WO2012123908A2 - High porosity acoustic backing with high thermal conductivity for ultrasound transducer array - Google Patents

High porosity acoustic backing with high thermal conductivity for ultrasound transducer array Download PDF

Info

Publication number
WO2012123908A2
WO2012123908A2 PCT/IB2012/051208 IB2012051208W WO2012123908A2 WO 2012123908 A2 WO2012123908 A2 WO 2012123908A2 IB 2012051208 W IB2012051208 W IB 2012051208W WO 2012123908 A2 WO2012123908 A2 WO 2012123908A2
Authority
WO
WIPO (PCT)
Prior art keywords
transducer array
ultrasonic transducer
backing block
array assembly
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2012/051208
Other languages
English (en)
French (fr)
Other versions
WO2012123908A3 (en
Inventor
Wojtek Sudol
Kevin Grayson WICKLINE
Yongjian Yu
Heather Beck Knowles
James PAOLINO
Richard Edward DAVIDSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Priority to US14/003,240 priority Critical patent/US9943287B2/en
Priority to JP2013558556A priority patent/JP5972296B2/ja
Priority to EP12715725.3A priority patent/EP2686117B1/en
Priority to CN201280013752.0A priority patent/CN103429359B/zh
Publication of WO2012123908A2 publication Critical patent/WO2012123908A2/en
Publication of WO2012123908A3 publication Critical patent/WO2012123908A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices

Definitions

  • This invention relates to medical diagnostic ultrasound systems and, in particular, to backing materials for an ultrasonic transducer array.
  • Two dimensional array transducers are used in ultrasonic imaging to scan in three dimensions.
  • Two dimensional arrays have numerous rows and columns of transducer elements in both the azimuth and elevation directions, which would require a large number of cable conductors to couple signals between the probe and the mainframe ultrasound system.
  • a preferred technique for minimizing the number of signal conductors in the probe cable is to perform at least some of the beamforming in the probe in a
  • microbeamformer ASIC application specific integrated circuit. This technique requires only a relatively few number of partially beamformed signals to be coupled to the mainframe ultrasound system, thereby reducing the required number of signal conductors in the cable. However a large number of signal
  • connections must be made between the two dimensional array and the microbeamformer ASIC.
  • An efficient way to make these connections is to design the transducer array and the ASIC to have flip-chip
  • the high density electronic circuitry of the microbeamformer ASIC can, however, produce a
  • the preferred thermal conduction direction is to the rear, away from the lens and toward a heat spreader (typically aluminum) at the rear of the probe.
  • a heat spreader typically aluminum
  • An acoustic backing block is generally located behind the transducer stack, the array elements and the microbeamformer ASIC.
  • the purpose of the acoustic backing block is to attenuate ultrasonic energy emanating from the rear of the acoustic stack and prevent this energy from causing reverberations that are reflected toward the acoustic stack.
  • An acoustic backing block is generally made of a
  • an acoustic backing block for an ultrasound probe which exhibits good acoustic attenuation of acoustic energy entering the block, good thermal conductivity toward the rear of the probe and away from the lens, good structural stability which can support the acoustic stack as needed, and appropriate electrical isolation of the microbeamformer ASIC from other conductive components of the probe.
  • transducer array stack is formed of a porous graphite foam material which has high acoustic attenuation and high thermal conductivity.
  • the foam backing block is constructed as a composite with the foam structure filled with an epoxy resin.
  • An electrically isolating layer can be located on the top of the backing block at the bond between the backing block and the ASIC of the
  • FIGURE 1 illustrates an acoustic stack with a thermally conductive backing block constructed in accordance with the principles of the present
  • FIGURE 2 illustrates the acoustic stack of
  • FIGURE 1 when assembled in a transducer probe with a lens cover.
  • FIGURE 3 is a perspective view of a thermally conductive backing block constructed in accordance with the principles of the present invention.
  • FIGURE 4 is a top plan view of a thermally conductive backing block constructed in accordance with the principles of the present invention.
  • FIGURE 5 is a side cross-sectional view of a thermally conductive backing block constructed in accordance with the principles of the present
  • FIGURE 6 illustrates a composite foam backing block constructed in accordance with the principles of the present invention.
  • FIGURE 7 illustrates an acoustic stack assembly of the present invention with a film insulating layer between the ASIC and a composite foam backing block.
  • FIGURE 8 illustrates an acoustic stack assembly of the present invention with a parylene-coated composite foam backing block.
  • an acoustic stack 100 with a thermally conductive backing block which is constructed in accordance with the principles of the present invention is shown schematically.
  • a piezoelectric layer 110 such as PZT and two matching layers bonded to the piezoelectric layer are diced by dicing cuts 75 to form an array 170 of individual transducer elements 175, four of which are seen in
  • the array 170 may comprise a single row of transducer elements (a 1-D array) or be diced in two orthogonal directions to form a two-dimensional (2D) matrix array of transducer elements.
  • the matching layers match the acoustic impedance of the
  • the first matching layer 120 is formed as an electrically conductive graphite composite and the second matching layer 130 is formed of a polymer loaded with electrically conductive particles.
  • a ground plane 180 is bonded to the top of the second matching layer, and is formed as a conductive layer on a film 150 of low density
  • LDPE polyethylene
  • the LDPE film 150 forms the third and final matching layer 140 of the stack.
  • an integrated circuit 160 below the transducer elements is an integrated circuit 160, an ASIC, which provides transmit signals for the transducer elements 175 and receives and processes signals from the elements.
  • Conductive pads on the upper surface of the integrated circuit 160 are electrically coupled to conductive pads on the bottoms of the transducer elements by stud bumps 190, which may be formed of solder or conductive epoxy. Signals are provided to and from the integrated circuit 160 by connections to the flex circuit 185.
  • the backing block 165 which attenuates acoustic energy emanating from the bottom of the transducer stack.
  • the backing block also conducts heat generated by the integrated circuit away from the integrated circuit and the transducer stack and away from the patient- contacting end of the transducer probe.
  • FIGURE 2 illustrates the transducer stack assembly of FIGURE 1 when assembled inside a
  • the third matching layer 140 is bonded to the acoustic lens 230.
  • Ultrasound waves are transmitted through the lens 230 and into the patient's body during imaging, and echoes received in response to these waves are received by the transducer stack through the lens 230.
  • the LDPE film 150 serves to enclose the
  • a preferred implementation for the backing block 165 is illustrated in the remaining drawings.
  • a preferred backing block 165 starts with a block of graphite 20.
