WO2012124467A1 - ガスタービン燃焼器およびガスタービン - Google Patents

ガスタービン燃焼器およびガスタービン Download PDF

Info

Publication number
WO2012124467A1
WO2012124467A1 PCT/JP2012/054913 JP2012054913W WO2012124467A1 WO 2012124467 A1 WO2012124467 A1 WO 2012124467A1 JP 2012054913 W JP2012054913 W JP 2012054913W WO 2012124467 A1 WO2012124467 A1 WO 2012124467A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustor
gas turbine
top hat
fuel injection
nozzle
Prior art date
Application number
PCT/JP2012/054913
Other languages
English (en)
French (fr)
Inventor
諭 染谷
智志 瀧口
萬代 重実
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020137003744A priority Critical patent/KR101471311B1/ko
Priority to CN201280002443.3A priority patent/CN103080653B/zh
Priority to US13/817,384 priority patent/US9719419B2/en
Priority to JP2013504639A priority patent/JP5524407B2/ja
Priority to EP12757130.5A priority patent/EP2698582B1/en
Publication of WO2012124467A1 publication Critical patent/WO2012124467A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/54Reverse-flow combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to a premixed combustion type gas turbine combustor and a gas turbine to which the combustor is applied.
  • the gas turbine combustor of the premixed combustion method burns after mixing fuel and compressed air in advance. According to this premixed combustion type gas turbine combustor, it is effective to make the fuel concentration uniform or to reduce NOx.
  • Such a premixed combustion type gas turbine combustor is conventionally known (see, for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4).
  • Uniform fuel concentration is effective in reducing NOx (nitrogen oxide), but since the mixed state of the premixed gas in each main nozzle is substantially equal, the combustion state of each main burner becomes equal, and the combustor The heat distribution in the central axis direction in the combustor is equal throughout the entire circumference. For this reason, a certain area
  • the gas turbine combustor (combustor) described in Patent Document 5 aims to prevent the occurrence of combustion vibration.
  • This gas turbine combustor introduces airflow into the premixing cylinder by changing the direction of the airflow flowing through the air inflow portion, a cylindrical premixing cylinder provided inside the casing, a combustion cylinder communicating with the premixing cylinder Air flow introduction portion, a pilot nozzle provided on the central axis of the premixing cylinder, and a main premixing nozzle extending substantially parallel to the pilot nozzle and provided at equal central angular intervals in the premixing cylinder
  • the main premixing nozzle has a fuel rod for flowing fuel on the central axis, and a downstream fuel injection peg attached to the fuel rod at equal central angular intervals and extending radially outward. Upstream fuel injection pegs arranged in a plurality of stages along the airflow direction are provided on the upstream side of the mixing cylinder.
  • the present invention solves the above-described problems, and an object thereof is to provide a gas turbine combustor and a gas turbine that can suppress the generation of combustion vibrations in a wide range of frequencies while maintaining low NOx. .
  • a gas turbine combustor includes an outer cylinder, an inner cylinder that is provided inside the outer cylinder and forms an air passage between the outer cylinder, and the inner cylinder.
  • a pilot nozzle provided along the combustor axial direction at the center of the inner cylinder, and a plurality of main nozzles provided on the inner peripheral surface of the inner cylinder so as to surround the pilot nozzle along the circumferential direction,
  • the gas turbine combustor is provided in a circumferential direction inside the air passage.
  • a top hat nozzle that mixes fuel with the combustion air before reaching the main nozzle, and changes the fuel injection position of the top hat nozzle in the combustor axial direction.
  • this gas turbine combustor by changing the fuel injection position in the combustor axial direction, there are many combustion vibrations of different frequencies, and instantaneously the phase difference of the frequency of combustion vibrations is increased. Arise. For this reason, the mixing state of the premixed gas is instantaneously different, the combustion state on the downstream side of each main nozzle is instantaneously different, and the heat distribution in the combustor axial direction is instantaneously distributed over the entire circumference of the combustor. Different. For this reason, concentrated heat generation in the combustor is suppressed, and combustion vibration can be suppressed. Moreover, since the mixed state of the premixed gas is equal in a predetermined time unit, the fuel concentration is made uniform. As a result, it is possible to suppress the occurrence of combustion vibrations in a wide range of frequencies while maintaining low NOx.
  • a plurality of the top hat nozzles are provided in the circumferential direction, and the positions in the axial direction of the combustor are regularly changed.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies can be obtained while maintaining low NOx by the top hat nozzle, and manufacturing is easy due to regular arrangement. Therefore, the manufacturing cost of the gas turbine combustor can be reduced.
  • a plurality of the top hat nozzles are provided in the circumferential direction, and the positions in the combustor axial direction are irregularly changed.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies can be obtained while maintaining low NOx by the top hat nozzle, and there are more combustion vibrations at different frequencies.
  • the phase difference of the frequency of combustion vibration is more finely generated, so that combustion vibration in a wider range of frequencies including the specified combustion vibration can be suppressed, so that the effect of suppressing the generation of combustion vibrations in a wide range of frequencies is suppressed.
  • Remarkably can be obtained.
  • the top hat nozzle includes a plurality of top hat nozzles arranged in a circumferential direction and arranged by changing the position of the combustor axial direction, and the top hat nozzle group Are arranged in the axial direction of the combustor.
  • low NOx by the top hat nozzle is maintained by one top hat nozzle group in which a plurality of top hat nozzles are provided in the circumferential direction and arranged by changing the position in the combustor axial direction.
  • the effect of suppressing the occurrence of combustion vibrations in a wide range of frequencies can be obtained.
  • the effect of suppressing the occurrence of combustion vibrations in a wide range of frequencies can be obtained synergistically.
  • the top hat nozzle is formed with a fuel injection port for injecting fuel in the middle of extending in the combustor axial direction, and a plurality of the top hat nozzles are provided in the circumferential direction.
  • the position of the fuel injection port in the combustor axial direction is regularly changed and arranged.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies can be obtained while maintaining low NOx by the top hat nozzle, and manufacturing is easy due to regular arrangement. Therefore, the manufacturing cost of the gas turbine combustor can be reduced. Moreover, since the top hat nozzle extends in the combustor axial direction, the position of the fuel injection port in the combustor axial direction can also be changed by changing the axial arrangement, so parts can be shared. Therefore, it is possible to achieve commonality and prevent an increase in the manufacturing cost of the gas turbine combustor.
  • the top hat nozzle is formed with a fuel injection port for injecting fuel in the middle of extending in the combustor axial direction, and a plurality of the top hat nozzles are provided in the circumferential direction.
  • the position of the fuel injection port in the combustor axial direction is irregularly changed and arranged.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies can be obtained while maintaining low NOx by the top hat nozzle, and there are more combustion vibrations at different frequencies.
  • the phase difference of the frequency of combustion vibration is more finely generated, so that combustion vibration in a wider range of frequencies including the specified combustion vibration can be suppressed, so that the effect of suppressing the generation of combustion vibrations in a wide range of frequencies is suppressed.
  • the top hat nozzle extends in the combustor axial direction, the position of the fuel injection port in the combustor axial direction can also be changed by changing the axial arrangement, so parts can be shared. Therefore, it is possible to achieve commonality and prevent an increase in the manufacturing cost of the gas turbine combustor.
  • gas turbine combustor according to the present invention is characterized in that a plurality of the fuel injection ports are arranged in the axial direction of the combustor.
  • the top hat nozzle is formed in an annular shape along the circumferential direction, and a plurality of fuel injection ports for injecting fuel are provided in the circumferential direction. It is characterized by being arranged by changing the position in the axial direction regularly.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies can be obtained while maintaining low NOx by the top hat nozzle, and manufacturing is easy due to regular arrangement. Therefore, it becomes possible to reduce the manufacturing cost of the gas turbine combustor.
  • the top hat nozzle is annular, the degree of freedom in designing the arrangement of the fuel injection ports in the circumferential direction is increased.
  • a plurality of the top hat nozzles are arranged in the combustor axial direction.
  • the top hat nozzle is formed in an annular shape along the circumferential direction, and a plurality of fuel injection ports for injecting fuel are provided in the circumferential direction.
  • the fuel injection ports are arranged in such a manner that the positions of the fuel injection ports in the combustor axial direction are changed, and the positions of the fuel injection ports in the circumferential direction are different from each other.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies can be obtained while maintaining low NOx by the top hat nozzle, and manufacturing is easy due to regular arrangement. Therefore, it becomes possible to reduce the manufacturing cost of the gas turbine combustor.
  • the top hat nozzle is annular, the degree of freedom in designing the arrangement of the fuel injection ports in the circumferential direction is increased.
  • the top hat nozzle is formed in an airfoil shape so as to rectify combustion air introduced into the air passage, and has a fuel injection port for injecting fuel.
  • a plurality of the fuel injection ports are provided in the circumferential direction, and the positions of the fuel injection ports in the combustor axial direction are regularly changed.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies can be obtained while maintaining low NOx by the top hat nozzle, and manufacturing is easy due to regular arrangement. Therefore, the manufacturing cost of the gas turbine combustor can be reduced.
  • the top hat nozzle is formed in an airfoil shape so as to rectify combustion air introduced into the air passage, and has a fuel injection port for injecting fuel.
  • a plurality of the fuel injection ports are provided in the circumferential direction, and the positions of the fuel injection ports in the combustor axial direction are irregularly changed.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies can be obtained while maintaining low NOx by the top hat nozzle, and there are more combustion vibrations at different frequencies.
  • the phase difference of the frequency of combustion vibration is more finely generated, so that combustion vibration in a wider range of frequencies including the specified combustion vibration can be suppressed, so that the effect of suppressing the generation of combustion vibrations in a wide range of frequencies is suppressed.
  • Remarkably can be obtained.
  • gas turbine combustor according to the present invention is characterized in that a plurality of the fuel injection ports are arranged in the axial direction of the combustor.
  • the gas turbine of the present invention includes any one of the above gas turbine combustors.
  • this gas turbine it is possible to suppress the occurrence of combustion vibrations in a wide range of frequencies while maintaining low NOx. As a result, operation with low NOx and less combustion vibration can be performed.
  • FIG. 1 is a schematic configuration diagram of a gas turbine.
  • FIG. 2 is a cross-sectional view of the gas turbine combustor according to the first embodiment of the present invention.
  • FIG. 3 is an AA arrow view of FIG. 4 is a developed schematic view of C-break D1-D2 of FIG. 3 in the range of B1-B2 of FIG.
  • FIG. 5 is a cross-sectional view of the gas turbine combustor according to the second embodiment of the present invention.
  • FIG. 6 is an AA cross-sectional enlarged view of FIG.
  • FIG. 7 is a developed schematic view of C-break D1-D2 of FIG. 6 in the range of B1-B2 of FIG.
  • FIG. 8 is a developed schematic view of C-break D1-D2 of FIG.
  • FIG. 9 is a sectional view of a gas turbine combustor according to Embodiment 3 of the present invention.
  • FIG. 10 is an AA cross-sectional enlarged view of FIG.
  • FIG. 11 is a developed schematic view of C break D1-D2 of FIG. 10 in the range of B1-B2 of FIG.
  • FIG. 12 is a sectional view of a gas turbine combustor according to Embodiment 4 of the present invention.
  • FIG. 13 is an AA cross-sectional enlarged view of FIG. 14 is a developed schematic view of C-break D1-D2 of FIG. 13 in the range of B1-B2 of FIG.
  • FIG. 1 is a schematic configuration diagram of a gas turbine.
  • the gas turbine includes a compressor 11, a gas turbine combustor (hereinafter referred to as a combustor) 12, a turbine 13, and an exhaust chamber 14, and a generator (not shown) is connected to the turbine 13. Yes.
  • the compressor 11 has an air intake 15 for taking in air, and a plurality of stationary blades 17 and moving blades 18 are alternately arranged in a compressor casing 16.
  • the combustor 12 is combustible by supplying fuel to the compressed air (combustion air) compressed by the compressor 11 and igniting it with a burner.
  • a plurality of stationary blades 21 and moving blades 22 are alternately arranged in a turbine casing 20.
  • the exhaust chamber 14 has an exhaust diffuser 23 that is continuous with the turbine 13.
  • a rotor (turbine shaft) 24 is positioned so as to pass through the center of the compressor 11, the combustor 12, the turbine 13, and the exhaust chamber 14, and an end portion on the compressor 11 side is freely rotatable by a bearing portion 25.
  • the end portion on the exhaust chamber 14 side is rotatably supported by the bearing portion 26.
  • a plurality of disk plates are fixed to the rotor 24, the rotor blades 18 and 22 are connected, and a drive shaft of a generator (not shown) is connected to the end on the exhaust chamber 14 side.
  • the air taken in from the air intake port 15 of the compressor 11 passes through the plurality of stationary blades 21 and the moving blades 22 and is compressed to become high-temperature and high-pressure compressed air.
  • Combustion occurs when a predetermined fuel is supplied to the compressed air.
  • the high-temperature and high-pressure combustion gas that is the working fluid generated in the combustor 12 passes through the plurality of stationary blades 21 and the moving blades 22 constituting the turbine 13 to drive and rotate the rotor 24. While the generator connected to 24 is driven, the exhaust gas is converted into static pressure by the exhaust diffuser 23 in the exhaust chamber 14 and then released to the atmosphere.
  • FIG. 1 is a cross-sectional view of the gas turbine combustor according to the first embodiment
  • FIG. 3 is a view taken along the line AA in FIG.
  • the inner cylinder 32 is supported so as to form an air passage 30 with a predetermined interval inside the outer cylinder 31, and the tip of the inner cylinder 32 is supported.
  • the combustor casing is configured by connecting the tail cylinder 33.
  • the pilot tube 35 is disposed in the inner cylinder 32 along the combustor axial direction that is the central portion of the inner cylinder 32 and that is the extending direction of the combustor shaft S.
