1 is set to a thickness that allows light from the light source 101 to pass therethrough, and the load application direction is not the thickness direction of the tempered glass 1, but the tempered glass 1 The force F is applied from the thick side. For this reason, it is possible to suppress the possibility that the amount of light passing through the tempered glass is not sufficient and the photoelastic constant Kc cannot be measured and that the accurate value of the photoelastic constant Kc cannot be obtained. Further, the tempered glass 1 cannot withstand the load to which it is applied and can be prevented from being damaged.
 以上のように、本発明では、画像処理を行い、輝線列もしくは暗線列を強調しているので、強化ガラス1の表面応力量(CS、DOL)をより正確に測定することができる。また、表面圧縮応力(CS)及び表面圧縮応力層深さ(DOL)を算出する際に使用する光弾性定数Kcの測定に、実際に、強化ガラス1の表面応力測定装置の光変換部材に入射される光と略同一の波長の光、すなわち、強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有し、700nm以上2000nm以下の波長域の単色光を用いている。このため、強化ガラス1の表面応力量(CS、DOL)をさらに正確に測定することができる。なお、光弾性定数Kcの測定に用いる光は、700nm以上2000nm以下の波長域の単色光を用いることがより好ましい。 As described above, in the present invention, image processing is performed and the bright line array or dark line array is emphasized, so that the surface stress amount (CS, DOL) of the tempered glass 1 can be measured more accurately. In addition, in measurement of the photoelastic constant Kc used when calculating the surface compressive stress (CS) and the surface compressive stress layer depth (DOL), the light is actually incident on the light conversion member of the surface stress measuring device of the tempered glass 1. Light having substantially the same wavelength as the light to be emitted, that is, monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of tempered glass is 4.5 mm −1 or less and having a wavelength region of 700 nm to 2000 nm. For this reason, the surface stress amount (CS, DOL) of the tempered glass 1 can be measured more accurately. The light used for measuring the photoelastic constant Kc is more preferably monochromatic light having a wavelength range of 700 nm to 2000 nm.
 本発明は、ガラス自体が着色された強化ガラスの表面応力を測定することを目的としている。着色された強化ガラスとして、以下の形態が挙げられる。 The object of the present invention is to measure the surface stress of tempered glass in which the glass itself is colored. Examples of the colored tempered glass include the following forms.
 第1の形態として、強化ガラスに金属イオンを含有するもので、金属イオンによる特定波長の光の吸収により着色されたガラスである。ガラスに含有した遷移金属元素や希土類元素が複数の原子価を持つ元素の場合、電子の遷移により選択吸収する光の波長の影響することでガラスが特定の色を備える。ガラス中に溶け込んだ遷移金属イオンは、その外殻に隣接した陰イオンの影響を強く受けるため、基礎ガラス組成、溶融雰囲気、添加成分等の要因によって選択吸収する光の波長が影響される。また、希土類元素の原子は外殻に近い電子軌道は完全に電子で満たされていて、それより内部にある電子軌道に不完全さを存するために、内部の軌道で電子遷移を起こして光の波長の選択吸収を行うため、基礎ガラスや溶融雰囲気等に影響されることはなく、ほぼ一定に着色される。例えば、遷移金属イオンを用いる場合、ガラスにCu2+を含有することにより、青色に着色したガラスとすることができる。また、希土類元素を用いる場合、ガラスにEr3+を含有することにより、ピンク色に着色したガラスとすることができる。 As a 1st form, it is glass which contains a metal ion in tempered glass and was colored by absorption of the light of the specific wavelength by a metal ion. When the transition metal element or rare earth element contained in the glass is an element having a plurality of valences, the glass has a specific color due to the influence of the wavelength of light that is selectively absorbed by the transition of electrons. Since the transition metal ion dissolved in the glass is strongly influenced by the anion adjacent to the outer shell, the wavelength of light that is selectively absorbed is influenced by factors such as the basic glass composition, the melting atmosphere, and the additive components. In addition, since the rare earth element atoms are completely filled with electrons in the electron orbit close to the outer shell, and incomplete in the electron orbits inside, the electron transition occurs in the inner orbits and light Since selective absorption of the wavelength is performed, the color is almost constant without being affected by the basic glass or the molten atmosphere. For example, when transition metal ions are used, the glass can be colored blue by containing Cu 2+ in the glass. Moreover, when using rare earth elements, it can be set as the glass colored pink by containing Er3 + in glass.
 第2の形態として、強化ガラスに金属コロイドを含有するもので、金属コロイドにより着色されたガラスである。光の波長よりも小さいコロイドがガラス中に存在すると、特定(波長)の光を吸収することで、ガラスが着色する。例えば、金や銅のコロイドをガラス中に析出させることで、赤系統の着色したガラスとすることができる。 As a second form, glass containing metal colloid in tempered glass and colored with metal colloid. When colloids smaller than the wavelength of light are present in the glass, the glass is colored by absorbing specific (wavelength) light. For example, a colloid of gold or copper is precipitated in the glass, whereby a red colored glass can be obtained.
 第3の形態として、強化ガラスに結晶の微粒子を析出することで、入射光を散乱し乳白色に認識されるガラスである。 A third form is a glass that is recognized as milky white by scattering incident light by precipitating crystalline particles on tempered glass.