  • Other alternatives include graphite loaded with metals such as nickel or copper which provide good machinability and favorable thermal properties.
  • the graphite block 20 is used to form a composite backing structure which satisfies a number of performance objectives.
  • the backing structure must have good Z-axis thermal conductivity.
  • Graphite has good thermal conductivity, a Tc of 80 to 240 W/m°K at 0°C-100°C. For conduction parallel to the crystal layers, Tc will approach 1950 W/m°K at 300°K.
  • the Z-axis direction is the direction back and away from the transducer stack 100 and the integrated circuit 160.
  • it is desirable to align the crystal layers of the graphite block 20 for heat flow in the Z-axis direction.
  • the thermal conductivity of the backing block be comparable to or better than that of
  • Aluminum has a comparable Tc of 237 W/m°K at room temperature, so this performance objective is well met by a graphite block 20.
  • a second objective is that the backing block provide structural support for the acoustic stack 100 and integrated circuit 160.
  • a graphite block is structurally sound, satisfying this objective.
  • a third objective is to provide electrical isolation of the integrated circuit 160 from the aluminum member or frame of the probe.
  • Graphite being electrically conductive, can satisfy this objective by coating the backing block with a non- conductive insulative coating.
  • the fourth objective is that the backing block must dampen acoustic energy entering the block.
  • Graphite is a good conductor of acoustic energy and provides very little inherent acoustic damping. This objective is satisfied by employing the graphite block as the framework for a composite structure of internal acoustic dampening members as shown in
  • FIGURES 3, 4, and 5 the graphite is rendered translucent for clarity of illustration of the internal composite structure of the block.
  • the dampening members are formed as a plurality of angled cylinders 30 of backing material in the backing block.
  • the cylinders 30 are cut or drilled into the graphite block 20, then filled with acoustic dampening material such as epoxy filled with micro balloons or other acoustic damping particles.
  • acoustic dampening material such as epoxy filled with micro balloons or other acoustic damping particles.
  • the tops of the cylinders 30 present a large area of acoustic dampening material to the back of the integrated circuit.
  • cylinders does not promote reflection of energy back to the integrated circuit but provides scattering angles downward and away from the integrated circuit. In practice it may be sufficient to block most of the Z-axis pathways such as by blocking 95% of the pathways. Thus, the angling of the cylinders assures damping of all or substantially all of the Z-axis directed energy.
  • Heat will find continuous pathways through the graphite between the cylinders 30. Since the flow of heat is from higher temperature regions to lower (greater thermal density to lesser) , heat will flow away from the integrated circuit 160 and acoustic stack 100 to structures below the backing block 165 where it may be safely dissipated.
  • thermally conductive material of the backing block such as aluminum, graphite foam, or aluminum nitride.
  • a conductive graphite foam filled with epoxy resin is a conductive graphite foam filled with epoxy resin.
  • FIGURE 6 illustrates an implementation of the present invention in which The backing material of the backing block of FIGURE 6 uses a thermally conductive graphite foam (POCO HTC) filled with a soft unfilled attenuating epoxy resin.
  • the unfilled HTC foam has significant porosity (60%), of which 95% of the total porosity is open. When this open
  • this composite backing exhibits a high acoustic attenuation of approximately 50 dB/mm at 5 Mhz . This high
  • Attenuation is mainly due to two mechanisms: 1) the absorption of acoustic energy by the soft resin and 2) acoustic energy scattering due to the impedance mismatch between epoxy, graphite, and air in the porous structure.
  • the backing thickness can be reduced to facilitate transducer heat dissipation.
  • Another property of this epoxy filled graphite foam is its high thermal conductivity (-50 W/mK) , which is one order of magnitude higher than typical epoxy-filler backing formulations.
  • the composite graphite foam backing block 32 of FIGURE 6 illustrates the high porosity of the foam.
  • the surface of the foam block 32 is coated with an epoxy resin 34 which soaks into the block by a depth 36 which is a function of the porosity of the foam block and the viscosity of the resin, as indicated by the shaded areas in the drawing.
  • the cured epoxy gives the block good structural stability.
  • the composite backing block can then be directly bonded to the ASIC 160 with a thin epoxy bondline.
  • an insulating layer can be used between the backing block and the ASIC as illustrated in FIGURES 7 and 8, which show exploded views of two implementations in an acoustic stack.
  • the transducer layer 170 with its matching layers.
  • the ASIC 160 is the ASIC 160.
  • a thin (12 to 25 microns) polyimide film 38 is attached to the ASIC before bonding the backing block to the assembly.
  • the composite foam backing block 32 is then bonded to the insulating film 38.
  • a parylene coating 58 of 10 to 15 microns is applied to the HTC backing block.
  • the parylene coated backing block is then bonded to the ASIC 160.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Gynecology & Obstetrics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
PCT/IB2012/051208 2011-03-17 2012-03-14 High porosity acoustic backing with high thermal conductivity for ultrasound transducer array Ceased WO2012123908A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/003,240 US9943287B2 (en) 2011-03-17 2012-03-14 High porosity acoustic backing with high thermal conductivity for ultrasound transducer array
JP2013558556A JP5972296B2 (ja) 2011-03-17 2012-03-14 超音波トランスデューサアレイに対する高い熱伝導性を持つ高多孔性音響支持体
EP12715725.3A EP2686117B1 (en) 2011-03-17 2012-03-14 High porosity acoustic backing with high thermal conductivity for ultrasound transducer array
CN201280013752.0A CN103429359B (zh) 2011-03-17 2012-03-14 用于超声换能器阵列的具有高导热性的高孔隙率声背衬

