WO2012124092A1 - Sonde de micro-imagerie et son procédé de fabrication - Google Patents

Sonde de micro-imagerie et son procédé de fabrication Download PDF

Info

Publication number
WO2012124092A1
WO2012124092A1 PCT/JP2011/056301 JP2011056301W WO2012124092A1 WO 2012124092 A1 WO2012124092 A1 WO 2012124092A1 JP 2011056301 W JP2011056301 W JP 2011056301W WO 2012124092 A1 WO2012124092 A1 WO 2012124092A1
Authority
WO
WIPO (PCT)
Prior art keywords
grin lens
image fiber
sheath
end surface
image
Prior art date
Application number
PCT/JP2011/056301
Other languages
English (en)
Japanese (ja)
Inventor
元 虫明
寛 八尾
実 小山内
鈴木 太郎
Original Assignee
東洋ガラス株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ガラス株式会社, 国立大学法人東北大学 filed Critical 東洋ガラス株式会社
Priority to PCT/JP2011/056301 priority Critical patent/WO2012124092A1/fr
Publication of WO2012124092A1 publication Critical patent/WO2012124092A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts

Definitions

  • the present invention relates to a micro-imaging probe that can be inserted into a very fine portion to acquire an image.
  • an optical probe for observing the inside of a body cavity of a living body and performing biopsy or treatment of a tissue in the body cavity.
  • Such an optical probe is disclosed in, for example, the following patent documents.
  • the tip diameter of such an optical probe is several mm to tens of mm even if it is thin.
  • a method using a two-photon excitation confocal microscope uses a near-infrared ultrashort pulse laser as an excitation light source for the fluorescent dye, so that the excitation light of the fluorescent dye reaches the deep part (several hundred ⁇ m) of the living body, and as a result, deep imaging is possible. Is the method.
  • the conventional optical probe Since the conventional optical probe has a thin tip portion with a diameter of several millimeters to several tens of millimeters, its use is limited and is not suitable for, for example, observation of brain cells. Although it is possible to directly puncture a living body with an image fiber having a diameter of about 340 to 400 ⁇ m, it is highly possible that the tissue is in contact with the distal end surface of the image fiber and damaged at the time of puncture. It is not preferable.
  • the excitation light of the fluorescent dye reaches the deep part of the living body, and as a result, It is a method that imaging is possible.
  • the distance that the light reaches is at most several hundred ⁇ m deep, and even when a mouse or rat is used, the deep part of the cerebrum cannot be imaged. Can only image near the surface of the cerebral cortex.
  • it is necessary to fix an animal under the objective lens of a microscope it cannot be applied to an animal that is moving freely.
  • the near-infrared ultrashort pulse laser is expensive, the cost of the system is very high, and it cannot be expected to spread to the general public.
  • a very fine micro-imaging probe it is possible not only to select the depth to be observed by inserting the probe into the brain, but also to connect with the microscope using a fiber and freely Light measurement and light stimulation are possible even for animals that act. Also, the cost can be reduced to each stage as compared with the method using the two-photon excitation confocal microscope.
  • the micro-imaging probe can not only elucidate the information processing mode in the neural circuit of the brain, but also enables observation of each part in the living body with minimal burden on the subject.
  • the object of the present invention is to develop a novel micro-imaging probe that is much finer than conventional ones.
  • the present invention is a micro-imaging probe having an image fiber and a GRIN lens fixed to the front end thereof, wherein the front end surface of the image fiber and the rear end surface of the GRIN lens face each other with a predetermined distance therebetween. is there.
  • the GRIN lens (Graded Index lens) is a cylindrical lens that exhibits a lens action due to a refractive index distribution in the radial direction.
  • the image fiber has a large number of pixel fibers in the core, and each pixel fiber constitutes one pixel.
  • a GRIN lens that is thinner than the image fiber because the diameter of the probe tip can be reduced.
  • the diameter of the sheath tube at the tip of the probe can be about 200 to 400 ⁇ m.
  • the image fiber one having a pixel (pixel fiber) number of 10000 or more and a diameter of about 340 to 400 ⁇ m can be used. Therefore, even the thickest portion of the sheath can have a diameter of 600 ⁇ m or less.
  • the present invention is such that a GRIN lens whose outer peripheral surface is covered with a sheath tube is inserted and fixed on the distal end side of the cylindrical sheath, and an image fiber is inserted and fixed on the rear end side of the sheath.
  • Item 2 The microimaging probe according to Item 1.
