WO2012126389A1 - 使用卧式旋风筒实现的外循环式高固气比分解反应器 - Google Patents

使用卧式旋风筒实现的外循环式高固气比分解反应器 Download PDF

Info

Publication number
WO2012126389A1
WO2012126389A1 PCT/CN2012/072826 CN2012072826W WO2012126389A1 WO 2012126389 A1 WO2012126389 A1 WO 2012126389A1 CN 2012072826 W CN2012072826 W CN 2012072826W WO 2012126389 A1 WO2012126389 A1 WO 2012126389A1
Authority
WO
WIPO (PCT)
Prior art keywords
decomposition
furnace
horizontal cyclone
high solid
circulation type
Prior art date
Application number
PCT/CN2012/072826
Other languages
English (en)
French (fr)
Inventor
徐德龙
陈延信
杨沛浩
刘文欢
范海宏
罗永勤
Original Assignee
西安建筑科技大学
陕西德龙水泥高新技术孵化有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安建筑科技大学, 陕西德龙水泥高新技术孵化有限公司 filed Critical 西安建筑科技大学
Publication of WO2012126389A1 publication Critical patent/WO2012126389A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling

Definitions

  • the present invention relates to the field of gas-solid phase thermal reaction, and relates to a thermal reaction device for rapid heat transfer, mass transfer and reaction of powdery materials. In particular, it relates to an external circulation type high solid-gas ratio decomposition reactor realized by a horizontal cyclone.
  • BACKGROUND OF THE INVENTION Since the first suspension precalciner (SF) was developed by Japan Ishikawajima Co., Ltd. and Chichibu Cement Co., Ltd. in 1971, various types of suspension preheaters and different decomposition furnace phases have been developed based on the suspension preheating technology.
  • the combination promotes the development of the suspension preheating pre-decomposition technology, greatly improves the quality and output of the cement kiln, and significantly reduces the heat consumption of the cement meal.
  • cement technology researchers and equipment manufacturers in various countries have continuously invested in the development of new decomposition furnaces to promote the continuous development of pre-decomposition systems, and their performance has been perfected.
  • the pre-decomposition system used in the early stage is mainly composed of a decomposition furnace monomer, which is located between the suspension preheater and the cement rotary kiln. It is both a combustion furnace, a heat exchanger and a reactor with fuel combustion.
  • a variety of functions such as gas-solid heat transfer and carbonate decomposition, undertake many tasks of gas-solid two-phase transport, mixing, dispersion, heat transfer and chemical reaction.
  • the decomposition furnace mixes the cement raw material after the suspension preheating with the fuel entering the furnace before reaching the decomposition temperature, and rapidly absorbs the combustion heat of the fuel in the suspended state, so that the calcium carbonate in the raw material is rapidly decomposed into calcium oxide, thereby
  • the decomposition rate of the raw material into the kiln is increased from about 30% of the suspension preheating kiln to 85% to 90%, which not only reduces the heat load of the calcination zone in the kiln, but also greatly improves the production efficiency of the kiln system.
  • the commonly used decomposition furnaces can be roughly classified into three types according to the working principle and main features: cylindrical, fluidized bed and flue type, more than 30 types of decomposition furnaces, but due to the high temperature of the decomposition furnace
  • the above decomposition furnace generally has large fluctuations in the flow field and temperature field in the furnace, and the kiln tail chamber and the pipeline are prone to crust blockage.
  • the rapid reaction furnace the material residence time is short, and the fuel coke in the two fires is not completely burned.
  • the phenomenon that the temperature inside the furnace is upside down and upside down affects the balanced and stable operation of the system.
  • the degree of dispersion of the material in the decomposition furnace in the gas stream restricts the apparent decomposition rate of carbonate into the kiln.
  • the decomposition rate can be increased. That is to say, in the case that the size of the decomposition furnace is not increased, the "outer furnace circulation" process is performed to the decomposition furnace by using several times the amount of the discharged material of the finished product, so that some of the partially incompletely reacted materials can enter the decomposition furnace multiple times. Increase the solid-gas ratio and thermal stability of the system, solve the problems of the above-mentioned decomposition furnace, and ensure the apparent decomposition rate of the carbonate in the kiln and the balanced and stable operation of the system.
  • the circulating material control device is located at the lower end of the lower stage of the final stage of the suspension preheater. After the material exits the furnace, it enters the final stage preheater. After the gas-solid separation, the pre-heater discharge tube enters the circulating material distribution control device. Separation, a part of the material enters the decomposition furnace again to form a circulating material, and the rest of the material enters the rotary kiln.
  • most of these circulating material control devices have the following problems:
  • an object of the present invention is to provide an external circulation type high solid-gas ratio decomposition reactor realized by a horizontal cyclone, which can selectively increase the residence time of materials in a pre-decomposition system. Improve the decomposition rate of the material and the reaction rate of the system, change the mode of no-distribution of the circulating powder, and arbitrarily divert the mode to reduce the system fluid resistance.
  • An externally circulated high solids ratio decomposition reactor using a horizontal cyclone including:
  • Decomposing furnace 2 the powder in the decomposition furnace 2 with the movement of high temperature hot flue gas, in the state of transport;
  • the horizontal cyclone cylinder 3 communicates with the outlet of the decomposition furnace 2 to initially separate the coarse-grained particles in the dust-containing gas stream, and the first material pipe 31 connected through the bottom discharge cone is sent back to the lower portion of the decomposition furnace 2 to be repeatedly decomposed. The process in the furnace 2;
  • the cyclone cylinder 4 communicates with the horizontal cyclone cylinder 3 to further separate the powder particles in the dust-containing gas stream, and the second material pipe 41 connected through the bottom discharge cone is sent to the next process step.
  • the decomposition furnace 2 includes:
  • a feeding tube disposed on one side or both sides of the lower portion of the furnace body
  • the coal injection pipe is disposed on one side or both sides of the lower cone of the furnace body, and is in communication with the first material pipe 31 and the second material pipe 41;
  • a hot air inlet disposed on one or both sides of the lower portion of the furnace body, and the hot air is taken from the hot air at a speed of 15 to 35 m/sec by means of a central air inlet or an eccentric air inlet or a tangential air inlet.
  • the air inlet enters the furnace body;
  • the hot flue gas inlet is disposed at the bottom of the furnace body, and the hot flue gas of the cement rotary kiln 1 enters the furnace body from the hot flue gas inlet port at a speed of 20 to 40 m / sec.
  • a shrinkage can be provided in the decomposition furnace 2.
  • the lower end of the feeding tube is provided with a material dispersing device, and the coal injection tube is a single channel or a plurality of channels.
  • a first discharge lock damper 32 is disposed on the first material conduit 31, and a second discharge lock damper 42 is disposed on the second material conduit 41.
  • the decomposition furnace 2 is connected to two horizontal cyclones 3, and each horizontal cyclone 3 is connected to a cyclone 4.
  • the invention has the following advantages:
  • the separation efficiency control (horizontal cyclone without inner cylinder) essentially improves the space utilization of the decomposition furnace, greatly increases the heat capacity per unit volume of the decomposition furnace, reduces the furnace temperature fluctuation, and reduces the probability of crust blockage.
  • the system operation will be more stable, increase the unit capacity and reduce the emission of harmful gases such as S0 2 and NOx.
  • the material circulation separator of the system adopts a horizontal cyclone cylinder, which has the impact pressure loss of the airflow at the gas inlet and the eddy current loss and gas discharge when the gas flow at the bottom of the cone is reversed and compared with the ordinary vertical cyclone cylinder.
  • the pressure loss at the inner cylinder is also advantageous in that the size is small and the crust is not easily blocked.
  • the invention has strong adaptability and can be used for technical transformation of the traditional rotary kiln, in particular, it can flexibly transform various types of decomposition furnaces, and the investment is saved, the transformation period is short, and there are huge economic and social benefits.
  • FIG. 1 is a schematic structural view of a first embodiment of the present invention, in which a broken line with an arrow indicates a flow path, and a solid line with an arrow indicates a material route map.
  • FIG. 2 is a schematic structural view of a second embodiment of the present invention, in which a broken line with an arrow indicates a flow path, and a solid line with an arrow indicates a material route map.
  • the present invention is an external circulation type high solid-gas ratio decomposing reactor realized by using a horizontal cyclone, comprising:
  • Decomposing furnace 2 the powder in the decomposition furnace 2 with the movement of high temperature hot flue gas, in the state of transport in the suspended state for thermal reaction;
  • the horizontal cyclone cylinder 3 communicates with the outlet of the decomposition furnace 2 to initially separate the coarse-grained particles in the dust-containing gas stream, and the first material pipe 31 connected through the bottom discharge cone is sent back to the lower portion of the decomposition furnace 2 to be repeatedly decomposed. The process in the furnace 2;
  • the cyclone cylinder 4 communicates with the horizontal cyclone cylinder 3 to further separate the powder particles in the dust-containing gas stream, and the second material pipe 41 connected through the bottom discharge cone is sent to the next process step.
  • the decomposition furnace 2 includes:
  • Feeding pipe disposed on one side or both sides of the lower part of the furnace body,
  • the coal injection pipe is disposed on one side or both sides of the lower cone of the furnace body, and is in communication with the first material pipe 31 and the second material pipe 41;
  • a hot air inlet disposed on one or both sides of the lower portion of the furnace body, and the hot air is taken from the hot air at a speed of 15 to 35 m/sec by means of a central air inlet or an eccentric air inlet or a tangential air inlet.
  • the hot flue gas inlet is disposed at the bottom of the furnace body, and the hot flue gas of the cement rotary kiln 1 enters the furnace body from the hot flue gas inlet port at a speed of 20 to 45 m / sec.
  • the gas stream containing the material exits the decomposition furnace 2 and directly enters the horizontal cyclone cylinder 3, rotates around the horizontal axis of the horizontal cyclone cylinder 3, and is discharged from the outlet port at the other end, and the separated material passes through the lower discharge vertebral body. Unloading. After gas-solid separation, the coarser calcium carbonate particles which are not completely decomposed or partially decomposed, the coarser fuel particles which are not completely burned are separated from the material, collected, passed through the first material pipe 31, and returned to the decomposition furnace 2 to continue decomposition or combustion.
  • the finer particles are separated by the airflow in the cyclone separator into the final cyclone preheater of the higher separation efficiency, that is, in the cyclone cylinder 4, and enter the rotary kiln through the second material conduit 41; the remaining dust-containing gas flows through the outlet Enter the upper cyclone preheating unit.
  • the coarser particles in the decomposition furnace 2 continue to burn and decompose together with the newly added raw meal and fuel, and participate again in the material furnace cycle.
  • the decomposition furnace 2 in the pre-decomposition system is connected to two horizontal cyclones 3, and the outlets of the horizontal cyclone 3 are symmetrically connected to the two final cyclone preheaters, that is, the cyclone 4, in the direction of airflow rotation.
  • the rest of the structure is the same as in the first embodiment.
  • the above examples are not exhaustive of the present invention.
  • the material separator of the present invention can be in various forms, and the decomposition furnace of the present invention, various types of separators, and suspension preheaters can also be combined in various combinations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)

Description

使用卧式旋风筒实现的外循环式高固气比分解反应器 技术领域 本发明属于气固相热反应领域, 涉及一种用于粉状物料的快速传热、 传 质及反应的热反应装置, 尤其涉及一种使用卧式旋风筒实现的外循环式高固 气比分解反应器。 背景技术 自从 1971 年日本石川岛公司和秩父水泥公司开发出第一台悬浮预分解 炉 (SF ) 以来, 在悬浮预热技术的基础上, 各种类型的悬浮预热器与不同的 分解炉相结合促进了悬浮预热预分解技术的发展, 使水泥窑的质量和产量大 幅度提高, 水泥孰料烧成热耗明显下降。 同时, 各国水泥技术研究者和设备 制造商不断投入力量研发新型分解炉, 促进预分解系统不断的发展, 其性能 曰趋完善。 早期使用的预分解系统主要是由分解炉单体构成, 其位于悬浮预 热器和水泥回转窑之间, 既是一个燃烧炉, 又是一个换热器, 同时也是一个 反应器, 具有燃料燃烧、 气固换热和碳酸盐分解等多种功能, 承担着气固两 相输送、 混合、 分散、 换热和化学反应的多项任务。 分解炉将经过悬浮预热 后的水泥生料在达到分解温度前, 与进入炉内的燃料混合, 在悬浮状态下迅 速吸收燃料燃烧热, 使生料中的碳酸钙迅速分解成氧化钙, 从而使入窑生料 的分解率从悬浮预热窑的 30%左右提高到 85%〜90%, 这样不仅减少了窑内煅 烧带的热负荷, 也大幅度提高了窑系统的生产效率。
目前, 普遍使用的分解炉根据工作原理和主要特征大致可分为三类: 圆 筒式、流化床式和烟道式, 分解炉型超过三十多种, 但由于分解炉炉温偏高, 上述分解炉普遍存在着炉内流场和温度场波动较大, 窑尾烟室和管道容易结 皮堵塞, 快速反应炉中, 物料停留时间短, 二把火中的燃料焦粒燃烧不完全, 造成炉内温度上下倒挂等现象, 影响系统均衡稳定的运行。 而且分解炉中物 料在气流中的分散程度、 物料颗粒的大小、 分解炉的温度、 二氧化碳的分压 以及反应时间 (停留时间) 等多种因素制约着入窑碳酸盐的表观分解率。
基于上述原因, 当其他因素保持相对稳定的情况下, 如果有意识地延长 物料的停留时间, 就可以提高其分解率。 也就是说, 在分解炉尺寸不加大的 情况下, 利用数倍于成品量的出炉物料向分解炉作 "炉外循环"过程, 就可 以使部分未完全反应的物料多次进入分解炉反应, 增加系统的固气比和热稳 定性, 解决上述分解炉存在的问题, 保障入窑碳酸盐的表观分解率和系统均 衡稳定的运行。
目前, 已有部分科研单位和公司对 "外循环式"分解炉进行了研究, 幵 发了某些循环分料控制装置。 循环分料控制装置位于末级悬浮预热器下料管 的下端, 物料出分解炉后进入末级悬浮预热器, 气固分离后由预热器下料管 进入循环分料控制装置被作用分离, 一部分物料再次进入分解炉形成循环物 料,其余物料则进入回转窑内。但这些循环分料控制装置大都存在以下问题:
1) "物料外循环" 的实现或者通过分流装置直接分料实现, 或者经过中 间分离器将较粗物料分离后再经过分流装置分料来实现外循环。 但是通过分 料装置所分得的入窑料与入炉料料量的比例很难把握, 并且入窑部分的物料 中也含有大量的未完全分解的碳酸钙颗粒和较粗未完全燃烧的焦炭颗粒, 这 样势必增加了回转窑的热负荷; 另外, 通过分料装置分入分解炉内的物料中 也含有大量的已分解氧化钙颗粒、 未完全分解的较细碳酸钙颗粒以及其它较 细颗粒, 这样也影响了分解炉的空间利用率。
2) "物料外循环 "系统中均含有必不可少的装置-分料装置。这样分料装 置的工作性能及运行成本就是影响外循环系统的关键因素。 实际应用中, 无 论是工艺复杂的流化床分流装置, 还是结构简单的分料阀装置, 它们都是在 高温的环境中进行工作的, 所以对材质的要求较高, 并且高温情况下各调节 装置的灵活性也受到很大的限制。 发明内容 为了克服上述现有技术的不足, 本发明的目的在于提供一种使用卧式旋 风筒实现的外循环式高固气比分解反应器, 可选择性提高物料在预分解系统 内的停留时间,提高物料的分解率和系统反应率, 改变对循环粉料不加区分, 任意分流的模式, 减小系统流体阻力。
为了实现上述目的, 本发明采用的技术方案是:
使用卧式旋风筒实现的外循环式高固气比分解反应器, 包括:
分解炉 2, 粉料在分解炉 2中随高温热烟气的运动, 在输送状态下进行 热反应;
卧式旋风筒 3, 与分解炉 2的出口连通, 初步分离出含尘气流中的粗粒 径颗粒, 通过底部卸料锥体连接的第一物料管道 31回送到分解炉 2的下部, 重复分解炉 2中的过程;
旋风筒 4, 与卧式旋风筒 3连通, 进一步分离出含尘气流中粉体颗粒, 通过底部卸料锥体连接的第二物料管道 41送到下一工艺环节中。
所述的分解炉 2包括:
炉体;
喂料管, 设置在该炉体下部的一侧或两侧;
喷煤管,设置在该炉体下部锥体的一侧或两侧, 与第一物料管道 31和第 二物料管道 41连通;
热空气进风口, 设置在该炉体下部的一侧或两侧, 热空气以中心进风或 偏心进风或切向进风的方式, 以 15〜35米 /秒的速度从所述热空气进风口进 入炉体;
热烟气进风口, 设置在该炉体底部, 水泥回转窑 1的热烟气以 20〜40 米 /秒的速度从所述热烟气进风口进入炉体。
所述分解炉 2上可设置缩口。
所述喂料管的下端设置物料分散装置,所述喷煤管为单通道或者多通道。 所述第一物料管道 31上设置第一卸料锁风阀 32,第二物料管道 41上设 置第二卸料锁风阀 42。
所述分解炉 2和两个卧式旋风筒 3相连, 每个卧式旋风筒 3都连接一个 旋风筒 4。
本发明与现有技术相比, 具有以下优点:
一) 并不用增大分解炉的尺寸可使数倍于成品量分解料返回分解 炉, 提高预分解系统的固气比, 延长物料在分解炉内的停留时 间, 从而提高了入窑生料的表观分解率和燃料的燃烧效率, 提 高整个系统的热效率和反应率。 试验证明: 在保持分解率 90 % 的情况下, 循环率每增加 100%, 操作温度可降低 30- 40 :。 同 时, 随着循环倍数的增大, 分解炉内物料颗粒浓度成倍增大, 炉内温度波动减小, 热工稳定性提高。
二) 避免了传统的外循环式分解炉系统中较细的已分解生料颗粒在 系统中多次循环的状态, 改变对循环粉料不加区分, 任意分流 的模式, 物料循环量由分离器 (无内筒的卧式旋风筒) 的分离 效率控制, 从本质上提高了分解炉的空间利用率, 使分解炉单 位容积的热容量大大增加, 炉温波动减小, 结皮堵塞的概率减 小, 系统运行将更加稳定, 提高单位炉容产量, 降低 S02、 NOx 等有害气体的排放。
