WO2012124907A2 - L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법 - Google Patents

L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법 Download PDF

Info

Publication number
WO2012124907A2
WO2012124907A2 PCT/KR2012/001331 KR2012001331W WO2012124907A2 WO 2012124907 A2 WO2012124907 A2 WO 2012124907A2 KR 2012001331 W KR2012001331 W KR 2012001331W WO 2012124907 A2 WO2012124907 A2 WO 2012124907A2
Authority
WO
WIPO (PCT)
Prior art keywords
phosphoryl choline
glyceryl phosphoryl
crystals
type
crystal
Prior art date
Application number
PCT/KR2012/001331
Other languages
English (en)
French (fr)
Other versions
WO2012124907A3 (ko
WO2012124907A9 (ko
Inventor
오민근
김기남
서기형
권대길
Original Assignee
주식회사 한서켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110022392A external-priority patent/KR101287422B1/ko
Priority claimed from KR1020110022393A external-priority patent/KR101287423B1/ko
Application filed by 주식회사 한서켐 filed Critical 주식회사 한서켐
Priority to US14/003,276 priority Critical patent/US8927755B2/en
Priority to CN2012800131064A priority patent/CN103429603A/zh
Publication of WO2012124907A2 publication Critical patent/WO2012124907A2/ko
Publication of WO2012124907A9 publication Critical patent/WO2012124907A9/ko
Publication of WO2012124907A3 publication Critical patent/WO2012124907A3/ko
Priority to US14/326,601 priority patent/US8981141B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl

Definitions

  • the present invention relates to type I and type II crystals of L- ⁇ -glyceryl phosphoryl choline and a method for preparing the same, more specifically, higher purity than conventional liquid L- ⁇ -glyceryl phosphoryl choline raw materials.
  • the formulation of L- ⁇ -glyceryl phosphoryl choline which has an advantage of easy storage and change of dosage form, and has an excellent storage stability because it has a very low hygroscopicity compared to conventional polymorphic crystals. It relates to type I and type II crystals and a method for producing the same.
  • L- ⁇ -glyceryl phosphoryl choline (hereinafter, also referred to as 'GPC') represented by Chemical Formula 1 is a known substance used as an agent for treating dementia as a brain function improving agent.
  • GPC was prepared by deacylating reaction by alcoholicsis in a reactor containing a basic ion exchange resin, and using a nonpolar adsorbent resin to prepare a fat. After removal of the affinity impurities, a method of dissolving the GPC in methanol, followed by addition of about 20 times of n-butanol, concentrated in vacuo, cooling and filtration, to recover the anhydride crystals is introduced.
  • n-butanol concentrated in vacuo, cooling and filtration
  • Korean Patent No. 966,627 discloses a method for preparing GPC hydrochloride represented by the following Chemical Formula 2 using a crystallization solvent consisting of C1-C6 alcohol, C1-C6 ketone, and mixtures thereof. Although introduced, there is no mention of crystal structure either.
  • GPC raw materials produced industrially so far are liquid, and currently commercially available GPC preparations are also limited to soft capsules using the liquid raw materials.
  • these GPC soft capsules have the disadvantage that the active ingredient may dissolve the gelatinous coatings over time, require complex manufacturing facilities, use microbial anti-preservatives, and be inconvenient for patients to take. .
  • the present inventors have been researching powdered GPC to prepare GPC tablets that can replace GPC soft capsules, and the GPC crystals obtained by conventionally known crystallization methods are all polymorphic crystals.
  • the present invention has been completed by optimizing the use of seed crystals and crystallization conditions to develop an effective method for industrially producing the type I and type II crystals, respectively.
  • Form I crystals of L- ⁇ -glyceryl phosphoryl choline according to the present invention have an onset temperature of 147 ° C. and an endothermic peak of 150 ° C. in differential scanning calorimetry (DSC) analysis, and powder X-ray diffraction (XRD) In the analysis, the 2 ⁇ diffraction angle is characterized by having a diffraction pattern of 9.8 ⁇ 0.2 °, 12.0 ⁇ 0.2 °, 14.3 ⁇ 0.2 °, 15.8 ⁇ 0.2 °, and 19.6 ⁇ 0.2 °.
  • the method for preparing Form I crystals comprises the steps of: A) concentrating a conventional liquid L- ⁇ -glyceryl phosphoryl choline at a temperature of 45-65 ° C. to reduce the water content to 6-12%; B) dispersing the concentrated L- ⁇ -glyceryl phosphoryl choline obtained in step A) in an alcohol solution of 1 to 5 times, and cooling to a temperature of 5 ⁇ 20 °C; C) To the L- ⁇ -glyceryl phosphoryl choline alcohol solution obtained in the step B), 0.1-0.5 mol% of L- ⁇ -glyceryl phosphoryl choline type I crystal is added as seed crystal, and 30 to Aging for 2 to 5 hours while stirring at a speed of 60 rpm, and filtering the precipitated crystals; Characterized in that it comprises a.
  • Form II crystals of L- ⁇ -glyceryl phosphoryl choline according to the present invention have an onset temperature of 62 ° C. and an endothermic peak of 66 ° C., and an onset temperature of 141 ° C. in differential scanning calorimetry (DSC) analysis. And an endothermic peak of 145 ° C., and diffraction patterns having a 2 ⁇ diffraction angle of 10.3 ⁇ 0.2 °, 12.2 ⁇ 0.2 °, 13.4 ⁇ 0.2 °, 14.8 ⁇ 0.2 °, and 20.6 ⁇ 0.2 ° in powder X-ray diffraction (XRD) analysis. It is characterized by having.
  • the production method of the type II crystals A) Concentrating the conventional liquid L- ⁇ -glyceryl phosphoryl choline at a temperature of 45 ⁇ 65 °C to reduce the water content to 6 to 12%; B) dispersing the concentrated L- ⁇ -glyceryl phosphoryl choline obtained in step A) in an alcohol solution of 1 to 5 times, and cooling to a temperature of 5 ⁇ 20 °C; C) 0.1-0.5 mol% of L- ⁇ -glyceryl phosphoryl choline type II crystals are added to the alcohol solution of L- ⁇ -glyceryl phosphoryl choline obtained in the step B) as seed crystals, followed by stirring. After aging for 2-5 hours without filtering the precipitated crystals; Characterized in that it comprises a.
  • L- ⁇ -glyceryl phosphoryl choline type I and II crystals according to the present invention has a higher purity than conventional liquid L- ⁇ -glyceryl phosphoryl choline raw material, and is easy to change formulations or dosages in a pharmaceutical form. There is an effect that can produce a variety of formulations with high patient compliance.
  • the type I and II crystals have excellent storage stability because they have a very low hygroscopic property of absorbing moisture in the air, compared to conventional polymorphic crystals, and have advantages in handling during formulation.
  • Form I of L- ⁇ -glyceryl phosphoryl choline according to the present invention is an anhydride, has an onset temperature of 147 ° C. and an endothermic peak of 150 ° C. in differential scanning calorimetry (DSC) analysis, and powder X-ray diffraction ( XRD) is characterized in that the 2 ⁇ diffraction angle has a diffraction pattern of 9.8 ⁇ 0.2 °, 12.0 ⁇ 0.2 °, 14.3 ⁇ 0.2 °, 15.8 ⁇ 0.2 °, 19.6 ⁇ 0.2 °.
  • the L- ⁇ -glyceryl phosphoryl choline type I crystal is a tetragonal rectangular parallelepiped structure, the size of the crystal grains is uniform about 95 ⁇ 115 ⁇ m, the dissolution temperature is about 150 °C (1 degree / min).
  • the hygroscopicity is lower than that of the conventional polymorphic crystal, so that even if the raw material having a moisture content, that is, the water content is 0.1%, is left for about 10 hours under the condition of 30% humidity, the water content only increases slightly to about 0.2%.
  • Form II crystals of L- ⁇ -glyceryl phosphoryl choline are monohydrate, and in the differential scanning calorimetry (DSC) analysis, an onset temperature of 62 ° C and an endothermic peak of 66 ° C, and an initiation temperature of 141 ° C ( onset) and an endothermic peak of 145 ° C., and the diffraction angles of the 2 ⁇ diffraction are 10.3 ⁇ 0.2 °, 12.2 ⁇ 0.2 °, 13.4 ⁇ 0.2 °, 14.8 ⁇ 0.2 ° and 20.6 ⁇ 0.2 ° in powder X-ray diffraction (XRD) analysis. It is characterized by having a pattern.
  • DSC differential scanning calorimetry
  • Form II crystals of L- ⁇ -glyceryl phosphoryl choline are hexagonal polyhedral forms, the crystal grains having a uniform size of about 200 to 300 ⁇ m, and a dissolution temperature of about 66 ° C. (1 degree / min). .
  • the hygroscopicity is lower than that of the conventional polymorphic crystal, so that the initial moisture content of 6.5% is almost maintained even when the raw material having moisture content, that is, the moisture content is 6.5% is left for about 10 hours under the condition of 30% humidity.
  • the method for preparing L- ⁇ -glyceryl phosphoryl choline type I and type II crystals consists of the following three steps.
  • the conventional liquid L- ⁇ -glyceryl phosphoryl choline is concentrated at a temperature of 45-65 ° C. to reduce the water content to 6-12%.
  • concentration temperature is less than 45 °C or more than 65 °C occurs a flexible material occurs in the purification process.
  • the water content after concentration is less than 6% undesired polymorphic crystals can occur, on the contrary 12% or more is not preferable because the crystallization yield is greatly reduced.
  • the conventional liquid L- ⁇ -glyceryl phosphoryl choline raw material has a water content, that is, a water content of about 15 to 18%, but the liquid L- ⁇ -glyceryl phosphoryl choline raw material may be used as it is without concentration. In this case, since the crystallization yield is low, in the present invention, it is preferable to concentrate the water content of the liquid L- ⁇ -glyceryl phosphoryl choline raw material to 6-12%.
  • liquid L- ⁇ -glyceryl phosphoryl choline having a water content of 15 to 18% as a starting material the water content is reduced to 6 to 12% by concentrating at a temperature of 45 to 65 ° C for 8 to 10 hours.
  • the L- ⁇ -glyceryl phosphoryl choline concentrated in the step A) was added to an alcohol solution at a temperature of 45 to 65 ° C. to dissolve, filtered through a membrane filter to remove foreign substances, and then a temperature of 5 to 20 ° C. To cool.
  • ethanol and isopropyl alcohol may be used as the alcohol solution used as the crystallization solvent, and the amount thereof is 1 to 5 times, preferably 2 to 5 times the concentration of L- ⁇ -glyceryl phosphoryl choline. . If the amount of the alcohol solution is out of the above range, the crystallization efficiency is lowered, resulting in a lower yield and purity.
  • the cooling temperature of the alcohol solution is less than 5 °C has a problem that the crystal formation is rapidly accelerated and the size of the crystal grains do not grow sufficiently, on the contrary, if the temperature is 20 °C or more, GPC remains in the remaining water and alcohol after concentration, crystal yield This causes a decrease.
  • the final crystallization step separates Form I and Form II crystals.
  • 0.1-0.5 mol% of Form I crystals of L- ⁇ -glyceryl phosphoryl choline are added to the alcohol solution of L- ⁇ -glyceryl phosphoryl choline obtained in step B) as seed crystals.
  • the precipitated crystals were filtered to obtain Form I in the form of anhydride.
  • I type crystal can be obtained without adding the seed crystal (Seed crystal)
  • the alcohol solution should be cooled to a low temperature of -5 ° C or lower
  • the problem is that the size does not grow enough.
  • type II may be generated together, so care should be taken.
  • Form I crystals obtained by the present inventors were prepared by a method without using seed crystals.
  • the size of the crystal grains is about 95-115 ⁇ m in the case of type I, and about 200-300 ⁇ m in the case of type II, based on seed crystals during the aging process. As the crystal grains grow in this way, the surface area of the whole powder particles decreases, so that the hygroscopicity is relatively reduced.
  • the L- ⁇ -glyceryl phosphoryl choline solution was cooled to 9 ° C, and 2.0 g of L- ⁇ -glyceryl phosphoryl choline type I crystal was added thereto as seed crystals, followed by stirring at a speed of 50 rpm. Aged for hours. The precipitated crystals were filtered and vacuum dried to obtain 1.04 kg (yield: 85%) of L- ⁇ -glyceryl phosphoryl choline type I crystal having a water content of 0.1%.
  • the L- ⁇ -glyceryl phosphoryl choline solution was cooled to 10 ° C., and 2.0 g of L- ⁇ -glyceryl phosphoryl choline II crystal was added thereto as seed crystals, and then aged for 4 hours without stirring.
  • the precipitated crystals were filtered and dried in vacuo to obtain 1.02 kg (yield: 83%) of L- ⁇ -glyceryl phosphoryl choline II crystal having a water content of 6.5%.
  • Liquid L- ⁇ -glyceryl phosphoryl choline (30 g) having a water content of 18% was vacuum concentrated at a temperature of 50 ° C. for 8 hours, and azeotropy with 60 g ethanol to confirm that the water content was 4%. It was. After cooling to 5 ° C, the resulting crystals were aged for 1 hour, and the precipitated crystals were filtered and dried in vacuo to obtain 17 g (yield: 69%) of L- ⁇ -glyceryl phosphoryl choline polymorph crystal having a water content of about 2.9%. Got it.
  • the 2 ⁇ diffraction angles were 9.8 ⁇ 0.2 °, 12.0 ⁇ 0.2 °, and 14.3 ⁇ 0.2 ° , 15.8 ⁇ 0.2 ° and 19.6 ⁇ 0.2 °, respectively, and peaks were observed.
  • the 2 ⁇ diffraction angles were 10.3 ⁇ 0.2 °, 12.2 ⁇ 0.2 °, 13.4 ⁇ 0.2 °, and 14.8 ⁇ 0.2 ° , And peaks at 20.6 ⁇ 0.2 °.
  • the measurement conditions of the powder X-ray diffraction (XRD) spectrum are as follows.
  • Tube voltage 40 kV / Tube current: 30 mA
  • the crystal of Form I showed an onset temperature at 147 ° C. and an endothermic peak at 150 ° C., as shown in FIG. 3.
  • the crystals showed an onset of 62 ° C. and an endothermic peak of 66 ° C., an onset of 141 ° C. and an endothermic peak of 145 ° C., as shown in FIG. 5.
  • the starting temperature at 60 ° C the endothermic peak at 60.4 ° C, the starting temperature at 62 ° C, and 64 ° C.
  • the measurement conditions of the differential scanning calorimeter (DSC) spectrum is as follows.
  • the crystal of Form I is a tetragonal rectangular parallelepiped, and each crystal grain grows uniformly to a size of about 95 to 115 ⁇ m to form a smooth particle surface.
  • Form II crystals were hexagonal polyhedral forms, and it was confirmed that the grain size was uniformly grown to about 200 to 300 ⁇ m to form a smooth particle surface.
  • the polymorphic crystal obtained in the comparative example was confirmed that the crystal particles having a size of 20 to 25 ⁇ m agglomerated with each other to form agglomerates having a size of 150 to 160 ⁇ m, coarse irregularities formed on the surface.
  • FIG. 7 is a graph showing changes in moisture content over time when GPC type I, type II, and polymorphic crystals are left at 30% humidity for 10 hours.
  • X-axis shows elapsed time (T) and Y-axis shows moisture content (%). Indicates.
  • the crystals of type I and type II showed very low hygroscopicity after almost 10 hours after maintaining the initial moisture content.
  • the water content was initially 2.9%, but as time passed, the water content was absorbed and the water content rose to 4.2% after 10 hours. It is presumed that the polyhedral crystals exhibit high hygroscopicity because the crystal surface is rougher and there are more irregularities than those of the I and II crystals.
  • FIG. 8 shows infrared absorption (IR) spectra for GPC type I and type II and polymorph crystals, respectively, wherein type I and type II crystals exhibit inherent absorption spectra, while polytype crystals are type I and type II crystals. It can be seen that it has all the features of the type determination.
  • the measurement conditions of the infrared absorption (IR) spectrum is as follows.