 以上の着色された強化ガラスは、着色成分等により吸収する波長が異なる。本発明のガラスの表面応力測定装置および方法においては、光源からの光の波長を、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光とすることで、入射した光が表面層を伝播する際に着色成分により吸収されることなく、射出した光から干渉縞像を明瞭に認識することができる。また、強化ガラスは、波長550nm~650nmの光の吸光係数の最小値が1.7mm-1を超えるものであってもよい。このような吸光係数を備えるガラスは、従来の表面応力測定装置では、干渉縞像を認識することができなかった。もしくは仮に干渉縞像が認識できたとしても、不明瞭であり画像の自動処理が困難であるという問題がある。本発明者は、波長550nm~650nmの光の吸光係数の最小値が僅かに1.7mm-1を超える着色された強化ガラスを従来の表面応力測定装置を用いて測定したところ、干渉縞像を認識することができなかった。波長550nm~650nmの光の吸光係数の最小値が1.7mm-1を超える強化ガラスを本発明の表面応力測定装置、方法を用いて測定することで、干渉縞像を明確に認識し、正確な表面応力の測定が可能である。 The colored tempered glass described above has different wavelengths to be absorbed depending on coloring components and the like. In the glass surface stress measuring apparatus and method of the present invention, the wavelength of light from the light source is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm −1 or less. The incident fringe image can be clearly recognized from the emitted light without being absorbed by the coloring component when the incident light propagates through the surface layer. Further, the tempered glass may have a minimum value of an extinction coefficient of light having a wavelength of 550 nm to 650 nm exceeding 1.7 mm −1 . Glass having such an extinction coefficient cannot recognize an interference fringe image with a conventional surface stress measurement device. Alternatively, even if the interference fringe image can be recognized, there is a problem that it is unclear and it is difficult to automatically process the image. The present inventor measured a colored tempered glass having a minimum extinction coefficient of light having a wavelength of 550 nm to 650 nm slightly exceeding 1.7 mm −1 using a conventional surface stress measuring device, and found an interference fringe image. I couldn't recognize it. By measuring the tempered glass having the minimum extinction coefficient of light having a wavelength of 550 nm to 650 nm exceeding 1.7 mm −1 using the surface stress measuring apparatus and method of the present invention, the interference fringe image can be clearly recognized and accurately detected. It is possible to measure the surface stress.
 強化ガラスにおける強化方法として、風冷強化法と化学強化法があるが、本発明はどちらの方法で強化処理されたガラスであっても適用することが可能である。風冷強化法は、一度加熱処理したガラス板に冷たい風をあてて冷やし、表面に圧縮応力を形成する方法である。また、化学強化法は、例えばソーダ石灰ガラスを380℃程度に加熱した硝酸カリ溶融塩に入れることで、アルカリイオンのイオン交換(ガラスの成分であるナトリウムイオンをよりイオン半径の大きい溶融塩中のカリウムイオンとイオン交換)がおこることでガラス表面に圧縮応力を形成する方法である。それぞれの強化処理は、ともにガラスの表面層に表面圧縮層を形成し、それらが表面圧縮層以外のガラス部分と屈折率が相違する。そのため、いずれの強化処理を行った強化ガラスであっても、表面層の光導波路効果を用いた本発明の表面圧縮測定装置、方法での測定が可能である。また、強化ガラスとしては、熱膨張係数の異なるガラスを積層した複層構造のガラスであって、表層のガラスが着色ガラスである場合も形態に含まれる。また、コアとなるガラスの表面に、コアとなるガラスと熱膨張係数の異なる着色釉を塗布したガラスも着色ガラスの形態に含まれる。 There are an air-cooling tempering method and a chemical tempering method as tempering methods in tempered glass, but the present invention can be applied to any glass tempered by either method. The air-cooling strengthening method is a method in which a cold wind is applied to a glass plate once heat-treated to cool it, thereby forming a compressive stress on the surface. In addition, the chemical strengthening method, for example, by placing soda lime glass in a potassium nitrate molten salt heated to about 380 ° C., ion exchange of alkali ions (sodium ions as glass components in molten salt having a larger ion radius) This is a method of forming compressive stress on the glass surface by ion exchange with potassium ions. Each of the strengthening treatments forms a surface compression layer on the surface layer of the glass, and they have a refractive index different from that of the glass portion other than the surface compression layer. Therefore, any tempered glass subjected to any tempering treatment can be measured by the surface compression measuring apparatus and method of the present invention using the optical waveguide effect of the surface layer. Further, the tempered glass includes a glass having a multilayer structure in which glasses having different thermal expansion coefficients are laminated, and the case where the surface layer glass is colored glass is also included in the form. Moreover, the glass in which the surface of the glass serving as the core is coated with a colored soot having a different thermal expansion coefficient from that of the glass serving as the core is also included in the form of the colored glass.
 着色された強化ガラスとして、酸化物基準のモル百分率表示で、SiO 61.9%、NaO 11.5%、KO 3.9%、MgO 10.6%、Al 5.8%、ZrO 2.4%、Co 0.4%、Fe 3.3%、SO 0.4%からなる黒色を呈する板状ガラス(ガラスA)、SiO 62.1%、NaO 11.6%、KO 3.9%、MgO 10.6%、Al 5.8%、ZrO 2.4%、Fe 3.3%、SO 0.4%からなる黒色を呈する板状ガラス(ガラスB)、SiO 62.0%、NaO 12.0%、KO 3.9%、MgO 10.1%、Al 7.7%、ZrO 0.5%、Co 0.4%、Fe 3.3%、SO 0.1%からなる黒色を呈する板状ガラス(ガラスC)、SiO 63.8%、NaO 10.5%、KO 4.0%、MgO 10.4%、Al 8.0%、ZrO 0.4%、Co 0.05%、TiO 0.3%、NiO 0.65%、SO 0.1%からなる黒色を呈する板状ガラス(ガラスD)、を用意した。 As a colored tempered glass, SiO 2 61.9%, Na 2 O 11.5%, K 2 O 3.9%, MgO 10.6%, Al 2 O 3 5 in terms of mole percentage based on oxide. , 8%, ZrO 2.4%, Co 3 O 4 0.4%, Fe 2 O 3 3.3%, SO 3 0.4% black sheet glass (glass A), SiO 2 62 0.1%, Na 2 O 11.6%, K 2 O 3.9%, MgO 10.6%, Al 2 O 3 5.8%, ZrO 2.4%, Fe 2 O 3 3.3%, SO 3 0.4% black sheet glass (glass B), SiO 2 62.0%, Na 2 O 12.0%, K 2 O 3.9%, MgO 10.1%, Al 2 O 3 7.7%, ZrO 0.5% , Co 3 O 4 0.4%, Fe 2 O 3 3.3%, or SO 3 0.1% Sheet glass exhibiting made black (glass C), SiO 2 63.8%, Na 2 O 10.5%, K 2 O 4.0%, MgO 10.4%, Al 2 O 3 8.0%, A plate-like glass (glass D) having a black color composed of ZrO 0.4%, Co 3 O 4 0.05%, TiO 2 0.3%, NiO 0.65%, SO 3 0.1% was prepared. .
