WO2012124590A1 - 石炭ガス化方法 - Google Patents

石炭ガス化方法 Download PDF

Info

Publication number
WO2012124590A1
WO2012124590A1 PCT/JP2012/055932 JP2012055932W WO2012124590A1 WO 2012124590 A1 WO2012124590 A1 WO 2012124590A1 JP 2012055932 W JP2012055932 W JP 2012055932W WO 2012124590 A1 WO2012124590 A1 WO 2012124590A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
coal
molten slag
solid phase
gasification
Prior art date
Application number
PCT/JP2012/055932
Other languages
English (en)
French (fr)
Inventor
眞須美 糸永
小菅 克志
泰樹 並木
卓 武田
良之 幸
小水流 広行
矢部 英昭
Original Assignee
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社 filed Critical 新日鉄エンジニアリング株式会社
Priority to CN201280013016.5A priority Critical patent/CN103429714B/zh
Priority to AU2012227466A priority patent/AU2012227466B2/en
Publication of WO2012124590A1 publication Critical patent/WO2012124590A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers

Definitions

  • the present invention relates to a coal gasification method for maintaining a proper amount of slag coated in the gasification furnace so that the operation efficiency is maximized in a gasification furnace in which coal is partially oxidized and gasified.
  • Patent Publications 1 and 2 show a coal gasifier using a two-stage reactor with two upper and lower chambers, each having a lower gasification furnace and an upper reforming furnace.
  • oxygen, oxygen and water vapor, and coal are charged into a lower gasification furnace, and gas is partially oxidized to generate gasified gas.
  • the coal gasification apparatus generates gas, oil, and char by hydrogenating and pyrolyzing the generated gasification gas by charging coal and hydrogen into the upper reforming furnace.
  • the reactor into two chambers and two stages in this way, the part that performs gasification of coal and the part that performs hydropyrolysis are separated, so the operating conditions of each part can be set freely Is possible.
  • Patent Publication 3 injects pulverized coal and a gasifying agent (such as an oxygen-containing gas) into a high-temperature pressurized gasification furnace and partially oxidizes the gasification unit. Thus, a product gas is obtained.
  • Patent Publication 4 discloses X (basic ash component selected from the group consisting of CaO, CaCO 3 , MgO, MgCO 3 , iron oxide, boron oxide, sodium oxide, potassium oxide and mixtures thereof), Al
  • X basic ash component selected from the group consisting of CaO, CaCO 3 , MgO, MgCO 3 , iron oxide, boron oxide, sodium oxide, potassium oxide and mixtures thereof
  • Al A method for gasifying a petroleum coke feedstock to optimize the slag viscosity by determining an optimum composition from a ternary system state composed of 2 O 3 and SiO 2 is shown.
  • JP 2008-174583 A Japanese Patent Laid-Open No. 2005-162896 JP 11-140464 A JP-T 9-505092
  • the present invention has been made in view of the above-described circumstances, and provides a coal gasification method capable of maintaining an appropriate amount of slag for coating the furnace wall of a coal gasifier.
  • a coal gasification method is a coal gasification method in a coal gasification apparatus having a gasification furnace that partially oxidizes coal to gasify, and a solid phase of molten slag formed in the gasification furnace The temperature in the gasifier is adjusted so that the solid phase content is included in a range where the rate is 35 vol% or less.
  • the viscosity of the molten slag gradually increases as the solid phase ratio increases, so that the slag coated on the furnace wall can be maintained at an appropriate amount. That is, if the molten slag does not contain a solid phase component, the viscosity of the molten slag is low, and there is a possibility that the slag coated in the gasification furnace cannot be maintained in an appropriate amount.
  • the solid phase ratio of the molten slag exceeds 35 vol%, the molten slag solidifies rapidly with a slight temperature drop, which may affect the operation of the gasifier.
  • the temperature may be adjusted so that the solid phase ratio of the molten slag is preferably 20 vol% or less.
  • the solidification rate of the molten slag formed in the gasification furnace of the coal gasifier is preferably coated on the furnace wall by adjusting the temperature in the gasification furnace within a range of 20 vol% or less.
  • the slag that is used can be maintained at an optimum amount.
  • the viscosity of the molten slag gradually increases as the solid phase ratio increases. Can be maintained in quantity.
  • FIG. 1 shows a general coal gasifier 100 shown as the present embodiment.
  • pulverized coal (coal) is supplied into a pressurized high-temperature gasification furnace 3 via a line (not shown), and a gasifying agent (oxygen-containing gas or the like) is supplied. It is injected from burner 2 via line 1.
  • the pulverized coal is partially oxidized by the gasifying agent inside the gasification furnace 3, and the generated gas G generated in the gasification furnace 3 is discharged from the upper opening 3A.
  • a reforming furnace (not shown) is provided above the upper opening 3 ⁇ / b> A of the gasification furnace 3. This reforming furnace generates gas, oil, and char by introducing hydrogen into the gasification gas generated in the gasification furnace 3 and hydrocracking the gasification gas.