Abstract

본 발명은 L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법에 관한 것으로서, 더욱 상세하게는 종래의 액상 L-α-글리세릴 포스포릴 콜린 원료에 비해 순도가 높을 뿐 아니라 제제학적으로 제형 및 용량 변경이 용이한 장점이 있고, 또한 종래의 다형 결정에 비해 흡습성(吸濕性)이 매우 낮기 때문에 저장 안정성이 우수한 장점이 있는 새로운 무수물 형태의 L-α-글리세릴 포스포릴 콜린 I형 및 II형 결정과 그 제조방법에 관한 것이다. 상기 L-α-글리세릴 포스포릴 콜린 I형 결정은 시차주사 열량(DSC) 분석에서 147℃의 개시온도(onset)와 150℃의 흡열피크를 가지며, 분말 X선 회절(XRD) 분석에서 2θ 회절각이 9.8±0.2°, 12.0±0.2°, 14.3±0.2°, 15.8±0.2°, 19.6±0.2°의 회절 패턴을 가지는 것을 특징으로 한다. 상기 L-α-글리세릴 포스포릴 콜린 II형 결정은 시차주사 열량(DSC) 분석에서 62℃의 개시온도(onset) 및 66℃의 흡열피크와, 141℃의 개시온도(onset) 및 145℃의 흡열피크를 가지며, 분말 X선 회절(XRD) 분석에서 2θ 회절각이 10.3±0.2°, 12.2±0.2°, 13.4±0.2°, 14.8±0.2°, 20.6±0.2°의 회절 패턴을 가지는 것을 특징으로 한다.

Description

L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법
본 발명은 L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법에 관한 것으로서, 더욱 상세하게는 종래의 액상 L-α-글리세릴 포스포릴 콜린 원료에 비해 순도가 높을 뿐 아니라 제제학적으로 제형 및 용량 변경이 용이한 장점이 있고, 또한 종래의 다형 결정에 비해 흡습성(吸濕性)이 매우 낮기 때문에 저장 안정성이 우수한 장점이 있는 L-α-글리세릴 포스포릴 콜린의 새로운 I형 및 II형 결정과 그 제조방법에 관한 것이다.
다음 화학식 1로 표시되는 L-α-글리세릴 포스포릴 콜린(L-α-glyceryl phosphoryl choline, 이하, 'GPC'라고도 함)은 뇌기능 개선제로서 치매 치료제로 사용되는 공지의 물질이다.
화학식 1
Figure PCTKR2012001331-appb-C000001
종래에 알려진 L-α-글리세릴 포스포릴 콜린의 제조방법은 크게 순수 합성방법과, 콩의 부산물인 레시틴에서 추출하는 방법으로 구분할 수 있다. 예컨대, 유럽특허 제486,100호, 이탈리아 특허 제1,243,724호, 이탈리아 특허 제1,247,496호 등에 소개된 방법은 순수 합성방법이고, 미국특허 제5,250,719호, 영국특허 제2,058,792호, 유럽특허 제217,765호 등에 소개된 방법은 레시틴에서 추출하는 방법이다. 이러한 방법으로 제조되는 종래의 GPC는 모두 상당량의 수분을 포함하고 있는 액체 상태로 수득된다.
한편, 상기 액상 L-α-글리세릴 포스포릴 콜린을 결정화하는 방법도 알려져 있다. 먼저, J. Am. Chem. Soc. 70, 1394-1399(1948)에는 순수 합성방법으로 제조된 함수 GPC를 알코올 용액 중에서 고체화 할 수 있다고 기재되어 있으나, 구체적인 결정화 방법이나 결정 구조에 대한 언급은 없다.
한국특허 제262,281호(등록일자 2000년 04월 29일)에는, 염기성 이온교환수지를 함유하는 반응기 내에서 알콜리시스에 의한 탈아실화 반응을 실시하여 GPC를 제조하고, 비극성 흡착수지를 이용하여 지방친화성 불순물을 제거한 다음, 상기 GPC를 메탄올에 용해하고 여기에 다시 약 20배량의 n-부탄올을 첨가하여 진공 농축한 후 냉각 및 여과하여 무수물 형태의 결정을 회수하는 방법이 소개되어 있다. 그러나, 이러한 방법에서는 흡습성(吸濕性)이 큰 미세 결정이 형성되는 것으로 보고되어 있을 뿐, 구체적인 결정 구조에 대한 언급은 없다.
그리고, 한국특허 제966,627호(등록일자 2010년 06월 21일)에는 C1-C6 알코올, C1-C6케톤 및 이들의 혼합물로 이루어진 결정화 용매를 이용하여 다음 화학식 2로 표시되는 GPC 염산염을 제조하는 방법이 소개되어 있으나, 역시 결정 구조에 대한 언급은 없다.
화학식 2
Figure PCTKR2012001331-appb-C000002
이와 같이 종래에도 GPC를 결정화하려는 노력이 있었고, 그 가능성도 제시되어 있었지만, 구체적인 결정화 조건이나 결정 구조에 대해서는 언급되어 있지 않다. 그리고 아직까지 산업적으로 이용 가능한 결정형 GPC 원료는 생산되지 않고 있다.
이상 살핀 바와 같이, 지금까지 산업적으로 생산되고 있는 GPC 원료는 모두 액상이고, 현재 시판되고 있는 GPC 제제 역시 상기 액상 원료를 이용한 연질 캅셀제로 국한되어 있다. 그런데, 이러한 GPC 연질 캅셀제는 시간이 지남에 따라 활성성분이 젤라틴 피막을 녹일 가능성이 있고, 복잡한 제조설비가 필요하며, 미생물 변질방지 보존제를 사용해야 할 뿐 아니라, 환자가 복용하기에 불편하다는 단점이 있다.
이에 본 발명자들은 GPC 연질 캅셀제를 대체 할 수 있는 GPC 정제를 제조하기 위하여 분말형 GPC에 대한 연구를 진행하던 중, 종래에 알려진 결정화 방법으로 수득되는 GPC 결정은 모두 다형 결정이라는 사실과, 나아가 상기 다형 결정 이외에도 결정학적 특징이 전혀 다른 새로운 결정 형태인 I형 및 II형 결정이 존재한다는 사실을 확인하게 되었다. 그리고, 종자 결정(Seed crystal)의 사용 및 결정화 조건을 최적화하여 상기 I형 및 II형 결정을 각각 산업적으로 생산할 수 있는 효과적인 방법을 개발함으로써 본 발명을 완성하게 되었다.
본 발명의 목적은 L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법을 제공하는 것이다.
본 발명에 따른 L-α-글리세릴 포스포릴 콜린의 I형 결정은 시차주사 열량(DSC) 분석에서 147℃의 개시온도(onset)와 150℃의 흡열피크를 가지며, 분말 X선 회절(XRD) 분석에서 2θ 회절각이 9.8±0.2°, 12.0±0.2°, 14.3±0.2°, 15.8±0.2°, 19.6±0.2°의 회절 패턴을 가지는 것을 특징으로 한다.
또한 상기 I형 결정의 제조방법은, A) 통상적인 액상 L-α-글리세릴 포스포릴 콜린을 45~65℃의 온도에서 농축하여 수분 함량을 6~12%로 감소시키는 단계와; B) 상기 A)공정에서 얻어진 농축 L-α-글리세릴 포스포릴 콜린을 1~5배량의 알코올 용액에 투입하여 용해하고, 5~20℃의 온도로 냉각하는 단계와; C) 상기 B)공정에서 얻어진 L-α-글리세릴 포스포릴 콜린 알코올 용액에다 종자 결정(Seed crystal)으로서 L-α-글리세릴 포스포릴 콜린 I형 결정 0.1~0.5mol%를 투입하고, 30~60rpm의 속도로 교반하면서 2~5시간 동안 숙성한 후, 석출된 결정을 여과하는 단계; 를 포함하는 것을 특징으로 한다.
본 발명에 따른 L-α-글리세릴 포스포릴 콜린의 II형 결정은 시차주사 열량(DSC) 분석에서 62℃의 개시온도(onset) 및 66℃의 흡열피크와, 141℃의 개시온도(onset) 및 145℃의 흡열피크를 가지며, 분말 X선 회절(XRD) 분석에서 2θ 회절각이 10.3±0.2°, 12.2±0.2°, 13.4±0.2°, 14.8±0.2°, 20.6±0.2°의 회절 패턴을 가지는 것을 특징으로 한다.
또한 상기 II형 결정의 제조방법은, A) 통상적인 액상 L-α-글리세릴 포스포릴 콜린을 45~65℃의 온도에서 농축하여 수분 함량을 6~12%로 감소시키는 단계와; B) 상기 A)공정에서 얻어진 농축 L-α-글리세릴 포스포릴 콜린을 1~5배량의 알코올 용액에 투입하여 용해하고, 5~20℃의 온도로 냉각하는 단계와; C) 상기 B)공정에서 얻어진 L-α-글리세릴 포스포릴 콜린의 알코올 용액에다 종자 결정(Seed crystal)으로서 L-α-글리세릴 포스포릴 콜린 II형 결정 0.1~0.5 mol%를 투입하고, 교반 없이 2~5시간 동안 숙성한 후, 석출된 결정을 여과하는 단계; 를 포함하는 것을 특징으로 한다.
본 발명에 따른 L-α-글리세릴 포스포릴 콜린 I형 및 II형 결정은 종래의 액상 L-α-글리세릴 포스포릴 콜린 원료에 비해 순도가 높고, 제제학적으로 제형 변경이나 용량 변경이 용이하여 환자의 복약 순응도가 높은 다양한 제제를 생산할 수 있는 효과가 있다.