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161453690P 2011-03-17 2011-03-17
US61/453,690 2011-03-17

Publications (2)

Publication Number Publication Date
WO2012123908A2 true WO2012123908A2 (en) 2012-09-20
WO2012123908A3 WO2012123908A3 (en) 2013-05-02

Family

ID=45992568

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2012/051208 Ceased WO2012123908A2 (en) 2011-03-17 2012-03-14 High porosity acoustic backing with high thermal conductivity for ultrasound transducer array
PCT/IB2012/051205 Ceased WO2012123906A2 (en) 2011-03-17 2012-03-14 Composite acoustic backing with high thermal conductivity for ultrasound transducer array

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/051205 Ceased WO2012123906A2 (en) 2011-03-17 2012-03-14 Composite acoustic backing with high thermal conductivity for ultrasound transducer array

Country Status (5)

Country Link
US (2) US9237880B2 (enExample)
EP (2) EP2686116A2 (enExample)
JP (2) JP5972296B2 (enExample)
CN (2) CN103443850A (enExample)
WO (2) WO2012123908A2 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080312A1 (en) 2012-11-20 2014-05-30 Koninklijke Philips N.V. Frameless ultrasound probes with heat dissipation
WO2015068080A1 (en) 2013-11-11 2015-05-14 Koninklijke Philips N.V. Robust ultrasound transducer probes having protected integrated circuit interconnects
EP2842642A3 (en) * 2013-08-28 2015-10-14 Samsung Medison Co., Ltd. Ultrasonic probe and method of manufacturing the same
WO2021048617A1 (en) * 2019-09-10 2021-03-18 Surf Technology As Ultrasound transducer and method of manufacturing

