CN103443850A - 用于超声换能器阵列的具有高导热性的复合声背衬 - Google Patents
用于超声换能器阵列的具有高导热性的复合声背衬 Download PDFInfo
- Publication number
- CN103443850A CN103443850A CN2012800137431A CN201280013743A CN103443850A CN 103443850 A CN103443850 A CN 103443850A CN 2012800137431 A CN2012800137431 A CN 2012800137431A CN 201280013743 A CN201280013743 A CN 201280013743A CN 103443850 A CN103443850 A CN 103443850A
- Authority
- CN
- China
- Prior art keywords
- pad
- ultrasound transducer
- assembly according
- transducer array
- array assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 27
- 239000002131 composite material Substances 0.000 title claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000010439 graphite Substances 0.000 claims abstract description 26
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 26
- 239000000523 sample Substances 0.000 claims abstract description 20
- 238000013016 damping Methods 0.000 claims description 21
- 239000004411 aluminium Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 6
- 229910017083 AlN Inorganic materials 0.000 claims description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 13
- -1 and Wherein Chemical compound 0.000 claims 1
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4494—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0622—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
- B06B1/0629—Square array
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/002—Devices for damping, suppressing, obstructing or conducting sound in acoustic devices
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Gynecology & Obstetrics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Mechanical Engineering (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
一种用于超声探针的超声换能器阵列堆的衬块被形成为高导热性的材料的复合结构,在所述复合结构中嵌入声阻尼材料的结构。在一个构造的实施例中,该复合结构由导热石墨块形成,多个圆柱形孔被形成在所述导热石墨块中,所述圆柱形孔填充有声阻尼材料。该孔从换能器堆的后部相对于Z轴方向倾斜,使得在该方向上行进的回响能量遇到声阻尼材料。该孔周围的石墨有效地将热传导到探针的后部且远离换能器堆及其ASIC。
Description
发明领域
本发明涉及医疗诊断超声系统,尤其涉及用于超声换能器阵列的背衬材料。
背景技术
二维阵列换能器被用在超声成像中,以便进行三维扫描。二维阵列在方位方向和高度方向上都具有许多行和列的换能器元件,这将需要大量的电缆导体来在探针和主机超声系统之间联接信号。用于使在探针电缆中的信号导体的数量最小化的优选技术是在微波束成形器ASIC(专用集成电路)中的探针中执行至少一些波束成形。该技术仅仅需要相对少数量的部分波束成形信号被联接到主机超声系统,从而减少所需要的在电缆中的信号导体的数量。然而,必须在二维阵列和微波束成形器ASIC之间进行大量信号连接。进行这些连接的有效方法是将换能器阵列和ASIC设计成具有倒装芯片互连方式,由此该换能器阵列的传导垫是直接粘合到ASIC的相应传导垫上的突起部。
然而,微波束成形器ASIC的高密度电子电路可能在其小的IC包中产生大量的热,所述热必须被消散。存在所述热可以沿其流动的两个主要方向。一个方向是穿过声堆(acoustic stack)朝着在探针的患者接触端处的透镜向前。在该方向上的导热性通过在该换能器堆(transducer stack)中的导电元件改善。该向前路径对热流呈现相对低的阻力。然后必须通过降低传输电压和/或脉冲重复频率来防止热在透镜中聚集,这不利地影响到了探针的性能。
优选的导热方向是后部,远离透镜并且朝着在探针的后部处的散热器(通常是铝)。但是,通常位于换能器堆、阵列元件和微波束成形器ASIC后面的是声衬块(acoustic backing block)。声衬块的目的在于使从声堆的后部发射的超声能衰减并且防止该能量导致被朝着声堆反射的回响。声衬块通常由具有良好声衰减性能的材料制成,诸如含有微气泡或其它消音颗粒的环氧树脂。然而,这种材料通常具有差的导热性。因此,期望提供用于超声探针的声衬块,所述声衬块呈现对进入到该衬块中的声能的良好声衰减性、朝向所述探针的后部且远离透镜的良好导热性、可以在需要时支撑声堆的良好机械结构以及微波束成形器ASIC与所述探针的其它传导部件的适当的电绝缘性。
发明内容
根据本发明的原理,用于超声换能器阵列堆的衬块由具有内部声阻尼构件的高导热材料矩阵形成。用于导热材料的优选材料是呈现高导热性的石墨。石墨可以形成为具有机械稳定性的刚性块,以便支撑换能器阵列堆。可以通过在被填充有声阻尼材料的石墨块中钻孔形成内部声阻尼构件,所述内部声阻尼构件优选地被定位成使得垂直于换能器阵列堆的后表面行进的声波必须遇到声阻尼构件且发生声衰减。需要时,可以将电绝缘层定位在衬块的顶部或底部上。
附图说明
在图中:
图1图示了具有根据本发明的原理构造的导热衬块的声堆。
图2图示了当组装在具有透镜盖的换能器探针中时图1的声堆。
图3是根据本发明的原理构造的导热衬块的透视图。
图4是根据本发明的原理构造的导热衬块的俯视图。
图5是根据本发明的原理构造的导热衬块的横截面侧视图。
具体实施方式
首先参见图1,示意地示出具有根据本发明的原理构造的导热衬块的声堆100。诸如PZT的压电层110和被粘结到该压电层的两个匹配层通过切块切割件75而被切块,以便形成单个换能器元件175的阵列,其中四个换能器元件175参见图1。阵列170可以包括单行的换能器元件(1-D阵列)或可以在两个正交方向上被切块,以便形成换能器元件的二维(2D)矩阵阵列。匹配层使压电材料的声阻抗与通常在渐进匹配层的步骤中被诊断的身体的声阻抗匹配。在该示例中,第一匹配层120被形成为导电石墨复合件,并且第二匹配层130由被含有导电颗粒的聚合物形成。接地平面180被粘结到第二匹配层的顶部并且被作为传导层形成在低密度聚乙烯(LDPE)140的膜150上。接地平面通过导电匹配层被电联接到换能器元件并且被连接到柔性电路185的接地导体。LDPE膜150形成堆的第三且最后的匹配层140。
在换能器元件下面是集成电路160(即ASIC),该电路向换能器元件175提供发射信号并接收和处理来自该元件的信号。在集成电路160的上表面上的传导垫通过柱形突起部190电联接到在换能器元件的底部上的传导垫,所述柱形突起部可以由焊料或导电环氧树脂形成。信号通过到柔性电路185的连接被提供给集成电路160和被从集成电路160提供。在集成电路160的下面是衬块165,所述衬块165使从换能器堆的底部发射的声能衰减。根据本发明的原理,衬块还将集成电路产生的热量远离该集成电路和换能器堆并且远离换能器探针的患者接触端地传导。
图2图示了当组装在换能器探针内侧时图1的换能器堆组件。在图2的探针中,第三匹配层140被粘结到声透镜230。超声波在成像期间被传播穿过透镜230并且进入到患者体中,并且响应于这些波而被接收的回声穿过透镜230由换能器堆接收。当被包围在该堆周围并且被环氧树脂粘合剂210粘结到探针壳体220时,LDPE膜150用于封闭在该实施例中的换能器堆。该构造的更多细节在美国专利公开No.US2010/0168581(Knowles等)中找到。
衬块165的优选实施方式在余下的附图中图示。优选的衬块165开始于石墨块20。其它可替代件包括含有提供良好的机械加工性和良好的热性能的诸如镍或铜的金属的石墨。石墨块20被用于形成复合背衬结构,所述复合背衬结构满足许多性能目标。首先,背衬结构必须具有良好的Z轴导热性。石墨具有良好的导热性,在0℃-100℃下Tc为80-240W/m°K。对于平行于结晶层的传导,在300°K下,Tc接近于1950W/m°K。Z轴方向是向后且远离换能器堆100和集成电路160的方向。因此,对于在Z轴方向上的热流动,期望使石墨块20的结晶层对齐。在其它实施方式中,可能期望优选地将热量横向地或横向地且沿Z轴方向传导,在这种情况下,可能期望不同的结晶对齐方向,或者对齐方向对于设计而言是不重要的。当铝被用来消散一部分热量(其可以通过使用铝散热器或在探针壳体内侧的铝框架)时,期望衬块的导热性与铝的导热性是可比的或比铝的导热性好,使得热量优选地向铝流动。铝在室温下具有237W/m°K的可比Tc,因此,石墨块20很好地满足了该性能目标。
第二个目标是衬块为声堆100和集成电路160提供结构支撑。石墨块的结构性良好,因此满足该目标。
第三个目标是提供集成电路160与探针的铝构件或框架的电绝缘。导电的石墨可以通过利用非导电绝缘涂层涂覆衬块来满足该目标。在一些实施方式中,可能期望只涂覆衬块的与换能器堆接触的侧面。在其它实施方式中,可能期望涂覆衬块的多个侧面。例如,可能期望使用绝缘的声阻尼材料涂覆该衬块的横向侧,这将提供抑制横向声回响的附加益处。
第四个目标是衬块必须使进入衬块的声能衰减。石墨是声能的良好导体且提供非常小的固有声阻尼。通过使用石墨块作为如图3、4和5中示出的用于内部声阻尼构件的复合结构的框架来满足该目标。在这些附图中,石墨呈现半透明状,用于清楚地图示该衬块的内部复合结构。阻尼构件被形成为在衬块中的多个背衬材料倾斜圆柱30。圆柱30被切割或被钻进石墨块20中,然后用诸如填充有微气泡或其它声阻尼颗粒的环氧树脂的声阻尼材料进行填充。正如图4的衬块的俯视图所图示的,圆柱30的顶部将大面积的声阻尼材料呈现给集成电路的后部。从集成电路和声堆的后部发射的大量不期望声能因此立即进入阻尼材料。如图3中所看到的和最好是在图5的横截面视图中所看到的圆柱的倾斜确保在Z轴方向上行进的声能将不得不与在行进路径中的某点处与阻尼材料相交。优选地,不存在完全由石墨形成的在Z轴方向上的路径,并且圆柱的倾斜并不有助于将能量反射回集成电路,而是提供了向下和远离集成电路的散射角。在实践中,可能诸如通过阻挡95%的路径来阻挡大多数的Z轴路径是足够的。因此,圆柱的倾斜确保使所有或基本所有Z轴指向的能量衰减。