또한 상기 I형 및 II형 결정은 종래의 다형 결정에 비해 공기 중의 수분을 흡수하는 흡습성(吸濕性)이 매우 낮기 때문에 저장 안정성이 우수하고, 제제화 과정에서 취급이 용이한 장점이 있다.
도 1은 본 발명의 GPC I형 결정에 대한 X선 회절 스펙트럼,
도 2는 본 발명의 GPC II형 결정에 대한 X선 회절 스펙트럼,
도 3은 종래의 GPC 다형 결정에 대한 X선 회절 스펙트럼,
도 4는 본 발명의 GPC I형 결정에 대한 시차주사 열량 스펙트럼,
도 5는 본 발명의 GPC II형 결정에 대한 시차주사 열량 스펙트럼,
도 6은 종래의 GPC 다형 결정에 대한 시차주사 열량 스펙트럼,
도 7은 GPC I형 및 II형과 다형 결정의 함습성을 비교한 그래프,
도 8은 GPC I형 및 II형과 다형 결정에 대한 IR스펙트럼이다.
본 발명에 따른 L-α-글리세릴 포스포릴 콜린의 I형은 무수물로서, 시차주사 열량(DSC) 분석에서 147℃의 개시온도(onset)와 150℃의 흡열피크를 가지며, 분말 X선 회절(XRD) 분석에서 2θ 회절각이 9.8±0.2°, 12.0±0.2°, 14.3±0.2°, 15.8±0.2°, 19.6±0.2°의 회절 패턴을 가지는 것을 특징으로 한다.
상기 L-α-글리세릴 포스포릴 콜린 I형 결정은 정방정계의 직사면체 구조로서, 결정 입자의 크기가 95~115㎛ 정도로 균일하며, 용해 온도는 약 150℃ 정도(1도/분)이다. 그리고, 종래의 다형 결정에 비해 흡습성이 낮아서 수분 함량, 즉 함수율이 0.1%인 원료를 습도 30% 조건하에서 10시간 정도 방치하여도 함수율이 0.2% 정도로 미세하게 증가할 뿐이다.
또한, L-α-글리세릴 포스포릴 콜린의 II형 결정은 일수화물로서, 시차주사 열량(DSC) 분석에서 62℃의 개시온도(onset) 및 66℃의 흡열피크와, 141℃의 개시온도(onset) 및 145℃의 흡열피크를 가지며, 분말 X선 회절(XRD) 분석에서 2θ 회절각이 10.3±0.2°, 12.2±0.2°, 13.4±0.2°, 14.8±0.2°, 20.6±0.2°의 회절 패턴을 가지는 것을 특징으로 한다.
상기 L-α-글리세릴 포스포릴 콜린의 II형 결정은 육방정계의 다각면체 형태로서, 결정 입자의 크기가 200~300㎛ 정도로 균일하며, 용해 온도는 약 66℃ 정도(1도/분)이다. 그리고, 종래의 다형 결정에 비해 흡습성이 낮아서 수분 함량, 즉 함수율이 6.5%인 원료를 습도 30% 조건하에서 10시간 정도 방치하여도 초기 함수율 6.5%를 거의 그대로 유지한다.
참고로 종래 다형 결정의 경우, 상대적으로 흡습성이 매우 높아서 함수율이 2.9% 인 원료를 습도 30% 조건하에서 방치할 경우, 시간이 경과함에 따라 공기 중의 수분을 흡수하여 10시간 경과 이후에는 함수율이 4.2%로 상승한다. 이처럼 흡습성이 크면, 원료 저장 또는 제제화 과정에서 중량 및 물성이 변할 우려가 있기 때문에 특별한 취급이 필요하다.
상기 L-α-글리세릴 포스포릴 콜린 I형 및 II형 결정의 제조방법은 다음 3단계로 이루어진다.
A) 액상 L-α-글리세릴 포스포릴 콜린의 농축 단계
먼저 통상적인 액상 L-α-글리세릴 포스포릴 콜린을 45~65℃의 온도에서 농축하여 수분 함량을 6~12%로 감소시킨다. 이때 상기 농축 온도가 45℃ 미만이거나 65℃ 이상이면 유연물질이 발생하여 정제과정에서 어려움이 발생한다. 그리고 농축 후의 수분 함량이 6% 미만이면 원하지 않는 다형 결정이 발생할 수 있고, 반대로 12% 이상이면 결정화 수율이 크게 감소하여 바람직하지 않다.
참고로 통상적인 액상 L-α-글리세릴 포스포릴 콜린 원료는 수분 함량, 즉 함수율이 15~18% 정도인데, 이러한 액상 L-α-글리세릴 포스포릴 콜린 원료를 농축하지 않고 그대로 사용할 수도 있으나, 이 경우 결정화 수율이 저조하기 때문에 본 발명에서는 상기 액상 L-α-글리세릴 포스포릴 콜린 원료의 수분 함량을 6~12%로 농축하는 것이 바람직하다.
함수율이 15~18%인 액상 L-α-글리세릴 포스포릴 콜린을 출발물질로 사용할 경우, 45~65℃의 온도에 8~10시간 동안 농축하면, 수분 함량이 6~12%로 감소된다.
B) 농축 L-α-글리세릴 포스포릴 콜린의 용해 단계
다음으로 상기 A) 단계에서 농축된 L-α-글리세릴 포스포릴 콜린을 45~65℃의 온도에서 알코올 용액에 투입하여 용해하고, 멤브레인 필터로 여과하여 이물질을 제거한 다음, 5~20℃의 온도로 냉각한다.
이때, 결정화 용매로 사용되는 상기 알코올 용액으로는 에탄올과 이소프로필 알코올을 사용 할 수 있으며, 그 사용량은 농축 L-α-글리세릴 포스포릴 콜린의 1~5배량, 바람직하기로는 2~5배량이다. 상기 알코올 용액의 사용량이 상기 범위를 벗어나면, 결정화 효율성이 저하되어 수율 및 순도가 저하되는 결과가 나타난다.
또한, 상기 알코올 용액의 냉각 온도가 5℃ 미만이면 결정 형성이 급격히 빨라지면서 결정 입자의 크기가 충분히 성장하지 못하는 문제가 있고, 반대로 20℃ 이상이면 농축 후 남은 수분과 알코올에 GPC가 잔류하여 결정 수율이 저하하는 원인이 된다.
C) 결정화 단계
마지막 결정화 단계에 따라 I형 결정과 II형 결정이 분리된다. 먼저 상기 B) 단계에서 얻어진 L-α-글리세릴 포스포릴 콜린의 알코올 용액에다 종자 결정(Seed crystal)으로서 L-α-글리세릴 포스포릴 콜린의 I형 결정 0.1~0.5 mol%를 투입하고, 30~60rpm의 속도로 교반하면서 2~5시간 동안 숙성한 후 석출된 결정을 여과하면 무수물 형태의 I형이 얻어진다.
본 발명자들의 실험 결과에 따르면, 상기 종자 결정(Seed crystal)을 투입하지 않고서도 I형 결정을 얻을 수는 있으나, 이 경우에는 상기 알코올 용액을 -5℃ 이하의 저온으로 냉각시켜야 하며, 결정 입자의 크기가 충분히 성장하지 못하는 문제가 발생한다. 또한 상기 숙성 과정에서 교반을 하지 않으면 II형이 함께 생성될 수 있으므로 주의해야 한다. 본 발명자들이 최초로 수득한 I형 결정은 종자 결정을 사용하지 않는 방법으로 제조된 것이다.
한편, 상기 B) 단계에서 얻어진 L-α-글리세릴 포스포릴 콜린의 알코올 용액에다 종자 결정(Seed crystal)으로서 L-α-글리세릴 포스포릴 콜린의 II형 결정 0.1~0.5 mol%를 투입하고, 교반 없이 2~5시간 동안 숙성한 후 석출된 결정을 여과하면 일수화물 형태의 II형 결정이 얻어진다.
본 발명자들의 실험 결과에 따르면, 상기 종자 결정(Seed crystal)을 투입하지 않고서도 II형 결정을 얻을 수는 있으나, 이 경우에는 숙성 시간이 24시간 이상 소요되고, 결정 크기가 충분히 성장하지 못하는 문제가 발생한다. 또한 상기 숙성 과정에서 교반을 하게 되면 I형 결정이 함께 석출될 수 있으므로 주의해야 한다. 본 발명자들이 최초로 수득한 II형 결정은 종자 결정을 사용하지 않는 방법으로 제조된 것이다.
이와 같이, 본 발명에서는 상기 숙성과정에서 종자 결정(Seed crystal)을 중심으로 I형의 경우에는 결정 입자의 크기가 95~115㎛, II형의 경우에는 200~300㎛ 정도로 성장한다. 이처럼 결정 입자의 크기가 성장하면 분말 입자 전체의 표면적이 줄어들기 때문에 상대적으로 흡습성이 감소하게 되는 것이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 기재한다. 그러나, 하기 실시예로 인해서 본 발명의 권리범위가 제한되는 것은 아니다.
[실시예 1]
수분 함량이 18%인 액상 L-α-글리세릴 포스포릴 콜린(1.5kg)을 50℃의 온도에 9시간 동안 진공 농축 하여 수분 함량을 약 7% 정도로 감소 시켰다. 여기에 에탄올 3 리터를 투입하고, 50℃의 온도를 그대로 유지하면서 교반하여 충분히 용해한 다음, 1.0㎛ 멤브레인 필터로 여과하여 이물질을 제거하였다.
다음으로 상기 L-α-글리세릴 포스포릴 콜린 용액을 9℃로 냉각하고, 여기에 종자 결정으로서 L-α-글리세릴 포스포릴 콜린 I형 결정 2.0g 을 투입한 후 50rpm의 속도로 교반하면서 2시간 동안 숙성 하였다. 이렇게 하여 석출된 결정을 여과하고 진공 건조하여 수분 함량이 0.1%인 L-α-글리세릴 포스포릴 콜린 I형 결정 1.04kg(수율 : 85%)을 얻었다.
[실시예 2]
수분 함량이 18%인 액상 L-α-글리세릴 포스포릴 콜린(1.5kg)을 50℃의 온도에 9시간 동안 진공 농축하여 수분 함량을 약 9% 정도로 감소시켰다. 여기에 에탄올 3 리터를 투입하고, 50℃의 온도를 그대로 유지하면서 교반하여 충분히 용해한 다음, 1.0㎛ 멤브레인 필터로 여과하여 이물질을 제거하였다.
다음으로 L-α-글리세릴 포스포릴 콜린 용액을 10℃로 냉각하고, 여기에 종자 결정으로서 L-α-글리세릴 포스포릴 콜린 II형 결정 2.0g 을 투입한 후 교반 없이 4시간 동안 숙성 하였다. 이렇게 하여 석출된 결정을 여과하고 진공 건조하여 수분 함량이 6.5%인 L-α-글리세릴 포스포릴 콜린 II형 결정 1.02kg(수율 : 83%)을 얻었다.
[비교예]
수분 함량이 18%인 액상 L-α-글리세릴 포스포릴 콜린(30g)을 50℃의 온도에 8시간 동안 진공 농축하고, 60g 에탄올로 공비(共沸, azeotropy)하여 수분 함량이 4%임을 확인 하였다. 이를 5℃ 로 냉각하여 생성된 결정을 1시간 숙성 시킨 후 석출된 결정을 여과하고 진공 건조하여 수분이 약 2.9%인 L-α-글리세릴 포스포릴 콜린 다형 결정을 17g(수율 : 69%)을 얻었다.
참고로 상기 비교예는 J. Am. Chem. Soc. 70, 1394-1399(1948) 및 한국특허 제262,281호에 기술된 결정화 방법을 참조하여 실시한 것이다.
[결정분석 및 물성시험]
가. 분말 X선 회절(XRD) 분석
상기 실시예에서 얻어진 GPC 결정에 대하여 분말 X선 회절(XRD) 분석을 실시한 결과, I형 결정은 도 1에서 보는 바와 같이, 2θ 회절각이 9.8±0.2°, 12.0±0.2°, 14.3±0.2°, 15.8±0.2°, 19.6±0.2°에서 각각 피크를 보였고, II형 결정은 도 2에서 보는 바와 같이, 2θ 회절각이 10.3±0.2°, 12.2±0.2°, 13.4±0.2°, 14.8±0.2°, 20.6±0.2°에서 각각 피크를 보였다.
또한, 상기 비교예에서 얻어진 GPC 다형 결정에 대해서 분말 X선 회절(XRD) 분석을 실시한 결과, 도 3에서 보는 바와 같이, 2θ 회절각이 9.8±0.2°, 10.3±0.2°, 12.0±0.2°, 12.2±0.2°, 13.4±0.2°, 14.3±0.2°, 14.8±0.2°, 15.8±0.2°, 19.6±0.2°에서 각각 피크를 보였다.
상기 분말 X선 회절(XRD) 스펙트럼의 측정조건은 다음과 같다.
1) 장치 : PANalytical, X' Pert-Pro / X선원: Cu
2) 관 전압 : 40 kV / 관 전류: 30 mA
3) 발산 슬릿 : 1/2°/ 산란 슬릿: 1/2°/ 수광 슬릿: 0.15 mm
4) 주사 범위 : 5 내지 40° 2θ / 샘플링 간격: 0.02°
5) 스캔 속도 : 0.02°/초
나. 시차주사 열량(DSC) 분석
상기 실시예에서 얻어진 GPC 결정에 대하여 시차주사 열량(DSC) 분석을 실시한 결과, I형 결정은 도 3에서 보는 바와 같이, 147℃에서 개시온도(onset), 150℃에서 흡열피크를 보였고, II형 결정은 도 5에서 보는 바와 같이, 62℃의 개시온도(onset) 및 66℃의 흡열피크와 141℃의 개시온도(onset) 및 145℃의 흡열피크를 보였다.
또한, 상기 비교예에서 얻어진 GPC 다형 결정에 대해서 시차주사 열량(DSC) 분석을 실시한 결과, 도 6에서 보는 바와 같이, 60℃에서 개시온도, 60.4℃에서 흡열피크, 62℃에서 개시온도, 64℃에서 흡열피크, 143℃에서 개시온도, 146℃에서 흡열피크, 147℃에서 개시온도, 149℃에서 흡열피크를 보였다.
상기 시차 주사 열량계(DSC) 스펙트럼의 측정조건은 다음과 같다.
1) 장치 : Mettler DSC 1102-R081, X
2) 측정 범위: 50 내지 200 °C / 승온 간격: 1°C/min
3) N2 속도: 50ml/min
다. 현미경 사진 촬영
상기 GPC 결정에 대하여 현미경 사진(100배율)을 촬영해 본 결과, I형 결정은 정방정계의 직사면체 형태로서 각 결정 입자가 95~115㎛ 정도 크기로 균일하게 성장하여 매끈한 입자 표면을 형성하고 있고, II형 결정은 육방정계의 다각면체 형태로서, 입자 크기가 200~300㎛ 정도로 균일 성장하여 역시 매끈한 입자 표면을 형성하고 있다는 것을 확인하였다.
그러나, 상기 비교예에서 얻어진 다형 결정은 크기가 20~25㎛인 결정 입자가 서로 뭉쳐서 크기가 150~160㎛인 덩어리를 형성하고, 표면에는 거친 요철이 형성되어 있는 것을 확인할 수 있었다.
라. 흡습성(Hygroscopicity) 시험
도 7은 GPC I형 및 II형과 다형 결정을 각각 습도 30% 조건에서 10시간 동안 방치했을 때 나타나는 함수율의 경시변화를 도시한 그래프로서, X축은 경과시간(T), Y축은 함수율(%)을 나타낸다. 상기 I형 및 II형 결정은 10시간 경과 이후에도 초기의 함수율을 거의 그대로 유지하여 흡습성이 매우 낮은 것으로 나타났다.
그러나 다형 결정의 경우에는 초기 초기에는 함수율이 2.9% 이었으나 시간이 경과함에 따라 공기 중의 수분을 흡수하여 10시간 경과 이후에는 함수율이 4.2%로 상승하였다. 이처럼 다형 결정이 높은 흡습성을 보이는 것은 I형 및 II형 결정에 비해 결정 표면이 거칠고 많은 요철이 있기 때문인 것으로 추측된다.
마. 적외선 흡수(IR) 스펙트럼
마지막으로 도 8은 GPC I형 및 II형과 다형 결정에 대하여 각각 적외선 흡수(IR) 스펙트럼을 측정한 것으로서, I형 및 II형 결정이 고유의 흡수 스펙트럼을 보인 반면, 다형 결정은 I형 및 II형 결정의 특징을 모두 가지고 있음을 알 수 있다.
상기 적외선 흡수(IR) 스펙트럼의 측정조건은 다음과 같다.
1) 장치: FT/IR-4100(Jasco)
2) 측정 범위: 4000 내지 650 cm-1
3) 분해능: 4.00 cm-1
4) 스캔 횟수: 36

Claims (8)

  1. 시차주사 열량(DSC) 분석에서 147℃의 개시온도(onset)와 150℃의 흡열피크를 가지며, 분말 X선 회절(XRD) 분석에서 2θ 회절각이 9.8±0.2°, 12.0±0.2°, 14.3±0.2°, 15.8±0.2°, 19.6±0.2°의 회절 패턴을 가지는 것을 특징으로 하는 L-α-글리세릴 포스포릴 콜린의 I형 결정.
  2. 제1항에 있어서, 상기 L-α-글리세릴 포스포릴 콜린의 I형 결정은 무수물로서, 정방정계의 직사면체 구조를 갖는 것을 특징으로 하는 L-α-글리세릴 포스포릴 콜린의 I형 결정.
  3. 시차주사 열량(DSC) 분석에서 62℃의 개시온도(onset) 및 66℃의 흡열피크와, 141℃의 개시온도(onset) 및 145℃의 흡열피크를 가지며, 분말 X선 회절(XRD) 분석에서 2θ 회절각이 10.3±0.2°, 12.2±0.2°, 13.4±0.2°, 14.8±0.2°, 20.6±0.2°의 회절 패턴을 가지는 것을 특징으로 하는 L-α-글리세릴 포스포릴 콜린의 II형 결정.
  4. 제3항에 있어서, 상기 L-α-글리세릴 포스포릴 콜린의 II형 결정은 일수화물로서, 육방정계의 다각면체 구조를 갖는 것을 특징으로 하는 L-α-글리세릴 포스포릴 콜린의 II형 결정.
  5. A) 통상적인 액상 L-α-글리세릴 포스포릴 콜린을 45~65℃의 온도에서 농축하여 수분 함량을 6~12%로 감소시키는 단계와;
    B) 상기 A)공정에서 얻어진 농축 L-α-글리세릴 포스포릴 콜린을 1~5배량의 알코올 용액에 투입하여 용해하고, 5~20℃의 온도로 냉각하는 단계와;
    C) 상기 B)공정에서 얻어진 L-α-글리세릴 포스포릴 콜린 알코올 용액에다 종자 결정(Seed crystal)으로서 L-α-글리세릴 포스포릴 콜린 I형 결정 0.1~0.5mol%를 투입하고, 30~60rpm의 속도로 교반하면서 2~5시간 동안 숙성한 후 석출된 결정을 여과하는 단계; 를 포함하는 것을 특징으로 하는 L-α-글리세릴 포스포릴 콜린 I형 결정의 제조방법.
  6. A) 통상적인 액상 L-α-글리세릴 포스포릴 콜린을 45~65℃의 온도에서 농축하여 수분 함량을 6~12%로 감소시키는 단계와;
    B) 상기 A)공정에서 얻어진 농축 L-α-글리세릴 포스포릴 콜린을 1~5배량의 알코올 용액에 투입하여 용해하고, 5~20℃의 온도로 냉각하는 단계와;
    C) 상기 B)공정에서 얻어진 L-α-글리세릴 포스포릴 콜린 알코올 용액에다 종자 결정(Seed crystal)으로서 L-α-글리세릴 포스포릴 콜린 II형 결정 0.1~0.5mol%를 투입하고, 교반 없이 2~5시간 동안 숙성한 후 석출된 결정을 여과하는 단계; 를 포함하는 것을 특징으로 하는 L-α-글리세릴 포스포릴 콜린 II형 결정의 제조방법.
  7. 제5항 또는 제6항에 있어서, 상기 A) 단계에서는 수분 함량이 15~18%인 액상 L-α-글리세릴 포스포릴 콜린을 8~10시간 동안 농축하는 것을 특징으로 하는 방법.
  8. 제5항 또는 제6항에 있어서, 상기 B)공정에서는 2~5배량의 에탄올 또는 이소프로판올을 투입하는 것을 특징으로 하는 방법.
PCT/KR2012/001331 2011-03-14 2012-02-22 L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법 WO2012124907A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/003,276 US8927755B2 (en) 2011-03-14 2012-02-22 I- and II-type crystals of L-alpha-glyceryl phosphoryl choline, and method for preparing same
CN2012800131064A CN103429603A (zh) 2011-03-14 2012-02-22 甘油磷酰胆碱的i型和ii型结晶及其制造方法
US14/326,601 US8981141B1 (en) 2011-03-14 2014-07-09 I-and II-type crystals of L-A-glyceryl phosphoryl choline, and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110022392A KR101287422B1 (ko) 2011-03-14 2011-03-14 글리세릴 포스포릴 콜린의 i형 결정
KR10-2011-0022392 2011-03-14
KR1020110022393A KR101287423B1 (ko) 2011-03-14 2011-03-14 글리세릴 포스포릴 콜린의 ii형 결정
KR10-2011-0022393 2011-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/003,276 A-371-Of-International US8927755B2 (en) 2011-03-14 2012-02-22 I- and II-type crystals of L-alpha-glyceryl phosphoryl choline, and method for preparing same
US14/326,601 Division US8981141B1 (en) 2011-03-14 2014-07-09 I-and II-type crystals of L-A-glyceryl phosphoryl choline, and method for preparing same

Publications (3)

Publication Number Publication Date
WO2012124907A2 true WO2012124907A2 (ko) 2012-09-20
WO2012124907A9 WO2012124907A9 (ko) 2012-11-01
WO2012124907A3 WO2012124907A3 (ko) 2012-12-20

Family

ID=46831155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001331 WO2012124907A2 (ko) 2011-03-14 2012-02-22 L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법

Country Status (3)