  • the present invention also includes a step of inserting a GRIN lens into the sheath tube and covering the outer periphery with the sheath tube; Polishing the sheath tube with the GRIN lens to adjust the length of the GRIN lens;
  • a method of manufacturing a micro-imaging probe comprising: a step of inserting and fixing a GRIN lens having a cylindrical sheath covered with a sheath tube on a distal end side and a distal end portion of an image fiber on a rear end side.
  • the GRIN lens can be covered with a sheath tube before being attached to the sheath, and the sheath tube and the GRIN lens can be polished together to prevent damage to the lens during polishing. While polishing in this way, the GRIN lens with a sheath tube is temporarily fixed to the sheath to confirm the coupling state to the image fiber (the sharpness of the image to be sent), and polishing is continued until the coupling state is the best, and then the sheath The GRIN lens with tube is completely fixed to the sheath.
  • the micro-imaging probe of the present invention can have a diameter of about 250 to 300 ⁇ m thinner than the image fiber and a diameter of the thickest sheath portion of about 440 to 600 ⁇ m at the distal end, which is much thinner than conventional probes.
  • the degree of invasiveness at the time of entry is low, and it is possible to observe each tissue in the living body while minimizing the burden on the subject.
  • it is possible to observe a living tissue that is distant from the tip surface of the probe it is possible to observe a tissue that is hardly damaged during insertion.
  • FIG. 1 is a cross-sectional explanatory view of a micro imaging probe 1 of an embodiment.
  • the micro imaging probe 1 includes a GRIN lens 2, a sheath tube 3, an image fiber 4 and a sheath 5.
  • the GRIN lens 2 has an outer diameter of 125 ⁇ m, is inserted into a zirconia sheath tube 3 having an outer diameter of 250 ⁇ m, is bonded and fixed, and the outer peripheral surface is covered with the sheath tube.
  • the image fiber 4 has 10,000 pixels and an outer diameter of 400 ⁇ m.
  • the sheath 5 is made of zirconia and has an outer diameter of 600 ⁇ m.
  • the GRIN lens 2 covered with the sheath tube 3 is inserted into the distal end side of the sheath 5 and bonded and fixed, and the image fiber 4 is inserted into the rear end side and bonded and fixed.
  • the material of the sheath tube and the sheath may be metal or glass, but it is desirable to make the material from the viewpoint of preventing stray light and from the viewpoint of strength.
  • the length is adjusted by polishing. At this time, it is temporarily fixed to the sheath 5 after being polished to some extent, and confirms the combined state of the GRIN lens and the image fiber (the sharpness of the image to be sent), polished until the combined state is the best, temporarily fixed to the sheath, Repeat the check of the connection status.
  • FIG. 2 is an explanatory diagram of the engagement state of the GRIN lens and the image fiber.
  • the light 8 from the object is incident on the front end surface of the GRIN lens 2, travels while meandering in the lens with a sine curve, exits from the rear end surface, and enters the image fiber on the front end surface. Thereafter, the light travels inside the image fiber 4 and exits from the rear end face.
  • the length of the GRIN lens 2 is related to the distance L2 between the rear end surface of the GRIN lens and the front end surface of the image fiber and the magnification m of the image.
  • two 1 pitches are included in the intermediate portion of the GRIN lens.
  • One pitch is 1 ⁇ 2 of the meandering period of light, and these two pitches are arbitrary regions and may be omitted, but an arbitrary number of pitches can be inserted in consideration of handling.
  • the magnification m is preferably set to be approximately the same as the ratio of the core diameter of the image fiber 4 to the diameter of the GRIN lens 2.
  • the microimaging probe 1 can be used as shown in FIG. 4, for example. As shown in the figure, the tip 1 of the micro-imaging probe 1 is inserted into a subject 7 (for example, a mouse brain), and the rear end of the image fiber 4 is coupled to the objective lens 6 of the microscope. Thereby, the tissue of the subject 7 can be imaged with a microscope.
  • a subject 7 for example, a mouse brain
  • the micro-imaging probe of the present invention can be used for observation in the experimental animal brain in basic research. Further, for example, by replacing the deep brain stimulation in the clinic, which has been conventionally performed by electrical stimulation, with light stimulation, it becomes possible to perform stimulation at a pinpoint in which nerve cells are specified. Moreover, application as a purely optical microendoscope (catheter etc.) is also possible. Furthermore, it can also be used as an industrial endoscope for visually monitoring a finely processed portion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)