然而,热量将发现存在穿过在圆柱30之间的石墨的连续路径。因为热量的流动是从较高温度区域到较低温度区域的(从较高的热密度到较低的热密度),所以,热量远离集成电路160和声堆100地流动到其可以安全地消散的在衬块165下方的结构。
可以使用其他材料用于衬块的导热材料,诸如:铝、石墨泡沫或氮化铝。被填充阻尼材料的孔的图案、尺寸和间隔也可以进行变化并且针对性能和可制造性被优化。虽然钻孔将产生圆形孔,但是可以可替代地使用诸如矩形或三角形的其它孔形状。如果期望或必需使导电衬块与诸如集成电路的探针的其它部件电绝缘,则诸如聚对二甲苯、氮化铝或聚酰亚胺的非传导材料层可以被附加到该衬块的一个或多个外表面或被构造在该衬块的内部。只要不存在与衬块的顶表面和底表面相平行的将声能朝着集成电路和声堆反射回来的平坦表面,就可以可替代地使用没有被布置在圆柱形倾斜孔中的阻尼材料的横向复合结构。
Claims (15)
1.一种超声换能器阵列组件,包括:
换能器元件的阵列,所述换能器元件的阵列具有用于超声波的传播的向前的期望方向和向后的非期望的超声发射方向;
复合衬块,所述复合衬块定位在所述换能器元件的阵列的后部,所述复合衬块由具有至少与石墨的导热性一样大的导热性的材料形成;以及
声阻尼材料的复合结构,所述复合结构定位在所述复合衬块中,
其中,在向后方向上的超声发射将与所述声阻尼材料相交,并且热量通过衬块材料远离所述换能器元件的阵列地传导。
2.根据权利要求1所述的超声换能器阵列组件,其特征在于,热量通过所述衬块材料被传导到金属结构。
3.根据权利要求1所述的超声换能器阵列组件,其特征在于,所述复合结构进一步包括在所述复合衬块中的多个孔,所述孔填充有所述声阻尼材料。
4.根据权利要求3所述的超声换能器阵列组件,其特征在于,所述孔进一步包括形成在所述复合衬块中且从所述复合衬块的顶表面延伸到所述衬块的底表面的多个圆柱形孔,
其中,在所述顶表面处的所述孔中的所述声阻尼材料包括所述顶表面的大部分区域。
5.根据权利要求3所述的超声换能器阵列组件,其特征在于,所述孔相对于所述向后方向以非平行角度倾斜。
6.根据权利要求5所述的超声换能器阵列组件,其特征在于,所述孔以使在所述向后方向上行进的声能远离所述换能器元件的阵列地散射的角度倾斜。
7.根据权利要求1所述的超声换能器阵列组件,其特征在于,所述衬块材料是石墨、铝、石墨泡沫或氮化铝中的一种。
8.根据权利要求1所述的超声换能器阵列组件,其特征在于,所述复合衬块的表面被涂覆有非导电材料层。
9.根据权利要求8所述的超声换能器阵列组件,其特征在于,所述非导电材料层进一步包括声阻尼材料。
10.根据权利要求1所述的超声换能器阵列组件,其特征在于,所述超声换能器阵列组件进一步包括电联接到所述换能器元件的阵列的后部的集成电路,
其中,所述复合衬块与所述集成电路呈导热接触。
11.根据权利要求10所述的超声换能器阵列组件,其特征在于,所述换能器元件的阵列进一步包括所述换能器元件的2D阵列;并且
其中,所述复合衬块的表面与所述集成电路的表面接触。
12.根据权利要求1所述的超声换能器阵列组件,其特征在于,所述复合衬块将热量传导到铝散热器,并且
其中,复合衬块材料呈现与铝的导热性可比或比铝的导热性好的导热性。
13.根据权利要求1所述的超声换能器阵列组件,其特征在于,复合衬块材料是石墨,并且
其中,石墨衬块材料被热联接到在超声探针内部的金属构件。
14.根据权利要求1所述的超声换能器阵列组件,其特征在于,所述复合衬块进一步为包括所述换能器元件的阵列的声堆提供结构支撑。
15.根据权利要求14所述的超声换能器阵列组件,其特征在于,所述声堆进一步包括集成电路,
其中,所述复合衬块起作用,以便将由所述集成电路产生的热量远离所述声堆地传导。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161453690P | 2011-03-17 | 2011-03-17 | |
US61/453,690 | 2011-03-17 | ||
PCT/IB2012/051205 WO2012123906A2 (en) | 2011-03-17 | 2012-03-14 | Composite acoustic backing with high thermal conductivity for ultrasound transducer array |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103443850A true CN103443850A (zh) | 2013-12-11 |
Family
ID=45992568
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012800137431A Pending CN103443850A (zh) | 2011-03-17 | 2012-03-14 | 用于超声换能器阵列的具有高导热性的复合声背衬 |
CN201280013752.0A Active CN103429359B (zh) | 2011-03-17 | 2012-03-14 | 用于超声换能器阵列的具有高导热性的高孔隙率声背衬 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280013752.0A Active CN103429359B (zh) | 2011-03-17 | 2012-03-14 | 用于超声换能器阵列的具有高导热性的高孔隙率声背衬 |
Country Status (5)
Country | Link |
---|---|
US (2) | US9237880B2 (zh) |
EP (2) | EP2686117B1 (zh) |
JP (2) | JP2014508022A (zh) |
CN (2) | CN103443850A (zh) |
WO (2) | WO2012123908A2 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106793998A (zh) * | 2014-09-02 | 2017-05-31 | 百胜股份公司 | 具有优化的热管理的超声探头 |
CN106963416A (zh) * | 2015-10-29 | 2017-07-21 | 精工爱普生株式会社 | 超声波器件、超声波探测器、电子设备及超声波图像装置 |
CN108366775A (zh) * | 2015-10-08 | 2018-08-03 | 决策科学医疗有限责任公司 | 声学外科跟踪系统和方法 |
CN112740026A (zh) * | 2018-09-21 | 2021-04-30 | 蝴蝶网络有限公司 | 用于超声成像设备的声学阻尼 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140283A2 (en) * | 2012-03-20 | 2013-09-26 | Koninklijke Philips N.V. | Ultrasonic matrix array probe with thermally dissipating cable and backing block heat exchange |
EP2828846B1 (en) | 2012-03-20 | 2020-10-14 | Koninklijke Philips N.V. | Ultrasonic matrix array probe with thermally dissipating cable |
WO2014080312A1 (en) | 2012-11-20 | 2014-05-30 | Koninklijke Philips N.V. | Frameless ultrasound probes with heat dissipation |
WO2014097070A1 (en) | 2012-12-18 | 2014-06-26 | Koninklijke Philips N.V. | Power and wireless communication modules for a smart ultrasound probe |
KR20140144464A (ko) * | 2013-06-11 | 2014-12-19 | 삼성전자주식회사 | 휴대용 초음파 프로브 |
KR20150025066A (ko) * | 2013-08-28 | 2015-03-10 | 삼성메디슨 주식회사 | 초음파 프로브 및 그 제조 방법 |
KR20150025383A (ko) * | 2013-08-29 | 2015-03-10 | 삼성메디슨 주식회사 | 초음파 진단장치용 프로브 |
US20150087988A1 (en) * | 2013-09-20 | 2015-03-26 | General Electric Company | Ultrasound transducer arrays |
WO2015068080A1 (en) * | 2013-11-11 | 2015-05-14 | Koninklijke Philips N.V. | Robust ultrasound transducer probes having protected integrated circuit interconnects |
KR102170262B1 (ko) * | 2013-12-20 | 2020-10-26 | 삼성메디슨 주식회사 | 초음파 프로브 및 초음파 프로브의 제조방법 |
KR102168579B1 (ko) | 2014-01-06 | 2020-10-21 | 삼성전자주식회사 | 트랜스듀서 지지체, 초음파 프로브 장치 및 초음파 영상 장치 |
WO2015145402A1 (en) * | 2014-03-27 | 2015-10-01 | Koninklijke Philips N.V. | Thermally conductive backing materials for ultrasound probes and systems |
KR102271172B1 (ko) * | 2014-07-14 | 2021-06-30 | 삼성메디슨 주식회사 | 초음파 흡음 부재, 이를 포함하는 초음파 프로브 및 그 제조 방법 |
JP6606171B2 (ja) * | 2014-08-28 | 2019-11-13 | コーニンクレッカ フィリップス エヌ ヴェ | 補強高速交換ポートを有する血管内装置及び関連システム |
KR102044705B1 (ko) * | 2015-02-24 | 2019-11-14 | 알피니언메디칼시스템 주식회사 | 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법 |
JP6661290B2 (ja) * | 2015-07-13 | 2020-03-11 | 株式会社日立製作所 | 超音波プローブ |
US10481288B2 (en) | 2015-10-02 | 2019-11-19 | Halliburton Energy Services, Inc. | Ultrasonic transducer with improved backing element |
JP6569473B2 (ja) * | 2015-10-29 | 2019-09-04 | セイコーエプソン株式会社 | 超音波デバイス、超音波プローブ、電子機器、および超音波画像装置 |
JP6780981B2 (ja) * | 2016-08-10 | 2020-11-04 | キヤノンメディカルシステムズ株式会社 | 超音波プローブ |
JP7065837B6 (ja) * | 2016-10-03 | 2022-06-06 | コーニンクレッカ フィリップス エヌ ヴェ | 心腔内心エコー検査用インターポーザ |
US10797221B2 (en) * | 2017-02-24 | 2020-10-06 | Baker Hughes, A Ge Company, Llc | Method for manufacturing an assembly for an ultrasonic probe |
US10809233B2 (en) * | 2017-12-13 | 2020-10-20 | General Electric Company | Backing component in ultrasound probe |
JP7333684B2 (ja) | 2018-04-26 | 2023-08-25 | 三菱鉛筆株式会社 | 超音波探触子 |
US11717265B2 (en) * | 2018-11-30 | 2023-08-08 | General Electric Company | Methods and systems for an acoustic attenuating material |
US11432800B2 (en) | 2019-03-25 | 2022-09-06 | Exo Imaging, Inc. | Handheld ultrasound imager |
US12109591B2 (en) | 2019-09-09 | 2024-10-08 | GE Precision Healthcare LLC | Ultrasound transducer array architecture and method of manufacture |
US20210072194A1 (en) * | 2019-09-10 | 2021-03-11 | Surf Technology As | Ultrasound Transducer And Method Of Manufacturing |
JP2023502334A (ja) * | 2019-11-22 | 2023-01-24 | エコー イメージング,インク. | 音響吸収体構造を備えた超音波トランスデューサ |
IL311310A (en) | 2020-03-05 | 2024-05-01 | Exo Imaging Inc | An ultrasonic imaging device with programmable anatomy and flow imaging |
JP6980051B2 (ja) * | 2020-04-28 | 2021-12-15 | ゼネラル・エレクトリック・カンパニイ | 超音波プローブ及び超音波装置 |
JP7565479B2 (ja) * | 2021-03-16 | 2024-10-11 | 富士フイルム株式会社 | 超音波探触子及びバッキング製造方法 |
US12099150B2 (en) | 2021-10-26 | 2024-09-24 | Exo Imaging, Inc. | Multi-transducer chip ultrasound device |
US11998387B2 (en) | 2022-01-12 | 2024-06-04 | Exo Imaging, Inc. | Multilayer housing seals for ultrasound transducers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030029010A1 (en) * | 2000-05-24 | 2003-02-13 | Flesch Aime | Integrated connector backings for matrix array transducers, matrix array transducers employing such backings and methods of making the same |
US20040100163A1 (en) * | 2002-11-22 | 2004-05-27 | Baumgartner Charles E. | Method for making electrical connection to ultrasonic transducer through acoustic backing material |
US20060261707A1 (en) * | 2004-08-27 | 2006-11-23 | Wildes Douglas G | Ultrasound transducer with enhanced thermal conductivity |
CN1897876A (zh) * | 2004-10-05 | 2007-01-17 | 株式会社东芝 | 超声探头 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3995179A (en) * | 1974-12-30 | 1976-11-30 | Texaco Inc. | Damping structure for ultrasonic piezoelectric transducer |
US4297607A (en) | 1980-04-25 | 1981-10-27 | Panametrics, Inc. | Sealed, matched piezoelectric transducer |
US5329498A (en) * | 1993-05-17 | 1994-07-12 | Hewlett-Packard Company | Signal conditioning and interconnection for an acoustic transducer |
US5560362A (en) | 1994-06-13 | 1996-10-01 | Acuson Corporation | Active thermal control of ultrasound transducers |
US5541567A (en) * | 1994-10-17 | 1996-07-30 | International Business Machines Corporation | Coaxial vias in an electronic substrate |
US5648941A (en) * | 1995-09-29 | 1997-07-15 | Hewlett-Packard Company | Transducer backing material |
US5722412A (en) * | 1996-06-28 | 1998-03-03 | Advanced Technology Laboratories, Inc. | Hand held ultrasonic diagnostic instrument |
US6652515B1 (en) * | 1997-07-08 | 2003-11-25 | Atrionix, Inc. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
US6673328B1 (en) * | 2000-03-06 | 2004-01-06 | Ut-Battelle, Llc | Pitch-based carbon foam and composites and uses thereof |
JP3420951B2 (ja) | 1998-11-24 | 2003-06-30 | 松下電器産業株式会社 | 超音波探触子 |
CA2332158C (en) * | 2000-03-07 | 2004-09-14 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic probe |
US6689336B2 (en) * | 2001-01-23 | 2004-02-10 | Mitsubishi Gas Chemical Company, Inc. | Carbon foam, graphite foam and production processes of these |
US6666825B2 (en) * | 2001-07-05 | 2003-12-23 | General Electric Company | Ultrasound transducer for improving resolution in imaging system |
WO2004109656A1 (en) * | 2003-06-09 | 2004-12-16 | Koninklijke Philips Electronics, N.V. | Method for designing ultrasonic transducers with acoustically active integrated electronics |
JP4624659B2 (ja) * | 2003-09-30 | 2011-02-02 | パナソニック株式会社 | 超音波探触子 |
US7017245B2 (en) * | 2003-11-11 | 2006-03-28 | General Electric Company | Method for making multi-layer ceramic acoustic transducer |
JP2005340043A (ja) * | 2004-05-28 | 2005-12-08 | Sumitomo Electric Ind Ltd | 加熱装置 |
JP4319644B2 (ja) | 2004-06-15 | 2009-08-26 | 株式会社東芝 | 音響バッキング組成物、超音波プローブ、及び超音波診断装置 |
US7567016B2 (en) * | 2005-02-04 | 2009-07-28 | Siemens Medical Solutions Usa, Inc. | Multi-dimensional ultrasound transducer array |
EP1876957A2 (en) | 2005-04-25 | 2008-01-16 | Koninklijke Philips Electronics N.V. | Ultrasound transducer assembly having improved thermal management |
JP2006325954A (ja) * | 2005-05-26 | 2006-12-07 | Toshiba Corp | 超音波プローブ及び超音波診断装置 |
WO2007017780A2 (en) * | 2005-08-05 | 2007-02-15 | Koninklijke Philips Electronics N.V. | Curved two-dimensional array transducer |
RU2418384C2 (ru) * | 2005-08-08 | 2011-05-10 | Конинклейке Филипс Электроникс Н.В. | Широкополосный матричный преобразователь с полиэтиленовым третьим согласующим слоем |
US7859170B2 (en) * | 2005-08-08 | 2010-12-28 | Koninklijke Philips Electronics N.V. | Wide-bandwidth matrix transducer with polyethylene third matching layer |
EP2010058B1 (en) | 2006-04-14 | 2017-05-17 | William Beaumont Hospital | Computed Tomography System and Method |
JP4171038B2 (ja) * | 2006-10-31 | 2008-10-22 | 株式会社東芝 | 超音波プローブおよび超音波診断装置 |
WO2008121238A2 (en) * | 2007-03-30 | 2008-10-09 | Gore Enterprise Holdings, Inc. | Improved ultrasonic attenuation materials |
US7956514B2 (en) * | 2007-03-30 | 2011-06-07 | Gore Enterprise Holdings, Inc. | Ultrasonic attenuation materials |
JP5154144B2 (ja) * | 2007-05-31 | 2013-02-27 | 富士フイルム株式会社 | 超音波内視鏡及び超音波内視鏡装置 |
US8093782B1 (en) * | 2007-08-14 | 2012-01-10 | University Of Virginia Patent Foundation | Specialized, high performance, ultrasound transducer substrates and related method thereof |
JP2009060501A (ja) | 2007-09-03 | 2009-03-19 | Fujifilm Corp | バッキング材、超音波探触子、超音波内視鏡、超音波診断装置、及び、超音波内視鏡装置 |
US20120143060A1 (en) | 2007-12-27 | 2012-06-07 | Koninklijke Philips Electronics N.V. | Ultrasound transducer assembly with improved thermal behavior |
JP2010258602A (ja) | 2009-04-22 | 2010-11-11 | Panasonic Corp | 超音波探触子およびその製造方法 |
JP5591549B2 (ja) * | 2010-01-28 | 2014-09-17 | 株式会社東芝 | 超音波トランスデューサ、超音波プローブ、超音波トランスデューサの製造方法 |
DE102010014319A1 (de) * | 2010-01-29 | 2011-08-04 | Siemens Aktiengesellschaft, 80333 | Dämpfungsmasse für Ultraschallsensor, Verwendung eines Epoxidharzes |
US8232705B2 (en) * | 2010-07-09 | 2012-07-31 | General Electric Company | Thermal transfer and acoustic matching layers for ultrasound transducer |
US8450910B2 (en) * | 2011-01-14 | 2013-05-28 | General Electric Company | Ultrasound transducer element and method for providing an ultrasound transducer element |
-
2012
- 2012-03-08 US US13/415,377 patent/US9237880B2/en active Active
- 2012-03-14 JP JP2013558554A patent/JP2014508022A/ja not_active Withdrawn
- 2012-03-14 US US14/003,240 patent/US9943287B2/en active Active
- 2012-03-14 CN CN2012800137431A patent/CN103443850A/zh active Pending
- 2012-03-14 WO PCT/IB2012/051208 patent/WO2012123908A2/en active Application Filing
- 2012-03-14 EP EP12715725.3A patent/EP2686117B1/en active Active
- 2012-03-14 JP JP2013558556A patent/JP5972296B2/ja active Active
- 2012-03-14 CN CN201280013752.0A patent/CN103429359B/zh active Active
- 2012-03-14 EP EP12715724.6A patent/EP2686116A2/en not_active Withdrawn
- 2012-03-14 WO PCT/IB2012/051205 patent/WO2012123906A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030029010A1 (en) * | 2000-05-24 | 2003-02-13 | Flesch Aime | Integrated connector backings for matrix array transducers, matrix array transducers employing such backings and methods of making the same |
US20040100163A1 (en) * | 2002-11-22 | 2004-05-27 | Baumgartner Charles E. | Method for making electrical connection to ultrasonic transducer through acoustic backing material |
US20060261707A1 (en) * | 2004-08-27 | 2006-11-23 | Wildes Douglas G | Ultrasound transducer with enhanced thermal conductivity |
CN1897876A (zh) * | 2004-10-05 | 2007-01-17 | 株式会社东芝 | 超声探头 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106793998A (zh) * | 2014-09-02 | 2017-05-31 | 百胜股份公司 | 具有优化的热管理的超声探头 |
CN108366775A (zh) * | 2015-10-08 | 2018-08-03 | 决策科学医疗有限责任公司 | 声学外科跟踪系统和方法 |
CN106963416A (zh) * | 2015-10-29 | 2017-07-21 | 精工爱普生株式会社 | 超声波器件、超声波探测器、电子设备及超声波图像装置 |
CN112740026A (zh) * | 2018-09-21 | 2021-04-30 | 蝴蝶网络有限公司 | 用于超声成像设备的声学阻尼 |
Also Published As
Publication number | Publication date |
---|---|
EP2686117B1 (en) | 2019-06-19 |
WO2012123906A3 (en) | 2012-11-15 |
US9943287B2 (en) | 2018-04-17 |
WO2012123908A2 (en) | 2012-09-20 |
US20120238880A1 (en) | 2012-09-20 |
US9237880B2 (en) | 2016-01-19 |
CN103429359A (zh) | 2013-12-04 |
WO2012123906A2 (en) | 2012-09-20 |
JP2014512899A (ja) | 2014-05-29 |
CN103429359B (zh) | 2016-01-13 |
JP2014508022A (ja) | 2014-04-03 |
US20130345567A1 (en) | 2013-12-26 |
EP2686117A2 (en) | 2014-01-22 |
EP2686116A2 (en) | 2014-01-22 |
WO2012123908A3 (en) | 2013-05-02 |
JP5972296B2 (ja) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103443850A (zh) | 用于超声换能器阵列的具有高导热性的复合声背衬 | |
US10178986B2 (en) | Ultrasonic matrix array probe with thermally dissipating cable and backing block heat exchange | |
US8656578B2 (en) | Method for manufacturing an ultrasound imaging transducer assembly | |
JP5611645B2 (ja) | 超音波トランスデューサおよび超音波プローブ | |
JP5550706B2 (ja) | 超音波探触子 | |
CN113924045B (zh) | 手持式超声波成像器 | |
CN104010740A (zh) | 背衬部件、超声波探头和超声波影像显示设备 | |
US9867592B2 (en) | Ultrasonic matrix array probe with thermally dissipating cable | |
CN102598331A (zh) | 具有顺应性电连接的弯曲超声hifu换能器 | |
CN104768472B (zh) | 超声波探针 | |
JP2006129965A (ja) | 超音波プローブ及び超音波診断装置 | |
CN210170072U (zh) | 一种超声探头 | |
WO2015145296A1 (en) | Ultrasound probes and systems having pin-pmn-pt, a dematching layer, and improved thermally conductive backing materials | |
US20210121159A1 (en) | Ultrasound probe with improved thermal management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131211 |