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2828846B1 (en) 2012-03-20 2020-10-14 Koninklijke Philips N.V. Ultrasonic matrix array probe with thermally dissipating cable
CN104205206B (zh) 2012-03-20 2017-10-20 皇家飞利浦有限公司 具有散热缆线和衬块热交换器的超声矩阵阵列探针
WO2014097070A1 (en) 2012-12-18 2014-06-26 Koninklijke Philips N.V. Power and wireless communication modules for a smart ultrasound probe
KR20140144464A (ko) * 2013-06-11 2014-12-19 삼성전자주식회사 휴대용 초음파 프로브
KR20150025383A (ko) * 2013-08-29 2015-03-10 삼성메디슨 주식회사 초음파 진단장치용 프로브
US20150087988A1 (en) * 2013-09-20 2015-03-26 General Electric Company Ultrasound transducer arrays
KR102170262B1 (ko) * 2013-12-20 2020-10-26 삼성메디슨 주식회사 초음파 프로브 및 초음파 프로브의 제조방법
KR102168579B1 (ko) * 2014-01-06 2020-10-21 삼성전자주식회사 트랜스듀서 지지체, 초음파 프로브 장치 및 초음파 영상 장치
WO2015145402A1 (en) * 2014-03-27 2015-10-01 Koninklijke Philips N.V. Thermally conductive backing materials for ultrasound probes and systems
KR102271172B1 (ko) * 2014-07-14 2021-06-30 삼성메디슨 주식회사 초음파 흡음 부재, 이를 포함하는 초음파 프로브 및 그 제조 방법
JP6606171B2 (ja) * 2014-08-28 2019-11-13 コーニンクレッカ フィリップス エヌ ヴェ 補強高速交換ポートを有する血管内装置及び関連システム
EP2992829B1 (en) * 2014-09-02 2018-06-20 Esaote S.p.A. Ultrasound probe with optimized thermal management
WO2016137023A1 (ko) * 2015-02-24 2016-09-01 알피니언메디칼시스템 주식회사 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법
JP6661290B2 (ja) * 2015-07-13 2020-03-11 株式会社日立製作所 超音波プローブ
WO2017058244A1 (en) 2015-10-02 2017-04-06 Halliburton Energy Services, Inc. Ultrasonic transducer with improved backing element
AU2016334258B2 (en) * 2015-10-08 2021-07-01 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
JP2017080132A (ja) * 2015-10-29 2017-05-18 セイコーエプソン株式会社 超音波デバイス、超音波プローブ、電子機器、および超音波画像装置
JP6569473B2 (ja) * 2015-10-29 2019-09-04 セイコーエプソン株式会社 超音波デバイス、超音波プローブ、電子機器、および超音波画像装置
JP6780981B2 (ja) * 2016-08-10 2020-11-04 キヤノンメディカルシステムズ株式会社 超音波プローブ
US11426140B2 (en) 2016-10-03 2022-08-30 Philips Image Guided Therapy Corporation Intra-cardiac echocardiography interposer
US10797221B2 (en) * 2017-02-24 2020-10-06 Baker Hughes, A Ge Company, Llc Method for manufacturing an assembly for an ultrasonic probe
US10809233B2 (en) 2017-12-13 2020-10-20 General Electric Company Backing component in ultrasound probe
JP7333684B2 (ja) 2018-04-26 2023-08-25 三菱鉛筆株式会社 超音波探触子
JP7408155B2 (ja) 2018-05-14 2024-01-05 エコー イメージング,インク. 熱圧着接合を使用した、マイクロマシンpMUTアレイおよびエレクトロニクスのための統合技術
US11779304B2 (en) 2018-09-21 2023-10-10 Bfly Operations, Inc. Acoustic damping for ultrasound imaging devices
US11717265B2 (en) * 2018-11-30 2023-08-08 General Electric Company Methods and systems for an acoustic attenuating material
WO2020198257A1 (en) 2019-03-25 2020-10-01 Exo Imaging, Inc. Handheld ultrasound imager
US12109591B2 (en) 2019-09-09 2024-10-08 GE Precision Healthcare LLC Ultrasound transducer array architecture and method of manufacture
US12213834B2 (en) 2019-11-22 2025-02-04 Exo Imaging, Inc. Ultrasound transducer with acoustic absorber structure
KR102707729B1 (ko) 2020-03-05 2024-09-20 엑소 이미징, 인크. 프로그래밍 가능한 해부 및 흐름 이미징을 가지는 초음파 이미징 장치
JP6980051B2 (ja) * 2020-04-28 2021-12-15 ゼネラル・エレクトリック・カンパニイ 超音波プローブ及び超音波装置
EP4186438B1 (en) * 2020-07-22 2025-07-02 FUJIFILM Corporation Ultrasonic vibrator unit and ultrasonic endoscope
JP2022101148A (ja) * 2020-12-24 2022-07-06 三菱鉛筆株式会社 超音波探触子用バッキング材及びその製造方法、並びに超音波探触子
JP7565479B2 (ja) * 2021-03-16 2024-10-11 富士フイルム株式会社 超音波探触子及びバッキング製造方法
EP4312788B1 (en) 2021-04-01 2025-07-16 Koninklijke Philips N.V. Heat dissipation in ultrasound probes
US12486159B2 (en) 2021-06-30 2025-12-02 Exo Imaging, Inc. Micro-machined ultrasound transducers with insulation layer and methods of manufacture
US12099150B2 (en) 2021-10-26 2024-09-24 Exo Imaging, Inc. Multi-transducer chip ultrasound device
US11998387B2 (en) 2022-01-12 2024-06-04 Exo Imaging, Inc. Multilayer housing seals for ultrasound transducers
CN114938987B (zh) * 2022-05-06 2025-11-11 苏州谱洛医疗科技有限公司 一种电连接板及超声换能装置
JP2024029482A (ja) 2022-08-22 2024-03-06 富士フイルムヘルスケア株式会社 超音波プローブ
JP2024029483A (ja) 2022-08-22 2024-03-06 富士フイルムヘルスケア株式会社 超音波プローブ
JP2024029485A (ja) 2022-08-22 2024-03-06 富士フイルムヘルスケア株式会社 超音波プローブ
US20240365671A1 (en) * 2023-04-28 2024-10-31 GE Precision Healthcare LLC Methods and systems for a modified backing
CN120714883A (zh) * 2024-03-29 2025-09-30 深圳半岛医疗集团股份有限公司 一种超声换能器及其的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168581A1 (en) 2005-08-08 2010-07-01 Koninklijke Philips Electronics, N.V. Wide bandwidth matrix transducer with polyethylene third matching layer

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995179A (en) * 1974-12-30 1976-11-30 Texaco Inc. Damping structure for ultrasonic piezoelectric transducer
US4297607A (en) 1980-04-25 1981-10-27 Panametrics, Inc. Sealed, matched piezoelectric transducer
US5329498A (en) * 1993-05-17 1994-07-12 Hewlett-Packard Company Signal conditioning and interconnection for an acoustic transducer
US5560362A (en) 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
US5541567A (en) * 1994-10-17 1996-07-30 International Business Machines Corporation Coaxial vias in an electronic substrate
US5648941A (en) * 1995-09-29 1997-07-15 Hewlett-Packard Company Transducer backing material
US5722412A (en) * 1996-06-28 1998-03-03 Advanced Technology Laboratories, Inc. Hand held ultrasonic diagnostic instrument
US6652515B1 (en) * 1997-07-08 2003-11-25 Atrionix, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6673328B1 (en) * 2000-03-06 2004-01-06 Ut-Battelle, Llc Pitch-based carbon foam and composites and uses thereof
JP3420951B2 (ja) 1998-11-24 2003-06-30 松下電器産業株式会社 超音波探触子
CA2332158C (en) * 2000-03-07 2004-09-14 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe
US6467138B1 (en) * 2000-05-24 2002-10-22 Vermon Integrated connector backings for matrix array transducers, matrix array transducers employing such backings and methods of making the same
US6689336B2 (en) * 2001-01-23 2004-02-10 Mitsubishi Gas Chemical Company, Inc. Carbon foam, graphite foam and production processes of these
US6666825B2 (en) * 2001-07-05 2003-12-23 General Electric Company Ultrasound transducer for improving resolution in imaging system
US7053530B2 (en) * 2002-11-22 2006-05-30 General Electric Company Method for making electrical connection to ultrasonic transducer through acoustic backing material
WO2004109656A1 (en) * 2003-06-09 2004-12-16 Koninklijke Philips Electronics, N.V. Method for designing ultrasonic transducers with acoustically active integrated electronics
JP4624659B2 (ja) * 2003-09-30 2011-02-02 パナソニック株式会社 超音波探触子
US7017245B2 (en) * 2003-11-11 2006-03-28 General Electric Company Method for making multi-layer ceramic acoustic transducer
JP2005340043A (ja) * 2004-05-28 2005-12-08 Sumitomo Electric Ind Ltd 加熱装置
JP4319644B2 (ja) 2004-06-15 2009-08-26 株式会社東芝 音響バッキング組成物、超音波プローブ、及び超音波診断装置
US7105986B2 (en) * 2004-08-27 2006-09-12 General Electric Company Ultrasound transducer with enhanced thermal conductivity
JP4693386B2 (ja) * 2004-10-05 2011-06-01 株式会社東芝 超音波プローブ
US7567016B2 (en) * 2005-02-04 2009-07-28 Siemens Medical Solutions Usa, Inc. Multi-dimensional ultrasound transducer array
EP1876957A2 (en) 2005-04-25 2008-01-16 Koninklijke Philips Electronics N.V. Ultrasound transducer assembly having improved thermal management
JP2006325954A (ja) * 2005-05-26 2006-12-07 Toshiba Corp 超音波プローブ及び超音波診断装置
US7821180B2 (en) * 2005-08-05 2010-10-26 Koninklijke Philips Electronics N.V. Curved two-dimensional array transducer
US7859170B2 (en) * 2005-08-08 2010-12-28 Koninklijke Philips Electronics N.V. Wide-bandwidth matrix transducer with polyethylene third matching layer
US7760849B2 (en) 2006-04-14 2010-07-20 William Beaumont Hospital Tetrahedron beam computed tomography
JP4171038B2 (ja) * 2006-10-31 2008-10-22 株式会社東芝 超音波プローブおよび超音波診断装置
AU2008233201A1 (en) * 2007-03-30 2008-10-09 Gore Enterprise Holdings, Inc. Improved ultrasonic attenuation materials
US7956514B2 (en) * 2007-03-30 2011-06-07 Gore Enterprise Holdings, Inc. Ultrasonic attenuation materials
JP5154144B2 (ja) * 2007-05-31 2013-02-27 富士フイルム株式会社 超音波内視鏡及び超音波内視鏡装置
US8093782B1 (en) * 2007-08-14 2012-01-10 University Of Virginia Patent Foundation Specialized, high performance, ultrasound transducer substrates and related method thereof
JP2009060501A (ja) 2007-09-03 2009-03-19 Fujifilm Corp バッキング材、超音波探触子、超音波内視鏡、超音波診断装置、及び、超音波内視鏡装置
WO2009083896A2 (en) 2007-12-27 2009-07-09 Koninklijke Philips Electronics, N.V. Ultrasound transducer assembly with improved thermal behavior
JP2010258602A (ja) * 2009-04-22 2010-11-11 Panasonic Corp 超音波探触子およびその製造方法
JP5591549B2 (ja) * 2010-01-28 2014-09-17 株式会社東芝 超音波トランスデューサ、超音波プローブ、超音波トランスデューサの製造方法
DE102010014319A1 (de) * 2010-01-29 2011-08-04 Siemens Aktiengesellschaft, 80333 Dämpfungsmasse für Ultraschallsensor, Verwendung eines Epoxidharzes
US8232705B2 (en) * 2010-07-09 2012-07-31 General Electric Company Thermal transfer and acoustic matching layers for ultrasound transducer
US8450910B2 (en) * 2011-01-14 2013-05-28 General Electric Company Ultrasound transducer element and method for providing an ultrasound transducer element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168581A1 (en) 2005-08-08 2010-07-01 Koninklijke Philips Electronics, N.V. Wide bandwidth matrix transducer with polyethylene third matching layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080312A1 (en) 2012-11-20 2014-05-30 Koninklijke Philips N.V. Frameless ultrasound probes with heat dissipation
EP2842642A3 (en) * 2013-08-28 2015-10-14 Samsung Medison Co., Ltd. Ultrasonic probe and method of manufacturing the same
US9827592B2 (en) 2013-08-28 2017-11-28 Samsung Medison Co., Ltd. Ultrasonic probe and method of manufacturing the same
WO2015068080A1 (en) 2013-11-11 2015-05-14 Koninklijke Philips N.V. Robust ultrasound transducer probes having protected integrated circuit interconnects
WO2021048617A1 (en) * 2019-09-10 2021-03-18 Surf Technology As Ultrasound transducer and method of manufacturing