Abstract

L'invention porte sur une sonde de micro-imagerie, laquelle sonde est sensiblement plus compacte que des sondes de micro-imagerie classiques. Une lentille à gradient d'indice (GRIN) est fixée sur le côté d'extrémité avant d'une fibre d'image, de telle sorte que la surface d'extrémité avant de la fibre d'image et la surface d'extrémité arrière de la face de lentille à gradient d'indice se font face l'une à l'autre à un intervalle prescrit. Par le fait de permettre à la surface d'extrémité avant de la fibre d'image et à la surface d'extrémité arrière de la lentille à gradient d'indice de se faire face l'une à l'autre à un intervalle prescrit, une image agrandie est formée sur la surface d'extrémité avant d'une fibre d'image d'un diamètre différent, et des images peuvent être transmises de façon efficace.
PCT/JP2011/056301 2011-03-16 2011-03-16 Sonde de micro-imagerie et son procédé de fabrication WO2012124092A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056301 WO2012124092A1 (fr) 2011-03-16 2011-03-16 Sonde de micro-imagerie et son procédé de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056301 WO2012124092A1 (fr) 2011-03-16 2011-03-16 Sonde de micro-imagerie et son procédé de fabrication

Publications (1)

Publication Number Publication Date
WO2012124092A1 true WO2012124092A1 (fr) 2012-09-20

Family

ID=46830220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056301 WO2012124092A1 (fr) 2011-03-16 2011-03-16 Sonde de micro-imagerie et son procédé de fabrication

Country Status (1)

Country Link
WO (1) WO2012124092A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129136A1 (fr) * 2014-02-25 2015-09-03 オリンパス株式会社 Dispositif d'endoscope
WO2016193051A1 (fr) * 2015-06-03 2016-12-08 Koninklijke Philips N.V. Système de connecteur optique à usage médical
WO2017183253A1 (fr) * 2016-04-19 2017-10-26 株式会社フジクラ Procédé de fabrication de dispositif optique, procédé de fabrication de dispositif laser, procédé d'ajustement de qualité de faisceau de dispositif laser
WO2022210834A1 (fr) * 2021-03-31 2022-10-06 国立研究開発法人理化学研究所 Dispositif de traitement d'image tomographique, procédé de traitement d'image tomographique, programme, support d'enregistrement d'informations et élément de perforation
WO2023102949A1 (fr) * 2021-12-11 2023-06-15 中国科学院深圳先进技术研究院 Dispositif miniature d'implantation d'un microscope à fluorescence monophotonique et procédé d'implantation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091789A (ja) * 1999-08-05 2001-04-06 Jds Uniphase Inc 光デバイス、光フィルタおよび光濾波システム
JP2007034046A (ja) * 2005-07-28 2007-02-08 Fujifilm Holdings Corp Grinレンズ部材、grinレンズアレイ、及びそれらの製造方法
JP2007530945A (ja) * 2004-03-23 2007-11-01 カリフォルニア インスティテュート オブ テクノロジー 前方走査撮像光ファイバ検出器
JP2008188081A (ja) * 2007-02-01 2008-08-21 Hoya Corp Octプローブおよびoctシステム。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091789A (ja) * 1999-08-05 2001-04-06 Jds Uniphase Inc 光デバイス、光フィルタおよび光濾波システム
JP2007530945A (ja) * 2004-03-23 2007-11-01 カリフォルニア インスティテュート オブ テクノロジー 前方走査撮像光ファイバ検出器
JP2007034046A (ja) * 2005-07-28 2007-02-08 Fujifilm Holdings Corp Grinレンズ部材、grinレンズアレイ、及びそれらの製造方法
JP2008188081A (ja) * 2007-02-01 2008-08-21 Hoya Corp Octプローブおよびoctシステム。