  • the pilot nozzle 35 is provided with a combustion cylinder 35a that is formed in a cylindrical shape with a wide angle at the tip side around the tip part. Further, the pilot nozzle 35 is provided with a pilot swirler 35b between its outer peripheral surface and the inner peripheral surface of the combustion cylinder 35a.
  • the inner cylinder 32 includes a plurality of (eight in this embodiment) main nozzles (also referred to as premixing nozzles) 36 so as to surround the pilot nozzle 35 along the circumferential direction on the inner peripheral surface of the inner cylinder 32. It is arranged in parallel with the axis S.
  • the main nozzle 36 is provided with an extension cylinder 36a formed in a cylindrical shape around the tip thereof. Further, the main nozzle 36 is provided with a main swirler 36b between its outer peripheral surface and the inner peripheral surface of the extension cylinder 36a.
  • the outer cylinder 31 is provided with a top hat portion 34 at its proximal end.
  • the top hat portion 34 is disposed along the inner peripheral surface of the base end portion of the outer cylinder 31, and forms a part of the air passage 30 together with the outer cylinder 31, and a base of the cylindrical member 34a. It is comprised with the cover member 34b which obstruct
  • the lid member 34b supports the above-described pilot nozzle 35, and a fuel port 35c of the pilot nozzle 35 is disposed outside.
  • the fuel port 35c is connected to a pilot nozzle fuel line (not shown) to supply fuel to the pilot nozzle 35.
  • the lid member 34b supports the main nozzle 36 described above, and a fuel port 36c of the main nozzle 36 is disposed outside.
  • the fuel port 36c is connected to a main nozzle fuel line (not shown) to supply fuel to the main nozzle 36.
  • the top hat nozzle 41 is provided in the tubular member 34a of the top hat portion 34 inside the air passage 30 described above. Although not shown in the drawing, the top hat nozzle 41 is provided with a fuel port outside the top hat portion 34, and a fuel is supplied by connecting the top hat nozzle fuel line to the fuel port. Details of the top hat nozzle 41 will be described later.
  • a partition wall (not shown) is provided in the cylindrical member 34a of the top hat portion 34 on the base end side of the outer cylinder 31, and the air passage 30 is communicated with the inner cylinder 32 by this partition wall. .
  • a rectifying plate 38 is provided between the outer cylinder 31 (cylindrical member 34 a of the top hat portion 34) and the inner cylinder 32 and at the inlet of the air passage 30.
  • the rectifying plate 38 is a perforated plate that is provided so as to cover the air passage 30 and in which a large number of holes that connect the upstream side and the downstream side of the air passage 30 are formed.
  • a turning portion 39 is provided at a base end portion that forms the air passage 30.
  • the turning part 39 substantially reverses the flow path direction of the air passage 30 in cooperation with the partition wall.
  • the turning portion 39 is formed with an increased thickness so that the inner surface facing the outer cylinder 31 side approaches the outer cylinder 31 side so as to form a part of the air passage 30.
  • a turning vane 39 a is provided inside the inner cylinder 32 and inside the turning portion 39.
  • the turning vane 39a extends from the outer side in the radial direction of the main nozzle 36 toward the combustor shaft S, and is curved in a circular arc shape so as to face the front end side of the main nozzle 36 near the position of the main nozzle 36. Has been.
  • the fuel injected from the main nozzle 36 and the fuel mixture are mixed by the extension cylinder 36a and flow into the tail cylinder 33 as a swirling flow of the premixed gas by the main swirler 36b. Further, the fuel mixture is mixed with the fuel injected from the pilot nozzle 35, ignited and burned by a not-shown type fire, and is burned into the tail cylinder 33 as combustion gas. At this time, a part of the combustion gas is ejected so as to diffuse into the tail cylinder 33 with a flame, so that the premixed gas flowing into the tail cylinder 33 from each main nozzle 36 is ignited and burned. .
  • the flame holding for stable combustion of the lean premixed fuel from the main nozzle 36 can be performed by the diffusion flame by the pilot fuel injected from the pilot nozzle 35. Further, by premixing the fuel by the main nozzle 36, the fuel concentration can be made uniform, thereby reducing NOx.
  • a fuel mixture is formed by mixing fuel with compressed air by the top hat nozzle 41 in the air passage 30 to form a low-concentration air-fuel mixture, and then a downstream main nozzle 36 is used as a high-concentration air-fuel mixture.
  • the fuel in the air-fuel mixture and the combustion air are mixed more uniformly. Therefore, the generation of the high temperature portion of the combustion gas due to the air-fuel ratio separation can be prevented, and the NOx can be further reduced. be able to.
  • top hat nozzle 41 of the present embodiment will be described.
  • a plurality of top hat nozzles 41 are provided in the circumferential direction in the air passage 30.
  • the top hat nozzle 41 has a columnar shape (for example, a cylindrical shape) extending in a radial direction around the combustor axis S.
  • the top hat nozzle 41 is formed with a flow path (not shown) through which fuel is supplied to the inside of the columnar shape, and a fuel injection for injecting fuel to the outside of the columnar shape communicating with the flow path.
  • a mouth 41a is formed.
  • top hat nozzle 41 is arrange
  • several top hat nozzles 41 are arranged together at the position of each main nozzle 36 so that two top hat nozzles 41 are arranged close to each of the eight main nozzles 36 in FIG. May be.
  • a plurality of fuel injection ports 41a are provided in the columnar extending direction (indicated by three in FIGS. 2 and 3), and downstream of the compressed air in the air passage 30.
  • the number and direction thereof are not limited, and it may be designed so that the fuel is appropriately mixed with the compressed air flowing through the air passage 30.
  • top hat nozzle 41 is arrange
  • FIG. 4 explains the arrangement of the top hat nozzle 41, and is a developed schematic view taken along line C1-D2 in FIG. 3 in the range B1-B2 in FIG.
  • the top hat nozzle 41 shown in FIG. 4 has a circumferential direction D1-D2 in such a manner that the position of B1-B2, which is the extending direction of the combustor axis S, is inclined with respect to the combustor axis S except for orthogonality. In order to line up in a straight line, it is regularly arranged.
  • the top hat nozzle 41 is regularly arranged so that the position of B1-B2 that is the extending direction of the combustor shaft S is aligned on the quadratic curve at D1-D2 that is the circumferential direction. It may be changed and arranged.
  • the top hat nozzle 41 regularly changes in the extending direction of the combustor axis S.
  • the top hat nozzles 41 arranged in the circumferential direction have regularity in the positional relationship changed in the extending direction of the combustor axis S. Means there is. Therefore, as long as the positional relationship changed in the extending direction of the combustor shaft S has regularity, the arrangement may not be arranged on a regular line as shown in FIG.
  • top hat nozzle 41 may be arranged in such a manner that the position of B1-B2, which is the extending direction of the combustor shaft S, is irregularly changed from D1-D2 which is the circumferential direction. Good.
  • the position of the top hat nozzle 41 that injects the fuel is changed in the extending direction of the combustor shaft S (combustor shaft direction).
  • a plurality of top hat nozzles 41 are provided in the circumferential direction, and the position of the combustor shaft S in the extending direction (combustor shaft direction) is regularly changed. Are arranged.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies while maintaining low NOx by the top hat nozzle 41 is obtained, and the manufacturing is easy by regular arrangement. Therefore, the manufacturing cost of the gas turbine combustor 12 can be reduced.
  • the generation of combustion vibration is suppressed by the configuration of the top hat nozzle 41 itself that reduces NOx, there is no need to provide a new configuration for generating combustion vibration, and the manufacturing cost of the gas turbine combustor 12 is reduced. There is no problem of increasing the volume or increasing the weight of the gas turbine combustor 12.
  • a plurality of top hat nozzles 41 are provided in the circumferential direction, and the position of the combustor shaft S in the extending direction (combustor shaft direction) changes irregularly. Are arranged.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies while maintaining low NOx by the top hat nozzle 41 is obtained, and more combustion vibrations at different frequencies are obtained. Because the phase difference of the frequency of combustion vibration occurs more finely, the combustion vibration in a wider range of frequencies including the specified combustion vibration can be suppressed, so the occurrence of combustion vibrations in a wide range of frequencies is suppressed. The effect can be obtained remarkably. In addition, since the generation of combustion vibration is suppressed by the configuration of the top hat nozzle 41 itself that reduces NOx, there is no need to provide a new configuration for generating combustion vibration, and the manufacturing cost of the gas turbine combustor 12 is reduced. There is no problem of increasing the volume or increasing the weight of the gas turbine combustor 12.
  • a configuration in which a plurality of circumferentially arranged and changed positions in the combustor axial direction constitutes one top hat nozzle group, and the top hat nozzle group corresponds to the combustor axis S.
  • a plurality of them may be arranged in the extending direction (combustor axial direction).
  • a plurality of top hat nozzle groups of the same form among the forms of the first embodiment described above may be arranged in the extending direction of the combustor shaft S, and the top hat nozzle groups of different forms are A plurality of the combustor shafts S may be arranged in the extending direction.
  • a low NOx produced by the top hat nozzle 41 is provided by a single top hat nozzle group in which a plurality of top hat nozzles 41 are provided in the circumferential direction and are arranged by changing the position in the combustor axial direction. While maintaining the above, the effect of suppressing the occurrence of combustion vibrations in a wide range of frequencies can be obtained.
  • By arranging a plurality of the top hat nozzle groups in the combustor axial direction it becomes possible to obtain synergistically and effectively obtain the effect of suppressing the occurrence of combustion vibrations in a wide range of frequencies.
  • top hat nozzles 41 in the top hat nozzle group are provided in the circumferential direction, and the positions of the combustor shaft S in the extending direction (combustor shaft direction) are regularly changed, Since the manufacturing is easy due to the regular arrangement, the manufacturing cost of the gas turbine combustor 12 can be reduced.
  • FIG. 5 is a cross-sectional view of the gas turbine combustor according to the second embodiment
  • FIG. 6 is an enlarged cross-sectional view taken along the line AA in FIG.
  • the gas turbine combustor 12 of the present embodiment employs a top hat nozzle 42 that is different from the top hat nozzle 41 of the gas turbine combustor 12 of the first embodiment described above. Therefore, in the present embodiment, the top hat nozzle 42 will be described, and the same parts as those in the above-described first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • a top hat nozzle 42 is provided inside the air passage 30.
  • the top hat nozzle 42 is provided with a fuel port outside the top hat portion 34, and a fuel is supplied by connecting a top hat nozzle fuel line to the fuel port.
  • top hat nozzles 42 are provided in the circumferential direction in the air passage 30 (indicated by 16 in FIG. 6).
  • the top hat nozzle 42 has a columnar shape (for example, a cylindrical shape) extending to the combustor shaft S.
  • the top hat nozzle 42 is formed with a flow path (not shown) for supplying fuel to the inside of the columnar shape, and communicates with the flow channel in the extending direction in the middle of the columnar fuel outside.
  • a fuel injection port 42a for injection is formed.
  • the top hat nozzles 42 are arranged at equal intervals in the circumferential direction as shown in FIG. 6, but may not be equal intervals. For example, several top hat nozzles 42 are arranged at the position of each main nozzle 36 so that two top hat nozzles 42 are arranged close to each of the eight main nozzles 36 in FIG. May be. Further, as shown in FIG. 5, a plurality of fuel injection ports 42 a are provided in the columnar extending direction (indicated by four in FIG. 5), and in the air passage 30, the outer cylinder 31 side, the inner cylinder 32 side, However, the number and direction thereof are not limited, and it may be designed so that fuel is appropriately mixed with the compressed air flowing through the air passage 30.
  • FIGS. 7 and 8 illustrate the arrangement of the fuel injection ports 42a of the top hat nozzle 42, and are schematic C1-D2 development views of FIG. 6 in the range B1-B2 of FIG.
  • the top hat nozzle 42 shown in FIG. 7 itself is similarly arranged at D1-D2 where the position of B1-B2 which is the extending direction of the combustor shaft S is the circumferential direction.
  • the top hat nozzle 42 has a circumferential direction D1 so that the position of B1-B2, which is the extending direction of the combustor shaft S of the fuel injection port 42a, is inclined with respect to the combustor shaft S except for the right angle.
  • -D2 is regularly arranged so as to be aligned on a straight line at D2.
  • the top hat nozzle 42 has a position of B1-B2 in the extending direction of the combustor shaft S of the fuel injection port 42a on the quadratic curve at D1-D2 in the circumferential direction. You may arrange
  • the fuel injection port 42a regularly changes in the extending direction of the combustor shaft S.
  • the fuel injection ports 42a of the top hat nozzles 42 arranged in the circumferential direction are changed in the extending direction of the combustor shaft S. This means that the positional relationship is regular. Therefore, as long as the positional relationship changed in the extending direction of the combustor shaft S has regularity, the arrangement may not be arranged on a regular line as shown in FIG.
  • the (four) fuel injection ports 42a in the top hat nozzles 42 arranged in the circumferential direction D1-D2 have positions B1-B2 in the extending direction of the combustor shaft S.
  • it is regularly changed so as to be aligned on a straight line in the circumferential direction D1-D2 so as to incline except for orthogonality with respect to the extending direction of the combustor axis S, it is not limited to this.
  • the position of the fuel injection port 42a in this arrangement and B1-B2, which is the extending direction of the combustor shaft S regularly changes so as to be aligned on a quadratic curve at D1-D2 which is the circumferential direction.
  • the arranged fuel injection ports 42a and other regularly arranged fuel injection ports 42a may be mixed.
  • top hat nozzle 42 shown in FIG. 8 itself is similarly arranged at D1-D2 in which the position of B1-B2, which is the extending direction of the combustor shaft S, is the circumferential direction.
  • the top hat nozzle 42 is arranged such that the position of B1-B2 that is the extending direction of the combustor shaft S of the fuel injection port 42a is irregularly changed in D1-D2 that is the circumferential direction.
  • the (four) fuel injection ports 42a in the top hat nozzles 42 arranged in the circumferential direction D1-D2 are combusted in the circumferential direction D1-D2 in each top hat nozzle 42.
  • the positions of B1-B2 in the extending direction of the combustor shaft S are irregular, but are arranged at equal intervals in the extending direction of the combustor shaft S.
  • the present invention is not limited to this, and although not shown in the drawing, it may be arranged irregularly in the extending direction of the combustor shaft S.
  • each (four) fuel injection ports 42a in each top hat nozzle 42 arranged in the circumferential direction D1-D2 has B1-B2 extending direction of the combustor shaft S.