Country Link
US (1) US8927755B2 (ko)
CN (1) CN103429603A (ko)
WO (1) WO2012124907A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108355A1 (ko) * 2014-01-15 2015-07-23 지준홍 글리세릴 포스포릴 콜린 결정 및 이의 제조 방법
KR20150086160A (ko) * 2014-01-15 2015-07-27 지준홍 글리세릴 포스포릴 콜린 결정 및 이의 제조 방법
WO2016048058A1 (ko) * 2014-09-26 2016-03-31 엔자이텍 주식회사 라세믹 또는 광학적으로 활성이 있는 D 또는 L-α-글리세로포스포릴콜린 고체의 제조방법
WO2018195956A1 (zh) * 2017-04-27 2018-11-01 河北科技大学 一种无水卤化胆碱及其衍生物单晶的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104356160A (zh) * 2014-11-05 2015-02-18 合肥创新医药技术有限公司 L-α-甘油磷酰胆碱的纯化工艺
CN105061494B (zh) * 2015-08-12 2017-09-01 芜湖福民生物药业有限公司 甘磷酸胆碱晶体的制备方法
CN105131029B (zh) * 2015-08-12 2017-09-01 芜湖福民生物药业有限公司 甘磷酸胆碱晶体的制备方法
CN105001256B (zh) * 2015-08-12 2018-09-25 芜湖福民生物药业有限公司 甘磷酸胆碱晶体的制备方法
CN106083916A (zh) * 2016-06-08 2016-11-09 芜湖福民生物药业有限公司 甘磷酸胆碱晶体的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486100A1 (en) * 1990-11-15 1992-05-20 MAGIS FARMACEUTICI S.p.A. Process for preparing alpha-glycerophosphorylcholine
US5523450A (en) * 1992-01-22 1996-06-04 Genzyme Limited Crystallization process for preparing glycerophosphocholine
JP2007269657A (ja) * 2006-03-30 2007-10-18 Nof Corp α−グリセロホスホリルコリン結晶の製造方法
KR20070119176A (ko) * 2006-06-14 2007-12-20 주식회사 대웅제약 L-α-글리세로포스포릴 콜린의 제조방법
KR20090084194A (ko) * 2008-01-31 2009-08-05 주식회사 한서켐 글리세릴 포스포릴 콜린의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502357A1 (en) 1991-03-07 1992-09-09 MAGIS FARMACEUTICI S.p.A. Optically active and racemic hydrated diacetylesters of alpha-glycero-phosphoryl-choline

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486100A1 (en) * 1990-11-15 1992-05-20 MAGIS FARMACEUTICI S.p.A. Process for preparing alpha-glycerophosphorylcholine
US5523450A (en) * 1992-01-22 1996-06-04 Genzyme Limited Crystallization process for preparing glycerophosphocholine
JP2007269657A (ja) * 2006-03-30 2007-10-18 Nof Corp α−グリセロホスホリルコリン結晶の製造方法
KR20070119176A (ko) * 2006-06-14 2007-12-20 주식회사 대웅제약 L-α-글리세로포스포릴 콜린의 제조방법
KR20090084194A (ko) * 2008-01-31 2009-08-05 주식회사 한서켐 글리세릴 포스포릴 콜린의 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108355A1 (ko) * 2014-01-15 2015-07-23 지준홍 글리세릴 포스포릴 콜린 결정 및 이의 제조 방법
KR20150086160A (ko) * 2014-01-15 2015-07-27 지준홍 글리세릴 포스포릴 콜린 결정 및 이의 제조 방법
KR101582302B1 (ko) * 2014-01-15 2016-01-06 지준홍 글리세릴 포스포릴 콜린 결정 및 이의 제조 방법
WO2016048058A1 (ko) * 2014-09-26 2016-03-31 엔자이텍 주식회사 라세믹 또는 광학적으로 활성이 있는 D 또는 L-α-글리세로포스포릴콜린 고체의 제조방법
US10023596B2 (en) 2014-09-26 2018-07-17 Enzytech, Ltd. Method for preparing racemic or optically active D- or L-A-glycerophosphoryl choline solids
US10259834B2 (en) 2014-09-26 2019-04-16 Enzytech, Ltd. Method for preparing racemic or optically actived D- or L-A-glycerophosphorylcholine solids
WO2018195956A1 (zh) * 2017-04-27 2018-11-01 河北科技大学 一种无水卤化胆碱及其衍生物单晶的制备方法
US10626079B2 (en) 2017-04-27 2020-04-21 Hebei University Of Science And Technology Method for preparing single crystal of anhydrous halogenated choline or derivative thereof

Also Published As

Publication number Publication date
WO2012124907A3 (ko) 2012-12-20
US8927755B2 (en) 2015-01-06
US20130345464A1 (en) 2013-12-26
WO2012124907A9 (ko) 2012-11-01
CN103429603A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2012124907A2 (ko) L-α-글리세릴 포스포릴 콜린의 I형 및 II형 결정과 그 제조방법
US20060142579A1 (en) Process of making crystalline aripiprazole
WO2016107575A1 (zh) 奥贝胆酸的晶型a及其制备方法
CA2591487A1 (en) Polymorphs of memantine hydrochloride
PT1248605E (pt) Novos polimorfos de cloridrato de sertralina, processos para a sua preparação, composições que os contêm e métodos para a sua utilização
WO2016117814A2 (ko) 벤즈이미다졸 유도체의 신규 결정형 및 이의 제조방법
CN1051043A (zh) 23-(c1-c6烷基肟)-ll-f28249化合物的制备方法
WO2021125474A1 (ko) 신규한 결정형 형태의 에독사반 및 이의 제조방법
EP2342204A1 (en) Novel polymorph of moxifloxacin hydrochloride
WO2017047970A1 (ko) 리나글립틴 결정형 및 이의 제조방법
KR101287425B1 (ko) 글리세릴 포스포릴 콜린 ii형 결정의 제조방법
WO2015101072A1 (zh) 伊伐布雷定盐酸盐的s晶型、其制备方法和药物组合物
KR101287422B1 (ko) 글리세릴 포스포릴 콜린의 i형 결정
MXPA03003761A (es) Formas de cristales y solvatos de clorhidrato de ondansetron y procesos para su preparacion.
WO2013028030A2 (ko) 발효액에서 1,4-디아미노부탄의 분리 및 정제하는 방법
KR101287424B1 (ko) 글리세릴 포스포릴 콜린 i형 결정의 제조방법
WO2020213794A1 (ko) 신규한 결정형 형태의 항바이러스제 및 이의 제조방법
KR101287423B1 (ko) 글리세릴 포스포릴 콜린의 ii형 결정
WO2011152657A2 (en) Acetyl-l-carnitine malate, process for preparing the same, and pharmaceutical composition comprising the same
WO2017167949A1 (en) Crystalline forms of bilastine
WO2021071130A1 (ko) 5'-구아닐산이나트륨 7수화물 결정의 제조 방법
WO2005082888A1 (en) Process for the preparation of magnesium salt of omeprazole
CN111205285A (zh) 黄连素或其盐的纯化方法及晶型
KR20160116463A (ko) L-α-글리세릴 포스포릴 콜린의 III형 결정 및 그 제조방법
AU2020213989B2 (en) Polymorphic forms of a substituted-quinoxaline-type bridged-piperidine compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758077

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14003276

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758077

Country of ref document: EP

Kind code of ref document: A2