 このガラスA~Dを450℃のKNO溶融塩に6時間浸漬し、化学強化処理をした。このガラスA~Dについて、EPMAを用いて深さ方向のカリウム濃度分析を行ったところ、表面から30μm程度の深さまでイオン交換が起こり、圧縮応力層が生じていた。ガラスAおよびガラスBの吸光係数と波長の関係を図8に示す。 The glasses A to D were immersed in KNO 3 molten salt at 450 ° C. for 6 hours to be chemically strengthened. When these glasses A to D were analyzed for potassium concentration in the depth direction using EPMA, ion exchange occurred from the surface to a depth of about 30 μm, and a compressive stress layer was formed. FIG. 8 shows the relationship between the absorption coefficient and the wavelength of Glass A and Glass B.
 ガラスA~ガラスDについて、光源としてナトリウムランプを用い、波長600nmを測定光として用いた場合について、表面応力測定装置にて干渉縞像が観察できるかを確認した。なお、ガラスAの波長600nmにおける吸光係数は5.7mm-1であり、ガラスBの波長600nmにおける吸光係数は1.37mm-1である。ガラスCの波長600nmにおける吸光係数は5.47mm-1であり、ガラスDの波長600nmにおける吸光係数は1.37mm-1である。 Regarding glass A to glass D, it was confirmed whether or not an interference fringe image could be observed with a surface stress measurement device when a sodium lamp was used as the light source and a wavelength of 600 nm was used as the measurement light. The absorption coefficient of glass A at a wavelength of 600 nm is 5.7 mm −1 , and the absorption coefficient of glass B at a wavelength of 600 nm is 1.37 mm −1 . The absorption coefficient of glass C at a wavelength of 600 nm is 5.47 mm −1 , and the absorption coefficient of glass D at a wavelength of 600 nm is 1.37 mm −1 .
 結果として、ガラスBは干渉縞像を観察することができたのに対し、ガラスAは干渉縞像を確認することができなかった。これは、波長600nmの入射光は、ガラスAの表面層を伝播する際に吸収され、射出光が極めて微弱であるためと考えられる。 As a result, glass B was able to observe an interference fringe image, whereas glass A could not confirm the interference fringe image. This is presumably because the incident light having a wavelength of 600 nm is absorbed when propagating through the surface layer of the glass A, and the emitted light is extremely weak.
 ついで、ガラスAについて、光源として赤外発光ダイオードを用い、波長850nmを測定光として用いた場合、表面応力測定装置にて干渉縞像が観察できるかを確認した。なお、ガラスAの波長850nmにおける吸光係数は1.17mm-1である。結果として、ガラスAの干渉縞像を確認することができた。これは、波長850nmの入射光はガラスAの表面層を伝播する際に一部は吸収されるものの、その減衰量が少なく射出光として認識することができたためと考えられる。 Next, for glass A, when an infrared light emitting diode was used as a light source and a wavelength of 850 nm was used as measurement light, it was confirmed whether an interference fringe image could be observed with a surface stress measurement device. The absorption coefficient of glass A at a wavelength of 850 nm is 1.17 mm −1 . As a result, an interference fringe image of glass A could be confirmed. This is presumably because incident light with a wavelength of 850 nm was partially absorbed when propagating through the surface layer of glass A, but its attenuation was small and could be recognized as emitted light.
 ついで、ガラスAについて、光源としてキセノンランプを用い、光取出し部材(プリズム)と光変換部材との間にバンドパスフィルタを配置し、表面応力測定装置にて干渉縞像が観察できるかを確認した。なお、バンドパスフィルタは、波長850nm付近の光のみを選択的に透過するものを用い、これによりガラスAを射出した光から単色光を取り出した。結果として、ガラスAの干渉縞像を確認することができた。これは、波長850nmの入射光はガラスAの表面層を伝播する際に一部は吸収されるものの、その減衰量が少なく射出光として認識することができたためと考えられる。 Next, for glass A, a xenon lamp was used as the light source, a bandpass filter was placed between the light extraction member (prism) and the light conversion member, and it was confirmed whether an interference fringe image could be observed with a surface stress measurement device. . In addition, the band pass filter used what selectively permeate | transmits only the light of wavelength 850nm vicinity, and took out monochromatic light from the light which inject | emitted the glass A by this. As a result, an interference fringe image of glass A could be confirmed. This is presumably because incident light with a wavelength of 850 nm was partially absorbed when propagating through the surface layer of glass A, but its attenuation was small and could be recognized as emitted light.
 次に、ガラスCおよびガラスDの表面応力測定装置にて観察された干渉縞像を図9および図10に示す。結果として、ガラスCは干渉縞像を観察することができなかった。また、ガラスDは干渉縞像を確認することができた。しかしながら、干渉縞像の右側の境界(圧縮応力層の深さを示す箇所)が不明瞭であり、表面応力測定装置の自動処理を用いたDOLの算出で、正確な値を得ることができなかった。 Next, interference fringe images observed with the surface stress measuring apparatus for glass C and glass D are shown in FIGS. As a result, the glass C could not observe an interference fringe image. Glass D was able to confirm an interference fringe image. However, the boundary on the right side of the interference fringe image (the portion indicating the depth of the compressive stress layer) is unclear, and an accurate value cannot be obtained by calculating DOL using the automatic processing of the surface stress measurement device. It was.
 ついで、ガラスCおよびガラスDについて、光源として赤外発光ダイオードを用い、波長790nmを測定光として用いた場合、表面応力測定装置にて干渉縞像が観察できるかを確認した。なお、ガラスCの波長790nmにおける吸光係数は1.12mm-1であり、ガラスDの波長790nmにおける吸光係数は0.16mm-1である。 Subsequently, for glass C and glass D, when an infrared light emitting diode was used as a light source and a wavelength of 790 nm was used as measurement light, it was confirmed whether an interference fringe image could be observed with a surface stress measurement device. Incidentally, the absorption coefficient at a wavelength of 790nm of the glass C is 1.12 mm -1 and the absorption coefficient at a wavelength of 790nm of the glass D is 0.16 mm -1.
 ガラスCおよびガラスDの表面応力測定装置にて観察された干渉縞像を図11および図12に示す。結果として、ガラスCおよびガラスDは、共に干渉縞像を確認することができた。また、両ガラスとも、表面応力測定装置の自動処理を用いたDOLの算出で、正確な値を得ることができた。 FIGS. 11 and 12 show interference fringe images observed with a surface stress measuring device for glass C and glass D. FIG. As a result, both the glass C and the glass D were able to confirm interference fringe images. In both glasses, an accurate value could be obtained by calculating the DOL using the automatic processing of the surface stress measuring device.
(他の実施の形態)
 上述の本発明の形態は単なる例示であり、本発明はこれらに限定されない。光源や光変換部材等の各光学系を形成する構成要素およびこれら要素の組み合わせは、例示のものに特定されることなく、測定原理の範囲内で変更できる。例えば、可視域の透過率の低い着色された強化ガラスと可視域の透過率の高い透明な強化ガラスの両方の表面応力量(CS、DOL)を測定する装置として用いてもよい。これにより、透明ガラスと着色ガラスとを同一の表面応力計で測定することができる。
(Other embodiments)
The forms of the present invention described above are merely examples, and the present invention is not limited to these. The components forming each optical system, such as the light source and the light conversion member, and the combination of these components are not limited to those illustrated, but can be changed within the scope of the measurement principle. For example, you may use as an apparatus which measures the surface stress amount (CS, DOL) of both the colored tempered glass with a low visible region transmittance | permeability and the transparent tempered glass with a high visible region transmittance | permeability. Thereby, transparent glass and colored glass can be measured with the same surface stress meter.
 本発明のガラスの表面応力測定装置およびガラスの表面応力測定方法によれば、可視域の透過率の低い着色された強化ガラスの表面応力量(CS、DOL)を非破壊で精度よく測定することが可能である。 According to the glass surface stress measuring apparatus and the glass surface stress measuring method of the present invention, the surface stress amount (CS, DOL) of the colored tempered glass having low transmittance in the visible region can be accurately measured nondestructively. Is possible.
 1…強化ガラス、2…光源、3…バンドパスフィルタ、4…光供給部材(プリズム)、5…光取出し部材(プリズム)、6,6A…光変換部材、6a…レンズ、6b…偏光板、6c…撮像素子、6d…筐体、7…表面応力層、8…光源からの光(入射する光)、9…射出する光、11…画像処理装置、11a…画像補正部、11b…強調部、11c…D/Aコンバータ、11d…ディスプレイ、10,20,30…ガラスの表面応力測定装置、101…光源、102,104…偏光板、103…バビネ補正板、105…フォトディテクタ。 DESCRIPTION OF SYMBOLS 1 ... Tempered glass, 2 ... Light source, 3 ... Band pass filter, 4 ... Light supply member (prism), 5 ... Light extraction member (prism), 6, 6A ... Light conversion member, 6a ... Lens, 6b ... Polarizing plate, 6c ... Image sensor, 6d ... Case, 7 ... Surface stress layer, 8 ... Light from light source (incident light), 9 ... Ejecting light, 11 ... Image processing device, 11a ... Image correction unit, 11b ... Enhancer , 11c ... D / A converter, 11d ... display, 10, 20, 30 ... glass surface stress measuring device, 101 ... light source, 102, 104 ... polarizing plate, 103 ... Babinet correction plate, 105 ... photo detector.

Claims (29)

  1.  光源と、
     強化ガラスの表面層内に前記光源からの光を入射させる光供給部材と、
     前記強化ガラスの表面層内を伝播した光を前記強化ガラスの外へ射出させる光取出し部材と、
     前記射出された光を前記強化ガラスと前記光取出し部材との境界面に対して平行および垂直に振動する二種の光成分に分離し輝線列もしくは暗線列として変換する光変換部材と、
    を備え、
     前記光変換部材へ入射される光は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光であることを特徴とするガラスの表面応力測定装置。
    A light source;
    A light supply member for allowing light from the light source to enter the surface layer of tempered glass;
    A light extraction member for injecting the light propagated in the surface layer of the tempered glass out of the tempered glass;
    A light conversion member that separates the emitted light into two types of light components that vibrate parallel and perpendicular to the boundary surface between the tempered glass and the light extraction member, and converts the light into a bright line or a dark line;
    With
    The glass surface stress measurement apparatus according to claim 1 , wherein the light incident on the light conversion member is monochromatic light having a central wavelength in a wavelength region in which the extinction coefficient of the tempered glass is 4.5 mm −1 or less.