  • the molten slag S1 that forms the coating of the slag S may be in a 100 vol% liquid phase, or the solid phase may be mixed and the liquid phase ratio may be reduced.
  • the liquid phase is 100 vol%
  • the case where the solid phase is mixed and the liquid phase ratio becomes 100% or less will be described as “molten slag S1”.
  • the gasification furnace 3 discharges and drops molten slag S1 formed therein via a slag tap discharge hole 3B provided in the lower part thereof.
  • the molten slag S1 discharged from the slag tap discharge hole 3B is cooled while dropping the slag cooling unit 4, and then stored in the slag granulating unit 5.
  • the slag water granulating unit 5 stores slag cooling water 6 therein, and after granulating and rapidly cooling the molten slag S1 to form granulated slag S2, the granulated slag S2 is discharged from the lower slag discharge hole 5A. To do.
  • a connecting pipe 8 having a valve 7 is connected to the slag discharge hole 5 ⁇ / b> A located at the lower part of the slag granulating unit 5.
  • the granulated slag S2 discharged from the slag granulated unit 5 is sent to the slag lock hopper 10 through the connecting pipe 8.
  • the slag lock hopper 10 stores, for example, the granulated slag S2 for a certain period of time to cause slag precipitation. After a certain time has elapsed since the start of storage of the granulated slag S2, the granulated slag S2 is taken out of the system via the connecting pipe 12 having the valve 11.
  • the raw coal used in the coal gasifier 100 is in a 100 vol% liquid phase based on a melting temperature (shown by a ternary phase diagram) determined by its composition.
  • the liquid phase ratio does not need to be 100 vol%.
  • FIG. 3 is a graph showing the relationship between the solid phase ratio of the molten slag S1 and the relative viscosity according to the Mori-Otsutake equation.
  • the relative viscosity of the slag increases.
  • the relative viscosity exceeds 4 (4 times the original viscosity), and the fluidity rapidly deteriorates.
  • the intrinsic viscosity of the molten slag S1 having a liquid phase ratio of 100 vol% is, for example, 1.68 to 22.7 Pa ⁇ s at 1450 ° C.
  • the furnace wall is coated by maintaining the liquid phase ratio of the molten slag S1 in a range of 65 vol% or more (solid phase ratio is 35 vol% or less) in which the relationship between the temperature and the liquid phase ratio changes gently.
  • the slag S can be maintained at an appropriate amount, and the coal gasification operation can be performed satisfactorily.
  • the liquid phase ratio of the molten slag S1 is set to 80 vol% or more with a small change in viscosity in the range of 65 vol% or more (the solid phase ratio is set to 20 vol% or less). It is more appropriate to do.
  • the solid phase ratio is more preferably 15 vol% or less.
  • the solid phase rate of the molten slag S1 can be controlled by controlling the temperature in the gasification furnace 3, for example. That is, the composition of the molten slag S ⁇ b> 1 depends on the components of coal that are put into the gasification furnace 3. Accordingly, the correlation between the temperature of the molten slag S1 generated when coal having a predetermined component is put into the gasifier 3 and the liquid phase ratio or solid phase ratio of the molten slag S1 is, for example, a verification test. Etc., it can be obtained in advance as in the graph shown in FIG.
  • the temperature in the gasification furnace 3 is, for example, within a range where the solid phase ratio of the molten slag S1 is 35 vol% or less (for example, in the case of “A” coal “ ⁇ ” shown in FIG.
  • the solid phase ratio of the molten slag S1 can be controlled.
  • the solid phase ratio of the molten slag S1 in the gasification furnace 3 can be calculated using a known method. For example, based on the estimation of the slag composition (ash composition) of molten slag S1, the free energy of formation of the liquid phase, and the thermodynamic data of the compound, the solid phase ratio of molten slag S1 is calculated by software that can create an equilibrium diagram You can do it.
  • the solid phase ratio of the molten slag S1 formed in the gasification furnace 3 is 35 vol% or less, preferably 20 vol% or less.
  • the temperature in the gasification furnace 3 is adjusted so that the solid phase content of the molten slag S1 formed in the gasification furnace 3 is within a range of 35 vol% or less.
  • component adjustment of raw coal that increases the basicity of the slag S may be performed.
  • a two-chamber two-stage furnace including a gasification furnace 3 and a reforming furnace is used.
  • the present invention is not limited to this.
  • the solid phase ratio of the molten slag S1 formed in the gasification furnace may be adjusted so as to be 35 vol% or less.
  • the present invention relates to a coal gasification method in a coal gasification apparatus having a gasification furnace for partially oxidizing and gasifying coal.
  • the coal gasification method of the present invention while the temperature of the molten slag is lowered, the viscosity of the molten slag is gradually increased as the solid phase ratio is increased, thereby appropriately adjusting the slag coated on the furnace wall. Can be maintained in quantity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 石炭ガス化装置(100)のガス化炉(3)で形成される溶融スラグ(S1)の固相率が35vol%以下となる範囲で固相分が含まれるようにガス化炉(3)内の温度を調整する。

Description

石炭ガス化方法
 本発明は、石炭を部分酸化してガス化するガス化炉において、ガス化炉内にコーティングされるスラグを運転効率が最大となる適正量に維持する石炭ガス化方法に関する。
 従来、この種の石炭ガス化装置として、例えば、特許文献1~3に示される技術が知られている。
 特許公報1及び2には、下段のガス化炉と上段の改質炉とを備えた上下二室二段の反応器を用いた方式の石炭ガス化装置が示されている。この石炭ガス化装置は、下段のガス化炉に酸素、又は、酸素及び水蒸気と、石炭とが投入され、石炭を部分酸化させることにより、ガス化ガスを生成する。その後、石炭ガス化装置は、上段の改質炉に石炭及び水素が投入され、前記生成したガス化ガスを水素化熱分解することにより、ガス、オイル、及びチャーを生成する。
 そして、このように反応器を二室二段とすることで、石炭のガス化を行う部分と水素化熱分解を行う部分とが分離されるため、各部分の操作条件を自由に設定することが可能となる。
 特許公報3に示される石炭ガス化装置は、微粉炭及びガス化剤(酸素含有ガス等)を、高温加圧されたガス化炉内に噴入して内部のガス化部で部分酸化させることにより、生成ガスを得る。
 また、特許公報4には、X(CaO、CaCO、MgO、MgCO、酸化鉄、酸化ホウ素、酸化ナトリウム、酸化カリウム及びその混合物から構成される群から選択される塩基性灰成分)、Al、及びSiOから構成される三成分系状態から、最適な組成を判定することにより、スラグ粘度の適正化を図る石油コークス供給原料のガス化方法が示されている。
特開2008‐174583号公報 特開2005‐162896号公報 特開平11‐140464号公報 特表平9‐505092号公報
 ところで、上記特許公報1~4に示される石炭ガス化装置のガス化炉では、副産物として石炭中の灰分から溶融スラグが生成され、この溶融スラグによって炉内の壁面がスラグでコーティングされる。そのスラグの一部の溶融スラグが、ガス化炉の下部に設けられたスラグタップ排出孔を経由して、下方に位置する水槽(水砕部)に案内される。
 しかしながら、上記特許公報1~4に示される石炭ガス化炉では、運転効率が最大となるようにスラグを適正量に維持することが困難であった。なお、スラグが適正量に維持されないと、例えば、その量が不十分の場合、水壁炉からの抜熱が大きくなり、適正なガス化温度を維持するための酸素ガスの供給量が増加することにより、ガス化炉を運転するためのコストが増大する。
 この発明は、上述した事情に鑑みてなされたものであって、石炭ガス化装置の炉壁をコーティングするスラグを適正量に維持することができる石炭ガス化方法を提供する。
 本発明に係る石炭ガス化方法は、石炭を部分酸化してガス化するガス化炉を有する石炭ガス化装置における石炭ガス化方法であって、前記ガス化炉で形成される溶融スラグの固相率が35vol%以下となる範囲で固相分が含まれるように前記ガス化炉内の温度を調整する。
 本発明によれば、固相率の上昇に伴って溶融スラグの粘度が緩やかに上昇するので、炉壁にコーティングされるスラグを適正量に維持することができる。
 すなわち、溶融スラグに固相分が含まれていないと、溶融スラグの粘度が低く、ガス化炉内にコーティングされるスラグを適正量に維持することができないおそれがある。一方、溶融スラグの固相率が35vol%を超えると、少しの温度低下で溶融スラグが急激に固化し、ガス化炉の運転に影響を与えるおそれがある。
 また、本発明に係る石炭ガス化方法は、前記溶融スラグの固相率が、好ましくは20vol%以下となるように前記温度を調整してもよい。
 本発明によれば、石炭ガス化装置のガス化炉で形成される溶融スラグの固相率を、好ましくは20vol%以下の範囲でガス化炉内の温度を調整することにより、炉壁にコーティングされるスラグを最適量に維持することができる。