三) 本系统物料循环分离器采用卧式旋风筒, 与普通立式旋风筒相 比较, 具有减少了气体入口处气流的冲击压损和锥体底部气流 反转向上流动时的涡流损失以及气体排出内筒处的压力损失, 另外还有尺寸小、 不易结皮堵塞等优点。
四) 本发明适应性强, 可用来对传统的回转窑实施技术改造, 特别 是可灵活的对各类分解炉进行改造,并且投资省,改造周期短, 有巨大的经济效益和社会效益。
本发明可广泛用于水泥、 化工、 冶金等行业中的粉体物料热反应分解系 统中, 尤其适用于水泥厂中的预分解系统内碳酸钙颗粒分解反应过程。 附图说明 图 1是本发明实施例一的结构示意图,图中带箭头的虚线表示气流路线, 带箭头的实线表示物料路路线图。
图 2是本发明实施例二的结构示意图,图中带箭头的虚线表示气流路线, 带箭头的实线表示物料路路线图。 具体实施方式 下面结合附图和实施例对本发明做进一步详细说明。
实施例一
如图 1所示, 本发明为一种使用卧式旋风筒实现的外循环式高固气比分 解反应器, 包括:
分解炉 2, 粉料在分解炉 2中随高温热烟气的运动, 在输送状态下以悬 浮态进行热反应;
卧式旋风筒 3, 与分解炉 2的出口连通, 初步分离出含尘气流中的粗粒 径颗粒, 通过底部卸料锥体连接的第一物料管道 31回送到分解炉 2的下部, 重复分解炉 2中的过程;
旋风筒 4, 与卧式旋风筒 3连通, 进一步分离出含尘气流中粉体颗粒, 通过底部卸料锥体连接的第二物料管道 41送到下一工艺环节中。
其中, 分解炉 2包括:
炉体;
喂料管, 设置在该炉体下部的一侧或两侧 ,·
喷煤管,设置在该炉体下部锥体的一侧或两侧,与第一物料管道 31和第 二物料管道 41连通;
热空气进风口, 设置在该炉体下部的一侧或两侧, 热空气以中心进风或 偏心进风或切向进风的方式, 以 15〜35米 /秒的速度从所述热空气迸风口进 入炉体;
热烟气进风口, 设置在该炉体底部, 水泥回转窑 1的热烟气以 20〜45 米 /秒的速度从所述热烟气进风口进入炉体。
工作时, 含有物料的气流从分解炉 2出来直接进入卧式旋风筒 3, 围绕 卧式旋风筒 3的水平轴线旋转再从另一端的出气口排出, 分离出来的物料经 下面的卸料椎体处卸出。 经气固分离, 使未完全分解或部分分解的较粗碳酸 钙颗粒、 未完全燃烧的较粗燃料颗粒从物料中分离、 收集, 经过第一物料管 道 31, 返回分解炉 2中继续分解或燃烧, 较细颗粒在旋流分离器内被气流带 走进入较高分离效率的末级旋风预热器即旋风筒 4内分离, 经第二物料管道 41进入回转窑内; 剩余含粉尘气流经出口进入上一级旋风预热单元。 返回分 解炉 2中的较粗颗粒, 与新加入的生料和燃料一起继续燃烧和分解, 再次参 与物料炉外循环过程。
实施例二
如图 2所示, 预分解系统中的分解炉 2和两个卧式旋风筒 3相连, 卧式 旋风筒 3出口沿气流旋转方向对称连接两个末级旋风预热器即旋风筒 4。 其 余各部分结构与上实施例一相同。
以上是实例并不是本发明的穷举,本发明的物料分离器可以有多种形式, 同时本发明的分解炉、 多种形式的分离器、 悬浮预热器也可以有多种组合形 式。

Claims

权 利 要 求 书
1、 使用卧式旋风筒实现的外循环式高固气比分解反应器, 其特征在于, 包括:
分解炉 (2 ) , 粉料在分解炉 (2 ) 中随高温热烟气的运动, 在输送状态 下进行热反应;
卧式旋风筒 (3 ) , 与分解炉 (2 ) 的出口连通, 初步分离出含尘气流中 的粗粒径颗粒, 通过底部卸料锥体连接的第一物料管道 (31 ) 回送到分解炉 ( 2 ) 的下部, 重复分解炉(2)中的过程;
旋风筒 (4 ) , 与卧式旋风筒 (3 ) 连通, 进一步分离出含尘气流中粉体 颗粒, 通过底部卸料锥体连接的第二物料管道 (41 ) 送到下一工艺环节中。
2、根据权利要求 1所述的使用卧式旋风筒实现的外循环式高固气比分解 反应器, 其特征在于, 所述的分解炉 (2 ) 包括:
炉体;
喂料管, 设置在该炉体下部的一侧或两侧;
喷煤管, 设置在该炉体下部锥体的一侧或两侧, 与第一物料管道 (31 ) 和第二物料管道 (41 ) 连通;
热空气进风口, 设置在该炉体下部的一侧或两侧;
热烟气进风口, 设置在该炉体底部。
3、根据权利要求 2所述的使用卧式旋风筒实现的外循环式高固气比分解 反应器, 其特征在于, 热空气以中心进风或偏心进风或切向进风的方式, 以 15〜35米 /秒的速度从所述热空气进风口进入炉体。
4、根据权利要求 2所述的使用卧式旋风筒实现的外循环式高固气比分解 反应器, 其特征在于, 水泥回转窑(1 )的热烟气以 20〜45米 /秒的速度从所 述热烟气进风口进入炉体。
5、根据权利要求 2所述的使用卧式旋风筒实现的外循环式高固气比分解 反应器, 其特征在于, 所述分解炉 (2 ) 上设置有缩口。
6、根据权利要求 2至 5任一权利要求所述的使用卧式旋风筒实现的外循 环式高固气比分解反应器, 其特征在于, 所述喂料管的下端设置物料分散装 置。
7、根据权利要求 6所述的使用卧式旋风筒实现的外循环式高固气比分解 反应器, 其特征在于, 所述喷煤管为单通道或者多通道。
8、根据权利要求 1所述的使用卧式旋风筒实现的外循环式高固气比分解 反应器,其特征在于,所述第一物料管道(31 )上设置第一卸料锁风阀(32)。
9、根据权利要求 1所述的使用卧式旋风筒实现的外循环式高固气比分解 反应器,其特征在于,所述第二物料管道(41 )上设置第二卸料锁风阀(42 ) 。
10、 根据权利要求 1所述的使用卧式旋风筒实现的外循环式高固气比分 解反应器, 其特征在于, 所述分解炉 (2 ) 和两个卧式旋风筒(3)相连, 每个 卧式旋风筒(3)都连接一个旋风筒 (4) 。
PCT/CN2012/072826 2011-03-24 2012-03-22 使用卧式旋风筒实现的外循环式高固气比分解反应器 WO2012126389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110071741.5 2011-03-24
CN 201110071741 CN102219411A (zh) 2011-03-24 2011-03-24 使用卧式旋风筒实现的外循环式高固气比分解反应器

Publications (1)

Publication Number Publication Date
WO2012126389A1 true WO2012126389A1 (zh) 2012-09-27

Family

ID=44776154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072826 WO2012126389A1 (zh) 2011-03-24 2012-03-22 使用卧式旋风筒实现的外循环式高固气比分解反应器

Country Status (2)

Country Link
CN (1) CN102219411A (zh)
WO (1) WO2012126389A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103662837A (zh) * 2013-11-13 2014-03-26 新奥科技发展有限公司 密相输送系统及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219411A (zh) * 2011-03-24 2011-10-19 西安建筑科技大学 使用卧式旋风筒实现的外循环式高固气比分解反应器
CN104764339B (zh) * 2015-03-27 2016-11-23 盐城工学院 一种实现空气净化除尘的换热装置
CN106152793A (zh) * 2015-04-05 2016-11-23 南京凯盛国际工程有限公司 带预燃炉的高固气比预热器及其预热方法
CN109882854B (zh) * 2019-01-28 2020-10-13 湖北工业大学 一种用悬浮焚烧技术高温热解无害化处理工业废盐渣的方法
CN110531026B (zh) * 2019-08-30 2022-02-22 西安建筑科技大学 一种测定粉体物料悬浮态反应动力学的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118652B2 (ja) * 1991-07-16 2000-12-18 川崎重工業株式会社 噴流層造粒設備
CN1415926A (zh) * 2002-11-11 2003-05-07 西安建筑科技大学 用于粉状物料的高固气比交叉料流热处理装置
CN201276490Y (zh) * 2008-10-20 2009-07-22 昆明理工大学 煤种普适性水泥煅烧装置
CN102127634A (zh) * 2011-03-24 2011-07-20 西安建筑科技大学 辉钼精矿悬浮态焙烧工艺及设备
CN102219410A (zh) * 2011-03-24 2011-10-19 西安建筑科技大学 一种悬浮态外循环式高固气比分解反应器
CN102219409A (zh) * 2011-03-24 2011-10-19 西安建筑科技大学 高固气比预热预分解水泥熟料煅烧工艺及设备
CN102219411A (zh) * 2011-03-24 2011-10-19 西安建筑科技大学 使用卧式旋风筒实现的外循环式高固气比分解反应器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2092543U (zh) * 1991-06-25 1992-01-08 西安冶金建筑学院 水泥立筒预热器内的物料分散器
CN2262697Y (zh) * 1996-05-23 1997-09-17 陈华奎 用于水泥余热发电窑的强化分解炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118652B2 (ja) * 1991-07-16 2000-12-18 川崎重工業株式会社 噴流層造粒設備
CN1415926A (zh) * 2002-11-11 2003-05-07 西安建筑科技大学 用于粉状物料的高固气比交叉料流热处理装置
CN201276490Y (zh) * 2008-10-20 2009-07-22 昆明理工大学 煤种普适性水泥煅烧装置
CN102127634A (zh) * 2011-03-24 2011-07-20 西安建筑科技大学 辉钼精矿悬浮态焙烧工艺及设备
CN102219410A (zh) * 2011-03-24 2011-10-19 西安建筑科技大学 一种悬浮态外循环式高固气比分解反应器
CN102219409A (zh) * 2011-03-24 2011-10-19 西安建筑科技大学 高固气比预热预分解水泥熟料煅烧工艺及设备
CN102219411A (zh) * 2011-03-24 2011-10-19 西安建筑科技大学 使用卧式旋风筒实现的外循环式高固气比分解反应器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103662837A (zh) * 2013-11-13 2014-03-26 新奥科技发展有限公司 密相输送系统及方法

Also Published As

Publication number Publication date
CN102219411A (zh) 2011-10-19

Similar Documents

Publication Publication Date Title
WO2012126389A1 (zh) 使用卧式旋风筒实现的外循环式高固气比分解反应器
WO2012126384A1 (zh) 一种悬浮态外循环式高固气比分解反应器
CN106115747B (zh) 一种利用氢氧化镁生产氧化镁的装置
WO2012126387A1 (zh) 高固气比预热预分解水泥熟料煅烧工艺及设备
CN111825350B (zh) 一种兼具轻烧氧化镁制备和二氧化碳收集的装置
AU2008291392B2 (en) Process and plant for the thermal treatment of granular solids
CN206156759U (zh) 一种处理高铁低铝煤系高岭土的流态化煅烧装置
US6485295B1 (en) Equipment for calcination
CN103056047A (zh) 一种排气分流的流化床内多级旋风分离器系统
US4312650A (en) Particle separator
CN104880092A (zh) 一种新型干法水泥窑预热预分解系统及方法
US3319349A (en) Heat exchange apparatus for carrying out chemical and physical reactions
CN210663887U (zh) 一种分区控制多级湍动流态化反应炉
CN103673640A (zh) 回流悬浮式煅烧炉系统及其使用方法
CN103105067B (zh) 粉状物料悬浮换热装置及粉状物料换热系统
CN114751660B (zh) 一种热载体间接加热式碳捕集煅烧炉
CN102353260B (zh) 一种叠式并联流化的循环流化床焙烧炉
CN100363091C (zh) 两级消化和分离过程集成的脱硫剂制备工艺及其系统
CN109012010A (zh) 一种用于粉状载硫活性焦解吸再生的鼓泡流化床装置
CN110885064A (zh) 一种硫酸钙生产水泥熟料和硫酸的系统及其方法
CN220097916U (zh) 一种应用于石膏制酸联产水泥的均化及喂料系统
CN220708112U (zh) 水泥窑废气中有害成分处理系统
CN217423958U (zh) 立式悬浮沸腾反应装置及系统
CN203116534U (zh) 粉状物料悬浮换热装置及粉状物料换热系统
CN114644470B (zh) 水泥物料处理装置和水泥物料处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760802

Country of ref document: EP

Kind code of ref document: A1