  • An arrangement in which the position regularly changes in the circumferential direction D1-D2 with respect to the extending direction of the combustor axis S, and a position of B1-B2 that is the extending direction of the combustor axis S is the circumferential direction D1.
  • An arrangement that changes irregularly at -D2 may be mixed.
  • the position of the top hat nozzle 42 where the fuel is injected is changed in the extending direction of the combustor shaft S (combustor shaft direction).
  • the top hat nozzle 42 has a fuel injection port 42a for injecting fuel in the middle of extending in the extending direction of the combustor shaft S (combustor shaft direction).
  • a plurality of the fuel injection ports 42a are provided in the circumferential direction, and the positions of the fuel injection ports 42a in the combustor axial direction are regularly changed.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies while maintaining low NOx by the top hat nozzle 42 is obtained, and manufacture is easy due to regular arrangement. Therefore, the manufacturing cost of the gas turbine combustor 12 can be reduced.
  • the generation of combustion vibration is suppressed by the configuration of the top hat nozzle 42 itself for reducing NOx, there is no need to provide a new configuration for generating combustion vibration, and the manufacturing cost of the gas turbine combustor 12 is reduced. There is no problem of increasing the volume or increasing the weight of the gas turbine combustor 12.
  • the top hat nozzle 42 extends in the extending direction of the combustor shaft S, fuel injection can be performed even by changing the arrangement in the extending direction. Since the position of the port 42a in the combustor axial direction can be changed, parts can be shared and shared, and a situation in which the manufacturing cost of the gas turbine combustor 12 increases can be prevented.
  • the top hat nozzle 42 has a fuel injection port 42a for injecting fuel in the middle of extending in the extending direction of the combustor shaft S (combustor shaft direction).
  • a plurality of the fuel injection ports 42a are provided in the circumferential direction, and the positions of the fuel injection ports 42a in the combustor axial direction are irregularly changed.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies while maintaining low NOx by the top hat nozzle 42 is obtained, and more combustion vibrations at different frequencies are obtained. Because the phase difference of the frequency of combustion vibration occurs more finely, the combustion vibration in a wider range of frequencies including the specified combustion vibration can be suppressed, so the occurrence of combustion vibrations in a wide range of frequencies is suppressed. The effect can be obtained remarkably. In addition, since the generation of combustion vibration is suppressed by the configuration of the top hat nozzle 42 itself that reduces MOx, it is not necessary to provide a new configuration for generating combustion vibration, and the manufacturing cost of the gas turbine combustor 12 is reduced. There is no problem of increasing the volume or increasing the weight of the gas turbine combustor 12.
  • a plurality of fuel injection ports 42a are arranged in the extending direction of the combustor shaft S (combustor shaft direction).
  • FIG. 9 is a cross-sectional view of the gas turbine combustor of the third embodiment
  • FIG. 10 is an AA cross-sectional enlarged view of FIG.
  • the gas turbine combustor 12 of the present embodiment employs a top hat nozzle 43 that is different from the top hat nozzle 41 of the gas turbine combustor 12 of the first embodiment described above. Therefore, in the present embodiment, the top hat nozzle 43 will be described, and the same parts as those in the above-described first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • a top hat nozzle 43 is provided inside the air passage 30.
  • a fuel port is provided outside the top hat portion 34, and a fuel is supplied by connecting a top hat nozzle fuel line to the fuel port.
  • the top hat nozzle 43 is formed in an annular shape along the circumferential direction in the air passage 30.
  • the top hat nozzle 43 has an annular flow path (not shown) for supplying fuel to the inside of the annular shape, and injects fuel to the outside of the annular shape in communication with the flow path.
  • a fuel injection port 43a is formed.
  • a plurality of fuel injection ports 43a are provided in the circumferential direction (indicated by 16 in FIG. 10), and are directed toward the outer cylinder 31 side and the inner cylinder 32 side in the air passage 30.
  • the number and direction thereof are not limited, and it may be designed so that the fuel is appropriately mixed with the compressed air flowing through the air passage 30.
  • the fuel injection ports 43a are arrange
  • several fuel injection ports 43a are collectively arranged at the position of each main nozzle 36 so that two fuel injection ports 43a are arranged close to each of the eight main nozzles 36 provided in FIG. May be.
  • FIG. 11 is a developed schematic view of C break D1-D2 of FIG. 10 in the range of B1-B2 of FIG.
  • the top hat nozzle 43 shown in FIG. 11 is provided with an annular central axis inclined with respect to the combustor axis S, and thereby, the B1-B2 extending direction of the combustor axis S of the fuel injection port 43a is set.
  • the positions are regularly changed so as to be arranged on a quadratic curve in the circumferential direction D1-D2.
  • the annular center axis is provided so as to coincide with the combustor axis S, and the position of B1-B2 that is the extending direction of the combustor axis S of the plurality of fuel injection ports 43a is It may be arranged irregularly changing in the circumferential direction D1-D2.
  • the fuel injection position of the top hat nozzle 43 is changed in the extending direction of the combustor shaft S (combustor shaft direction).
  • the top hat nozzle 43 is formed in an annular shape along the circumferential direction, and a plurality of fuel injection ports 43a for injecting fuel are provided in the circumferential direction.
  • the positions of the ports 43a in the extending direction of the combustor shaft S (combustor shaft direction) are regularly changed.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies while maintaining the low NOx by the top hat nozzle 43 is obtained, and the manufacturing is easy by regular arrangement. Therefore, the manufacturing cost of the gas turbine combustor 12 can be reduced.
  • the top hat nozzle 43 is annular, the degree of freedom in designing the arrangement of the fuel injection ports 43a in the circumferential direction is increased.
  • the generation of combustion vibration is suppressed by the configuration of the top hat nozzle 43 itself for reducing MOx, it is not necessary to provide a new configuration for generating combustion vibration, and the manufacturing cost of the gas turbine combustor 12 is reduced. There is no problem of increasing the volume or increasing the weight of the gas turbine combustor 12.
  • a plurality of top hat nozzles 43 formed in an annular shape along the circumferential direction may be arranged in the extending direction of the combustor shaft S (combustor shaft direction).
  • a plurality of top hat nozzle groups of the same form among the forms of the third embodiment described above may be arranged in the extending direction of the combustor shaft S, and top hat nozzle groups of different forms are A plurality of the combustor shafts S may be arranged in the extending direction.
  • a plurality of top hat nozzles 43 formed in an annular shape are arranged in the extending direction of the combustor shaft S with the central axis thereof aligned with the combustor shaft S, and the combustors of the mutual fuel injection ports 43a.
  • the positions of the fuel injection ports 43a in the circumferential direction may be different from each other so as to change the position in the axial direction.
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies while maintaining the low NOx by the top hat nozzle 43 is obtained, and the manufacturing is easy by regular arrangement. Therefore, the manufacturing cost of the gas turbine combustor 12 can be reduced. Moreover, since the top hat nozzle 43 is annular, the degree of freedom in designing the arrangement of the fuel injection ports 43a in the circumferential direction is increased.
  • FIG. 12 is a cross-sectional view of the gas turbine combustor according to the fourth embodiment
  • FIG. 13 is an enlarged cross-sectional view taken along the line AA in FIG. 12
  • FIG. 14 is a cross-sectional view of FIG.
  • FIG. 3 is a developed schematic view of C-break D1-D2.
  • the gas turbine combustor 12 of the present embodiment employs a top hat nozzle 44 that is different from the top hat nozzle 41 of the gas turbine combustor 12 of the first embodiment described above. Therefore, in the present embodiment, the top hat nozzle 44 will be described, and the same parts as those in the first embodiment described above will be denoted by the same reference numerals and the description thereof will be omitted.
  • a top hat nozzle 44 is provided inside the air passage 30.
  • the top hat nozzle 44 is provided with a fuel port outside the top hat portion 34, and a fuel is supplied by connecting the top hat nozzle fuel line to the fuel port.
  • a plurality are provided in the circumferential direction in the air passage 30.
  • the top hat nozzle 44 has an airfoil shape so as to rectify the compressed air introduced into the air passage 30.
  • the top hat nozzle 44 is formed with a flow path (not shown) for supplying fuel to the inside of the airfoil, and communicates with the flow path in the middle of the extending direction of the combustor shaft S.
  • a fuel injection port 44a for injecting fuel to the outside of the airfoil is formed.
  • top hat nozzles 44 are arranged at equal intervals in the circumferential direction as shown in FIG. Further, as shown in FIG. 13, a plurality of fuel injection ports 44 a are provided in the extending direction of the combustor shaft S (indicated by two in FIG. 12), and toward the both sides in the circumferential direction in the air passage 30. Although provided, there is no limitation on the number and direction thereof, and it may be designed so that the fuel is appropriately mixed with the compressed air flowing through the air passage 30.
  • top hat nozzle 44 is arranged by changing the position of injecting the fuel in the extending direction of the combustor shaft S (combustor shaft direction).
  • the top hat nozzle 44 shown in FIG. 13 itself is similarly arranged at D1-D2 in which the position of B1-B2, which is the extending direction of the combustor shaft S, is the circumferential direction.
  • the top hat nozzle 44 has a circumferential direction D1 such that the position of B1-B2, which is the extending direction of the combustor axis S of the fuel injection port 44a, is inclined with respect to the combustor axis S except for orthogonality.
  • -D2 is regularly arranged so as to be aligned on a straight line at D2.
  • the top hat nozzle 44 has a position of B1-B2 in the extending direction of the combustor shaft S of the fuel injection port 44a on the quadratic curve at D1-D2 which is the circumferential direction. You may arrange
  • the fuel injection port 44a regularly changes in the extending direction of the combustor shaft S.
  • the fuel injection port 44a of the top hat nozzle 44 arranged in the circumferential direction is changed in the extending direction of the combustor shaft S. This means that the positional relationship is regular. Therefore, as long as the positional relationship changed in the extending direction of the combustor shaft S has regularity, the arrangement may not be arranged on a regular line as shown in FIG.
  • the (two) fuel injection ports 44a provided in the extending direction of the combustor shaft S in the top hat nozzles 44 arranged in the circumferential direction D1-D2 are connected to the combustor shaft S.
  • the position of B1-B2 that is the extending direction of the cylinder changes regularly so as to be aligned on a straight line at D1-D2 that is the circumferential direction so as to be inclined with respect to the extending direction of the combustor axis S except for the orthogonal direction. However, this is not the case.
  • the positions of the fuel injection ports 44a in this arrangement and the B1-B2 that is the extending direction of the combustor shaft S are regularly changed so as to be aligned on the quadratic curve in the circumferential direction D1-D2.
  • the arranged fuel injection ports 44a and other regularly arranged fuel injection ports 44a may be mixed.
  • the top hat nozzle 44 itself is similarly arranged at D1-D2 in which the position of B1-B2 that is the extending direction of the combustor shaft S is the circumferential direction, and the fuel injection
  • the position of B1-B2 which is the extending direction of the combustor axis S of the port 44a, may be irregularly changed in the circumferential direction D1-D2.
  • the present invention is not limited to this, and although not shown in the drawing, it may be arranged irregularly in the extending direction of the combustor shaft S.
  • each (two) fuel injection ports 44a provided in the extending direction of the combustor shaft S in each top hat nozzle 44 arranged in the circumferential direction D1-D2 is provided with a combustor.
  • the position of B1-B2 which is the extending direction of the axis S changes regularly in the circumferential direction D1-D2 with respect to the extending direction of the combustor axis S, and in the extending direction of the combustor axis S
  • An arrangement in which the position of a certain B1-B2 changes irregularly in the circumferential direction D1-D2 may be mixed.
  • the fuel injection position of the top hat nozzle 44 is changed in the extending direction of the combustor shaft S (combustor shaft direction).
  • the top hat nozzle 44 has a blade shape in such a manner that the compressed air (combustion air) introduced into the air passage 30 is rectified, and fuel injection that injects fuel.
  • a plurality of openings 44a are provided in the circumferential direction, and the positions of the fuel injection openings 44a in the extending direction of the combustor shaft S (combustor shaft direction) are regularly changed. .
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies while maintaining low NOx by the top hat nozzle 44 can be obtained, and manufacture is easy by regular arrangement. Therefore, the manufacturing cost of the gas turbine combustor 12 can be reduced.
  • the generation of combustion vibration is suppressed by the configuration of the top hat nozzle 44 itself for reducing MOx, it is not necessary to provide a new configuration for generating combustion vibration, and the manufacturing cost of the gas turbine combustor 12 is reduced. There is no problem of increasing the volume or increasing the weight of the gas turbine combustor 12.
  • the top hat nozzle 44 has a blade shape in such a manner that the compressed air (combustion air) introduced into the air passage 30 is rectified, and fuel injection that injects fuel.
  • a plurality of openings 44a are provided in the circumferential direction, and the positions of the fuel injection openings 44a in the extending direction of the combustor shaft S (combustor shaft direction) are irregularly changed. .
  • the above-described effect of suppressing the generation of combustion vibrations in a wide range of frequencies while maintaining low NOx by the top hat nozzle 44 is obtained, and more combustion vibrations at different frequencies are obtained. Because the phase difference of the frequency of combustion vibration occurs more finely, the combustion vibration in a wider range of frequencies including the specified combustion vibration can be suppressed, so the occurrence of combustion vibrations in a wide range of frequencies is suppressed. The effect can be obtained remarkably. In addition, since the generation of combustion vibration is suppressed by the configuration of the top hat nozzle 44 itself for reducing MOx, it is not necessary to provide a new configuration for generating combustion vibration, and the manufacturing cost of the gas turbine combustor 12 is reduced. There is no problem of increasing the volume or increasing the weight of the gas turbine combustor 12.
  • a plurality of fuel injection ports 42a are arranged in the extending direction of the combustor shaft S (combustor shaft direction).
  • the gas turbine combustor 12 maintains a low NOx while maintaining a wide range. Since generation of combustion vibration at a frequency is suppressed, an operation with low NOx and less combustion vibration can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