  2.  前記強化ガラスは、着色ガラスであることを特徴とする請求項1に記載のガラスの表面応力測定装置。 2. The glass surface stress measuring apparatus according to claim 1, wherein the tempered glass is colored glass.
  3.  前記光源からの光は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光であることを特徴とする請求項1又は請求項2に記載のガラスの表面応力測定装置。 The surface of the glass according to claim 1 or 2, wherein the light from the light source is monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm -1 or less. Stress measuring device.
  4.  前記射出された光から前記強化ガラスの吸光係数が4.5mm-1以下の波長域の単色光を取り出すバンドパスフィルタもしくはモノクロメータを、前記光源と前記強化ガラスとの間、又は前記光取出し部材と前記光変換部材との間に備えることを特徴とする請求項1乃至請求項3のいずれか1項に記載のガラスの表面応力測定装置。 A band-pass filter or a monochromator that extracts monochromatic light in a wavelength range where the extinction coefficient of the tempered glass is 4.5 mm −1 or less from the emitted light is provided between the light source and the tempered glass, or the light extraction member. The glass surface stress measuring device according to any one of claims 1 to 3, wherein the glass surface stress measuring device is provided between the light converting member and the light converting member.
  5.  前記光源からの光は、700nm以上の波長域の単色光であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のガラスの表面応力測定装置。 5. The glass surface stress measurement apparatus according to claim 1, wherein the light from the light source is monochromatic light having a wavelength region of 700 nm or more.
  6.  前記光源からの光は、2000nm以下の波長域の単色光であることを特徴とする請求項5に記載のガラスの表面応力測定装置。 The glass surface stress measuring apparatus according to claim 5, wherein the light from the light source is monochromatic light having a wavelength range of 2000 nm or less.
  7.  前記光源は、発光ダイオードであることを特徴とする請求項1乃至請求項6のいずれか1項に記載のガラスの表面応力測定装置。 7. The glass surface stress measuring apparatus according to claim 1, wherein the light source is a light emitting diode.
  8.  前記光源は、レーザーであることを特徴とする請求項1乃至請求項6のいずれか1項に記載のガラスの表面応力測定装置。 The glass light source stress measuring apparatus according to any one of claims 1 to 6, wherein the light source is a laser.
  9.  前記強化ガラスは、波長550nm~650nmにおける吸光係数の最小値が1.7mm-1を超えることを特徴とする請求項1乃請求項8のいずれか1項に記載のガラスの表面応力測定装置。 The glass surface stress measuring apparatus according to any one of claims 1 to 8, wherein the tempered glass has a minimum value of an extinction coefficient at a wavelength of 550 nm to 650 nm exceeding 1.7 mm- 1 .
  10.  前記強化ガラスは、金属イオンを含有することにより着色されていることを特徴とする請求項1乃至請求項9のいずれか1項に記載のガラスの表面応力測定装置。 10. The glass surface stress measurement device according to claim 1, wherein the tempered glass is colored by containing metal ions.
  11.  前記強化ガラスは、金属コロイドを析出することにより着色されていることを特徴とする請求項1乃至請求項9のいずれか1項に記載のガラスの表面応力測定装置。 10. The glass surface stress measuring device according to claim 1, wherein the tempered glass is colored by depositing a metal colloid.
  12.  前記強化ガラスは、結晶を析出することにより着色されていることを特徴とする請求項1乃至請求項9のいずれか1項に記載のガラスの表面応力測定装置。 10. The glass surface stress measuring device according to claim 1, wherein the tempered glass is colored by precipitating crystals.
  13.  前記強化ガラスは、化学強化されていることを特徴とする請求項1乃至請求項12のいずれか1項に記載のガラスの表面応力測定装置。 13. The glass surface stress measuring apparatus according to claim 1, wherein the tempered glass is chemically strengthened.
  14.  前記光変換部材により変換された輝線列もしくは暗線列を撮像する撮像素子と、
     前記撮像素子で得られる画像から、前記輝線列もしくは暗線列を強調する画像処理装置をさらに備えることを特徴とする請求項1乃至請求項13のいずれか1項に記載のガラスの表面応力測定装置。
    An image sensor for imaging the bright line array or dark line array converted by the light conversion member;
    The glass surface stress measurement device according to claim 1, further comprising an image processing device that emphasizes the bright line row or the dark line row from an image obtained by the image pickup device. .
  15.  前記光変換部材で変換された前記輝線列もしくは暗線列に基づいて前記強化ガラスの表面応力を測定する測定手段を備え、
     前記測定手段は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光と略同一の波長における前記強化ガラスの光弾性定数を用いることを特徴とする請求項1乃至請求項14のいずれか1項に記載のガラスの表面応力測定装置。
    Measuring means for measuring the surface stress of the tempered glass based on the bright line array or dark line array converted by the light conversion member;
    The measurement means uses a photoelastic constant of the tempered glass at substantially the same wavelength as monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm -1 or less. The glass surface stress measuring device according to any one of claims 1 to 14.
  16.  強化ガラスの表面応力を測定する方法であって、
     光源からの光を前記強化ガラスの表面層内に入射する工程と、
     前記光を前記強化ガラスの表面層内を伝播させる工程と、
     伝播後の光を外部に射出させる工程と、
     前記射出した光をガラス面に対して平行および垂直に振動する二種の光成分に分離する工程と、
     前記分離した二種の光成分をそれぞれ暗線列または輝線列に変換する工程と、
     前記暗線列または輝線列に基づいて前記強化ガラスの表面応力を測定する工程と、
    を有し、
     前記分離する工程で分離される光は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光であることを特徴とするガラスの表面応力測定方法。
    A method for measuring the surface stress of tempered glass,
    Injecting light from a light source into the surface layer of the tempered glass;
    Propagating the light in the surface layer of the tempered glass;
    A step of emitting the light after propagation to the outside;
    Separating the emitted light into two light components that vibrate parallel and perpendicular to the glass surface;
    Converting the two separated light components into dark line lines or bright line lines, respectively;
    Measuring the surface stress of the tempered glass based on the dark line or bright line,
    Have
    The method for measuring the surface stress of glass, wherein the light separated in the separating step is monochromatic light having a central wavelength in a wavelength region in which the extinction coefficient of the tempered glass is 4.5 mm −1 or less.