 本発明に係る石炭ガス化方法によれば、溶融スラグの温度が低下する一方で、固相率の上昇に伴って溶融スラグの粘度が緩やかに上昇するので、炉壁にコーティングされるスラグを適正量に維持することができる。
本発明が適用される石炭ガス化装置の概略構成図である。 溶融スラグの温度と溶融スラグの液相率との関係を示すグラフである。 溶融スラグの固相率と相対粘度との関係を示すグラフである。
 本発明の一実施形態について図1~図3を参照して説明する。
 図1は、本実施形態として示される一般的な石炭ガス化装置100である。
 石炭ガス化装置100では、加圧された高温のガス化炉3内に、微粉炭(石炭)がライン(不図示)を経由して供給されるとともに、ガス化剤(酸素含有ガス等)がライン1を経由してバーナ2から噴入される。これにより、ガス化炉3の内部では微粉炭がガス化剤によって部分酸化されるとともに、ガス化炉3で生じる生成ガスGが上部開口3Aから排出される。
 なお、ガス化炉3の上部開口3Aの上方には、図示しない改質炉が設けられる。この改質炉は、ガス化炉3内で生成したガス化ガス中に水素を投入して、ガス化ガスを水素化熱分解することにより、ガス、オイル、及びチャーを生成する。
 また、ガス化炉3での部分酸化の副産物として、石炭中の灰分がスラグSとして生成することにより、ガス化炉3の内壁にスラグSのコーティングが形成されるとともに、スラグSの一部は溶融スラグS1として排出される。
 ここで、スラグSのコーティングを形成する溶融スラグS1は、100vol%液相である場合もあるし、固相が混ざって液相率が低下する場合もある。以下、100vol%液相である場合の他、固相が混ざって液相率が100%以下となる場合も「溶融スラグS1」として説明する。
 前記ガス化炉3は、その下部に設けられたスラグタップ排出孔3Bを経由して、内部で形成される溶融スラグS1を排出かつ滴下する。スラグタップ排出孔3Bから排出された溶融スラグS1は、スラグ冷却部4を滴下する間に冷却された後、スラグ水砕部5に貯留される。
 このスラグ水砕部5は、内部にスラグ冷却水6が貯留され、溶融スラグS1を水砕及び急冷却して水砕スラグS2とした後、下部のスラグ排出孔5Aより水砕スラグS2を排出する。
 前記スラグ水砕部5の下部に位置するスラグ排出孔5Aには、弁7を有する連結管8が接続されている。連結管8を通じて、スラグ水砕部5から排出された水砕スラグS2が、スラグロックホッパ10に送られる。
 このスラグロックホッパ10は、例えば、水砕スラグS2を一定時間貯留して、スラグ沈殿させる。水砕スラグS2の貯留開始から一定時間が経過した後に、弁11を有する連結管12を経由して、水砕スラグS2が系外に取り出される。
 次に、炉壁にコーティングされるスラグSを適正量に維持することが可能なスラグ組成について説明する。
 石炭ガス化装置100に使用する原炭は、その組成により決定される溶融温度(三成分系状態図により示される)に基づき100vol%液相である。しかし、炉壁にコーティングされるスラグSを適正量に維持するという観点からすれば、液相率が100vol%である必要がない。
 ここで、図2の溶融スラグS1の温度と溶融スラグS1の液相率との関係を示すグラフを参照して分かるように、「○」「△」で示される「A炭」、「◆」「◇」で示される「B炭」(A炭とは種類が異なる)の全てが、石炭の種類によらず溶融スラグS1の温度を上昇させることで、液相率が100vol%となる。なお上記「A炭」はアダロ炭であり、「B炭」はタニトハルム炭である。
 図2より、溶融スラグS1の液相率が65vol%以上(固相率が35vol%以下)の場合は、温度と液相率の関係が緩やかに変化する。一方、液相率が65vol%より小さくなる(固相率が35vol%を超える)場合は、温度と液相率の関係が急激に変化し、少しの温度低下で急激に固化し、石炭ガス化運転が困難となる。
 図3は、溶融スラグS1の固相率と、森-乙竹の式による相対粘度との関係を示した図である。図3を参照して分かるように、溶融スラグS1の固相率が上昇すると、スラグの相対粘度も上昇する。そして、図3のグラフに示すように、溶融スラグS1の固相率が35vol%を超えると相対粘度が4を超え(元の粘度の4倍)、急激に流動性が悪くなる。なお、液相率100vol%の溶融スラグS1における固有粘度は、組成にもよるが、例えば1450℃において1.68~22.7Pa・s、1500℃において1.15~13.1Pa・sである。
 このことから、溶融スラグS1の液相率を、温度と液相率の関係が緩やかに変化する65vol%以上の範囲(固相率が35vol%以下)に保つことにより、炉壁にコーティングされるスラグSを適正量に維持して、石炭ガス化運転を良好に行うことができる。
 さらに、石炭ガス化運転を更に良好に行うためには、溶融スラグS1の液相率を、65vol%以上の範囲において、粘度の変化の少ない80vol%以上に(固相率を20vol%以下に)することがさらに適当である。さらにまた、固相率は15vol%以下であることが一層好ましい。
 なお、溶融スラグS1の固相率の制御は、例えばガス化炉3内の温度を制御することにより行うことができる。
 すなわち溶融スラグS1の組成は、ガス化炉3内に投入する石炭の成分に依存する。従って、所定の成分からなる石炭をガス化炉3内に投入したときに生成される溶融スラグS1の温度と、この溶融スラグS1の液相率または固相率との相関関係は、例えば検証試験などを行うことにより、図2に示すグラフのように予め求めておくことができる。そして、この相関関係に基づき、ガス化炉3内の温度を、例えば溶融スラグS1の固相率が35vol%以下になるような範囲(例えば、図2に示す「△」のA炭では、およそ1240℃以上の範囲)にすることにより、溶融スラグS1の固相率を制御することができる。
 また、ガス化炉3内の溶融スラグS1の固相率は、公知の方法を用いて算出することが可能である。例えば、溶融スラグS1のスラグ組成(灰組成)、および液相の生成自由エネルギーの推定と化合物の熱力学データ基づいて、平衡状態図を作成可能なソフトウェアにより、溶融スラグS1の固相率を算出すること等ができる。
 以上詳細に説明したように本発明の本実施形態に係る石炭ガス化方法によれば、ガス化炉3で形成される溶融スラグS1の固相率を35vol%以下、好ましくは20vol%以下となる範囲で固相分が含まれるようにガス化炉3内の温度を調整することにより、固相率の上昇に伴って溶融スラグS1の粘度が緩やかに上昇する。これにより、炉壁にコーティングされるスラグSを適正量に維持することができる。
 なお、上記実施形態では、ガス化炉3で形成される溶融スラグS1の固相率を、35vol%以下となる範囲で固相分が含まれるようにガス化炉3内の温度を調整した。しかし、ガス化炉3内の温度調整に加えて、繊維状スラグの発生割合を低く抑えるために、スラグSの塩基度を上昇させる原炭の成分調整を行っても良い。
 また、上記実施形態では、ガス化炉3及び改質炉からなる二室二段炉を使用した。しかし、これに限定されず、例えば1つのガス化炉においてガス化ガスの生成と水素化熱分解とを共に行う石炭ガス化装置などにおいて、ガス化炉で形成される溶融スラグS1の固相率が35vol%以下となるように、ガス化炉内の温度を調整しても良い。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明は、石炭を部分酸化してガス化するガス化炉を有する石炭ガス化装置における石炭ガス化方法に関する。
 本発明の石炭ガス化方法によれば、溶融スラグの温度が低下する一方で、固相率の上昇に伴って溶融スラグの粘度が緩やかに上昇し、これにより炉壁にコーティングされるスラグを適正量に維持することができる。
 3 ガス化炉
 100 石炭ガス化装置
 S スラグ

