JPS5937451B2 - Surface stress measuring device for chemically strengthened glass - Google Patents

Surface stress measuring device for chemically strengthened glass

Info

Publication number
JPS5937451B2
JPS5937451B2 JP5150677A JP5150677A JPS5937451B2 JP S5937451 B2 JPS5937451 B2 JP S5937451B2 JP 5150677 A JP5150677 A JP 5150677A JP 5150677 A JP5150677 A JP 5150677A JP S5937451 B2 JPS5937451 B2 JP S5937451B2
Authority
JP
Japan
Prior art keywords
light
glass
chemically strengthened
strengthened glass
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5150677A
Other languages
Japanese (ja)
Other versions
JPS53136886A (en
Inventor
貫 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5150677A priority Critical patent/JPS5937451B2/en
Publication of JPS53136886A publication Critical patent/JPS53136886A/en
Publication of JPS5937451B2 publication Critical patent/JPS5937451B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 本発明は化学強化ガラスの表面応力測定装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved surface stress measuring device for chemically strengthened glass.

周知の如く、化学強化ガラスを製造するには、高温で溶
融されたカリ塩(たとえぱKNO3)にガラスを浸して
、ガラス表面付近のNa+イオンをイオン径の大きいに
+イオンで交換し、このイオン交換によりガラス表面に
圧縮応力を発生させて外力による破壊開始を防止する(
つまり強度を向上させる)、いわゆるイオン交換法が採
用されている。
As is well known, in order to manufacture chemically strengthened glass, the glass is immersed in potassium salt (for example, KNO3) molten at high temperature, and the Na+ ions near the glass surface are exchanged with larger ion diameters. Generates compressive stress on the glass surface through ion exchange to prevent breakage from occurring due to external force (
In other words, the so-called ion exchange method is used to improve the strength.

ところで、上述の方法により得た化学強化ガラスは表面
に発生した圧縮応力が大きく、かつ圧縮応力の発生層が
厚い程、その強度が大きいため、これらの圧縮応力量を
測定することは、品質管理上において重要である。
By the way, the chemically strengthened glass obtained by the above method has a large compressive stress generated on the surface, and the thicker the layer where compressive stress is generated, the higher its strength, so measuring the amount of compressive stress is a quality control method. It is important in the above.

このようなことから、従来、化学強化ガラス表面の応力
を測定する方法として、該強化ガラスを切断して厚さ0
.1〜0.5m771程度の薄片に磨き、その断面を顕
微鏡光弾性装置で観察することにより該強化ガラス表面
の応力及び応力が存在する層厚フを測定する方法が使用
されている。
For this reason, the conventional method for measuring the stress on the surface of chemically strengthened glass is to cut the tempered glass to a thickness of 0.
.. A method is used in which the stress on the surface of the tempered glass and the layer thickness where the stress exists are measured by polishing the glass into a thin piece of about 1 to 0.5 m771 and observing its cross section with a photoelastic microscope.

しかしながら、上記方法にあつては次のような種々な問
題点があり実用性に乏しい。
However, the above method has various problems as described below and is not practical.

すなわち、第1の問題点は破壊的測定手段であるため、
試験材としての薄片を製作するに際し、熟練した作業5
者を必要とし、かつその製作に多大な時間と労力を費や
す欠点があることである。第2の問題点は薄片を製作す
るに際して、表面応力がそのガラスのポアソン比に対応
する割合だけ緩和されてしまうため、真の値と得られた
測定値との間に相当な0ズレを生じることである。第3
の問題点は顕微鏡下でガラス表面における真の光弾性効
果を測ることは困難であるため、不可避的に個人的誤差
を生じる虞れがあることである。本発明は上記各種の問
題点を一挙に解消するた’5めになされたもので、化学
強化ガラスの表面層が光導波管作用を示すことを利用す
ることにより、化学強化ガラスの表面応力及び圧縮応力
層の厚さを非破壊的に迅速かク高精度で測定し得る装置
を提供しようとするものである。
In other words, the first problem is that it is a destructive measurement method.
Skilled work 5 when producing thin sections as test materials
The drawback is that it requires a large amount of time and effort to manufacture. The second problem is that when manufacturing thin sections, the surface stress is relaxed by a proportion corresponding to the Poisson's ratio of the glass, resulting in a considerable zero deviation between the true value and the measured value. That's true. Third
The problem with this is that it is difficult to measure the true photoelastic effect on a glass surface under a microscope, so there is an unavoidable risk of personal error. The present invention has been made in order to solve the above-mentioned various problems all at once, and by utilizing the fact that the surface layer of chemically strengthened glass exhibits an optical waveguide effect, it is possible to reduce the surface stress of chemically strengthened glass. It is an object of the present invention to provide a device that can non-destructively measure the thickness of a compressive stress layer quickly and with high accuracy.

10以下、本発明の一実施例を図面を参照して説明する
10, one embodiment of the present invention will be described below with reference to the drawings.

図中1は化学強化ガラス2表面の一端に載設され、その
ガラス2の表面層内に単色光(可視光)を入射させる光
供給部材としての入射用ガラスプリズムであり、このプ
リズム1は上記ガラス2の屈折率よりも大きくしている
In the figure, reference numeral 1 denotes an incident glass prism as a light supplying member that is placed on one end of the surface of the chemically strengthened glass 2 and makes monochromatic light (visible light) enter the surface layer of the glass 2. The refractive index is made larger than that of glass 2.

また、上記化学強化ガラス2表面の他端には、その表面
層内で伝播した光を該ガラス2外に射出させる光取り出
し部材としての射出用ガラスプリズム3が載設されてお
り、かつこのプリズム3は前記プリズム1と同様、化学
強化ガラス2の屈折率より大きくしている。そして、上
記伝播した光の射出方向に、その伝播光を前記化学強化
ガラス表面2と射出用ガラスプリズム3との間の境界面
つまり射出面4に対して平行及び垂直に振動する2種の
光成分に分離し、これら各光成分を夫々輝線列として変
換する光変換部材5を配設している。この光変換部材5
は、伝播光を後述する焦点面に集める凸レンズ6と、こ
の凸レンズ6から再射出された光を前記射出面4に対し
て平行及び垂直に振動する2種の光成分のうちの一方を
選択的に透過させる回転可能な偏光板7と、選択的に透
過した光成分を輝線列として現わす焦点面8を内蔵し、
焦点面8上の輝線列を観察するための接眼測微計9と、
から構成されている。このような構成によれば、今、入
射用ガラスプリズム1から化学強化ガラス2の表面層内
に単色光を入射させると、該表面層内ではK+イオンが
+表面に濃く、内部に薄く分布し、そのKイオンはNa
+イオンよりも光電界に応する分極率力伏きいことから
、その表面ほど屈折率が高くなつているため、前記単色
光は第2図に示す如く該化学強化ガラス2の表面層で蚕
気楼現像と全反射とを繰り返しながら経路S,,S2・
・・をとり、伝播進行して射出用プリズム3からガラス
2外に射出される。
Further, on the other end of the surface of the chemically strengthened glass 2, an emitting glass prism 3 is mounted as a light extraction member for emitting light propagated within the surface layer to the outside of the glass 2, and this prism Similarly to the prism 1, the refractive index of the glass 3 is larger than that of the chemically strengthened glass 2. Then, in the emission direction of the propagated light, two types of light are vibrated in parallel and perpendicular to the interface between the chemically strengthened glass surface 2 and the glass prism 3 for injection, that is, the emission surface 4. A light conversion member 5 is provided which separates the light into components and converts each of these light components into a bright line array. This light conversion member 5
is a convex lens 6 that focuses the propagating light on a focal plane, which will be described later, and selectively selects one of two types of light components that vibrate the light re-emitted from the convex lens 6 in parallel and perpendicular to the exit surface 4. It has a built-in rotatable polarizing plate 7 that allows light to pass through, and a focal plane 8 that shows the selectively transmitted light components as an array of bright lines.
an eyepiece micrometer 9 for observing the emission line array on the focal plane 8;
It consists of According to this configuration, when monochromatic light is made to enter the surface layer of the chemically strengthened glass 2 from the incident glass prism 1, within the surface layer, K+ ions are concentrated on the + surface and thinly distributed inside. , the K ion is Na
Since the polarizability force in response to the photoelectric field is lower than that of + ions, the refractive index is higher at the surface, so the monochromatic light is absorbed by silkworms in the surface layer of the chemically strengthened glass 2, as shown in FIG. While repeating the tower development and total reflection, the paths S, , S2,
..., propagates, and is ejected from the injection prism 3 to the outside of the glass 2.

こうして、前記表面層内で単色光が伝播する過程におい
て、その単色光は表面層内の圧縮応力に応じた光弾性効
果による複屈折現象を受け、射出用プリズム3から射出
された光は射出面4に対して平行及垂直に振動する二種
の光成分をもつものとなる。しかるに、射出用ガラスプ
リズム3から射出された伝播光を光変換部材5に導き、
その部材5の偏光板7を回転させると、その伝播光のう
ちの一方の光成分(たとえば射出面4に対して垂直に振
動する光成分)のみが、該部材5の焦点面8に第3図A
の如きL1・・・L,からなる輝線列として現われ、こ
の輝線列は接眼測微計9により観察できる。一方、上記
偏光板7をさらに900回転させると、伝播光のうちの
他方の光成分(射出面4に対して平行に振動する光成分
)のみが、光変換部材5の焦点面8上に第3図Bの如き
L,′・・・L7′からなる輝線列として現われ、この
輝線列は接眼測微計9により観察できる。しかして、前
記化学強化ガラス2の表面層内を伝播した光のうちで、
最も表面に近い経路(第2τ図中のS1 )を通つた二
種の光成分をもつ光に対する強化ガラスの表面屈折率の
差(Δn)は、本発明装置により得られた垂直に振動す
る光成分の輝線列中の下方の輝線(第3図A中のL,)
と、平行に振動する光成分の輝線列中の下方の輝線′)
(第3図B中のL1′)と、の差(ΔL)として換算で
き、同時に上記表面屈折率の差(Δn)は化学強化ガラ
スの表面応力に応じた光弾性による複屈折の大きさに相
関するため、上記各輝線L,,Ll′ の差(ΔL)を
求めることにより、化学強)化ガラスの表面応力を測定
できる。また、化学強化ガラスにおける圧縮応力層の厚
さは、得られた輝線列の輝線数から容易に測定できる。
In this way, in the process of monochromatic light propagating within the surface layer, the monochromatic light undergoes a birefringence phenomenon due to the photoelastic effect according to the compressive stress within the surface layer, and the light emitted from the exit prism 3 It has two types of light components vibrating parallel and perpendicular to 4. However, the propagating light emitted from the emitting glass prism 3 is guided to the light conversion member 5,
When the polarizing plate 7 of the member 5 is rotated, only one light component of the propagating light (for example, the light component vibrating perpendicularly to the exit surface 4) is directed to the focal plane 8 of the member 5. Diagram A
This appears as a line of bright lines consisting of L1...L, and this line of bright lines can be observed with the eyepiece micrometer 9. On the other hand, when the polarizing plate 7 is further rotated by 900 rotations, only the other light component of the propagating light (the light component vibrating parallel to the exit surface 4) appears on the focal plane 8 of the light conversion member 5. This appears as a bright line array consisting of L,'...L7' as shown in FIG. Of the light propagated within the surface layer of the chemically strengthened glass 2,
The difference (Δn) in the surface refractive index of the tempered glass for light having two types of light components passing through the path closest to the surface (S1 in Figure 2τ) is the difference (Δn) in the vertically vibrating light obtained by the device of the present invention. Lower emission line in the emission line array of the component (L, in Figure 3 A)
and the lower emission line in the emission line array of light components vibrating in parallel ′)
(L1' in Figure 3B) and (ΔL), and at the same time, the difference in surface refractive index (Δn) can be calculated as the magnitude of birefringence due to photoelasticity depending on the surface stress of chemically strengthened glass. Since they are correlated, the surface stress of the chemically strengthened glass can be measured by determining the difference (ΔL) between the bright lines L, , Ll'. Further, the thickness of the compressive stress layer in chemically strengthened glass can be easily measured from the number of bright lines in the obtained bright line array.

なぜならば応力層が厚い程、その中を通過しうる光の経
路の種類が多くなるからである.なお、本発明装置に用
いる光供給部材及び光取り出し部材は上記実施例に限定
されず、たとえば化学強化ガラス表面上を囲む枠体と、
この枠体内に該ガラス表面と接触するよう収容されたヨ
ウ化メチレン、プロモホルの液体と、から構成しても:
よい。また、本発明装置に用いる光供給部材と光取り出
し部材との位置関係は上記実施例に限定されず、たとえ
ば各部材を隣り合せに配設してもよい。
This is because the thicker the stress layer, the more types of light paths that can pass through it. Note that the light supply member and light extraction member used in the device of the present invention are not limited to the above embodiments, and may include, for example, a frame surrounding the surface of chemically strengthened glass;
A liquid of methylene iodide and promoform contained in the frame so as to be in contact with the glass surface;
good. Further, the positional relationship between the light supply member and the light extraction member used in the device of the present invention is not limited to the above embodiment, and each member may be arranged next to each other, for example.

以上詳述した如く、本発明によれば化学強化ガ・ラスの
表面層が光導管作用を示すことを利用し、該ガラスの表
面応力及び圧縮応力層の厚さを、該表面層を伝播した光
のもつ二種の光成分から得た夫々の輝線列中における最
下方の輝線間の差(ΔL)及び輝線列の輝線数より容易
に測定できるため、次に挙げるような種々の効果を発揮
できる。(1)化学強化ガラスの表面応力、圧縮応力層
の厚さを、非破壊的に測定できるため、従来法の如く熟
練した作業者を必要とするばかりか多大な時間と労力を
費やす該ガラスの薄片の製作が不用となり、したがつて
測定作業の簡素化及び測定の著しい迅速化を図ることが
できる。
As detailed above, according to the present invention, by utilizing the fact that the surface layer of chemically strengthened glass exhibits a light conduit effect, the surface stress of the glass and the thickness of the compressive stress layer are propagated through the surface layer. Since it can be easily measured from the difference (ΔL) between the lowest emission lines in each emission line array obtained from two types of light components of light and the number of emission lines in the emission line array, it exhibits various effects as listed below. can. (1) The surface stress of chemically strengthened glass and the thickness of the compressive stress layer can be measured non-destructively. There is no need to manufacture a thin section, and therefore the measurement work can be simplified and the measurement speed can be significantly increased.

(2)化学強化ガラスを切断したり、磨いたりする必要
がなく、外部から変形を受けない化学強化ガラスそのも
のを測定できるため、真の値に近い測定値を得ることが
できる。
(2) There is no need to cut or polish the chemically strengthened glass, and the chemically strengthened glass itself, which is not subject to external deformation, can be measured, making it possible to obtain measured values close to the true values.

(3)化学強化ガラスの表面応力を、明瞭かつ容易に観
察し得る輝線列から測定できるため、測定結果に個人的
誤差が生じる余地がなく、極めて精度よく応力を測定で
きる。
(3) Since the surface stress of chemically strengthened glass can be measured from a bright line array that can be clearly and easily observed, there is no room for individual error in the measurement results, and stress can be measured with extremely high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における化学強化ガラスの表面応力測定
装置の一実施例を示す概略図、第2図は化学強化ガラス
の表面層内に人射された単色光の伝播経路を示す概略図
、第3図A,Bは化学強化ガラスの外に射出された光の
もつ二種の光成分を、光変換部材で夫々変換された輝線
列であり、第3図Aは射出面に対して垂直に振動する光
成分の輝線列特性図、第3図Bは射出面に対して平行に
振動する光成分の輝線列特性図である。 1・・・入射用ガラスプリズム、2・・・化学強化ガラ
ス、3・・・射出用ガラスプリズム、5・・・光変換部
材、7・・・偏光板、9・・・接眼測微計。
FIG. 1 is a schematic diagram showing an embodiment of the surface stress measuring device for chemically strengthened glass according to the present invention, and FIG. 2 is a schematic diagram showing the propagation path of monochromatic light irradiated into the surface layer of chemically strengthened glass. Figures 3A and 3B are bright line arrays obtained by converting the two light components of the light emitted outside the chemically strengthened glass by the light conversion member, and Figure 3A is perpendicular to the exit surface. FIG. 3B is a characteristic diagram of an emission line array of a light component vibrating parallel to the exit surface. DESCRIPTION OF SYMBOLS 1... Glass prism for entrance, 2... Chemically strengthened glass, 3... Glass prism for injection, 5... Light conversion member, 7... Polarizing plate, 9... Eyepiece micrometer.

Claims (1)

【特許請求の範囲】[Claims] 1 化学強化ガラスの表面層内に単色光を入射させる光
供給部材と、上記ガラスの表面層内を伝播した光をガラ
ス外へ射出させる光取出し部材と、この光取出し部材か
ら射出された光を、上記ガラスと該光取出し部材との境
界面に対して平行及び垂直に振動する二種の光成分に分
離しこれら光成分を夫々輝線列として変換する光変換部
材とを具備したことを特徴とする化学強化ガラスの表面
応力測定装置。
1. A light supply member that allows monochromatic light to enter the surface layer of the chemically strengthened glass, a light extraction member that outputs the light propagated within the surface layer of the glass to the outside of the glass, and a light extraction member that allows the light emitted from the light extraction member to enter the surface layer of the glass. , comprising a light conversion member that separates into two types of light components vibrating parallel and perpendicular to the interface between the glass and the light extraction member and converts these light components into an array of bright lines, respectively. Surface stress measuring device for chemically strengthened glass.
JP5150677A 1977-05-04 1977-05-04 Surface stress measuring device for chemically strengthened glass Expired JPS5937451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150677A JPS5937451B2 (en) 1977-05-04 1977-05-04 Surface stress measuring device for chemically strengthened glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150677A JPS5937451B2 (en) 1977-05-04 1977-05-04 Surface stress measuring device for chemically strengthened glass

Publications (2)

Publication Number Publication Date
JPS53136886A JPS53136886A (en) 1978-11-29
JPS5937451B2 true JPS5937451B2 (en) 1984-09-10

Family

ID=12888871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150677A Expired JPS5937451B2 (en) 1977-05-04 1977-05-04 Surface stress measuring device for chemically strengthened glass

Country Status (1)

Country Link
JP (1) JPS5937451B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9125298B2 (en) 2012-01-25 2015-09-01 Apple Inc. Fused glass device housings
US12006252B2 (en) 2020-09-09 2024-06-11 AGC Inc. Chemically strengthened glass with a film and method for measuring surface stress of chemically strengthened glass

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190025A (en) * 1984-10-11 1986-05-08 Toshiba Glass Co Ltd Surface stress measuring instrument
CN103443603B (en) * 2011-03-18 2016-05-25 旭硝子株式会社 The surface stress determinator of glass and the surface stress assay method of glass
US10156488B2 (en) * 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
US9983064B2 (en) 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US9919958B2 (en) 2014-07-17 2018-03-20 Corning Incorporated Glass sheet and system and method for making glass sheet
JP6419595B2 (en) * 2015-01-30 2018-11-07 有限会社折原製作所 Surface stress measurement method, surface stress measurement device
WO2016196748A1 (en) * 2015-06-04 2016-12-08 Corning Incorporated Methods of characterizing ion-exchanged chemically strengthened glasses containing lithium
TWI762083B (en) * 2015-09-17 2022-04-21 美商康寧公司 Methods of characterizing ion-exchanged chemically strengthened glasses containing lithium
CN108700511B (en) 2015-12-28 2020-12-18 折原制作所有限公司 Surface refractive index measuring method and surface stress measuring method using the same
JP6642246B2 (en) 2016-04-27 2020-02-05 Agc株式会社 Tempered glass plate
CN109906365B (en) 2016-09-26 2021-09-14 折原制作所有限公司 Stress measuring device for tempered glass, stress measuring method for tempered glass, manufacturing method for tempered glass, and tempered glass
JP6995324B2 (en) 2018-02-26 2022-01-14 Agc株式会社 Tempered glass evaluation device, tempered glass evaluation method, tempered glass manufacturing method, tempered glass
CN111521311A (en) * 2020-04-03 2020-08-11 洛阳兰迪玻璃机器股份有限公司 Stress online detection method and online detection system for toughened glass
KR20220027761A (en) 2020-08-27 2022-03-08 에이지씨 가부시키가이샤 Stress measuring device for tempered glass, stress measuring method for tempered glass, and tempered glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9125298B2 (en) 2012-01-25 2015-09-01 Apple Inc. Fused glass device housings
US12006252B2 (en) 2020-09-09 2024-06-11 AGC Inc. Chemically strengthened glass with a film and method for measuring surface stress of chemically strengthened glass

Also Published As

Publication number Publication date
JPS53136886A (en) 1978-11-29

Similar Documents

Publication Publication Date Title
JPS5937451B2 (en) Surface stress measuring device for chemically strengthened glass
JP2804073B2 (en) Apparatus and method for measuring the refractive index of a substance
JP6419595B2 (en) Surface stress measurement method, surface stress measurement device
Meltz et al. Fiber optic temperature and strain sensors
CN105092535B (en) Distributed surface plasma resonance optical fiber sensor
JP5425141B2 (en) SPR sensor cell and SPR sensor
WO2013129378A1 (en) Spr sensor cell, and spr sensor
JP5946330B2 (en) SPR sensor cell and SPR sensor
CN112432929A (en) V-groove structure plastic optical fiber SPR sensor and preparation method thereof
JP6076786B2 (en) SPR sensor cell and SPR sensor
WO2013001848A1 (en) Spr sensor cell and spr sensor
US20230067347A1 (en) Multi-fiber light guide, device with a multi-fiber light guide and method for producing the same
JP2009156640A (en) Waveguide twist tester and waveguide twist test method
JPS5914181B2 (en) Surface stress measurement method for air-cooled tempered glass
JP2004198116A (en) Bragg grating system optical waveguide type sensor and its manufacturing method
JP7158017B2 (en) Stress measuring device, stress measuring method
JP7437750B2 (en) Tempered glass surface refractive index measuring device and surface refractive index measuring method, tempered glass surface stress measuring device and surface stress measuring method
JPS6190025A (en) Surface stress measuring instrument
TWI806975B (en) Prism coupling methods of characterizing stress in glass-based ion-exchanged articles having problematic refractive index profiles
JPH05272920A (en) Optical-fiber displacement gage
JPH07325023A (en) Physical property evaluating method for optical fiber coating and coated optical fiber
JPH0282133A (en) Method and instrument for measuring strain of optical fiber
JP2014185894A (en) SPR sensor cell and SPR sensor
Bajić et al. Mode-dependent analysis of a fiber optic curvature sensor with sensitive zone
Viljanen et al. Ion-exchanged integrated waveguide structures