  17.  前記強化ガラスは、着色されていることを特徴とする請求項16に記載のガラスの表面応力測定方法。 The method for measuring the surface stress of glass according to claim 16, wherein the tempered glass is colored.
  18.  前記光源からの光は、前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光であることを特徴とする請求項16又は請求項17に記載のガラスの表面応力測定方法。 The surface of the glass according to claim 16 or 17, wherein the light from the light source is monochromatic light having a central wavelength in a wavelength region in which the extinction coefficient of the tempered glass is 4.5 mm -1 or less. Stress measurement method.
  19.  バンドパスフィルタもしくはモノクロメータを用いて取り出した前記強化ガラスの吸光係数が4.5mm-1以下の波長域の単色光を、前記強化ガラスの表面層内に入射することを特徴とする請求項16乃至請求項18のいずれか1項に記載のガラスの表面応力測定方法。 The monochromatic light having a wavelength region of an absorption coefficient of 4.5 mm −1 or less of the tempered glass taken out using a bandpass filter or a monochromator is incident on the surface layer of the tempered glass. The method for measuring the surface stress of glass according to any one of claims 18 to 18.
  20.  バンドパスフィルタもしくはモノクロメータを用いて取り出した前記強化ガラスの吸光係数が4.5mm-1以下の波長域の単色光を、ガラス面に対して平行および垂直に振動する二種の光成分に分離することを特徴とする請求項16乃至請求項18のいずれか1項に記載のガラスの表面応力測定方法。 Monochromatic light with a wavelength range of 4.5 mm -1 or less of the tempered glass taken out using a bandpass filter or monochromator is separated into two light components that vibrate parallel and perpendicular to the glass surface. The method for measuring the surface stress of glass according to any one of claims 16 to 18, wherein:
  21.  前記単色光は、700nm以上の波長域の単色光を用いることを特徴とする請求項16乃至請求項20のいずれか1項に記載のガラスの表面応力測定方法。 The glass surface stress measurement method according to any one of claims 16 to 20, wherein the monochromatic light is monochromatic light having a wavelength region of 700 nm or more.
  22.  前記光源からの光は、2000nm以下の波長域の単色光であることを特徴とする請求項21に記載のガラスの表面応力測定方法。 The method for measuring the surface stress of glass according to claim 21, wherein the light from the light source is monochromatic light in a wavelength region of 2000 nm or less.
  23.  前記強化ガラスは、波長550nm~650nmにおける吸光係数の最小値が1.7mm-1を超えることを特徴とする請求項16乃至請求項22のいずれか1項に記載のガラスの表面応力測定方法。 The method for measuring the surface stress of glass according to any one of claims 16 to 22, wherein the tempered glass has a minimum value of an extinction coefficient at a wavelength of 550 nm to 650 nm exceeding 1.7 mm- 1 .
  24.  前記強化ガラスは、金属イオンを含有することにより着色されることを特徴とする請求項16乃至請求項23のいずれか1項に記載のガラスの表面応力測定方法。 The method for measuring the surface stress of glass according to any one of claims 16 to 23, wherein the tempered glass is colored by containing metal ions.
  25.  前記強化ガラスは、金属コロイドを析出することにより着色されることを特徴とする請求項16乃至請求項23のいずれか1項に記載のガラスの表面応力測定方法。 The method for measuring surface stress of glass according to any one of claims 16 to 23, wherein the tempered glass is colored by depositing a metal colloid.
  26.  前記強化ガラスは、結晶を析出することにより着色されることを特徴とする請求項16乃至請求項23のいずれか1項に記載のガラスの表面応力測定方法。 The method for measuring the surface stress of glass according to any one of claims 16 to 23, wherein the tempered glass is colored by precipitating crystals.
  27.  前記強化ガラスは、化学強化されていることを特徴とする請求項16乃至請求項26のいずれか1項に記載のガラスの表面応力測定方法。 The method for measuring surface stress of glass according to any one of claims 16 to 26, wherein the tempered glass is chemically strengthened.
  28.  前記変換された輝線列もしくは暗線列を撮像する工程と、
     前記撮像により得られる画像から、前記輝線列もしくは前記暗線列を強調する画像処理を行う工程と、を有し、
     前記強調された前記輝線列もしくは前記暗線列にもとづいて強化ガラスの表面応力を測定することを特徴とする請求項16乃至請求項27のいずれか1項に記載のガラスの表面応力測定方法。
    Imaging the converted bright line or dark line;
    Performing image processing for emphasizing the bright line row or the dark line row from an image obtained by the imaging, and
    The method for measuring the surface stress of glass according to any one of claims 16 to 27, wherein the surface stress of tempered glass is measured based on the emphasized bright line array or dark line array.
  29.  前記強化ガラスの表面応力を測定する工程は、
     前記強化ガラスの吸光係数が4.5mm-1以下の波長域に中心波長を有する単色光と略同一の波長における前記強化ガラスの光弾性定数を用いることを特徴とする請求項16乃至請求項28のいずれか1項に記載のガラスの表面応力測定方法。
    The step of measuring the surface stress of the tempered glass,
    29. The photoelastic constant of the tempered glass at substantially the same wavelength as that of monochromatic light having a central wavelength in a wavelength region where the extinction coefficient of the tempered glass is 4.5 mm −1 or less is used. The method for measuring the surface stress of glass according to any one of the above.
PCT/JP2012/056745 2011-03-18 2012-03-15 Device for measuring surface stress of glass and method for measuring surface stress of glass WO2012128184A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280013501.2A CN103443603B (en) 2011-03-18 2012-03-15 The surface stress determinator of glass and the surface stress assay method of glass
JP2013505936A JP5892156B2 (en) 2011-03-18 2012-03-15 Glass surface stress measuring apparatus and glass surface stress measuring method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011060838 2011-03-18
JP2011-060838 2011-03-18
JP2011108162 2011-05-13
JP2011-108162 2011-05-13
JP2011280023 2011-12-21
JP2011-280023 2011-12-21

Publications (1)

Publication Number Publication Date
WO2012128184A1 true WO2012128184A1 (en) 2012-09-27

Family

ID=46879334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056745 WO2012128184A1 (en) 2011-03-18 2012-03-15 Device for measuring surface stress of glass and method for measuring surface stress of glass

Country Status (4)

Country Link
JP (1) JP5892156B2 (en)
CN (1) CN103443603B (en)
TW (1) TW201245690A (en)
WO (1) WO2012128184A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528730A (en) * 2013-10-18 2014-01-22 苏州精创光学仪器有限公司 Microscope type glass surface stress meter
CN103674360A (en) * 2013-12-27 2014-03-26 深圳市斯尔顿科技有限公司 Lens stress detecting method
CN104316245A (en) * 2014-11-03 2015-01-28 苏州精创光学仪器有限公司 Detection device for glass surface stress
US8957374B2 (en) 2012-09-28 2015-02-17 Corning Incorporated Systems and methods for measuring birefringence in glass and glass-ceramics
CN104374501A (en) * 2014-11-07 2015-02-25 西安科技大学 Measuring method for measuring stress on glass body based on light interference method
US9261429B2 (en) 2014-05-21 2016-02-16 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides
JP2016142600A (en) * 2015-01-30 2016-08-08 有限会社折原製作所 Surface stress measurement method and surface stress measurement device
JP2016535854A (en) * 2013-08-29 2016-11-17 コーニング インコーポレイテッド Prism coupling system and method for characterizing curved parts
CN106770056A (en) * 2017-03-10 2017-05-31 苏州精创光学仪器有限公司 Safety glass identifier and recognition methods
JP2017519190A (en) * 2014-04-23 2017-07-13 コーニング インコーポレイテッド Method for improving contrast in prism coupling measurement of stress
WO2018056121A1 (en) * 2016-09-26 2018-03-29 有限会社折原製作所 Stress measuring device for tempered glass, stress measuring method for tempered glass, method for manufacturing tempered glass, and tempered glass
JPWO2017115811A1 (en) * 2015-12-28 2018-10-18 有限会社折原製作所 Surface refractive index measurement method and surface stress measurement method using the same
US11079280B2 (en) 2013-10-30 2021-08-03 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US11384011B2 (en) 2014-07-17 2022-07-12 Corning Incorporated Glass sheet and system and method for making glass sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674345A (en) * 2013-12-09 2014-03-26 中国航空工业集团公司北京航空材料研究院 Method for measuring eliminating stress of oriented organic glass
CN105115635B (en) * 2015-09-30 2018-05-11 苏州精创光学仪器有限公司 Multiple tempered glass surface stress instrument
WO2017054773A1 (en) 2015-09-30 2017-04-06 苏州精创光学仪器有限公司 Glass surface stressmeter and repeatedly tempered glass surface stressmeter
CN105333980B (en) * 2015-11-27 2019-01-29 苏州精创光学仪器有限公司 Tempered glass surface stress measurement instrument
WO2018050113A1 (en) * 2016-09-18 2018-03-22 北京杰福科技有限公司 Prism and glass surface stress detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682423A (en) * 1979-12-10 1981-07-06 Toshiba Corp Surface stress measuring device of vitreous coating
JPS6190025A (en) * 1984-10-11 1986-05-08 Toshiba Glass Co Ltd Surface stress measuring instrument
JP2007033223A (en) * 2005-07-27 2007-02-08 Nippon Electric Glass Co Ltd Measuring method of stress and stress measuring system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937451B2 (en) * 1977-05-04 1984-09-10 株式会社東芝 Surface stress measuring device for chemically strengthened glass
US7583368B1 (en) * 2006-04-05 2009-09-01 Electronic Design To Market, Inc. Method of enhancing measurement of stress in glass
CN100590425C (en) * 2006-05-30 2010-02-17 长沙科创计算机系统集成有限公司 Method for detecting stress of transparency flat plate or model material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682423A (en) * 1979-12-10 1981-07-06 Toshiba Corp Surface stress measuring device of vitreous coating
JPS6190025A (en) * 1984-10-11 1986-05-08 Toshiba Glass Co Ltd Surface stress measuring instrument
JP2007033223A (en) * 2005-07-27 2007-02-08 Nippon Electric Glass Co Ltd Measuring method of stress and stress measuring system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957374B2 (en) 2012-09-28 2015-02-17 Corning Incorporated Systems and methods for measuring birefringence in glass and glass-ceramics
US10156488B2 (en) 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
JP2019194613A (en) * 2013-08-29 2019-11-07 コーニング インコーポレイテッド Prism coupling system and method for characterizing curved component
US10495530B2 (en) 2013-08-29 2019-12-03 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
JP2016535854A (en) * 2013-08-29 2016-11-17 コーニング インコーポレイテッド Prism coupling system and method for characterizing curved parts
CN103528730A (en) * 2013-10-18 2014-01-22 苏州精创光学仪器有限公司 Microscope type glass surface stress meter
US11079280B2 (en) 2013-10-30 2021-08-03 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
CN103674360A (en) * 2013-12-27 2014-03-26 深圳市斯尔顿科技有限公司 Lens stress detecting method
JP2017519190A (en) * 2014-04-23 2017-07-13 コーニング インコーポレイテッド Method for improving contrast in prism coupling measurement of stress
US9261429B2 (en) 2014-05-21 2016-02-16 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides
JP2020187140A (en) * 2014-05-21 2020-11-19 コーニング インコーポレイテッド Method for evaluating characteristics of waveguide
JP2017522542A (en) * 2014-05-21 2017-08-10 コーニング インコーポレイテッド Prism coupling system and method for evaluating characteristics of waveguides with large layer depth
JP7072615B2 (en) 2014-05-21 2022-05-20 コーニング インコーポレイテッド How to evaluate the characteristics of a waveguide
US11384011B2 (en) 2014-07-17 2022-07-12 Corning Incorporated Glass sheet and system and method for making glass sheet
CN104316245A (en) * 2014-11-03 2015-01-28 苏州精创光学仪器有限公司 Detection device for glass surface stress
CN104374501A (en) * 2014-11-07 2015-02-25 西安科技大学 Measuring method for measuring stress on glass body based on light interference method
JP2016142600A (en) * 2015-01-30 2016-08-08 有限会社折原製作所 Surface stress measurement method and surface stress measurement device
JPWO2017115811A1 (en) * 2015-12-28 2018-10-18 有限会社折原製作所 Surface refractive index measurement method and surface stress measurement method using the same
JPWO2018056121A1 (en) * 2016-09-26 2019-07-04 有限会社折原製作所 Stress measuring device for tempered glass, stress measuring method for tempered glass, method for producing tempered glass, tempered glass
CN109906365A (en) * 2016-09-26 2019-06-18 折原制作所有限公司 The stress measurement device of strengthened glass, the method for measuring stress of strengthened glass, strengthened glass manufacturing method, strengthened glass
KR20190059903A (en) * 2016-09-26 2019-05-31 오리하라 인더스트리얼 컴퍼니 리미티드 Stress measurement apparatus of tempered glass, method of measuring stress of tempered glass, method of manufacturing tempered glass, tempered glass
CN109906365B (en) * 2016-09-26 2021-09-14 折原制作所有限公司 Stress measuring device for tempered glass, stress measuring method for tempered glass, manufacturing method for tempered glass, and tempered glass
KR102345803B1 (en) 2016-09-26 2022-01-03 오리하라 인더스트리얼 컴퍼니 리미티드 Stress measuring device of tempered glass, stress measuring method of tempered glass, manufacturing method of tempered glass, tempered glass
US11274981B2 (en) 2016-09-26 2022-03-15 Orihara Industrial Co., Ltd. Stress measurement device for strengthened glass, stress measuring method for strengthened glass, manufacturing method of strengthened glass, and strengthened glass
WO2018056121A1 (en) * 2016-09-26 2018-03-29 有限会社折原製作所 Stress measuring device for tempered glass, stress measuring method for tempered glass, method for manufacturing tempered glass, and tempered glass
CN106770056A (en) * 2017-03-10 2017-05-31 苏州精创光学仪器有限公司 Safety glass identifier and recognition methods
CN106770056B (en) * 2017-03-10 2024-03-01 苏州精创光学仪器有限公司 Toughened glass identification instrument and identification method

Also Published As

Publication number Publication date
JP5892156B2 (en) 2016-03-23
JPWO2012128184A1 (en) 2014-07-24
CN103443603B (en) 2016-05-25
CN103443603A (en) 2013-12-11
TW201245690A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
JP5892156B2 (en) Glass surface stress measuring apparatus and glass surface stress measuring method
JP2021006502A (en) Chemically strengthened glass
JP6419595B2 (en) Surface stress measurement method, surface stress measurement device
US20100028567A1 (en) Glass sheet defect detection device, glass sheet manufacturing method, glass sheet, glass sheet quality judging device, and glass sheet inspection method
CN102815859B (en) Strengthening glass and manufacture method, the surface stress assay method of this strengthening glass
JP6603671B2 (en) Method for improving contrast in prism coupling measurement of stress
CN107407637A (en) For characterizing the prism-coupled system and method for the ion-exchange waveguides with big layer depth
JP2016024002A (en) Stress measurement method of transparent article
JP2016064932A (en) Silica glass crucible
Weisser et al. Fluorescence in ion exchanged BK7 glass slab waveguides and its use for scattering free loss measurements
EP3901618A1 (en) Method and apparatus for measuring spectrum of raman-scattered light using time gated detection
CN114112131A (en) Stress measuring device for tempered glass, stress measuring method for tempered glass, and tempered glass
TWI454674B (en) An apparatus for quantifying residual stress of a material and a method thereof
JP7458005B2 (en) Glass evaluation equipment, glass evaluation method
JP2000111317A (en) Measuring device/method for glass material thickness
JP2005091063A (en) Refractometer
JP2002277411A (en) Method and apparatus for inspecting transparent laminate
JPS5914181B2 (en) Surface stress measurement method for air-cooled tempered glass
CN111801302B (en) Prism coupling method for characterizing stress in glass-based ion exchange articles having problematic refractive index profiles
JP4889772B2 (en) Refractometer
JP7158017B2 (en) Stress measuring device, stress measuring method
JP2018177610A (en) Chemically strengthened glass
US20220276106A1 (en) Enhanced hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
Ghazaryan et al. Automation of ISP 51 Spectrograph by NI LabVIEW and digital camera.
Tennakoon Novel Method for Stress Inspection of Tempered or Thermally Strengthened Glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505936

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760648

Country of ref document: EP

Kind code of ref document: A1