Also Published As

Publication number Publication date
US20130345567A1 (en) 2013-12-26
CN103429359A (zh) 2013-12-04
WO2012123906A2 (en) 2012-09-20
WO2012123908A3 (en) 2013-05-02
EP2686117A2 (en) 2014-01-22
US9943287B2 (en) 2018-04-17
CN103429359B (zh) 2016-01-13
EP2686117B1 (en) 2019-06-19
JP5972296B2 (ja) 2016-08-17
CN103443850A (zh) 2013-12-11
JP2014508022A (ja) 2014-04-03
US9237880B2 (en) 2016-01-19
US20120238880A1 (en) 2012-09-20
JP2014512899A (ja) 2014-05-29
EP2686116A2 (en) 2014-01-22
WO2012123906A3 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
EP2686117B1 (en) High porosity acoustic backing with high thermal conductivity for ultrasound transducer array
US10178986B2 (en) Ultrasonic matrix array probe with thermally dissipating cable and backing block heat exchange
US6776762B2 (en) Piezocomposite ultrasound array and integrated circuit assembly with improved thermal expansion and acoustical crosstalk characteristics
US8556030B2 (en) Ultrasonic attenuation materials
US9867592B2 (en) Ultrasonic matrix array probe with thermally dissipating cable
CA2681578C (en) Improved ultrasonic attenuation materials
US7808157B2 (en) Ultrasonic attenuation materials
US8207652B2 (en) Ultrasound transducer with improved acoustic performance
KR102633430B1 (ko) 초음파 변환기 조립체
US5559388A (en) High density interconnect for an ultrasonic phased array and method for making
JP2009022006A (ja) 改良形超音波トランスデューサ、バッキングおよびバッキング作製方法
WO2013140311A2 (en) Ultrasonic matrix array probe with thermally dissipating cable and heat exchanger
WO2015145296A1 (en) Ultrasound probes and systems having pin-pmn-pt, a dematching layer, and improved thermally conductive backing materials
WO2015145402A1 (en) Thermally conductive backing materials for ultrasound probes and systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12715725

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012715725

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14003240

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013558556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE