JPS5914181B2 - Surface stress measurement method for air-cooled tempered glass - Google Patents

Surface stress measurement method for air-cooled tempered glass

Info

Publication number
JPS5914181B2
JPS5914181B2 JP10737078A JP10737078A JPS5914181B2 JP S5914181 B2 JPS5914181 B2 JP S5914181B2 JP 10737078 A JP10737078 A JP 10737078A JP 10737078 A JP10737078 A JP 10737078A JP S5914181 B2 JPS5914181 B2 JP S5914181B2
Authority
JP
Japan
Prior art keywords
air
tempered glass
glass
cooled tempered
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10737078A
Other languages
Japanese (ja)
Other versions
JPS5533675A (en
Inventor
貫 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10737078A priority Critical patent/JPS5914181B2/en
Publication of JPS5533675A publication Critical patent/JPS5533675A/en
Publication of JPS5914181B2 publication Critical patent/JPS5914181B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明はフロート法により得られたガラスを風冷強化し
た風冷強化ガラスの表面応力を測定する方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for measuring the surface stress of air-cooled tempered glass obtained by air-cooling tempered glass obtained by the float method.

周知の如く、この種の風冷強化ガラスを製造するには、
溶融ガラスを溶解スズ浴上に接触、移動させる、いわゆ
るフロート法により板ガラスとした後、この板ガラスを
軟化する温度に加熱し、空気を吹付けて急冷することに
より表面に圧縮応力を発生させ機械的強度を向上させる
方法が採用されている。
As is well known, in order to manufacture this type of air-cooled tempered glass,
After forming a plate glass by the so-called float method, in which molten glass is brought into contact with and moved onto a molten tin bath, this plate glass is heated to a temperature that softens it, and then quenched by blowing air to generate compressive stress on the surface and mechanically Methods have been adopted to improve strength.

しかして、この方法により得た風冷強化ガラスは表面に
発生した圧縮応力が大きく、かつ圧縮応力の発生層が厚
い程、その強度が大きいため、これらの圧縮応力量を測
定することは、品質管理上において重要である。ところ
で、従来、上述した風冷強化ガラスの表面応力を測定す
るには、次のような方法が採用されている。
However, the compressive stress generated on the surface of the air-cooled tempered glass obtained by this method is large, and the thicker the layer where compressive stress occurs, the greater its strength. Therefore, measuring the amount of compressive stress is important in determining quality. Important for management. By the way, the following method has conventionally been adopted to measure the surface stress of the above-mentioned air-cooled tempered glass.

(1)風冷強化ガラス表面に平行に通過する光を用いて
光弾性を測定し、この測定値にもとづいて表面応力を求
める方法。
(1) A method in which photoelasticity is measured using light that passes parallel to the surface of air-cooled tempered glass, and surface stress is determined based on this measured value.

(2)風冷強化ガラスの表面を伝播する光波を利用し、
その光弾性効果を表面に沿つての伝播距離の関数として
求め、これから表面の単位距離当りの光弾性効果及び表
面応力を算出する方法。
(2) Utilizing light waves propagating on the surface of air-cooled tempered glass,
A method of determining the photoelastic effect as a function of propagation distance along the surface and calculating the photoelastic effect and surface stress per unit distance of the surface from this.

(3)風冷強化ガラスの表面に高屈折率のプリズムを置
き、該ガラス表面に光を入射させて表面による反射光の
強度を観察しながら入射光の角度を変えて臨界角を測定
し、異常光と通常光との間での臨界角の差を求める方法
。しかしながら、上記各測定方法は次のような欠点があ
り実用性に乏しい。
(3) Place a prism with a high refractive index on the surface of air-cooled tempered glass, let light enter the glass surface, and measure the critical angle by changing the angle of the incident light while observing the intensity of the light reflected by the surface, A method to find the difference in critical angle between extraordinary light and ordinary light. However, each of the above measurement methods has the following drawbacks and is not practical.

すなわち、上記(ハの方法にあつてはかなり広い風冷強
化ガラス面にわたる平均的な応力しか測定できないため
、ガラスの限られた領域の応力を正確に測定することが
難しい。
That is, in the method (c) above, only the average stress over a fairly wide surface of the air-cooled tempered glass can be measured, making it difficult to accurately measure the stress in a limited area of the glass.

また、大型の板ガラスでは測るべき光弾性効果の値が大
きいため、測定自体が困難となる。この改善策として、
大型の風冷強化ガラスから切り出した小型の試料片を用
いることが考えられるが、この風冷強化ガラスの切り出
しを行なうと、該ガラスは細かく砕け、その応力がほと
んど緩和され、応力測定が不可能となる。また、上記(
2)の方法にあつては風冷強化ガラスの表面を伝播する
光の強度が一般に微弱であるため、実質的に応力測定が
困難である。さらに、上記(3)の方法は前記(ハ、(
2)の方法に比して正確な応力測定が可能となるが、風
冷強化ガラスの表面付近での屈折率分布等の要因で臨界
角における反射光強度の角度による変化が明瞭でないこ
とが多く、表面応力の測定を常時遂行し得ない不都合さ
がある。このようなことから、本発明者は上記欠点を解
消するために鋭意研究を重ねた結果、フロート法により
得たガラスの表面層内に単色光を入射させると、該ガラ
スの表面付近に拡散、進入した錫イオンの存在による表
面程屈折率が高くなる、いわゆる屈折率勾配の形成によ
り、入射した単色光は表面層内で屋気楼現象と全反射を
繰り返しながら、外部に発散することなく伝播するいわ
ゆる光導波管作用を示すことがわかつた。
Furthermore, since the value of the photoelastic effect to be measured is large in the case of large plate glass, the measurement itself becomes difficult. As an improvement measure,
It is possible to use a small sample piece cut from a large piece of air-cooled tempered glass, but when this air-cooled tempered glass is cut out, the glass breaks into small pieces and the stress is almost alleviated, making it impossible to measure the stress. becomes. Also, the above (
In the method 2), the intensity of the light propagating on the surface of the air-cooled tempered glass is generally weak, so it is substantially difficult to measure the stress. Furthermore, the method (3) above is
Although it is possible to measure stress more accurately than method 2), changes in the intensity of reflected light depending on the angle at the critical angle are often not clear due to factors such as the refractive index distribution near the surface of the air-cooled tempered glass. However, there is a disadvantage that surface stress cannot be measured all the time. For this reason, the inventors of the present invention have conducted extensive research to eliminate the above-mentioned drawbacks, and have found that when monochromatic light is incident on the surface layer of glass obtained by the float method, it is diffused near the surface of the glass. Due to the formation of a so-called refractive index gradient, in which the refractive index becomes higher as the surface approaches the surface due to the presence of incoming tin ions, the incident monochromatic light repeats the roofing phenomenon and total reflection within the surface layer, and propagates without being diverged to the outside. It was found that the so-called optical waveguide effect is exhibited.

但し、風冷強化される以前のフロートガラスには実際上
応力が存在せず、つまり光弾性効果がなく、表面層内の
屈折率分布はガラス表面に平行に振動する光成分の波(
以下TE波と略す)に対しても、ガラス表面に垂直に振
動する光成分の波(以下TM波と略す)に対しても同じ
で、その結果、TE波とTM波とは同一のモードを形成
する。これに対し、フロートガラスを風冷強化した風冷
強化ガラスには、表面層に圧縮力、内部に張力という応
力分布が発生し、この応力による光弾性効果のために複
屈折現象を生じ、表面層内での屈折率分布はTM波の方
が、TE波に比して応力に比例した量だけ大きくなり、
それゆえ風冷強化ガラスの表面応力が、上記屈折率の差
に比例した値として求められることを究明した。しかし
て、本発明者は上記究明結果から、風冷強化ガラスの表
面層内に単色光を入射させて該ガラス表面層内を伝播さ
せ、伝播後のTE波とTM波をもつ光を例えばガラスプ
リズムで外部に射出させてTE波とTM波に分離させ、
これらTE波、TM波を夫々暗線列(又は輝線列)に変
換し、各暗線列中(又は輝線夕1沖)における風冷強化
ガラスの最も表面に近い経路を伝播した暗線間の差を求
めることにより、大型の風冷強化ガラスの領域的(局所
的)な表面応力を極めて迅速かつ高精度で測定し得る方
法を見い出した。
However, before wind-cooling, float glass actually has no stress, that is, no photoelastic effect, and the refractive index distribution within the surface layer is composed of waves of light components vibrating parallel to the glass surface (
The same is true for waves of optical components vibrating perpendicular to the glass surface (hereinafter abbreviated as TM waves), and as a result, TE waves and TM waves have the same mode. Form. On the other hand, in air-cooled tempered glass, which is made by wind-strengthening float glass, a stress distribution of compressive force on the surface layer and tension on the inside occurs, and due to the photoelastic effect caused by this stress, birefringence occurs, and the surface The refractive index distribution within the layer is larger for TM waves than for TE waves by an amount proportional to stress,
Therefore, it has been determined that the surface stress of air-cooled tempered glass can be determined as a value proportional to the difference in refractive index. Based on the above research results, the inventors of the present invention have discovered that by making monochromatic light incident on the surface layer of air-cooled tempered glass and propagating it within the surface layer of the glass, the light having TE waves and TM waves after propagation can be transmitted through the glass, for example. Inject it to the outside with a prism and separate it into TE waves and TM waves,
Convert these TE waves and TM waves into dark line arrays (or bright line arrays), and find the difference between the dark lines that propagated along the path closest to the surface of the wind-cooled tempered glass in each dark line array (or the bright line off the coast of Yokohama). As a result, we have discovered a method that can measure the regional (local) surface stress of large-sized air-cooled tempered glass extremely quickly and with high precision.

すなわち、本発明方法はフロート法により得られたガラ
スを風冷強化し、この風冷強化ガラスの表面応力を測定
するにあたり、上記風冷強化ガラスの表面層内に単色光
を入射させて該ガラスの表面層内を伝播させ、伝播後の
光を外部に射出させて射出するガラス面に対して平行及
び垂直に振動する二種の光成分に分離し、ひきつづきこ
れら光成分を夫々暗線列又は輝線列に変換し、この暗線
列又は輝線列にもとづいて風冷強化ガラスの表面応力を
測定せしめることを特徴とするものである。
That is, in the method of the present invention, glass obtained by the float method is air-cooled strengthened, and in order to measure the surface stress of the air-cooled tempered glass, monochromatic light is incident into the surface layer of the air-cooled tempered glass. The light propagates through the surface layer of the glass, and the light after propagation is emitted to the outside and separated into two types of light components that vibrate parallel and perpendicular to the glass surface from which they are emitted. The method is characterized in that the surface stress of the air-cooled tempered glass is measured based on the dark line array or the bright line array.

本発明における単色光とは、たとえばスペクトルランプ
、レーザー装置を光源として得られる光である。本発明
における単色光の入射、射出にあたつては、ガラスプリ
ズム、或いはヨウ化メチレン、プロモホルムの液体を収
容した枠体等が用いられ、これら部材はその屈折率が風
冷強化ガラスの屈折率より大きくなるように設計されて
いる。
Monochromatic light in the present invention is light obtained using, for example, a spectral lamp or a laser device as a light source. In the present invention, a glass prism or a frame containing a liquid such as methylene iodide or promoform is used for inputting and outputting monochromatic light, and these members have a refractive index that is equal to that of air-cooled tempered glass. Designed to be larger.

なお、単色光の入射部材、射出部材は分離させてもよい
し、場合によつては遮蔽膜を介して一体化させてもよい
。次に、本発明の実施例を図面を参照して説明する。
Note that the monochromatic light input member and output member may be separated, or may be integrated via a shielding film as the case may be. Next, embodiments of the present invention will be described with reference to the drawings.

実施例 第1図は本実施例で用いる表面応力測定装置の概略図で
あり、図中1は風冷強化ガラス2上面に上下調節脚とし
てのネジ3,3を介して一定の隙間をあけて載置された
架台であり、この架台1には水平方向に移動可能な光源
4が設けられている。
Embodiment FIG. 1 is a schematic diagram of the surface stress measuring device used in this embodiment. In the figure, 1 is a surface stress measuring device with a fixed gap formed on the upper surface of the air-cooled tempered glass 2 via screws 3, 3 as vertical adjustment legs. A horizontally movable light source 4 is provided on this pedestal 1.

この光源4は単色光の入射穴5を有する外筒6と、この
外筒6内に収納されたスペクトルランプ7とから構成さ
れている。また、前記架台1には前記ガラス2の表面層
内に前記光源4から単色光を入射させる入射用ガラスプ
リズム8が軸9を介して水平移動及至回動可能に支持さ
れている。さらに、前記架台1には前記ガラス2の表面
層内で伝播した光を該ガラス2外に該ガラス2表面に水
平に振動する光成分の波(TE波)、該ガラス2表面に
垂直に振動する光成分の波(TM波)として分離、射出
させる射出用ガラスプリズム10が軸11を介して水平
移動及至回動可能に支持されている。なお、前記各プリ
ズム8,10は前記風冷強化ガラス2の屈折率より大き
くしている。そして、前記架台1には射出用ガラスプリ
ズム10から射出されたTE波、TM波の射出方向に配
置され、それらTE波、TM波を夫々暗線列または輝線
列として変換する光変換部材12が水平移動可能に支持
されている。この光変換部材12は、前記射出用ガラス
プリズム10からのTE波、TM波を後述する焦点面に
集める対物レンズ13と、この対物レンズ13から再射
出されたTE波、TM波のうちの一方のみを選択的に透
過させる回転可能な偏光板14と、選択的に透過したT
E波もしくはTM波を暗線列として現わす焦点面15と
、この焦点面15を内蔵し焦点面15上の暗線列を観察
するための接眼測微計16とから構成されている。まず
、風冷強化ガラスとしてフロート法で得た板ガラスを2
5mTnX25mmの試片として6002〜690℃の
範囲の温度で加熱軟化させ、空気吹付けて急冷したもの
を用い、この風冷強化ガラス2の表面層内に光源4から
の単色光を入射用ガラスプリズム8を介して入射させた
。こうして入射された単色光は第2図に示す如く風冷強
化ガラス2の表面層でその圧縮応力に応じた光弾性効果
による複屈折を受け、唇気楼現象と全反射とを繰り返し
ながら経路Sl,S2・・・をとり伝播進行する。つづ
いて、風冷強化ガラス2の表面層内を伝播進行した単色
光を射出用ガラスプリズム10で外部に射出させると、
第3図に示す如く風冷強化ガラス2と射出用ガラスプリ
ズム10の境界面(射出面17)に対し平行に振動する
光成分の波18(TE波)及び垂直に振動する光成分の
波19(TM波)に分離した。次いで、射出用ガラスプ
リズム8から射出、分離されたTE波18、TM波19
を光変換部材12に導き、該部材12の偏光板14を回
転させると、該TE波18、TM波19のうちの一方(
たとえばTM波19)のみが、該部材12の焦点面15
に第4図aの如きL1・・・L7からなる暗線列として
現われ、この暗線列を接眼測微計16で観察した。一方
、上記偏光板14をさらに90徊転させると、他方の光
成分の波であるTE波18のみが光変換部材12の焦点
面15上に第4図bの如きL1′・・・L7′からなる
暗線列として現われ、この暗線列を接眼測微計16で観
察した。しかして、本実施例で得たTM波19による暗
線列L1・・・L7中の下方の暗線(L1)と、TE波
18による暗線列L1ζ・・L7′中の下方の暗線(L
1●との差(ΔL)は、風冷強化ガラス2の表面層内を
伝播した光のうちで、最も表面に近い経路(第2図中の
S,)を通つた二種の光成分の波(TE波、TM波)を
もつ光に対する風冷強化ガラスの表面屈折率の差(Δn
)から換算され、同時にこの表面屈折率の差(Δn)は
風冷強化ガラスの表面応力に応じた光弾性効果による複
屈折の大きさに相関することから、上記各暗線Ll,L
l7の差(ΔL)を求めて風冷強化ガラスの表面応力を
測定した。
This light source 4 is composed of an outer tube 6 having an entrance hole 5 for monochromatic light, and a spectral lamp 7 housed within the outer tube 6. Further, an incident glass prism 8 for making monochromatic light from the light source 4 enter into the surface layer of the glass 2 is supported on the pedestal 1 so as to be horizontally movable and rotatable via a shaft 9. Furthermore, the mount 1 is provided with a light component wave (TE wave) that vibrates horizontally to the surface of the glass 2 and a wave (TE wave) of the light component that vibrates perpendicularly to the surface of the glass 2 to the outside of the glass 2. An emitting glass prism 10 that separates and emits light component waves (TM waves) is supported via a shaft 11 so as to be horizontally movable and rotatable. Note that each of the prisms 8 and 10 has a refractive index larger than that of the air-cooled tempered glass 2. A light converting member 12 is disposed on the mount 1 in the direction of emission of the TE waves and TM waves emitted from the glass prism 10 for injection, and converts the TE waves and TM waves into a dark line array or a bright line array, respectively. movably supported. This light conversion member 12 includes an objective lens 13 that collects the TE waves and TM waves from the glass prism 10 for ejection onto a focal plane, which will be described later, and one of the TE waves and TM waves re-emitted from the objective lens 13. A rotatable polarizing plate 14 that selectively transmits only the T
It is composed of a focal plane 15 that displays E waves or TM waves as a dark line array, and an eyepiece micrometer 16 that incorporates this focal plane 15 and is used to observe the dark line array on the focal plane 15. First, two sheets of plate glass obtained by the float method are used as air-cooled tempered glass.
A 5 mTn x 25 mm specimen was softened by heating at a temperature in the range of 6002 to 690°C and quenched by air blowing, and monochromatic light from the light source 4 was introduced into the surface layer of the air-cooled tempered glass 2 through a glass prism for incidence. 8. As shown in FIG. 2, the incident monochromatic light undergoes birefringence on the surface layer of the air-cooled tempered glass 2 due to the photoelastic effect corresponding to its compressive stress, and repeats the lip louver phenomenon and total reflection to pass through the path Sl. , S2... and the propagation progresses. Next, when the monochromatic light that has propagated through the surface layer of the air-cooled tempered glass 2 is emitted to the outside by the emitting glass prism 10,
As shown in FIG. 3, a light component wave 18 (TE wave) vibrates parallel to the interface (exit surface 17) between the air-cooled tempered glass 2 and the glass prism 10 for injection, and a light component wave 19 vibrates perpendicularly to the boundary surface (exit surface 17). (TM wave). Next, the TE wave 18 and the TM wave 19 are emitted from the emitting glass prism 8 and separated.
When the polarizing plate 14 of the member 12 is rotated, one of the TE wave 18 and the TM wave 19 (
For example, only the TM waves 19) are present at the focal plane 15 of the member 12.
A dark line array consisting of L1 . . . L7 as shown in FIG. On the other hand, when the polarizing plate 14 is further rotated 90 degrees, only the TE wave 18, which is the wave of the other light component, appears on the focal plane 15 of the light conversion member 12 as shown in FIG. This dark line array was observed with an eyepiece micrometer 16. Therefore, the lower dark line (L1) in the dark line array L1...L7 due to the TM wave 19 obtained in this example, and the lower dark line (L1) in the dark line array L1ζ...L7' due to the TE wave 18.
The difference (ΔL) from 1 Difference in surface refractive index (Δn) of air-cooled tempered glass for light with waves (TE waves, TM waves)
), and at the same time, this difference in surface refractive index (Δn) is correlated with the magnitude of birefringence due to the photoelastic effect according to the surface stress of the air-cooled tempered glass, so each of the dark lines Ll, L
The surface stress of the air-cooled tempered glass was measured by determining the difference in l7 (ΔL).

その結果、得られた表面応力の測定値は大型の風冷強化
ガラスの領域的(局所的)な値であり、かつその精度も
極めて高いものであることが確認された。これに対し、
前記実施例と同様な風冷強化ガラスの試験片に、その表
面に平行に光を通過させて光弾性的に測定する方法(比
較例)によつて求めた表面応力測定値は該ガラス全体の
平均的な値であり、局所的な測定は困難であつた。また
、比較例では小型の試験片(25mmX2571tm)
の表面応力は比較的精度よく測定し得るものの、大型に
なると光弾性効果の増大化に伴ない精度のよい表面応力
の測定が困難であることがわかつた。以上詳述した如く
、本発明によればフロート法により得たガラスを風冷強
化した風冷強化ガラスの表面層が光導波管作用を示すこ
とを利用し、大型の風冷強化ガラスの局所的な表面応力
を、該ガラスの表面層を伝播した光のもつ二種の光成分
波(TE波、TM波)から得た夫々の暗線列ヌは輝線列
にもとづいて容易に測定でき、もつて風冷強化ガラスの
表面応力を非破壊的に迅速かつ高精度に、しかも常時安
定して測定し得る等顕著な効果を有する。
As a result, it was confirmed that the obtained measured value of surface stress was a regional (local) value of the large-sized air-cooled tempered glass, and its accuracy was also extremely high. On the other hand,
The surface stress measurement value obtained by the photoelastic measurement method (comparative example) by passing light parallel to the surface of a test piece of air-cooled tempered glass similar to the above example is the value of the surface stress of the entire glass. It was an average value, and local measurement was difficult. In addition, in the comparative example, a small test piece (25mm x 2571tm)
Although it is possible to measure the surface stress with relatively high accuracy, it has been found that as the size increases, it becomes difficult to accurately measure the surface stress due to the increased photoelastic effect. As detailed above, according to the present invention, by utilizing the fact that the surface layer of air-cooled tempered glass obtained by wind-strengthening glass obtained by the float method exhibits an optical waveguide effect, local The respective dark line arrays obtained from the two types of optical component waves (TE waves and TM waves) of the light propagated through the surface layer of the glass can be easily measured based on the bright line arrays, and the surface stress can be easily measured based on the bright line arrays. It has remarkable effects such as being able to measure the surface stress of air-cooled tempered glass non-destructively, quickly, with high precision, and always stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いた風冷強化ガラスの表面
応力測定装置の一形態を示す概略図、第2図は風冷強化
ガラスの表面層内に入射された単色光の伝播経路を示す
概略図、第3図は風冷強化ガラスの表面層内を伝播した
光が射出用ガラスプリズムから二つの光成分波(TE波
、TM波)として分離、射出する状態を示す概略図、第
4図A,bは風冷強化ガラスの外に射出された光のもつ
二種の光成分の波(TE波、TM波)を、光変換部材で
夫々変換して得た暗線列であり、第4図aはTM波の暗
線列特性図、第4図bはTE波の暗線列特性図である。 1・・・・・・架台、2・・・・・・風冷強化ガラス、
4・・・・・・光源、8・・・・・・人射用ガラスプリ
ズム、10・・・・・・射出用ガラスプリズム、12・
・・・・・光変換部材、14・・・・・・偏光板、16
・・・・・・接眼測微計、18・・・・・・TE波、1
9・・・・・・TM波。
Fig. 1 is a schematic diagram showing one form of the surface stress measurement device for air-cooled tempered glass used in the examples of the present invention, and Fig. 2 is the propagation path of monochromatic light incident on the surface layer of the air-cooled tempered glass. 3 is a schematic diagram showing a state in which light propagated within the surface layer of air-cooled tempered glass is separated and emitted from the exit glass prism as two light component waves (TE wave, TM wave), Figures 4A and 4B are dark line arrays obtained by converting two types of light component waves (TE waves and TM waves) of light emitted outside the air-cooled tempered glass using a light conversion member. , FIG. 4a is a dark line characteristic diagram of the TM wave, and FIG. 4b is a dark line characteristic diagram of the TE wave. 1... Frame, 2... Air-cooled tempered glass,
4...Light source, 8...Glass prism for human emission, 10...Glass prism for emission, 12.
...Light conversion member, 14 ...Polarizing plate, 16
・・・・・・Ocular meter, 18・・・TE wave, 1
9...TM wave.

Claims (1)

【特許請求の範囲】[Claims] 1 フロート法により得られたガラスを風冷強化し、こ
の風冷強化ガラスの表面応力を測定するにあたり、上記
風冷強化ガラスの表面層内に単色光を入射させて該ガラ
スの表面層内を伝播させ、伝播後の光を外部に射出させ
て射出するガラス面に対して平行及び垂直に振動する二
重の光成分に分離し、ひきつづきこれら光成分を夫々暗
線列又は輝線列に変換し、これら暗線列又は輝線列にも
とづいて風冷強化ガラスの表面応力を測定せしめること
を特徴とする風冷強化ガラスの表面応力測定方法。
1. To air-strengthen glass obtained by the float method and measure the surface stress of the air-cooled tempered glass, monochromatic light is incident on the surface layer of the air-cooled tempered glass to propagate, emit the propagated light to the outside, separate it into double light components vibrating parallel and perpendicular to the emitted glass surface, and then convert these light components into a dark line array or a bright line array, respectively, A method for measuring the surface stress of air-cooled tempered glass, which comprises measuring the surface stress of the air-cooled tempered glass based on these dark line arrays or bright line arrays.
JP10737078A 1978-09-01 1978-09-01 Surface stress measurement method for air-cooled tempered glass Expired JPS5914181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10737078A JPS5914181B2 (en) 1978-09-01 1978-09-01 Surface stress measurement method for air-cooled tempered glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10737078A JPS5914181B2 (en) 1978-09-01 1978-09-01 Surface stress measurement method for air-cooled tempered glass

Publications (2)

Publication Number Publication Date
JPS5533675A JPS5533675A (en) 1980-03-08
JPS5914181B2 true JPS5914181B2 (en) 1984-04-03

Family

ID=14457367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10737078A Expired JPS5914181B2 (en) 1978-09-01 1978-09-01 Surface stress measurement method for air-cooled tempered glass

Country Status (1)

Country Link
JP (1) JPS5914181B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236110Y2 (en) * 1980-10-14 1987-09-14
CN112684152B (en) 2015-06-04 2023-05-12 康宁股份有限公司 Characterization method of chemically strengthened lithium-containing glass through ion exchange
WO2017054773A1 (en) 2015-09-30 2017-04-06 苏州精创光学仪器有限公司 Glass surface stressmeter and repeatedly tempered glass surface stressmeter
CN105333980B (en) * 2015-11-27 2019-01-29 苏州精创光学仪器有限公司 Tempered glass surface stress measurement instrument
JP6713651B2 (en) * 2015-12-28 2020-06-24 有限会社折原製作所 Surface refractive index measuring method and surface stress measuring method using the same
WO2018056121A1 (en) * 2016-09-26 2018-03-29 有限会社折原製作所 Stress measuring device for tempered glass, stress measuring method for tempered glass, method for manufacturing tempered glass, and tempered glass

Also Published As

Publication number Publication date
JPS5533675A (en) 1980-03-08

Similar Documents

Publication Publication Date Title
EP0023577B1 (en) Surface stress measurement
JP5540017B2 (en) Optical imaging for optical device inspection
JPS5937452B2 (en) Air-cooled tempered glass surface stress measuring device
WO2014066579A1 (en) Systems and methods for measuring a profile characteristic of a glass sample
Eickhoff et al. Measuring method for the refractive index profile of optical glass fibres
JPH11281501A (en) Apparatus for measuring surface stress
Kishii Surface stress meters utilising the optical waveguide effect of chemically tempered glasses
JPH0776752B2 (en) Method for determining the optical properties of translucent plates
JPWO2017115811A1 (en) Surface refractive index measurement method and surface stress measurement method using the same
US20080068587A1 (en) Surface defect detection method and surface defect inspection apparatus
JPS5937451B2 (en) Surface stress measuring device for chemically strengthened glass
EP1441211A2 (en) Apparatus for measuring residual stress in optical fiber
JPS5914181B2 (en) Surface stress measurement method for air-cooled tempered glass
CN116086776A (en) Device and method for detecting divergence angle of collimated light beam
JP2003240526A (en) Apparatus and method for measurement of surface
JPH04118540A (en) Defect detection method for optical parts and device therefor
US11442008B2 (en) Systems and methods for measuring stress-based characteristics of a glass-based sample
Shepard et al. Measurement of internal stress in glass articles
Gut et al. Determination of the attenuation of planar waveguides by means of detecting scattered light
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
Nitanai et al. Measurements of dispersion properties of refractive indices and absorption coefficients in organic-dye-doped thin films by a prism-coupling method
JPH05264440A (en) Polarization analyzing apparatus
JP3597946B2 (en) Single pulse autocorrelator
JPS5910594Y2 (en) Surface stress measuring device
RU2533538C1 (en) Method for separate determination of probabilities of absorption and dispersion of photons per unit of way in solid optic materials