Claims (2)

  1.  石炭を部分酸化してガス化するガス化炉を有する石炭ガス化装置における石炭ガス化方法であって、
     前記ガス化炉で形成される溶融スラグの固相率が35vol%以下となる範囲で固相分が含まれるように前記ガス化炉内の温度を調整する石炭ガス化方法。
  2.  前記溶融スラグの固相率が、好ましくは20vol%以下となるように前記温度を調整する請求項1に記載の石炭ガス化方法。
PCT/JP2012/055932 2011-03-15 2012-03-08 石炭ガス化方法 WO2012124590A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280013016.5A CN103429714B (zh) 2011-03-15 2012-03-08 煤气化方法
AU2012227466A AU2012227466B2 (en) 2011-03-15 2012-03-08 Coal gasification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-056945 2011-03-15
JP2011056945A JP5674517B2 (ja) 2011-03-15 2011-03-15 石炭ガス化方法

Publications (1)

Publication Number Publication Date
WO2012124590A1 true WO2012124590A1 (ja) 2012-09-20

Family

ID=46830663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055932 WO2012124590A1 (ja) 2011-03-15 2012-03-08 石炭ガス化方法

Country Status (4)

Country Link
JP (1) JP5674517B2 (ja)
CN (1) CN103429714B (ja)
AU (1) AU2012227466B2 (ja)
WO (1) WO2012124590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145125A (ja) * 2015-02-06 2016-08-12 新日鐵住金株式会社 スラグ製品素材およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232173A (ja) * 1983-06-01 1984-12-26 コンバツシヨン・エンヂニアリング・インコ−ポレ−テツド 固体燃料ガス化装置
JPH0414157B2 (ja) * 1983-05-11 1992-03-11 Hitachi Seisakusho Kk
JPH0427279B2 (ja) * 1983-12-29 1992-05-11 Babcock Hitachi Kk
JPH09111256A (ja) * 1995-10-18 1997-04-28 Sekitan Riyou Sogo Center 石炭ガス化装置
JPH10306285A (ja) * 1997-05-07 1998-11-17 Babcock Hitachi Kk 石炭ガス化炉の炉床構造

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765793B2 (ja) * 1989-06-08 1995-07-19 ダイキン工業株式会社 マルチ形空気調和機
JP2652068B2 (ja) * 1989-07-27 1997-09-10 キヤノン株式会社 デカール機構及び前記デカール機構を用いた記録装置
WO1995013339A1 (en) * 1993-11-12 1995-05-18 Shell Internationale Research Maatschappij B.V. A process for the gasification of a petroleum coke feedstock
US5545238A (en) * 1994-12-29 1996-08-13 Texaco Inc. Method of monitoring slag removal during controlled oxidation of a partial oxidation reactor
CN101392191B (zh) * 2008-10-15 2011-11-23 合肥工业大学 两段式干煤粉气流床气化炉
CN101885989B (zh) * 2010-07-16 2013-02-13 浙江大学 一种可控制煤炭连续气化的煤炭气化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414157B2 (ja) * 1983-05-11 1992-03-11 Hitachi Seisakusho Kk
JPS59232173A (ja) * 1983-06-01 1984-12-26 コンバツシヨン・エンヂニアリング・インコ−ポレ−テツド 固体燃料ガス化装置
JPH0427279B2 (ja) * 1983-12-29 1992-05-11 Babcock Hitachi Kk
JPH09111256A (ja) * 1995-10-18 1997-04-28 Sekitan Riyou Sogo Center 石炭ガス化装置
JPH10306285A (ja) * 1997-05-07 1998-11-17 Babcock Hitachi Kk 石炭ガス化炉の炉床構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145125A (ja) * 2015-02-06 2016-08-12 新日鐵住金株式会社 スラグ製品素材およびその製造方法

Also Published As

Publication number Publication date
CN103429714B (zh) 2015-04-22
AU2012227466B2 (en) 2016-06-16
CN103429714A (zh) 2013-12-04
AU2012227466A1 (en) 2013-10-31
JP2012193247A (ja) 2012-10-11
JP5674517B2 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
US7914765B2 (en) Reactor and process for the continuous production of hydrogen based on steam oxidation of molten iron
KR20070111230A (ko) 탄화수소 함유가스 취입에 의한 용철제조방법 및 이를이용한 용철제조장치
AU2012350150B2 (en) Starting a smelting process
WO2012124590A1 (ja) 石炭ガス化方法
AU2012350144B2 (en) Starting a smelting process
JP5745288B2 (ja) 石炭ガス化装置における石炭ガス化方法
JP3410100B2 (ja) 石油コークス供給原料のガス化方法
GB2160219A (en) Carbon gasification
Park et al. Slagging of petroleum coke ash using Korean anthracites
Zhang et al. Mechanism and interaction of alkaline-earth metal migration induced ash transformation and carbon structure evolution for single coal particle high-temperature gasification
WO2012124604A1 (ja) スラグ形態調整方法
JP2007231203A (ja) 炭素質原料のガス化方法
JP3620407B2 (ja) 高炉への微粉炭吹込み操業方法
JP2021181613A (ja) 高炉の休風立ち上げ方法
KR101235252B1 (ko) 탄화수소 함유가스 취입에 의한 용철제조방법 및 이를이용한 용철제조장치
JP2001240906A (ja) 高炉への還元ガス吹き込み方法
JP2010163499A (ja) 気流層ガス化炉の運転方法
KR100803983B1 (ko) 용철제조장치 및 용철제조방법
CN117946770A (zh) 一种在线调控煤灰熔渣黏温特性的方法
JP2003096472A (ja) 2段噴流床ガス化炉のスラグ付着防止運転方法
JPH0238506A (ja) 溶銑の製造方法
JPS58171514A (ja) 銑鉄の製造方法及びその装置
KR20120106228A (ko) 분류층 가스화기의 수냉벽 슬래그 코팅 촉진장치 및 촉진방법
NZ626934B2 (en) Starting a smelting process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757426

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012227466

Country of ref document: AU

Date of ref document: 20120308

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12757426

Country of ref document: EP

Kind code of ref document: A1