 外筒(31)と、当該外筒(31)の内側に設けられて外筒(31)との間に空気通路(30)を形成する内筒(32)と、内筒(32)の中心部において燃焼器軸(S)方向に沿って設けられたパイロットノズル(35)と、内筒(32)の内周面に周方向に沿ってパイロットノズル(35)を取り囲むように複数設けられたメインノズル(36)と、を備え、空気通路(30)に導入された燃焼用空気に対してメインノズル(36)によって燃料を予め混合して内筒(32)の内部に噴出させるガスタービン燃焼器において、前記空気通路(30)の内部にて周方向に亘って設けられて、メインノズル(36)に至る以前の燃焼用空気に燃料を混合させるトップハットノズル(41)をさらに備え、当該トップハットノズル(41)の燃料を噴射する位置を燃焼器軸S方向で変化させる。

Description

ガスタービン燃焼器およびガスタービン
 本発明は、予混合燃焼方式のガスタービン燃焼器、および当該燃焼器が適用されるガスタービンに関するものである。
 予混合燃焼方式のガスタービン燃焼器は、燃料と圧縮空気とを予め混合してから燃焼させる。この予混合燃焼方式のガスタービン燃焼器によれば、燃料濃度を均一化させることか、NOx低減に効果がある。このような、予混合燃焼方式のガスタービン燃焼器は、従来から知られている(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照)。
 燃料濃度の均一化は、NOx(窒素酸化物)の低減に効果があるが、各メインノズルにおける予混合気の混合状態が実質的に等しいため、各メインバーナの燃焼状態が等しくなり、燃焼器の全周において燃焼器内の中心軸方向の発熱分布が等しくなる。このため、燃焼器内に発熱量が大きい一定の領域が生じる。そして、この集中発熱により燃焼振動が起こりやすくなるという新たな課題を有している。
 なお、従来、例えば、特許文献5に記載のガスタービン燃焼器(燃焼器)は、燃焼振動の発生を防止することを目的としている。このガスタービン燃焼器は、ケーシング内部に設けられる筒状の予混合筒と、予混合筒と連通する燃焼筒と、空気流入部を流れる気流の方向をかえて気流を予混合筒に導入するための気流導入部と、予混合筒の中心軸上に設けられるパイロットノズルと、パイロットノズルに対して略平行に伸び、予混合筒内に等中心角度間隔で設けられるメイン予混合ノズルとを有したもので、メイン予混合ノズルは、中心軸上に燃料を流動させる燃料棒と、該燃料棒に等中心角度間隔で取り付けられ、半径方向外側に延びる下流側燃料噴射ペグを有しており、予混合筒の上流側に気流方向に沿って複数段に配置される上流側燃料噴射ペグを備えている。
特開2009-74792号公報 特開2010-85083号公報 特表2000-500222号公報 特開2009-41848号公報 特開2005-233574号公報
 しかし、上述した特許文献5に記載のガスタービン燃焼器は、燃料噴射ペグを複数段に設けたことで、各段分の周波数の燃焼振動の発生を防ぐものの、特定の燃焼振動の発生を避ける工夫に止まることになる。
 本発明は上述した課題を解決するものであり、低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することのできるガスタービン燃焼器およびガスタービンを提供することを目的とする。
 上述の目的を達成するために、本発明のガスタービン燃焼器は、外筒と、当該外筒の内側に設けられて前記外筒との間に空気通路を形成する内筒と、前記内筒の中心部において燃焼器軸方向に沿って設けられたパイロットノズルと、前記内筒の内周面に周方向に沿って前記パイロットノズルを取り囲むように複数設けられたメインノズルと、を備え、前記空気通路に導入された燃焼用空気に対して前記メインノズルによって燃料を予め混合して前記内筒の内部に噴出させるガスタービン燃焼器において、前記空気通路の内部にて周方向に亘って設けられて、前記メインノズルに至る以前の前記燃焼用空気に燃料を混合させるトップハットノズルをさらに備え、当該トップハットノズルの燃料を噴射する位置を燃焼器軸方向で変化させることを特徴とする。
 このガスタービン燃焼器によれば、燃焼器軸方向で燃料を噴射する位置を変化させたことにより、異なる周波数の燃焼振動が数多く存在することになり、瞬間的に燃焼振動の周波数の位相差が生じる。このため、予混合気の混合状態が瞬間的に異なることになり、各メインノズルの下流側の燃焼状態が瞬間的に異なり、燃焼器の全周において燃焼器軸方向の発熱分布が瞬間的に異なる。このため、燃焼器内での集中発熱が抑えられ、燃焼振動を抑制することが可能になる。しかも、予混合気の混合状態は、所定時間単位では等しいことから、燃料濃度が均一化される。この結果、低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することができる。
 また、本発明のガスタービン燃焼器では、前記トップハットノズルは、周方向に複数設けられており、燃焼器軸方向の位置を規則的に変化させて配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器の製造コストを低減することができる。
 また、本発明のガスタービン燃焼器では、前記トップハットノズルは、周方向に複数設けられており、燃焼器軸方向の位置を不規則に変化させて配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることができる。
 また、本発明のガスタービン燃焼器では、前記トップハットノズルは、周方向に複数設けられて燃焼器軸方向位置を変化させて配置された1つのトップハットノズル群をなし、前記トップハットノズル群が燃焼器軸方向に複数配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルが周方向に複数設けられて燃焼器軸方向の位置を変化させて配置された1つのトップハットノズル群によって、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する効果が得られる。このトップハットノズル群を、燃焼器軸方向に複数配置したことにより、広い範囲の周波数の燃焼振動の発生を抑制する効果を相乗して顕著に得ることができる。
 また、本発明のガスタービン燃焼器では、前記トップハットノズルは、燃焼器軸方向に延在した途中に燃料を噴射する燃料噴射口を有して形成され、周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を規則的に変化させて配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器の製造コストを低減することができる。しかも、トップハットノズルが、燃焼器軸方向に延在していることから、軸方向の配置を変えることでも燃料噴射口の燃焼器軸方向の位置を変化させることができるため、部品の共有化、共通化を図ることができ、ガスタービン燃焼器の製造コストが嵩む事態を防ぐことができる。
 また、本発明のガスタービン燃焼器では、前記トップハットノズルは、燃焼器軸方向に延在する途中に燃料を噴射する燃料噴射口を有して形成され、周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を不規則に変化させて配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることができる。しかも、トップハットノズルが、燃焼器軸方向に延在していることから、軸方向の配置を変えることでも燃料噴射口の燃焼器軸方向の位置を変化させることができるため、部品の共有化、共通化を図ることができ、ガスタービン燃焼器の製造コストが嵩む事態を防ぐことができる。
 また、本発明のガスタービン燃焼器は、前記燃料噴射口が、燃焼器軸方向に複数配置されていることを特徴とする。
 このガスタービン燃焼器によれば、異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることができる。
 また、本発明のガスタービン燃焼器では、前記トップハットノズルは、周方向に沿って環状に形成され、燃料を噴射する燃料噴射口が周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を規則的に変化させて配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器の製造コストを低減することが可能になる。しかも、トップハットノズルが環状であるため、周方向における燃料噴射口の配置の設計自由度があがることになる。
 また、本発明のガスタービン燃焼器では、前記トップハットノズルは、燃焼器軸方向に複数配置されていることを特徴とする。
 このガスタービン燃焼器によれば、異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることができる。
 また、本発明のガスタービン燃焼器では、前記トップハットノズルは、周方向に沿って環状に形成され、燃料を噴射する燃料噴射口が周方向に複数設けられており、燃焼器軸方向に複数配置されているとともに、相互の前記燃料噴射口の燃焼器軸方向の位置を変化させる態様で、相互の燃料噴射口の周方向の位置を異ならせて配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器の製造コストを低減することが可能になる。しかも、トップハットノズルが環状であるため、周方向における燃料噴射口の配置の設計自由度があがることになる。
 また、本発明のガスタービン燃焼器は、前記トップハットノズルは、前記空気通路に導入された燃焼用空気を整流する態様で翼型をなし、燃料を噴射する燃料噴射口を有して形成され、周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を規則的に変化させて配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器の製造コストを低減することができる。
 また、本発明のガスタービン燃焼器は、前記トップハットノズルは、前記空気通路に導入された燃焼用空気を整流する態様で翼型をなし、燃料を噴射する燃料噴射口を有して形成され、周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を不規則に変化させて配置されていることを特徴とする。
 このガスタービン燃焼器によれば、トップハットノズルによる低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることができる。
 また、本発明のガスタービン燃焼器は、前記燃料噴射口が、燃焼器軸方向に複数配置されていることを特徴とする。
 このガスタービン燃焼器によれば、異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることができる。
 上述の目的を達成するために、本発明のガスタービンは、上述のいずれか一つのガスタービン燃焼器を備えることを特徴とする。
 このガスタービンによれば、低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することが可能になる。この結果、低NOxで燃焼振動が少ない運転を行うことができる。
 本発明によれば、低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することができる。
図1は、ガスタービンの概略構成図である。 図2は、本発明の実施の形態1のガスタービン燃焼器の断面図である。 図3は、図2のA-A矢視図である。 図4は、図2のB1-B2範囲における図3のC破断D1-D2展開概略図である。 図5は、本発明の実施の形態2のガスタービン燃焼器の断面図である。 図6は、図5のA-A断面拡大図である。 図7は、図5のB1-B2範囲における図6のC破断D1-D2展開概略図である。 図8は、図5のB1-B2範囲における他の例の図6のC破断D1-D2展開概略図である。 図9は、本発明の実施の形態3のガスタービン燃焼器の断面図である。 図10は、図9のA-A断面拡大図である。 図11は、図9のB1-B2範囲における図10のC破断D1-D2展開概略図である。 図12は、本発明の実施の形態4のガスタービン燃焼器の断面図である。 図13は、図12のA-A断面拡大図である。 図14は、図12のB1-B2範囲における図13のC破断D1-D2展開概略図である。
 以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 図1は、ガスタービンの概略構成図である。ガスタービンは、図1に示すように、圧縮機11とガスタービン燃焼器(以下、燃焼器という)12とタービン13と排気室14により構成され、このタービン13に図示しない発電機が連結されている。圧縮機11は、空気を取り込む空気取入口15を有し、圧縮機車室16内に複数の静翼17と動翼18が交互に配設されている。燃焼器12は、圧縮機11で圧縮された圧縮空気(燃焼用空気)に対して燃料を供給し、バーナで点火することで燃焼可能となっている。タービン13は、タービン車室20内に複数の静翼21と動翼22が交互に配設されている。排気室14は、タービン13に連続する排気ディフューザ23を有している。また、圧縮機11、燃焼器12、タービン13、排気室14の中心部を貫通するようにロータ(タービン軸)24が位置しており、圧縮機11側の端部が軸受部25により回転自在に支持される一方、排気室14側の端部が軸受部26により回転自在に支持されている。そして、このロータ24に複数のディスクプレートが固定され、各動翼18,22が連結されると共に、排気室14側の端部に図示しない発電機の駆動軸が連結されている。
 従って、圧縮機11の空気取入口15から取り込まれた空気が、複数の静翼21と動翼22を通過して圧縮されることで高温・高圧の圧縮空気となり、燃焼器12にて、この圧縮空気に対して所定の燃料が供給されることで燃焼する。そして、この燃焼器12で生成された作動流体である高温・高圧の燃焼ガスが、タービン13を構成する複数の静翼21と動翼22を通過することでロータ24を駆動回転し、このロータ24に連結された発電機を駆動する一方、排気ガスは排気室14の排気ディフューザ23で静圧に変換されてから大気に放出される。
[実施の形態1]
 図2は、実施の形態1のガスタービン燃焼器の断面図であり、図3は、図2のA-A矢視図である。図2および図3に示すように、上述した燃焼器12は、外筒31の内部に所定間隔をあけて空気通路30を形成するように内筒32が支持され、内筒32の先端部に尾筒33が連結されて燃焼器ケーシングが構成されている。
 内筒32は、その内部の中心部であって燃焼器軸Sの延在方向である燃焼器軸方向に沿ってパイロットノズル35が配設されている。パイロットノズル35は、その先端部の周囲に、筒状で先端側が広角して形成された燃焼筒35aが装着されている。さらに、パイロットノズル35は、その外周面と燃焼筒35aの内周面との間にパイロットスワラ35bが設けられている。
 また、内筒32は、その内部の内周面に周方向に沿ってパイロットノズル35を取り囲むように複数(本実施の形態では8個)のメインノズル(予混合ノズルともいう)36が燃焼器軸Sと平行に配設されている。メインノズル36は、その先端部の周囲に、筒状に形成された延長筒36aが装着されている。さらに、メインノズル36は、その外周面と延長筒36aの内周面との間にメインスワラ36bが設けられている。
 外筒31は、その基端部にトップハット部34が設けられている。トップハット部34は、外筒31の基端部の内周面に沿って配置されて、外筒31とともに空気通路30の一部を形成する筒状部材34aと、当該筒状部材34aの基端側の開口を閉塞する蓋部材34bとで構成されている。蓋部材34bは、上述のパイロットノズル35が支持され、当該パイロットノズル35の燃料ポート35cが外側に配置されている。この燃料ポート35cは、図示しないパイロットノズル燃料ラインが接続されてパイロットノズル35に燃料が供給される。また、蓋部材34bは、上述のメインノズル36が支持され、当該メインノズル36の燃料ポート36cが外側に配置されている。この燃料ポート36cは、図示しないメインノズル燃料ラインが接続されてメインノズル36に燃料が供給される。
 また、トップハット部34の筒状部材34aには、上述した空気通路30の内部においてトップハットノズル41が設けられている。このトップハットノズル41は、図には明示しないが、トップハット部34の外側に燃料ポートが設けられ、当該燃料ポートにトップハットノズル燃料ラインが接続されて燃料が供給される。かかるトップハットノズル41の詳細については後述する。
 外筒31の基端側であってトップハット部34の筒状部材34a内には、隔壁(図示せず)が設けられており、この隔壁によって空気通路30が内筒32に連通されている。外筒31(トップハット部34の筒状部材34a)と内筒32との間であって、空気通路30の入口部分には、整流板38が設けられている。整流板38は、空気通路30を覆うように設けられ、空気通路30の上流側と下流側とを連通する孔が多数形成された多孔板である。また、内筒32において、空気通路30を形成する基端部には、ターニング部39が設けられている。ターニング部39は、隔壁と協働して空気通路30の流路方向を略反転させるものである。ターニング部39は、空気通路30の一部を形成するように外筒31側に向く内面が、外筒31側に向かって近づくように厚みを増大されて形成されている。また、内筒32の内部であって、ターニング部39の内側には、ターニングベーン39aが設けられている。ターニングベーン39aは、メインノズル36よりも径方向外側から燃焼器軸Sに向けて延在しつつ、メインノズル36の位置付近でメインノズル36の先端側に向くように円弧状に湾曲して形成されている。
 このようなガスタービン燃焼器12では、高温・高圧の圧縮空気が空気通路30に流れこむと、圧縮空気は、整流板38を通過して整流され、かつターニング部39によって流れを絞られて燃焼器12の周方向で均一化され、ターニングベーン39aによってさらに整流されながらパイロットノズル35の燃焼筒35aおよびメインノズル36の延長筒36aに誘導され、パイロットスワラ35bおよびメインスワラ36bによって旋回する気流となる。かかる圧縮空気は、空気通路30においてトップハットノズル41から噴射された燃料と混合された燃料混合気となって内筒32内に流れ込む。内筒32内では、メインノズル36から噴射された燃料と燃料混合気とが延長筒36aにより混合され、メインスワラ36bによって予混合気の旋回流となって尾筒33内に流れ込む。また、燃料混合気は、パイロットノズル35から噴射された燃料と混合され、図示しない種火により着火されて燃焼し、燃焼ガスとなって尾筒33内に噴出する。このとき、燃焼ガスの一部が尾筒33内に火炎を伴って周囲に拡散するように噴出することで、各メインノズル36から尾筒33内に流れ込んだ予混合気に着火されて燃焼する。すなわち、パイロットノズル35から噴射したパイロット燃料による拡散火炎により、メインノズル36からの希薄予混合燃料の安定燃焼を行うための保炎を行うことができる。また、メインノズル36によって燃料を予混合することで燃料濃度を均一化することで低NOx化を図ることができる。しかも、空気通路30においてトップハットノズル41によって圧縮空気に燃料を混合させて燃料混合気とすることで濃度の薄い混合気を形成しておき、その後下流のメインノズル36によって濃度の濃い混合気として内筒32に噴射することで、混合気の燃料と燃焼用空気とをより均一に混合させるため、空燃比の隔たりによる燃焼ガスの高温部の発生が防止でき、より一層の低NOx化を図ることができる。
 ここで、本実施の形態のトップハットノズル41について説明する。図2および図3に示すように、トップハットノズル41は、空気通路30内にて周方向に複数(図3では16個で示す)設けられている。このトップハットノズル41は、燃焼器軸Sを中心とした放射方向に延在する柱状(例えば、円柱形状)をなしている。また、トップハットノズル41は、柱状の内部に燃料が供給される流路(図示せず)が形成されているとともに、当該流路に連通して柱状の外部に燃料を噴射するための燃料噴射口41aが形成されている。
 なお、トップハットノズル41は、図3に示すように周方向に等間隔で配置されているが、等間隔でなくてもよい。例えば、図3において8個設けられたメインノズル36に対してトップハットノズル41を2個ずつ近づけて配置するように、各メインノズル36の位置にいくつかのトップハットノズル41をまとめて配置してもよい。また、燃料噴射口41aは、図2および図3に示すように、柱状の延在方向に複数(図2および図3では3個で示す)設けられており、空気通路30において圧縮空気の下流側に向けて設けられているが、その数や向きについて限定はなく、空気通路30に流通する圧縮空気に対して燃料を適宜混合するように設計すればよい。
 そして、このようなトップハットノズル41は、その燃料を噴射する位置を、燃焼器軸Sの延在方向(燃焼器軸方向)で変化させて配置されている。図4は、トップハットノズル41の配置を説明するもので、図2のB1-B2範囲における図3のC破断D1-D2展開概略図である。
 図4に示すトップハットノズル41は、燃焼器軸Sの延在方向であるB1-B2の位置が、当該燃焼器軸Sに対して直交を除いて傾斜する態様で周方向であるD1-D2で直線上に並ぶように規則的に変化して配置されている。
 なお、図には明示しないが、トップハットノズル41は、燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で二次曲線上に並ぶように規則的に変化して配置されていてもよい。なお、トップハットノズル41が、燃焼器軸Sの延在方向に規則的に変化するとは、周方向に並ぶトップハットノズル41が、燃焼器軸Sの延在方向で変えた位置関係に規則性があることを意味する。したがって、燃焼器軸Sの延在方向で変えた位置関係に規則性があれば、図4に示す配置のように規則的な線上に並ぶ配置でなくてもよい。
 また、図には明示しないが、トップハットノズル41は、燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で不規則に変化して配置されていてもよい。
 このように、本実施の形態のガスタービン燃焼器12は、トップハットノズル41の燃料を噴射する位置を燃焼器軸Sの延在方向(燃焼器軸方向)で変化させている。
 このガスタービン燃焼器12によれば、燃焼器軸Sの延在方向の燃料を噴射する位置を変化させたことにより、異なる周波数の燃焼振動が数多く存在することになり、瞬間的に燃焼振動の周波数の位相差が生じる。このため、予混合気の混合状態が瞬間的に異なることになり、各メインノズル36における延長筒36aの下流側の燃焼状態が瞬間的に異なり、燃焼器12の全周において燃焼器軸Sの延在方向の発熱分布が瞬間的に異なる。このため、燃焼器12内での集中発熱が抑えられ、燃焼振動を抑制することが可能になる。なお、予混合気の混合状態は、所定時間単位では等しいことから、燃料濃度が均一化される。この結果、低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することが可能になる。
 また、本実施の形態のガスタービン燃焼器12では、トップハットノズル41は、周方向に複数設けられており、燃焼器軸Sの延在方向(燃焼器軸方向)の位置を規則的に変化させて配置されている。
 このガスタービン燃焼器12によれば、トップハットノズル41による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器12の製造コストを低減することが可能になる。しかも、低NOx化を図るトップハットノズル41自体の構成によって燃焼振動の発生を抑制することから、燃焼振動を発生するための新たな構成を設ける必要がなく、ガスタービン燃焼器12の製造コストが嵩んだり、ガスタービン燃焼器12の重量が増加したりする問題も生じない。
 また、本実施の形態のガスタービン燃焼器12では、トップハットノズル41は、周方向に複数設けられており、燃焼器軸Sの延在方向(燃焼器軸方向)の位置を不規則に変化させて配置されている。
 このガスタービン燃焼器12によれば、トップハットノズル41による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることが可能になる。しかも、低NOx化を図るトップハットノズル41自体の構成によって燃焼振動の発生を抑制することから、燃焼振動を発生するための新たな構成を設ける必要がなく、ガスタービン燃焼器12の製造コストが嵩んだり、ガスタービン燃焼器12の重量が増加したりする問題も生じない。
 なお、上述した実施の形態1において、周方向に複数設けられて燃焼器軸方向位置を変化させて配置された構成が1つのトップハットノズル群をなし、当該トップハットノズル群が燃焼器軸Sの延在方向(燃焼器軸方向)に複数配置されていてもよい。この場合、上述した実施の形態1の各形態のうちの同じ形態のトップハットノズル群が、燃焼器軸Sの延在方向に複数配置されていてもよく、異なる形態のトップハットノズル群が、燃焼器軸Sの延在方向に複数配置されていてもよい。
 このガスタービン燃焼器12によれば、トップハットノズル41が周方向に複数設けられて燃焼器軸方向の位置を変化させて配置された1つのトップハットノズル群によって、トップハットノズル41による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する効果が得られる。このトップハットノズル群を、燃焼器軸方向に複数配置したことにより、広い範囲の周波数の燃焼振動の発生を抑制する効果を相乗して顕著に得ることが可能になる。
 そして、トップハットノズル群のトップハットノズル41が、周方向に複数設けられ、燃焼器軸Sの延在方向(燃焼器軸方向)の位置を規則的に変化させて配置されている場合は、規則的な配置によって製造が容易であるため、ガスタービン燃焼器12の製造コストを低減することが可能になる。
 また、トップハットノズル群のトップハットノズル41が、周方向に複数設けられ、燃焼器軸Sの延在方向(燃焼器軸方向)の位置を不規則に変化させて配置されている場合は、異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることが可能になる。
[実施の形態2]
 図5は、実施の形態2のガスタービン燃焼器の断面図であり、図6は、図5のA-A断面拡大図である。
 本実施の形態のガスタービン燃焼器12は、上述した実施の形態1のガスタービン燃焼器12のトップハットノズル41とは異なるトップハットノズル42を適用している。従って、本実施の形態では、トップハットノズル42について説明し、上述した実施の形態1と同等部分には、同一符号を付してその説明を省略する。
 図5に示すように、空気通路30の内部においてトップハットノズル42が設けられている。このトップハットノズル42は、図には明示しないが、トップハット部34の外側に燃料ポートが設けられ、当該燃料ポートにトップハットノズル燃料ラインが接続されて燃料が供給される。
 図5および図6に示すように、トップハットノズル42は、空気通路30内にて周方向に複数(図6では16個で示す)設けられている。このトップハットノズル42は、燃焼器軸Sに延在する柱状(例えば、円柱形状)をなしている。また、トップハットノズル42は、柱状の内部に燃料が供給される流路(図示せず)が形成されているとともに、延在方向の途中に、流路に連通して柱状の外部に燃料を噴射するための燃料噴射口42aが形成されている。
 なお、トップハットノズル42は、図6に示すように周方向に等間隔で配置されているが、等間隔でなくてもよい。例えば、図6において8個設けられたメインノズル36に対してトップハットノズル42を2個ずつ近づけて配置するように、各メインノズル36の位置にいくつかのトップハットノズル42をまとめて配置してもよい。また、燃料噴射口42aは、図5に示すように、柱状の延在方向に複数(図5では4個で示す)設けられており、空気通路30において外筒31側と内筒32側とに向けて設けられているが、その数や向きについて限定はなく、空気通路30に流通する圧縮空気に対して燃料を適宜混合するように設計すればよい。
 そして、このようなトップハットノズル42は、その燃料を噴射する位置を、燃焼器軸Sの延在方向(燃焼器軸方向)で変化させて配置されている。図7および図8は、トップハットノズル42の燃料噴射口42aの配置を説明するもので、図5のB1-B2範囲における図6のC破断D1-D2展開概略図である。
 図7に示すトップハットノズル42は、それ自体は、燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で同じく配置されている。そしてトップハットノズル42は、燃料噴射口42aの燃焼器軸Sの延在方向であるB1-B2の位置が、当該燃焼器軸Sに対し、直交を除いて傾斜するように周方向であるD1-D2で直線上に並ぶように規則的に変化して配置されている。また、図には明示しないが、トップハットノズル42は、燃料噴射口42aの燃焼器軸Sの延在方向であるB1-B2の位置が、周方向であるD1-D2で二次曲線上に並ぶように規則的に変化して配置されていてもよい。なお、燃料噴射口42aが、燃焼器軸Sの延在方向に規則的に変化するとは、周方向に並ぶトップハットノズル42の燃料噴射口42aが、燃焼器軸Sの延在方向で変えた位置関係に規則性があることを意味する。したがって、燃焼器軸Sの延在方向で変えた位置関係に規則性があれば、図7に示す配置のように規則的な線上に並ぶ配置でなくてもよい。
 なお、図7においては、周方向であるD1-D2に並ぶ各トップハットノズル42における各(4個の)燃料噴射口42aは、燃焼器軸Sの延在方向であるB1-B2の位置が燃焼器軸Sの延在方向に対し、直交を除いて傾斜するように周方向であるD1-D2で直線上に並ぶように規則的に変化して配置されているが、この限りではない。例えば、この配置の燃料噴射口42aや、燃焼器軸Sの延在方向であるB1-B2の位置が、周方向であるD1-D2で二次曲線上に並ぶように規則的に変化して配置された燃料噴射口42aや、その他の規則的に変化して配置されている燃料噴射口42aが混在していてもよい。
 また、図8に示すトップハットノズル42は、それ自体は、燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で同じく配置されている。そしてトップハットノズル42は、燃料噴射口42aの燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で不規則に変化して配置されている。
 なお、図8においては、周方向であるD1-D2に並ぶ各トップハットノズル42における各(4個の)燃料噴射口42aは、各トップハットノズル42では、周方向であるD1-D2において燃焼器軸Sの延在方向であるB1-B2の位置が不規則であるが、燃焼器軸Sの延在方向では等間隔に配置されている。これに限らず、図には明示しないが、燃焼器軸Sの延在方向でも不規則に変化して配置されていてもよい。
 また、図には明示しないが、周方向であるD1-D2に並ぶ各トップハットノズル42における各(4個の)燃料噴射口42aは、燃焼器軸Sの延在方向であるB1-B2の位置が燃焼器軸Sの延在方向に対し、周方向であるD1-D2で規則的に変化する配置と、燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で不規則に変化する配置とが混在していてもよい。
 このように、本実施の形態のガスタービン燃焼器12は、トップハットノズル42の燃料を噴射する位置を燃焼器軸Sの延在方向(燃焼器軸方向)で変化させている。
 このガスタービン燃焼器12によれば、燃焼器軸Sの延在方向の燃料を噴射する位置を変化させたことにより、異なる周波数の燃焼振動が数多く存在することになり、瞬間的に燃焼振動の周波数の位相差が生じる。このため、予混合気の混合状態が瞬間的に異なることになり、各メインノズル36における延長筒36aの下流側の燃焼状態が瞬間的に異なり、燃焼器12の全周において燃焼器軸Sの延在方向の発熱分布が瞬間的に異なる。このため、燃焼器12内での集中発熱が抑えられ、燃焼振動を抑制することが可能になる。なお、予混合気の混合状態は、所定時間単位では等しいことから、燃料濃度が均一化される。この結果、低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することが可能になる。
 また、本実施の形態のガスタービン燃焼器12では、トップハットノズル42は、燃焼器軸Sの延在方向(燃焼器軸方向)に延在した途中に燃料を噴射する燃料噴射口42aを有して形成され、周方向に複数設けられており、燃料噴射口42aの燃焼器軸方向の位置を規則的に変化させて配置されている。
 このガスタービン燃焼器12によれば、トップハットノズル42による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器12の製造コストを低減することが可能になる。しかも、低NOx化を図るトップハットノズル42自体の構成によって燃焼振動の発生を抑制することから、燃焼振動を発生するための新たな構成を設ける必要がなく、ガスタービン燃焼器12の製造コストが嵩んだり、ガスタービン燃焼器12の重量が増加したりする問題も生じない。しかも、本実施の形態のガスタービン燃焼器12によれば、トップハットノズル42が、燃焼器軸Sの延在方向に延在していることから、延在方向の配置を変えることでも燃料噴射口42aの燃焼器軸方向の位置を変化させることができるため、部品の共有化、共通化を図ることができ、ガスタービン燃焼器12の製造コストが嵩む事態を防ぐことが可能である。
 また、本実施の形態のガスタービン燃焼器12では、トップハットノズル42は、燃焼器軸Sの延在方向(燃焼器軸方向)に延在した途中に燃料を噴射する燃料噴射口42aを有して形成され、周方向に複数設けられており、燃料噴射口42aの燃焼器軸方向の位置を不規則に変化させて配置されている。
 このガスタービン燃焼器12によれば、トップハットノズル42による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることが可能になる。しかも、低MOx化を図るトップハットノズル42自体の構成によって燃焼振動の発生を抑制することから、燃焼振動の発生するための新たな構成を設ける必要がなく、ガスタービン燃焼器12の製造コストが嵩んだり、ガスタービン燃焼器12の重量が増加したりする問題も生じない。
 また、本実施の形態のガスタービン燃焼器12は、燃料噴射口42aが、燃焼器軸Sの延在方向(燃焼器軸方向)に複数配置されている。
 このガスタービン燃焼器12によれば、異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることが可能になる。
[実施の形態3]
 図9は、実施の形態3のガスタービン燃焼器の断面図であり、図10は、図9のA-A断面拡大図である。
 本実施の形態のガスタービン燃焼器12は、上述した実施の形態1のガスタービン燃焼器12のトップハットノズル41とは異なるトップハットノズル43を適用している。従って、本実施の形態では、トップハットノズル43について説明し、上述した実施の形態1と同等部分には、同一符号を付してその説明を省略する。
 図9に示すように、空気通路30の内部においてトップハットノズル43が設けられている。このトップハットノズル43は、図には明示しないが、トップハット部34の外側に燃料ポートが設けられ、当該燃料ポートにトップハットノズル燃料ラインが接続されて燃料が供給される。
 図9および図10に示すように、トップハットノズル43は、空気通路30内にて周方向に沿って円環状に形成されている。また、トップハットノズル43は、円環状の内部に燃料が供給される流路(図示せず)が円環状に形成されているとともに、流路に連通して円環状の外部に燃料を噴射するための燃料噴射口43aが形成されている。
 燃料噴射口43aは、図9および図10に示すように、周方向に複数(図10では16個で示す)設けられており、空気通路30において外筒31側と内筒32側とに向けて設けられているが、その数や向きについて限定はなく、空気通路30に流通する圧縮空気に対して燃料を適宜混合するように設計すればよい。また、燃料噴射口43aは、図10に示すように周方向に等間隔で配置されているが、等間隔でなくてもよい。例えば、図10において8個設けられたメインノズル36に対して燃料噴射口43aを2個ずつ近づけて配置するように、各メインノズル36の位置にいくつかの燃料噴射口43aをまとめて配置してもよい。
 そして、このようなトップハットノズル43は、その燃料を噴射する位置を、燃焼器軸Sの延在方向(燃焼器軸方向)で変化させて配置されている。図11は、図9のB1-B2範囲における図10のC破断D1-D2展開概略図である。
 図11に示すトップハットノズル43は、円環状の中心軸が燃焼器軸Sに対して傾いて設けられ、これによって、燃料噴射口43aの燃焼器軸Sの延在方向であるB1-B2の位置が、周方向であるD1-D2で二次曲線上に並ぶように規則的に変化して配置されている。
 なお、図には明示しないが、円環状の中心軸が燃焼器軸Sに一致して設けられ、複数の燃料噴射口43aの燃焼器軸Sの延在方向であるB1-B2の位置が、周方向であるD1-D2で不規則に変化して配置されていてもよい。
 このように、本実施の形態のガスタービン燃焼器12は、トップハットノズル43の燃料を噴射する位置を燃焼器軸Sの延在方向(燃焼器軸方向)で変化させている。
 このガスタービン燃焼器12によれば、燃焼器軸Sの延在方向の燃料を噴射する位置を変化させたことにより、異なる周波数の燃焼振動が数多く存在することになり、瞬間的に燃焼振動の周波数の位相差が生じる。このため、予混合気の混合状態が瞬間的に異なることになり、各メインノズル36における延長筒36aの下流側の燃焼状態が瞬間的に異なり、燃焼器12の全周において燃焼器軸Sの延在方向の発熱分布が瞬間的に異なる。このため、燃焼器12内での集中発熱が抑えられ、燃焼振動を抑制することが可能になる。なお、予混合気の混合状態は、所定時間単位では等しいことから、燃料濃度が均一化される。この結果、低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することが可能になる。
 また、本実施の形態のガスタービン燃焼器12では、トップハットノズル43は、周方向に沿って環状に形成され、燃料を噴射する燃料噴射口43aが周方向に複数設けられており、燃料噴射口43aの燃焼器軸Sの延在方向(燃焼器軸方向)の位置を規則的に変化させて配置されている。
 このガスタービン燃焼器12によれば、トップハットノズル43による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器12の製造コストを低減することが可能になる。しかも、トップハットノズル43が環状であるため、周方向における燃料噴射口43aの配置の設計自由度があがることになる。さらに、低MOx化を図るトップハットノズル43自体の構成によって燃焼振動の発生を抑制することから、燃焼振動の発生するための新たな構成を設ける必要がなく、ガスタービン燃焼器12の製造コストが嵩んだり、ガスタービン燃焼器12の重量が増加したりする問題も生じない。
 なお、上述した実施の形態3において、周方向に沿って環状に形成されたトップハットノズル43が、燃焼器軸Sの延在方向(燃焼器軸方向)に複数配置されていてもよい。この場合、上述した実施の形態3の各形態のうちの同じ形態のトップハットノズル群が、燃焼器軸Sの延在方向に複数配置されていてもよく、異なる形態のトップハットノズル群が、燃焼器軸Sの延在方向に複数配置されていてもよい。
 このガスタービン燃焼器12によれば、異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることが可能になる。
 また、円環状に形成されたトップハットノズル43が、その中心軸を燃焼器軸Sと一致させ、燃焼器軸Sの延在方向に複数配置されており、相互の燃料噴射口43aの燃焼器軸方向の位置を変化させるように、相互の燃料噴射口43aの周方向の位置を異ならせて配置されていてもよい。
 このガスタービン燃焼器12によれば、トップハットノズル43による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器12の製造コストを低減することが可能になる。しかも、トップハットノズル43が環状であるため、周方向における燃料噴射口43aの配置の設計自由度があがることになる。
[実施の形態4]
 図12は、実施の形態4のガスタービン燃焼器の断面図であり、図13は、図12のA-A断面拡大図であり、図14は、図12のB1-B2範囲における図13のC破断D1-D2展開概略図である。
 本実施の形態のガスタービン燃焼器12は、上述した実施の形態1のガスタービン燃焼器12のトップハットノズル41とは異なるトップハットノズル44を適用している。従って、本実施の形態では、トップハットノズル44について説明し、上述した実施の形態1と同等部分には、同一符号を付してその説明を省略する。
 図12に示すように、空気通路30の内部においてトップハットノズル44が設けられている。このトップハットノズル44は、図には明示しないが、トップハット部34の外側に燃料ポートが設けられ、当該燃料ポートにトップハットノズル燃料ラインが接続されて燃料が供給される。
 図12~図14に示すように、空気通路30内にて周方向に複数(図13では8個で示す)設けられている。トップハットノズル44は、空気通路30に導入された圧縮空気を整流するように翼型をなしている。また、トップハットノズル44は、翼型の内部に燃料が供給される流路(図示せず)が形成されているとともに、燃焼器軸Sの延在方向の途中に、流路に連通して翼型の外部に燃料を噴射するための燃料噴射口44aが形成されている。
 なお、トップハットノズル44は、図13に示すように周方向に等間隔で配置されている。また、燃料噴射口44aは、図13に示すように、燃焼器軸Sの延在方向に複数(図12では2個で示す)設けられており、空気通路30において周方向の両側に向けて設けられているが、その数や向きについて限定はなく、空気通路30に流通する圧縮空気に対して燃料を適宜混合するように設計すればよい。
 そして、このようなトップハットノズル44は、その燃料を噴射する位置を、燃焼器軸Sの延在方向(燃焼器軸方向)で変化させて配置されている。
 図13に示すトップハットノズル44は、それ自体は、燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で同じく配置されている。そしてトップハットノズル44は、燃料噴射口44aの燃焼器軸Sの延在方向であるB1-B2の位置が、当該燃焼器軸Sに対し、直交を除いて傾斜するように周方向であるD1-D2で直線上に並ぶように規則的に変化して配置されている。また、図には明示しないが、トップハットノズル44は、燃料噴射口44aの燃焼器軸Sの延在方向であるB1-B2の位置が、周方向であるD1-D2で二次曲線上に並ぶように規則的に変化して配置されていてもよい。なお、燃料噴射口44aが、燃焼器軸Sの延在方向に規則的に変化するとは、周方向に並ぶトップハットノズル44の燃料噴射口44aが、燃焼器軸Sの延在方向で変えた位置関係に規則性があることを意味する。したがって、燃焼器軸Sの延在方向で変えた位置関係に規則性があれば、図13に示す配置のように規則的な線上に並ぶ配置でなくてもよい。
 なお、図13においては、周方向であるD1-D2に並ぶ各トップハットノズル44における燃焼器軸Sの延在方向に設けられた各(2個の)燃料噴射口44aは、燃焼器軸Sの延在方向であるB1-B2の位置が燃焼器軸Sの延在方向に対し、直交を除いて傾斜するように周方向であるD1-D2で直線上に並ぶように規則的に変化して配置されているが、この限りではない。例えば、この配置の燃料噴射口44aや、燃焼器軸Sの延在方向であるB1-B2の位置が、周方向であるD1-D2で二次曲線上に並ぶように規則的に変化して配置された燃料噴射口44aや、その他の規則的に変化して配置されている燃料噴射口44aが混在していてもよい。
 また、図には明示しないが、トップハットノズル44は、それ自体は、燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で同じく配置されて、燃料噴射口44aの燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で不規則に変化して配置されていてもよい。
 この場合、周方向であるD1-D2に並ぶ各トップハットノズル44における燃焼器軸Sの延在方向に設けられた各(2個の)燃料噴射口44aは、各トップハットノズル44では、周方向であるD1-D2において燃焼器軸Sの延在方向であるB1-B2の位置が不規則であるが、燃焼器軸Sの延在方向では等間隔に配置されている。これに限らず、図には明示しないが、燃焼器軸Sの延在方向でも不規則に変化して配置されていてもよい。
 また、図には明示しないが、周方向であるD1-D2に並ぶ各トップハットノズル44における燃焼器軸Sの延在方向に設けられた各(2個の)燃料噴射口44aは、燃焼器軸Sの延在方向であるB1-B2の位置が燃焼器軸Sの延在方向に対し、周方向であるD1-D2で規則的に変化する配置と、燃焼器軸Sの延在方向であるB1-B2の位置が周方向であるD1-D2で不規則に変化する配置とが混在していてもよい。
 このように、本実施の形態のガスタービン燃焼器12は、トップハットノズル44の燃料を噴射する位置を燃焼器軸Sの延在方向(燃焼器軸方向)で変化させている。
 このガスタービン燃焼器12によれば、燃焼器軸Sの延在方向の燃料を噴射する位置を変化させたことにより、異なる周波数の燃焼振動が数多く存在することになり、瞬間的に燃焼振動の周波数の位相差が生じる。このため、予混合気の混合状態が瞬間的に異なることになり、各メインノズル36における延長筒36aの下流側の燃焼状態が瞬間的に異なり、燃焼器12の全周において燃焼器軸Sの延在方向の発熱分布が瞬間的に異なる。このため、燃焼器12内での集中発熱が抑えられ、燃焼振動を抑制することが可能になる。なお、予混合気の混合状態は、所定時間単位では等しいことから、燃料濃度が均一化される。この結果、低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することが可能になる。
 また、本実施の形態のガスタービン燃焼器12では、トップハットノズル44は、空気通路30に導入された圧縮空気(燃焼用空気)を整流する態様で翼型をなし、燃料を噴射する燃料噴射口44aを有して形成され、周方向に複数設けられており、燃料噴射口44aの燃焼器軸Sの延在方向(燃焼器軸方向)の位置を規則的に変化させて配置されている。
 このガスタービン燃焼器12によれば、トップハットノズル44による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ規則的な配置によって製造が容易であるため、ガスタービン燃焼器12の製造コストを低減することが可能になる。しかも、低MOx化を図るトップハットノズル44自体の構成によって燃焼振動の発生を抑制することから、燃焼振動の発生するための新たな構成を設ける必要がなく、ガスタービン燃焼器12の製造コストが嵩んだり、ガスタービン燃焼器12の重量が増加したりする問題も生じない。
 また、本実施の形態のガスタービン燃焼器12では、トップハットノズル44は、空気通路30に導入された圧縮空気(燃焼用空気)を整流する態様で翼型をなし、燃料を噴射する燃料噴射口44aを有して形成され、周方向に複数設けられており、燃料噴射口44aの燃焼器軸Sの延在方向(燃焼器軸方向)の位置を不規則に変化させて配置されている。
 このガスタービン燃焼器12によれば、トップハットノズル44による低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制する上述した効果が得られ、かつ異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることが可能になる。しかも、低MOx化を図るトップハットノズル44自体の構成によって燃焼振動の発生を抑制することから、燃焼振動の発生するための新たな構成を設ける必要がなく、ガスタービン燃焼器12の製造コストが嵩んだり、ガスタービン燃焼器12の重量が増加したりする問題も生じない。
 また、本実施の形態のガスタービン燃焼器12は、燃料噴射口42aが、燃焼器軸Sの延在方向(燃焼器軸方向)に複数配置されている。
 このガスタービン燃焼器12によれば、異なる周波数の燃焼振動がより多く存在することになり、燃焼振動の周波数の位相差がより細かく生じるため、特定する燃焼振動を含むさらに広い範囲の周波数における燃焼振動が抑えられるので、広い範囲の周波数の燃焼振動の発生を抑制する効果を顕著に得ることが可能になる。
 また、上述した実施の形態1~実施の形態4のいずれか一つに記載のガスタービン燃焼器12を備えるガスタービンによれば、ガスタービン燃焼器12によって低NOxを維持しつつ、広い範囲の周波数の燃焼振動の発生を抑制することから、低NOxで燃焼振動が少ない運転を行うことができる。
 12 ガスタービン燃焼器(燃焼器)
 30 空気通路
 31 外筒
 32 内筒
 33 尾筒
 34 トップハット部
 35 パイロットノズル
 36 メインノズル
 41 トップハットノズル
 41G トップハットノズル群
 41a 燃料噴射口
 42 トップハットノズル
 42a 燃料噴射口
 43 トップハットノズル
 43a 燃料噴射口
 44 トップハットノズル
 44a 燃料噴射口
 S 燃焼器軸

Claims (14)

  1.  外筒と、当該外筒の内側に設けられて前記外筒との間に空気通路を形成する内筒と、前記内筒の中心部において燃焼器軸方向に沿って設けられたパイロットノズルと、前記内筒の内周面に周方向に沿って前記パイロットノズルを取り囲むように複数設けられたメインノズルと、を備え、前記空気通路に導入された燃焼用空気に対して前記メインノズルによって燃料を予め混合して前記内筒の内部に噴出させるガスタービン燃焼器において、
     前記空気通路の内部にて周方向に亘って設けられて、前記メインノズルに至る以前の前記燃焼用空気に燃料を混合させるトップハットノズルをさらに備え、当該トップハットノズルの燃料を噴射する位置を燃焼器軸方向で変化させることを特徴とするガスタービン燃焼器。
  2.  前記トップハットノズルは、周方向に複数設けられており、燃焼器軸方向の位置を規則的に変化させて配置されていることを特徴とする請求項1に記載のガスタービン燃焼器。
  3.  前記トップハットノズルは、周方向に複数設けられており、燃焼器軸方向の位置を不規則に変化させて配置されていることを特徴とする請求項1に記載のガスタービン燃焼器。
  4.  前記トップハットノズルは、周方向に複数設けられて燃焼器軸方向位置を変化させて配置された1つのトップハットノズル群をなし、前記トップハットノズル群が燃焼器軸方向に複数配置されていることを特徴とする請求項2または3に記載のガスタービン燃焼器。
  5.  前記トップハットノズルは、燃焼器軸方向に延在した途中に燃料を噴射する燃料噴射口を有して形成され、周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を規則的に変化させて配置されていることを特徴とする請求項1に記載のガスタービン燃焼器。
  6.  前記トップハットノズルは、燃焼器軸方向に延在する途中に燃料を噴射する燃料噴射口を有して形成され、周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を不規則に変化させて配置されていることを特徴とする請求項1に記載のガスタービン燃焼器。
  7.  前記燃料噴射口が、燃焼器軸方向に複数配置されていることを特徴とする請求項5または6に記載のガスタービン燃焼器。
  8.  前記トップハットノズルは、周方向に沿って環状に形成され、燃料を噴射する燃料噴射口が周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を規則的に変化させて配置されていることを特徴とする請求項1に記載のガスタービン燃焼器。
  9.  前記トップハットノズルは、燃焼器軸方向に複数配置されていることを特徴とする請求項8に記載のガスタービン燃焼器。
  10.  前記トップハットノズルは、周方向に沿って環状に形成され、燃料を噴射する燃料噴射口が周方向に複数設けられており、燃焼器軸方向に複数配置されているとともに、相互の前記燃料噴射口の燃焼器軸方向の位置を変化させる態様で、相互の燃料噴射口の周方向の位置を異ならせて配置されていることを特徴とする請求項1に記載のガスタービン燃焼器。
  11.  前記トップハットノズルは、前記空気通路に導入された燃焼用空気を整流する態様で翼型をなし、燃料を噴射する燃料噴射口を有して形成され、周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を規則的に変化させて配置されていることを特徴とする請求項1に記載のガスタービン燃焼器。
  12.  前記トップハットノズルは、前記空気通路に導入された燃焼用空気を整流する態様で翼型をなし、燃料を噴射する燃料噴射口を有して形成され、周方向に複数設けられており、前記燃料噴射口の燃焼器軸方向の位置を不規則に変化させて配置されていることを特徴とする請求項1に記載のガスタービン燃焼器。
  13.  前記燃料噴射口が、燃焼器軸方向に複数配置されていることを特徴とする請求項11または12に記載のガスタービン燃焼器。
  14.  請求項1~13のいずれか一つに記載のガスタービン燃焼器を備えることを特徴とするガスタービン。
PCT/JP2012/054913 2011-03-16 2012-02-28 ガスタービン燃焼器およびガスタービン WO2012124467A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137003744A KR101471311B1 (ko) 2011-03-16 2012-02-28 가스 터빈 연소기 및 가스 터빈
CN201280002443.3A CN103080653B (zh) 2011-03-16 2012-02-28 燃气涡轮燃烧器及燃气涡轮
US13/817,384 US9719419B2 (en) 2011-03-16 2012-02-28 Gas turbine combustor with top hat nozzle arrangements
JP2013504639A JP5524407B2 (ja) 2011-03-16 2012-02-28 ガスタービン燃焼器およびガスタービン
EP12757130.5A EP2698582B1 (en) 2011-03-16 2012-02-28 Gas turbine combustor and gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011058588 2011-03-16
JP2011-058588 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124467A1 true WO2012124467A1 (ja) 2012-09-20

Family

ID=46830543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054913 WO2012124467A1 (ja) 2011-03-16 2012-02-28 ガスタービン燃焼器およびガスタービン

Country Status (6)

Country Link
US (1) US9719419B2 (ja)
EP (1) EP2698582B1 (ja)
JP (1) JP5524407B2 (ja)
KR (1) KR101471311B1 (ja)
CN (1) CN103080653B (ja)
WO (1) WO2012124467A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159942A (ja) * 2013-01-22 2014-09-04 Mitsubishi Heavy Ind Ltd 燃焼器、及び回転機械
JP2014163664A (ja) * 2013-02-27 2014-09-08 General Electric Co <Ge> 燃焼ダイナミクスのモードカップリングを低減させる燃料ノズル
JP2015224867A (ja) * 2014-05-28 2015-12-14 ゼネラル・エレクトリック・カンパニイ 燃焼システムにおけるコヒーレンス低減のためのシステム及び方法
WO2018168747A1 (ja) * 2017-03-13 2018-09-20 三菱日立パワーシステムズ株式会社 燃焼器用ノズル、燃焼器、及びガスタービン
WO2019082880A1 (ja) * 2017-10-27 2019-05-02 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン
JP2019168144A (ja) * 2018-03-22 2019-10-03 三菱重工業株式会社 ガスタービン燃焼器及びそれを備えるガスタービン、並びに、ガスタービン燃焼器の燃焼振動抑制方法
KR20230126372A (ko) * 2022-02-23 2023-08-30 두산에너빌리티 주식회사 가스터빈 연소기 및 이를 구비한 가스터빈

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6154988B2 (ja) * 2012-01-05 2017-06-28 三菱日立パワーシステムズ株式会社 燃焼器
US20150128600A1 (en) * 2013-11-13 2015-05-14 Krishna C. Miduturi Fuel injection system for a turbine engine
JP6228434B2 (ja) * 2013-11-15 2017-11-08 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
CA2950566A1 (en) * 2014-05-30 2015-12-03 Kawasaki Jukogyo Kabushiki Kaisha Combustion device for gas turbine engine
JP6285081B2 (ja) 2014-05-30 2018-02-28 川崎重工業株式会社 ガスタービンエンジンの燃焼装置
US10480791B2 (en) * 2014-07-31 2019-11-19 General Electric Company Fuel injector to facilitate reduced NOx emissions in a combustor system
EP3177873A1 (en) * 2014-08-08 2017-06-14 Siemens Aktiengesellschaft Fuel injection system for a turbine engine
JP6484126B2 (ja) * 2015-06-26 2019-03-13 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
JP6508470B2 (ja) * 2015-07-31 2019-05-08 三菱日立パワーシステムズ株式会社 燃料流量設定方法、この方法を実行する装置、この装置を備えるガスタービンプラント
US20180230956A1 (en) * 2015-08-24 2018-08-16 Siemens Aktiengesellschaft Method and apparatus with arrangement of fuel ejection orifices configured for mitigating combustion dynamics in a combustion turbine engine
JP6422412B2 (ja) * 2015-09-10 2018-11-14 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
JP6647924B2 (ja) * 2016-03-07 2020-02-14 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
US10641176B2 (en) 2016-03-25 2020-05-05 General Electric Company Combustion system with panel fuel injector
US11428413B2 (en) * 2016-03-25 2022-08-30 General Electric Company Fuel injection module for segmented annular combustion system
KR102236267B1 (ko) * 2016-04-08 2021-04-05 한화에어로스페이스 주식회사 산업용 연소기
EP3296637A1 (en) * 2016-09-16 2018-03-21 EKOL, spol. s r.o. Method of fuel combustion and burner for its implementation
JP6772924B2 (ja) * 2017-03-27 2020-10-21 株式会社Ihi 燃焼装置及びガスタービン
CN108869041B (zh) * 2017-05-12 2020-07-14 中国联合重型燃气轮机技术有限公司 用于燃气轮机的前端转向勺状件
JP2019020071A (ja) * 2017-07-19 2019-02-07 三菱重工業株式会社 燃焼器及びガスタービン
JP6956035B2 (ja) * 2018-03-20 2021-10-27 三菱重工業株式会社 燃焼器
KR102101488B1 (ko) 2018-08-17 2020-04-16 두산중공업 주식회사 연소기 및 이를 포함하는 가스 터빈
JP7112342B2 (ja) * 2019-01-25 2022-08-03 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
JP7393262B2 (ja) * 2020-03-23 2023-12-06 三菱重工業株式会社 燃焼器、及びこれを備えるガスタービン
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
KR102583223B1 (ko) * 2022-01-28 2023-09-25 두산에너빌리티 주식회사 연소기용 노즐, 연소기 및 이를 포함하는 가스터빈
DE102022106814A1 (de) * 2022-03-23 2023-09-28 Dürr Systems Ag Jet-Brennervorrichtung
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135970A (ja) * 1994-11-08 1996-05-31 Hitachi Ltd ガスタービン燃焼器
JPH09166326A (ja) * 1995-12-15 1997-06-24 Hitachi Ltd ガスタービン燃焼器
JPH09184629A (ja) * 1996-01-04 1997-07-15 Hitachi Ltd ガスタービン燃焼器の予混合器
JPH10318541A (ja) * 1997-03-10 1998-12-04 General Electric Co <Ge> 燃焼火炎を動的に安定化させた低NOx燃焼器
JP2000500222A (ja) 1995-11-07 2000-01-11 ウエスチングハウス・エレクトリック・コーポレイション 混合強化型燃料噴射器を備えたガスタービン用燃焼器
JP2002522741A (ja) * 1998-08-11 2002-07-23 エービービー アクチボラゲット 燃焼室の音響振動を低減する構成
JP2003090535A (ja) * 2001-09-17 2003-03-28 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンの燃焼器
JP2003120934A (ja) * 2001-10-15 2003-04-23 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンの燃焼器
JP2004077076A (ja) * 2002-08-21 2004-03-11 Mitsubishi Heavy Ind Ltd 燃料供給機構
JP2005195284A (ja) * 2004-01-08 2005-07-21 Mitsubishi Heavy Ind Ltd ガスタービン用燃料ノズル、ガスタービン用燃焼器、ガスタービン用燃焼器の燃焼方法
JP2005233574A (ja) 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd 燃焼器
JP2009041848A (ja) 2007-08-09 2009-02-26 General Electric Co <Ge> 一次燃料噴射器及び複数の二次燃料噴射ポートを有するガスタービンエンジン燃焼器のミキサ組立体のためのパイロットミキサ
JP2009074792A (ja) 2007-09-21 2009-04-09 General Electric Co <Ge> Dlnガスタービンの二次燃料ノズル用トロイダルリングマニホルド
JP2009156542A (ja) * 2007-12-27 2009-07-16 Mitsubishi Heavy Ind Ltd ガスタービンの燃焼器
JP2009281720A (ja) * 2008-05-20 2009-12-03 General Electric Co <Ge> 燃焼ダイナミックスを低減する方法及びシステム
JP2010085083A (ja) 2008-09-30 2010-04-15 General Electric Co <Ge> 二次燃料ノズル用の管状燃料噴射器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335713B2 (ja) * 1993-06-28 2002-10-21 株式会社東芝 ガスタービン燃焼器
EP1710506A2 (en) * 1999-12-15 2006-10-11 Osaka Gas Co., Ltd. Burner Apparatus, Gas Turbine Engine and Cogeneration System
JP2002039533A (ja) * 2000-07-21 2002-02-06 Mitsubishi Heavy Ind Ltd 燃焼器、ガスタービン及びジェットエンジン
US7080515B2 (en) 2002-12-23 2006-07-25 Siemens Westinghouse Power Corporation Gas turbine can annular combustor
JP4015656B2 (ja) * 2004-11-17 2007-11-28 三菱重工業株式会社 ガスタービン燃焼器
US7770395B2 (en) * 2006-02-27 2010-08-10 Mitsubishi Heavy Industries, Ltd. Combustor
US8516820B2 (en) * 2008-07-28 2013-08-27 Siemens Energy, Inc. Integral flow sleeve and fuel injector assembly
US8528340B2 (en) * 2008-07-28 2013-09-10 Siemens Energy, Inc. Turbine engine flow sleeve
US8418468B2 (en) * 2010-04-06 2013-04-16 General Electric Company Segmented annular ring-manifold quaternary fuel distributor
US8438852B2 (en) * 2010-04-06 2013-05-14 General Electric Company Annular ring-manifold quaternary fuel distributor
US8991187B2 (en) * 2010-10-11 2015-03-31 General Electric Company Combustor with a lean pre-nozzle fuel injection system
US8863525B2 (en) * 2011-01-03 2014-10-21 General Electric Company Combustor with fuel staggering for flame holding mitigation
US8281596B1 (en) * 2011-05-16 2012-10-09 General Electric Company Combustor assembly for a turbomachine
US8397514B2 (en) * 2011-05-24 2013-03-19 General Electric Company System and method for flow control in gas turbine engine

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135970A (ja) * 1994-11-08 1996-05-31 Hitachi Ltd ガスタービン燃焼器
JP2000500222A (ja) 1995-11-07 2000-01-11 ウエスチングハウス・エレクトリック・コーポレイション 混合強化型燃料噴射器を備えたガスタービン用燃焼器
JPH09166326A (ja) * 1995-12-15 1997-06-24 Hitachi Ltd ガスタービン燃焼器
JPH09184629A (ja) * 1996-01-04 1997-07-15 Hitachi Ltd ガスタービン燃焼器の予混合器
JPH10318541A (ja) * 1997-03-10 1998-12-04 General Electric Co <Ge> 燃焼火炎を動的に安定化させた低NOx燃焼器
JP2002522741A (ja) * 1998-08-11 2002-07-23 エービービー アクチボラゲット 燃焼室の音響振動を低減する構成
JP2003090535A (ja) * 2001-09-17 2003-03-28 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンの燃焼器
JP2003120934A (ja) * 2001-10-15 2003-04-23 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンの燃焼器
JP2004077076A (ja) * 2002-08-21 2004-03-11 Mitsubishi Heavy Ind Ltd 燃料供給機構
JP2005195284A (ja) * 2004-01-08 2005-07-21 Mitsubishi Heavy Ind Ltd ガスタービン用燃料ノズル、ガスタービン用燃焼器、ガスタービン用燃焼器の燃焼方法
JP2005233574A (ja) 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd 燃焼器
JP2009041848A (ja) 2007-08-09 2009-02-26 General Electric Co <Ge> 一次燃料噴射器及び複数の二次燃料噴射ポートを有するガスタービンエンジン燃焼器のミキサ組立体のためのパイロットミキサ
JP2009074792A (ja) 2007-09-21 2009-04-09 General Electric Co <Ge> Dlnガスタービンの二次燃料ノズル用トロイダルリングマニホルド
JP2009156542A (ja) * 2007-12-27 2009-07-16 Mitsubishi Heavy Ind Ltd ガスタービンの燃焼器
JP2009281720A (ja) * 2008-05-20 2009-12-03 General Electric Co <Ge> 燃焼ダイナミックスを低減する方法及びシステム
JP2010085083A (ja) 2008-09-30 2010-04-15 General Electric Co <Ge> 二次燃料ノズル用の管状燃料噴射器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159942A (ja) * 2013-01-22 2014-09-04 Mitsubishi Heavy Ind Ltd 燃焼器、及び回転機械
JP2014163664A (ja) * 2013-02-27 2014-09-08 General Electric Co <Ge> 燃焼ダイナミクスのモードカップリングを低減させる燃料ノズル
JP2015224867A (ja) * 2014-05-28 2015-12-14 ゼネラル・エレクトリック・カンパニイ 燃焼システムにおけるコヒーレンス低減のためのシステム及び方法
WO2018168747A1 (ja) * 2017-03-13 2018-09-20 三菱日立パワーシステムズ株式会社 燃焼器用ノズル、燃焼器、及びガスタービン
JP2018151124A (ja) * 2017-03-13 2018-09-27 三菱日立パワーシステムズ株式会社 燃焼器用ノズル、燃焼器、及びガスタービン
US11274830B2 (en) 2017-03-13 2022-03-15 Mitsubishi Power, Ltd. Combustor nozzle, combustor, and gas turbine
WO2019082880A1 (ja) * 2017-10-27 2019-05-02 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン
JP2019082263A (ja) * 2017-10-27 2019-05-30 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン
US11402098B2 (en) 2017-10-27 2022-08-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor and gas turbine
JP2019168144A (ja) * 2018-03-22 2019-10-03 三菱重工業株式会社 ガスタービン燃焼器及びそれを備えるガスタービン、並びに、ガスタービン燃焼器の燃焼振動抑制方法
KR20230126372A (ko) * 2022-02-23 2023-08-30 두산에너빌리티 주식회사 가스터빈 연소기 및 이를 구비한 가스터빈
KR102651451B1 (ko) 2022-02-23 2024-03-27 두산에너빌리티 주식회사 가스터빈 연소기 및 이를 구비한 가스터빈

Also Published As

Publication number Publication date
KR101471311B1 (ko) 2014-12-09
JP5524407B2 (ja) 2014-06-18
US20130139511A1 (en) 2013-06-06
EP2698582A4 (en) 2014-10-08
JPWO2012124467A1 (ja) 2014-07-17
EP2698582A1 (en) 2014-02-19
CN103080653B (zh) 2015-03-25
KR20130041207A (ko) 2013-04-24
EP2698582B1 (en) 2017-11-22
CN103080653A (zh) 2013-05-01
US9719419B2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP5524407B2 (ja) ガスタービン燃焼器およびガスタービン
JP5948489B2 (ja) ガスタービン燃焼器
JP6196868B2 (ja) 燃料ノズルとその組立方法
EP2407720A2 (en) Flame tolerant secondary fuel nozzle
JP5172468B2 (ja) 燃焼装置および燃焼装置の制御方法
JP6924019B2 (ja) 予混合火炎スタビライザを有する燃料ノズルアセンブリ
US10240795B2 (en) Pilot burner having burner face with radially offset recess
US10823420B2 (en) Pilot nozzle with inline premixing
US9989258B2 (en) Premixed-combustion gas turbine combustor
JP6086860B2 (ja) ノズル、燃焼器、及びガスタービン
JP6595010B2 (ja) 予混合保炎器を有する燃料ノズルアセンブリ
EP2340398B1 (en) Alternately swirling mains in lean premixed gas turbine combustors
CA3010044C (en) Combustor for a gas turbine
JP6025587B2 (ja) 燃焼器およびガスタービン
JP5606346B2 (ja) ガスタービン燃焼器
JP5460846B2 (ja) 燃焼装置および燃焼装置の制御方法
JP2017053523A (ja) ガスタービン用燃焼器
JP2010236739A (ja) ガスタービン燃焼器
JP2015218946A (ja) ガスタービン燃焼器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002443.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504639

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137003744

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012757130

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012757130

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13817384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE