JP2005091063A - Refractometer - Google Patents

Refractometer Download PDF

Info

Publication number
JP2005091063A
JP2005091063A JP2003322773A JP2003322773A JP2005091063A JP 2005091063 A JP2005091063 A JP 2005091063A JP 2003322773 A JP2003322773 A JP 2003322773A JP 2003322773 A JP2003322773 A JP 2003322773A JP 2005091063 A JP2005091063 A JP 2005091063A
Authority
JP
Japan
Prior art keywords
light
wavelength
filter
photoelectric sensor
refractometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003322773A
Other languages
Japanese (ja)
Other versions
JP4467933B2 (en
Inventor
Yoshinori Nakajima
吉則 中島
Kiminori Sekiguchi
君則 関口
Hideyuki Amamiya
秀行 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atago Co Ltd
Original Assignee
Atago Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atago Co Ltd filed Critical Atago Co Ltd
Priority to JP2003322773A priority Critical patent/JP4467933B2/en
Publication of JP2005091063A publication Critical patent/JP2005091063A/en
Application granted granted Critical
Publication of JP4467933B2 publication Critical patent/JP4467933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractometer for accurately measuring a refraction factor even outdoors by reducing the effect of outside light. <P>SOLUTION: In this refractometer 10, light from a light source 24 is inlet into a boundary surface 18 of a prism 16 forming an interface with a specimen S, the light reflected by the prism boundary surface is detected by a photoelectric sensor 28, and the refraction factor of the specimen is measured from an output signal of the photoelectric sensor. The refractometer has a filter means 30 disposed between the prism boundary surface and the photoelectric sensor. The filter means comprises wavelength filters 32 and 34 for selectively transmitting light in a prescribed wavelength band including the wavelength L of light from the light source. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、溶液中の糖度や濃度の測定に用いられる屈折計に関するものである。   The present invention relates to a refractometer used for measuring sugar content and concentration in a solution.

液中の糖度や濃度の測定に用いられる屈折計として、プリズムと試料との境界面に光を照射し、境界面で反射した光を光電センサにより検出し、光電センサの出力信号より試料の屈折率(糖度、濃度)を測定する屈折計が知られている。   As a refractometer used to measure sugar content and concentration in a liquid, light is irradiated to the boundary surface between the prism and the sample, and the light reflected by the boundary surface is detected by a photoelectric sensor. Refractometers that measure rate (sugar content, concentration) are known.

屈折計の測定原理は、プリズムと試料との境界面において全反射が起こる臨界角が試料の屈折率に依存することに由来する。従って、このような屈折計は、前記境界面における反射光のみが光電センサに入射することを前提とする。   The measurement principle of the refractometer is derived from the fact that the critical angle at which total reflection occurs at the interface between the prism and the sample depends on the refractive index of the sample. Therefore, such a refractometer assumes that only the reflected light at the boundary surface is incident on the photoelectric sensor.

しかし、屈折計を使用する場所は室内とは限らない。例えば、果物や野菜の搾汁や自動車用の不凍液を試料とする場合、戸外で測定を行う方が便利なことがある。この場合、時間的、空間的に変動する外光が、試料側からプリズムを透過し、内部光源からの反射光と共に光電センサに受光される。このため、戸外では屈折率を正確に測定することができないという問題があった。
実公平3−26443号公報
However, the place where the refractometer is used is not always indoors. For example, when using fruit and vegetable juices or antifreezes for automobiles as samples, it may be more convenient to perform measurements outdoors. In this case, external light that varies temporally and spatially passes through the prism from the sample side and is received by the photoelectric sensor together with the reflected light from the internal light source. For this reason, there was a problem that the refractive index could not be accurately measured outdoors.
Japanese Utility Model Publication No. 3-26443

本願発明の目的は、上記の問題点を解決するため、外光の影響を低減し、戸外においても精度良く屈折率を測定することができる屈折計を提供することである。   An object of the present invention is to provide a refractometer that can reduce the influence of external light and can accurately measure the refractive index even outdoors in order to solve the above problems.

この発明の屈折計は、試料との界面をなすプリズムの境界面に光源からの光を入射させ、前記プリズム境界面で反射された光を光電センサにより検出し、前記光電センサの出力信号から前記試料の屈折率を測定する屈折計であって、
前記プリズム境界面と前記光電センサの間に配置されたフィルター手段を有し、
前記フィルター手段は、光源からの光の波長を含む所定の波長域の光を選択的に透過させる波長フィルターを含む。
The refractometer according to the present invention causes light from a light source to enter a boundary surface of a prism that forms an interface with a sample, detects light reflected by the prism boundary surface by a photoelectric sensor, and outputs the light from the output signal of the photoelectric sensor. A refractometer for measuring the refractive index of a sample,
Filter means disposed between the prism boundary surface and the photoelectric sensor;
The filter means includes a wavelength filter that selectively transmits light in a predetermined wavelength range including the wavelength of light from the light source.

前記波長フィルターは、
光源からの光の波長より所定波長だけ長い波長から光電センサの検出波長の最大値までの波長域の光を選択的に遮断する第1のフィルターと、
光源からの光の波長より所定波長だけ短い波長から光電センサの検出波長の最小値までの波長域の光を選択的に遮断する第2のフィルターと、を含んでもよい。
The wavelength filter is
A first filter that selectively blocks light in a wavelength range from a wavelength longer than a wavelength of light from a light source by a predetermined wavelength to a maximum value of a detection wavelength of the photoelectric sensor;
And a second filter that selectively blocks light in a wavelength range from a wavelength shorter than a wavelength of light from the light source by a predetermined wavelength to a minimum value of the detection wavelength of the photoelectric sensor.

前記フィルター手段は、直線偏光を選択的に通過させる偏光フィルターをさらに含むことが好ましい。   Preferably, the filter means further includes a polarizing filter that selectively allows linearly polarized light to pass therethrough.

前記フィルター手段は、前記波長フィルター及び前記偏光フィルターを層状に張り合わせることにより一体的に形成され得る。   The filter means may be integrally formed by laminating the wavelength filter and the polarizing filter in layers.

前記フィルター手段は、第1の面において前記プリズムに接着され、第2の面において前記光電センサに接着され得る。   The filter means may be adhered to the prism on a first surface and adhered to the photoelectric sensor on a second surface.

前記フィルター手段は、減光フィルターを含んでもよい。   The filter means may include a neutral density filter.

したがって、本願発明によれば、外光の影響を低減し、戸外においても精度良く屈折率を測定することが可能な屈折計を提供することができる。   Therefore, according to this invention, the influence of external light can be reduced and the refractometer which can measure a refractive index accurately also outdoors can be provided.

図1は本願発明による屈折計の実施形態を示す。   FIG. 1 shows an embodiment of a refractometer according to the present invention.

屈折計10は、フレーム12と、フレーム12に設けられたサンプルステージ14と、サンプルステージ14の内側に固定されたプリズム16と、を有する。プリズム16は、サンプルステージ14に形成された試料滴下窓部15に滴下される試料Sとの界面をなすプリズム境界面18と、プリズム境界面18への光を入射する入射面20と、境界面18からの反射光を出射する出射面22と、を有する。   The refractometer 10 includes a frame 12, a sample stage 14 provided on the frame 12, and a prism 16 fixed inside the sample stage 14. The prism 16 includes a prism boundary surface 18 that forms an interface with the sample S dropped on the sample dropping window 15 formed on the sample stage 14, an incident surface 20 on which light enters the prism boundary surface 18, and a boundary surface And an emission surface 22 for emitting the reflected light from 18.

プリズム16の入射面20の側には、光源24が配置される。光源24は、好ましくは波長が概ね589nmの光を出射するLEDである。また、好ましくは、光源24は高輝度LEDである。   A light source 24 is disposed on the incident surface 20 side of the prism 16. The light source 24 is preferably an LED that emits light having a wavelength of approximately 589 nm. Preferably, the light source 24 is a high brightness LED.

以下、光源24からプリズム境界面18へ入射する入射光線Riとプリズム境界面18の法線Nとで規定される平面(図1の紙面に平行な平面)を屈折率測定面Aと称する。   Hereinafter, a plane defined by the incident light Ri incident on the prism boundary surface 18 from the light source 24 and the normal line N of the prism boundary surface 18 (a plane parallel to the paper surface of FIG. 1) is referred to as a refractive index measurement surface A.

プリズム16の出射面22の側には、例えば、複数の受光素子が一次元に配置されたラインセンサからなる光電センサ28が配置される。   For example, a photoelectric sensor 28 including a line sensor in which a plurality of light receiving elements are arranged one-dimensionally is disposed on the emission surface 22 side of the prism 16.

プリズム境界面18と光電センサ28の間には、フィルター手段30が配置される。フィルター手段30は、光源24から光の波長を含む所定の波長域の光を選択的に透過させる波長フィルター32、34と、所定の偏光を選択的に透過する偏光フィルター36と、光量を減少させる減光フィルター38と、を含む。   Filter means 30 is disposed between the prism boundary surface 18 and the photoelectric sensor 28. The filter unit 30 reduces the amount of light, wavelength filters 32 and 34 that selectively transmit light in a predetermined wavelength range including the wavelength of light from the light source 24, a polarization filter 36 that selectively transmits predetermined polarized light, and the like. A neutral density filter 38.

波長フィルター32、34は、比較的短い波長帯の光のみを選択的に透過させる第1の波長フィルター32と、比較的長い波長帯の光のみを選択的に透過させる第2の波長フィルター34と、を有する。   The wavelength filters 32 and 34 include a first wavelength filter 32 that selectively transmits only light in a relatively short wavelength band, and a second wavelength filter 34 that selectively transmits only light in a relatively long wavelength band. Have.

第1波長フィルター32は、光源からの光の波長より所定波長だけ長い波長から光電センサ28の検出波長の最大値までの波長域の光を遮断する。好ましくは、第1波長フィルター32は、概ね700nm以上の近赤外域の光をカットして短波長側の光を透過する近赤外線カットフィルターまたは熱線カットフィルターである。具体的には、第1波長フィルター32として、Schott社製のガラスフィルター(バンドパスフィルター)「BG40」を使用することができる。   The first wavelength filter 32 blocks light in a wavelength range from a wavelength longer than the wavelength of light from the light source by a predetermined wavelength to the maximum value of the detection wavelength of the photoelectric sensor 28. Preferably, the first wavelength filter 32 is a near-infrared cut filter or a heat ray cut filter that cuts light in the near infrared region of approximately 700 nm or more and transmits light on the short wavelength side. Specifically, a glass filter (bandpass filter) “BG40” manufactured by Schott can be used as the first wavelength filter 32.

図2を参照すると、曲線Taは、厚さ1.0mmのフィルター「BG40」を使用した第1波長フィルター32の分光透過率を示す。図示のとおり、第1波長フィルター32は、光源24からの光の中心波長L=589nmを含む概ね340nm〜600nmの短波長領域において、70%以上の光を透過する。   Referring to FIG. 2, a curve Ta indicates the spectral transmittance of the first wavelength filter 32 using the filter “BG40” having a thickness of 1.0 mm. As illustrated, the first wavelength filter 32 transmits 70% or more of light in a short wavelength region of approximately 340 nm to 600 nm including the central wavelength L of light from the light source 24 of 589 nm.

第2波長フィルター34は、光源からの光の波長より所定波長だけ短い波長から光電センサ28の検出波長の最小値までの波長域の光を遮断する。好ましくは、第2波長フィルター34は、概ね550nm以下の可視域および紫外域の光をカットして長波長側の光を透過するフィルターである。具体的には、第2波長フィルター34として、透過限界波長(透過率5%の吸収限界波長と透過率72%の高透過限界波長との中点の波長)が560nmであるシャープカットフィルター「O−56」(JIS B7113の記号は、SO56)を使用することができる。   The second wavelength filter 34 blocks light in a wavelength range from a wavelength shorter than the wavelength of light from the light source by a predetermined wavelength to the minimum value of the detection wavelength of the photoelectric sensor 28. Preferably, the second wavelength filter 34 is a filter that cuts light in the visible region and ultraviolet region of approximately 550 nm or less and transmits light on the long wavelength side. Specifically, as the second wavelength filter 34, a sharp cut filter “O” whose transmission limit wavelength (the midpoint wavelength between the absorption limit wavelength of 5% transmittance and the high transmission limit wavelength of 72% transmittance) is 560 nm. -56 "(the symbol of JIS B7113 is SO56) can be used.

図2において、曲線Tbは、厚さ1mmの「O−56」を使用した第2波長フィルター34の分光透過率を示す。図示のとおり、第2波長フィルター34は、光源24からの光の中心波長L=589nmを含む概ね570nm以上の長波長領域において、70%以上の光を透過する。   In FIG. 2, a curve Tb shows the spectral transmittance of the second wavelength filter 34 using “O-56” having a thickness of 1 mm. As illustrated, the second wavelength filter 34 transmits 70% or more of light in a long wavelength region of approximately 570 nm or more including the center wavelength L = 589 nm of light from the light source 24.

これらの第1波長フィルター32及び第2波長フィルター34を含むフィルター手段30の分光透過率を、図2において曲線Tcで示す。図示のとおり、フィルター手段30は、概ね570nm〜600nmの波長域において70%以上の光を透過する。   The spectral transmittance of the filter means 30 including the first wavelength filter 32 and the second wavelength filter 34 is indicated by a curve Tc in FIG. As shown in the figure, the filter means 30 transmits 70% or more of light in a wavelength range of approximately 570 nm to 600 nm.

次に、偏光フィルター36は、屈折率測定面A内に透過軸を有するように配置され、屈折率測定面Aに垂直な方向に振動するS偏光をブロックし、P偏光のみを選択的に通過させる。P偏光のみを透過させることにより、外部からの入射光の大部分をブロックすることができる。   Next, the polarizing filter 36 is disposed so as to have a transmission axis in the refractive index measuring surface A, blocks S polarized light that vibrates in a direction perpendicular to the refractive index measuring surface A, and selectively passes only P polarized light. Let By transmitting only P-polarized light, most of the incident light from the outside can be blocked.

減光(ND)フィルター38は、光源24の輝度に応じた減光率を有する。これにより光源24からの光の光量を光電センサ28の受光量が適正レベルとなるように低下させると同時に、外光の光量を低下させることができる。従って、光源24の輝度が高く、減光フィルター38の減光率が高い(透過率が低い)ほど、減光フィルター38を透過して光電センサ28に入射する光における外光の割合を低減することができる。   The dimming (ND) filter 38 has a dimming rate corresponding to the luminance of the light source 24. As a result, the amount of light from the light source 24 can be reduced so that the amount of light received by the photoelectric sensor 28 is at an appropriate level, and at the same time, the amount of external light can be reduced. Accordingly, the higher the luminance of the light source 24 and the higher the light reduction rate of the light reduction filter 38 (lower transmittance), the lower the ratio of external light in the light that passes through the light reduction filter 38 and enters the photoelectric sensor 28. be able to.

図1に示すように、フィルター手段30は、波長フィルター32、34、偏光フィルター36および減光フィルター38を層状に張り合わせることによって、一体的に形成することが好ましい。また、フィルター手段30の第1の面30aは、プリズム16の出射面22に接着され、第2の面30bは前記光電センサ28の受光面28aに接着されることが好ましい。これによりフィルター手段30をプリズム12に対して容易に位置決めし、固定することができる。   As shown in FIG. 1, it is preferable that the filter means 30 is integrally formed by laminating the wavelength filters 32 and 34, the polarizing filter 36, and the neutral density filter 38 in layers. Further, it is preferable that the first surface 30 a of the filter means 30 is bonded to the emission surface 22 of the prism 16 and the second surface 30 b is bonded to the light receiving surface 28 a of the photoelectric sensor 28. Thereby, the filter means 30 can be easily positioned and fixed with respect to the prism 12.

図1の例では、フィルター手段30の各フィルター32、34、36、38は、プリズム境界面18からの反射光が、第1波長フィルター32、偏光フィルター36、第2波長フィルター34、減光フィルター38の順に透過するように配置されている。しかし、これらのフィルター32、34、36、38はどのような順番に配置されてもよい。   In the example of FIG. 1, each of the filters 32, 34, 36, and 38 of the filter unit 30 is configured so that the reflected light from the prism boundary surface 18 is the first wavelength filter 32, the polarization filter 36, the second wavelength filter 34, and the neutral density filter. It arrange | positions so that it may permeate | transmit in order of 38. However, these filters 32, 34, 36, 38 may be arranged in any order.

以下、図1を参照しながら、屈折計10の作用を説明する。   Hereinafter, the operation of the refractometer 10 will be described with reference to FIG.

試料滴下窓部15に試料Sが滴下され、測定開始のスイッチ(図示せず)が押されると、制御手段により光源24が点灯され、光源24からの光がコンデンサレンズ26を経てプリズム境界面18へ入射する。入射した光線Riは、試料Sの屈折率nに応じて定まる臨界角φc(n)より小さい入射角φにおいてはそのほとんどが試料S側へ透過し、臨界角φc(n)より大きい入射角φにおいては光電センサ28側へ全反射する(図2参照)。   When the sample S is dropped on the sample dropping window 15 and a measurement start switch (not shown) is pushed, the light source 24 is turned on by the control means, and the light from the light source 24 passes through the condenser lens 26 and the prism boundary surface 18. Incident to Most of the incident light Ri is transmitted to the sample S side at an incident angle φ smaller than the critical angle φc (n) determined according to the refractive index n of the sample S, and is larger than the critical angle φc (n). In FIG. 2, the light is totally reflected toward the photoelectric sensor 28 (see FIG. 2).

プリズム境界面18で反射された光線Rrはフィルター手段30に入射する。フィルター手段30により、光源24の波長を含む所定の波長域(例えば550nm〜600nm)にあり、かつ、屈折率測定面Aに平行に振動するP偏光のみが光電センサ28側へ透過する。また、フィルター手段30を透過する光の光量は、光電センサ28の受光量の適正範囲内になるように低減される。   The light ray Rr reflected by the prism boundary surface 18 enters the filter means 30. Only the P-polarized light that is in a predetermined wavelength range (for example, 550 nm to 600 nm) including the wavelength of the light source 24 and vibrates in parallel with the refractive index measurement surface A is transmitted to the photoelectric sensor 28 by the filter unit 30. Further, the amount of light transmitted through the filter means 30 is reduced so as to be within an appropriate range of the amount of light received by the photoelectric sensor 28.

光源24からの反射光は概ね589nmの波長を主成分とする。一方、外部からの入射光(外光)は赤外線から紫外線までの全域にわたる波長成分を含む。従って、フィルター手段30によって589nm前後の波長を有する光のみを透過させることにより、外部からの入射光の大部分をブロックし、かつ、光源24からの反射光の大部分を光電センサ28へ入射させることができる。また、フィルター手段30によってP偏光のみを透過させ、透過光量を低減することにより、光電センサ28への入射光に占める外光成分をさらに少なくすることができる。   The reflected light from the light source 24 is mainly composed of a wavelength of about 589 nm. On the other hand, incident light (external light) from the outside includes wavelength components covering the entire region from infrared rays to ultraviolet rays. Accordingly, by transmitting only light having a wavelength of around 589 nm by the filter means 30, most of the incident light from the outside is blocked, and most of the reflected light from the light source 24 is incident on the photoelectric sensor 28. be able to. Further, by allowing only the P-polarized light to pass through the filter unit 30 and reducing the amount of transmitted light, the external light component in the incident light to the photoelectric sensor 28 can be further reduced.

光電センサ28の各受光素子から受光量に応じた電気信号が出力され、この出力が演算手段(図示せず)に入力され、光量分布曲線が得られる。この演算手段では、この光量分布曲線に基づいて臨界角φc(n)に対応する臨界角点Pcが算定され、試料Sの屈折率nが求められる。より詳細には、以下の方法で臨界角点Pcが計算される。   An electrical signal corresponding to the amount of received light is output from each light receiving element of the photoelectric sensor 28, and this output is input to a calculation means (not shown) to obtain a light amount distribution curve. In this calculation means, the critical angle point Pc corresponding to the critical angle φc (n) is calculated based on the light quantity distribution curve, and the refractive index n of the sample S is obtained. More specifically, the critical angle point Pc is calculated by the following method.

まず、臨界角点(臨界角に相当する光電センサ上の位置)Pcの算定に用いる光量分布曲線の範囲を決定する。この範囲は、光量分布曲線の微分値が最大となる位置(アドレス)の前後における所定数(例えば、30個)のデータに対応するアドレス範囲とする。或いは、屈折計10の屈折率の測定範囲が非常に限られている場合には、その屈折率の範囲に応じて予め決められた範囲としてもよい。   First, the range of the light quantity distribution curve used for calculating the critical angle point (position on the photoelectric sensor corresponding to the critical angle) Pc is determined. This range is an address range corresponding to a predetermined number (for example, 30) of data before and after the position (address) at which the differential value of the light amount distribution curve is maximized. Or when the measurement range of the refractive index of the refractometer 10 is very limited, it is good also as a predetermined range according to the range of the refractive index.

次に、この範囲内におけるm個のデータを用いて、

Figure 2005091063
Next, using m data within this range,
Figure 2005091063


により、重心位置Pc’を算定する。式(1)において、Xは各受光素子の位置(アドレス)を表し、IはXにおける受光量(V)を表す。式1から理解されるように、重心位置Pc’は、光量分布曲線の一次微分曲線(或いは一次差分曲線)の重心位置である。

To calculate the center of gravity position Pc ′. In Formula (1), X i represents the position (address) of each light receiving element, and I i represents the amount of received light (V) at X i . As understood from Equation 1, the barycentric position Pc ′ is the barycentric position of the primary differential curve (or the primary difference curve) of the light amount distribution curve.

最後に、この重心位置Pc’に定数Cを加算し、臨界角点Pc(=Pc’+C)とする。定数Cは、屈折率が既知である試料を用いた実験により予め決定された値である。   Finally, a constant C is added to the barycentric position Pc ′ to obtain a critical angle point Pc (= Pc ′ + C). The constant C is a value determined in advance by an experiment using a sample whose refractive index is known.

光量分布曲線が外光を多く含む場合、外光の時間的・空間的な変化に伴って、光量分布曲線及び一次微分曲線の透過領域側の形状が変化する。従って、重心位置Pc’が真の臨界角点に対して測定ごとに大きく変動し、正しい屈折率が求められない。   When the light amount distribution curve includes a large amount of external light, the shape of the light amount distribution curve and the first derivative curve on the transmission region side changes with the temporal and spatial changes of the external light. Accordingly, the center of gravity position Pc 'varies greatly from measurement to measurement with respect to the true critical angle point, and a correct refractive index cannot be obtained.

一方、光量分布曲線が外光を含まない場合には、安定した重心位置Pc’を得ることが可能となる。   On the other hand, when the light amount distribution curve does not include outside light, it is possible to obtain a stable barycentric position Pc ′.

従って、本願発明による屈折計の一実施形態によれば、前述の方法によって臨界角点Pcをより正確に求めることができ、屈折率を精度良く測定することができる。   Therefore, according to one embodiment of the refractometer according to the present invention, the critical angle point Pc can be obtained more accurately by the above-described method, and the refractive index can be measured with high accuracy.

また、外光が非常に強い場合でも、光電センサー28のダイナミックレンジを越えることなく測定を行うことができる。   Even when the outside light is very strong, measurement can be performed without exceeding the dynamic range of the photoelectric sensor 28.

上記実施形態において、光電センサ28が光源24の点灯時と消灯時に走査を行うように構成しても良い。この場合、点灯時の光量分布曲線と消灯時の光量分布曲線が検出され、演算手段はこれらの引き算により得られた光量分布曲線に基づいて臨界角点Pcを算定する。これにより外光の影響が概ね排除されるため、戸外などの非常に明るい場所においても、より精度良く屈折率nを測定することができる。   In the above embodiment, the photoelectric sensor 28 may be configured to perform scanning when the light source 24 is turned on and off. In this case, a light amount distribution curve at the time of lighting and a light amount distribution curve at the time of turning off the light are detected, and the calculation means calculates the critical angle point Pc based on the light amount distribution curve obtained by subtraction thereof. As a result, the influence of outside light is almost eliminated, so that the refractive index n can be measured more accurately even in a very bright place such as outdoors.

要するに、本願発明による屈折計の一実施形態は、以下の特徴を有する。   In short, an embodiment of the refractometer according to the present invention has the following characteristics.

1. 試料(S)との界面をなすプリズム(16)の境界面(18)に光源(24)からの光を入射させ、前記プリズム境界面で反射された光を光電センサ(28)により検出し、前記光電センサの出力信号から前記試料の屈折率を測定する屈折計(10)であって、
前記プリズム境界面と前記光電センサの間に配置されたフィルター手段(30)を有し、
前記フィルター手段は、光源からの光の波長(L)を含む所定の波長域の光を選択的に透過させる波長フィルター(32、34)を含む。
1. The light from the light source (24) is incident on the boundary surface (18) of the prism (16) that forms an interface with the sample (S), and the light reflected by the prism boundary surface is detected by the photoelectric sensor (28). A refractometer (10) for measuring a refractive index of the sample from an output signal of the photoelectric sensor,
Filter means (30) disposed between the prism interface and the photoelectric sensor;
The filter means includes wavelength filters (32, 34) that selectively transmit light in a predetermined wavelength range including the wavelength (L) of light from the light source.

2. 前記波長フィルターは、
光源からの光の波長(L)より所定波長だけ長い波長から光電センサ(28)の検出波長の最大値までの波長域の光を選択的に遮断する第1のフィルター(32)と、
光源からの光の波長(L)より所定波長だけ短い波長から光電センサ(28)の検出波長の最小値までの波長域の光を選択的に遮断する第2のフィルター(34)と、を含む。
2. The wavelength filter is
A first filter (32) that selectively blocks light in a wavelength range from a wavelength longer than a wavelength of light from a light source (L) by a predetermined wavelength to a maximum value of a detection wavelength of the photoelectric sensor (28);
A second filter (34) that selectively blocks light in a wavelength range from a wavelength shorter than a wavelength (L) of light from the light source by a predetermined wavelength to a minimum detection wavelength of the photoelectric sensor (28). .

3. 前記フィルター手段(30)は、直線偏光を選択的に通過させる偏光フィルター(36)を含む。   3. The filter means (30) includes a polarization filter (36) that selectively passes linearly polarized light.

4. 前記フィルター手段(30)は、前記波長フィルター(32、34)及び前記偏光フィルター(36)を層状に張り合わせることにより一体的に形成される。   4). The filter means (30) is integrally formed by laminating the wavelength filters (32, 34) and the polarizing filter (36) in layers.

5. 前記フィルター手段(30)は、第1の面において前記プリズム(16)に接着され、第2の面において前記光電センサ(28)に接着される。   5). The filter means (30) is bonded to the prism (16) on the first surface and is bonded to the photoelectric sensor (28) on the second surface.

6. 前記フィルター手段(30)は、減光フィルター(38)を含む。   6). The filter means (30) includes a neutral density filter (38).

尚、この発明は上記実施形態に限定されるものでなく、種々の他の形態で実施することができる。例えば、光電センサ28とフィルター手段30が離間して配置され、光電センサ28とフィルター手段30の間に対物レンズを設けてもよい。また、光源24とプリズム16が離間して配置され、光源24とプリズム16の間にコンデンサレンズを設けてもよい。臨界角点の算定を、光量分布曲線の2次微分、或いは、1次微分及び2次微分の両方を用いる方法で行うこともできる。   In addition, this invention is not limited to the said embodiment, It can implement with a various other form. For example, the photoelectric sensor 28 and the filter unit 30 may be arranged apart from each other, and an objective lens may be provided between the photoelectric sensor 28 and the filter unit 30. Further, the light source 24 and the prism 16 may be arranged apart from each other, and a condenser lens may be provided between the light source 24 and the prism 16. The critical angle point can also be calculated by a method using the second derivative of the light amount distribution curve or both the first derivative and the second derivative.

前記屈折計は、以下の効果を奏する。   The refractometer has the following effects.

(1)戸外などの明るい場所においても、外光の影響を低減し、高精度に屈折率を測定することができる。   (1) Even in bright places such as outdoors, the influence of outside light can be reduced and the refractive index can be measured with high accuracy.

(2)製造が容易である。   (2) Easy to manufacture.

(3)製造コストが安い。   (3) Manufacturing cost is low.

(4)測定が簡単かつ能率的に行える。   (4) Measurement can be performed easily and efficiently.

図1は、本願発明による屈折計の実施形態の要部を示す断面図である。FIG. 1 is a cross-sectional view showing a main part of an embodiment of a refractometer according to the present invention. 図2は、図1の屈折計のフィルター手段の分光透過率を示す。FIG. 2 shows the spectral transmittance of the filter means of the refractometer of FIG.

符号の説明Explanation of symbols

10 屈折計
12 フレーム
14 サンプルステージ
15 試料滴下窓部
16 プリズム
18 プリズム境界面
20 プリズム入射面
22 プリズム出射面
24 光源
28 光電センサ
30 フィルター手段
32 第1波長フィルター
34 第2波長フィルター
36 偏光フィルター
38 減光フィルター
DESCRIPTION OF SYMBOLS 10 Refractometer 12 Frame 14 Sample stage 15 Sample dropping window part 16 Prism 18 Prism boundary surface 20 Prism entrance surface 22 Prism exit surface 24 Light source 28 Photoelectric sensor 30 Filter means 32 First wavelength filter 34 Second wavelength filter 36 Polarization filter 38 Reduction Light filter

Claims (6)

試料(S)との界面をなすプリズム(16)の境界面(18)に光源(24)からの光を入射させ、前記プリズム境界面で反射された光を光電センサ(28)により検出し、前記光電センサの出力信号から前記試料の屈折率を測定する屈折計(10)であって、
前記プリズム境界面と前記光電センサの間に配置されたフィルター手段(30)を有し、
前記フィルター手段は、光源からの光の波長(L)を含む所定の波長域の光を選択的に透過させる波長フィルター(32、34)を含む屈折計。
The light from the light source (24) is incident on the boundary surface (18) of the prism (16) that forms an interface with the sample (S), and the light reflected by the prism boundary surface is detected by the photoelectric sensor (28). A refractometer (10) for measuring a refractive index of the sample from an output signal of the photoelectric sensor,
Filter means (30) disposed between the prism interface and the photoelectric sensor;
The filter means is a refractometer including wavelength filters (32, 34) that selectively transmit light in a predetermined wavelength range including a wavelength (L) of light from a light source.
前記波長フィルターは、
光源からの光の波長(L)より所定波長だけ長い波長から光電センサ(28)の検出波長の最大値までの波長域の光を選択的に遮断する第1のフィルター(32)と、
光源からの光の波長(L)より所定波長だけ短い波長から光電センサ(28)の検出波長の最小値までの波長域の光を選択的に遮断する第2のフィルター(34)と、を含む請求項1に記載の屈折計。
The wavelength filter is
A first filter (32) for selectively blocking light in a wavelength range from a wavelength longer than a wavelength of light from a light source (L) by a predetermined wavelength to a maximum value of a detection wavelength of the photoelectric sensor (28);
A second filter (34) that selectively blocks light in a wavelength range from a wavelength shorter than a wavelength (L) of light from the light source by a predetermined wavelength to a minimum detection wavelength of the photoelectric sensor (28). The refractometer according to claim 1.
前記フィルター手段(30)は、直線偏光を選択的に通過させる偏光フィルター(36)を含む請求項1または2に記載の屈折計。   The refractometer according to claim 1 or 2, wherein the filter means (30) includes a polarizing filter (36) for selectively passing linearly polarized light. 前記フィルター手段(30)は、前記波長フィルター(32、34)及び前記偏光フィルター(36)を層状に張り合わせることにより一体的に形成される請求項3に記載の屈折計。   The refractometer according to claim 3, wherein the filter means (30) is integrally formed by laminating the wavelength filter (32, 34) and the polarizing filter (36) in layers. 前記フィルター手段(30)は、第1の面において前記プリズム(16)に接着され、第2の面において前記光電センサ(28)に接着される請求項1乃至4のいずれか1項に記載の屈折計。   The said filter means (30) is adhere | attached on the said prism (16) in a 1st surface, and is adhere | attached on the said photoelectric sensor (28) in a 2nd surface. Refractometer. 前記フィルター手段(30)は、減光フィルター(38)を含む請求項1乃至5のいずれか1項に記載の屈折計。   The refractometer according to any one of claims 1 to 5, wherein the filter means (30) includes a neutral density filter (38).
JP2003322773A 2003-09-16 2003-09-16 Refractometer Expired - Lifetime JP4467933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322773A JP4467933B2 (en) 2003-09-16 2003-09-16 Refractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322773A JP4467933B2 (en) 2003-09-16 2003-09-16 Refractometer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009217639A Division JP4889772B2 (en) 2009-09-18 2009-09-18 Refractometer

Publications (2)

Publication Number Publication Date
JP2005091063A true JP2005091063A (en) 2005-04-07
JP4467933B2 JP4467933B2 (en) 2010-05-26

Family

ID=34454030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322773A Expired - Lifetime JP4467933B2 (en) 2003-09-16 2003-09-16 Refractometer

Country Status (1)

Country Link
JP (1) JP4467933B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957421B1 (en) 2008-08-27 2010-05-11 한국오므론전장주식회사 Rain sensor
KR100981215B1 (en) 2008-08-07 2010-09-10 한국오므론전장주식회사 Rain sensor
KR100981216B1 (en) 2008-08-20 2010-09-10 한국오므론전장주식회사 Rain Sensor
KR100981196B1 (en) * 2008-07-23 2010-09-10 한국오므론전장주식회사 Prism mediated type rain sensor
JP2011112598A (en) * 2009-11-30 2011-06-09 Shimadzu Corp Refractometer
WO2015186655A1 (en) * 2014-06-02 2015-12-10 株式会社アタゴ Device for measuring optical rotation and refractive index

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981196B1 (en) * 2008-07-23 2010-09-10 한국오므론전장주식회사 Prism mediated type rain sensor
KR100981215B1 (en) 2008-08-07 2010-09-10 한국오므론전장주식회사 Rain sensor
KR100981216B1 (en) 2008-08-20 2010-09-10 한국오므론전장주식회사 Rain Sensor
KR100957421B1 (en) 2008-08-27 2010-05-11 한국오므론전장주식회사 Rain sensor
JP2011112598A (en) * 2009-11-30 2011-06-09 Shimadzu Corp Refractometer
WO2015186655A1 (en) * 2014-06-02 2015-12-10 株式会社アタゴ Device for measuring optical rotation and refractive index
JP2015227836A (en) * 2014-06-02 2015-12-17 株式会社アタゴ Measurement device of optical rotation and refractive index
CN105378455A (en) * 2014-06-02 2016-03-02 株式会社爱宕 Device for measuring optical rotation and refractive index
US9709489B2 (en) 2014-06-02 2017-07-18 Atago Co., Ltd. Device for measuring polarization degree and refractive index
KR20170122847A (en) * 2014-06-02 2017-11-06 가부시키가이샤 아타고 Device for measuring optical rotation and refractive index
KR102205783B1 (en) * 2014-06-02 2021-01-21 가부시키가이샤 아타고 Device for measuring optical rotation and refractive index

Also Published As

Publication number Publication date
JP4467933B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
EP2846161B1 (en) Device and method for optically determining the concentration of alcohol and carbohydrates in a liquid sample
CN102735633B (en) Light path online calibration type cavity enhanced atmosphere trace gas detection system
TW201348753A (en) Angle of incidence selective band pass filter for implantable chemical sensor
CN103674891B (en) Atmospheric NO3 free radical concentration measurement system based on double-cavity type cavity ring-down technology
US20150241347A1 (en) Nondispersive infrared micro-optics sensor for blood alcohol concentration measurements
CN201732058U (en) Full-automatic liquid turbidity test instrument
CN104000600A (en) Percutaneous biological optical detecting device and percutaneous jaundice detector
JP4467933B2 (en) Refractometer
US9250184B2 (en) Status estimation device, status estimation method and program for ultraviolet curable resin
CN106092968A (en) Optical detection apparatus and method
JP4889772B2 (en) Refractometer
US20150276594A1 (en) Method and apparatus for measuring turbidity
CN106525804A (en) Optical structure of fluorescence immunochromatography instrument
US20160178437A1 (en) Electromagnetic Radiation Sensor for Monitoring a Medium
CN104822286A (en) Coin and method for testing coin
US9952150B2 (en) Device for measuring the scattering of a sample
US20190228205A1 (en) Skinprint analysis method and apparatus
JP4094972B2 (en) Refractometer
US9632025B2 (en) Method and measuring device for continuously measuring the abbe number
JP6260971B2 (en) Non-destructive sugar acidity meter for fruits and vegetables and method of using the same
JP4910588B2 (en) Water quality measuring device
CN106018796B (en) A kind of immunochromatography detecting system and its detection method for exciting dual frequency reception principle based on single-frequency
CN104583758A (en) Foodstuff analysis device
CN205786658U (en) The immunochromatography detecting system of dual frequency reception principle is excited based on single-frequency
US11879888B2 (en) Glycosuria measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Ref document number: 4467933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term