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129136A1 (fr) * 2014-02-25 2015-09-03 オリンパス株式会社 Dispositif d'endoscope
JP2018516391A (ja) * 2015-06-03 2018-06-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 医療用光コネクタシステム
WO2016193051A1 (fr) * 2015-06-03 2016-12-08 Koninklijke Philips N.V. Système de connecteur optique à usage médical
US10299661B2 (en) 2015-06-03 2019-05-28 Koninklijke Philips N.V. Medical optical connector system
CN107666849A (zh) * 2015-06-03 2018-02-06 皇家飞利浦有限公司 医学光学连接器系统
CN108292018A (zh) * 2016-04-19 2018-07-17 株式会社藤仓 光设备的制造方法、激光装置的制造方法、激光装置的光束质量的调整方法
JP2017194525A (ja) * 2016-04-19 2017-10-26 株式会社フジクラ 光デバイスの製造方法、レーザ装置の製造方法、レーザ装置のビーム品質の調整方法
WO2017183253A1 (fr) * 2016-04-19 2017-10-26 株式会社フジクラ Procédé de fabrication de dispositif optique, procédé de fabrication de dispositif laser, procédé d'ajustement de qualité de faisceau de dispositif laser
EP3447553A4 (fr) * 2016-04-19 2019-11-27 Fujikura Ltd. Procédé de fabrication de dispositif optique, procédé de fabrication de dispositif laser, procédé d'ajustement de qualité de faisceau de dispositif laser
CN108292018B (zh) * 2016-04-19 2020-08-28 株式会社藤仓 光设备的制造方法、激光装置的制造方法、激光装置的光束质量的调整方法
US10935729B2 (en) 2016-04-19 2021-03-02 Fujikura Ltd. Method for manufacturing optical device, method for manufacturing laser device, method for adjusting beam quality of laser device
WO2022210834A1 (fr) * 2021-03-31 2022-10-06 国立研究開発法人理化学研究所 Dispositif de traitement d'image tomographique, procédé de traitement d'image tomographique, programme, support d'enregistrement d'informations et élément de perforation
WO2023102949A1 (fr) * 2021-12-11 2023-06-15 中国科学院深圳先进技术研究院 Dispositif miniature d'implantation d'un microscope à fluorescence monophotonique et procédé d'implantation

Similar Documents

Publication Publication Date Title
CN107069391B (zh) 飞秒脉冲激光调制器及具有其的微型双光子显微成像装置
US9839361B2 (en) Optical analysis system and approach therefor
WO2012124092A1 (fr) Sonde de micro-imagerie et son procédé de fabrication
US8705184B2 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
Vyas et al. Fiber bundle shifting endomicroscopy for high-resolution imaging
JP7109031B2 (ja) テーパー導波路からの軸方向に分解された光収集のためのシステム
US10582841B2 (en) Dark field endoscopic microscope
US20130324858A1 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
Hooks et al. Intramural multisite recording of transmembrane potential in the heart
US8099156B1 (en) Cochlear optical analysis system and approach therefor
Meza et al. Comparing high‐resolution microscopy techniques for potential intraoperative use in guiding low‐grade glioma resections
JP6389828B2 (ja) 医用撮像装置と共に使用するための光学装置
Eriksson et al. Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation
Bijoch et al. Novel design and application of high-NA fiber imaging bundles for In vivo brain imaging with two-photon scanning fluorescence microscopy
Meneghetti et al. Opsin-free optical neuromodulation and electrophysiology enabled by a soft monolithic infrared multifunctional neural interface
RU2637823C2 (ru) Волоконно-оптический нейроинтерфейс и способ для долговременной оптической регистрации процессов в мозге живых свободно движущихся животных
RU2584922C1 (ru) Многоканальный оптоволоконный нейроинтерфейс для мультимодальной микроскопии мозга животных
JPWO2017170662A1 (ja) 光学イメージング装置
Perchant et al. An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging-applications to endoscopy in small animal imaging
Kim et al. Computational Cannula Microscopy: Fluorescent Imaging Through Ultra-Thin Glass Needle
Xu et al. Miniaturized scanning optical probe for multimodal nonlinear endomicroscopic imaging
Bourdine et al. Development of alternative fiber optic Raman probes based on optical fibers with written precision micro-structure defects
Wijethilake et al. DEEP2: Deep learning powered de-scattering with excitation patterning (DEEP)
Huland et al. Intravital multiphoton endoscopy
Welton et al. Two-photon microendoscope for label-free imaging in stereotactic neurosurgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP