WO2012122751A1 - 金属材料抛物面型二维聚焦x射线组合折射透镜的制作方法 - Google Patents

金属材料抛物面型二维聚焦x射线组合折射透镜的制作方法 Download PDF

Info

Publication number
WO2012122751A1
WO2012122751A1 PCT/CN2011/075747 CN2011075747W WO2012122751A1 WO 2012122751 A1 WO2012122751 A1 WO 2012122751A1 CN 2011075747 W CN2011075747 W CN 2011075747W WO 2012122751 A1 WO2012122751 A1 WO 2012122751A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
parabolic
photoresist
metal material
sub
Prior art date
Application number
PCT/CN2011/075747
Other languages
English (en)
French (fr)
Inventor
乐孜纯
董文
Original Assignee
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学 filed Critical 浙江工业大学
Publication of WO2012122751A1 publication Critical patent/WO2012122751A1/zh
Priority to US14/027,201 priority Critical patent/US9027221B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P17/00Metal-working operations, not covered by a single other subclass or another group in this subclass
    • B23P17/04Metal-working operations, not covered by a single other subclass or another group in this subclass characterised by the nature of the material involved or the kind of product independently of its shape
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/065Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using refraction, e.g. Tomie lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling

Definitions

  • the invention relates to a novel X-ray microstructure optical device, a parabolic two-dimensional focusing X-ray combined refractive lens manufacturing method, which is suitable for the production of a two-dimensional focusing X-ray combined refractive lens for metal materials.
  • the X-ray combined lens is a refraction-based X-ray microstructure optical device proposed by A. Snigirev in 1996 for high-energy X-ray (ie, X-ray radiation energy exceeding 5 keV).
  • the utility model has the advantages that the optical path does not need to be folded, the high temperature stability is good and the cooling is easy, the structure is simple and compact, and the surface roughness of the lens is low. It has broad application prospects in the field of ultra-high resolution X-ray diagnostic science and technology. In recent years, various X-ray diagnostic techniques based on X-ray combined lenses have been very active.
  • high-energy X-ray fluorescence micro-chromatography experimental system for element distribution measurement in samples; neutron microscope using aluminum material X-ray combined lens; and high-energy X for single cell detection, chemical microanalysis, early chest tumor detection, etc. Ray experiment system and so on.
  • the original X-ray combined lens is realized by computer-controlled micro-drilling method, and tens to hundreds of cylindrical holes arranged in sequence are fabricated on the aluminum metal material, and the X-ray is subjected to one-dimensional focusing and utilization. It conducts research on X-ray detection and diagnostic techniques. Later, in order to improve the production precision, planar micro-fabrication technology (including thin film deposition, optical engraving) Eclipse, electron beam etching, ion beam etching, etc.) X-ray combined lenses with circular, parabolic, and elliptical cross-sections. The combined lens materials are extended to aluminum, silicon, lithium, boron, carbon, and aluminum oxide.
  • two-dimensionally focused X-ray combined lenses have not been reported in China, and two methods are mainly adopted in the world to achieve two-dimensional focusing on X-rays.
  • two one-dimensional focusing X-ray combined lenses are placed orthogonally, and the X-ray beam is horizontally focused and vertically aligned to achieve two-dimensional focusing (CG Schroer, et ⁇ , Appl. Phys. Lett., 2003, vol. 82, ppl485-1487), it is only necessary to make a one-dimensional X-ray combined lens, and does not involve the fabrication of a two-dimensional X-ray combined lens.
  • the second is to use a molding technique to produce a two-dimensional focused X-ray combined lens (B.
  • the invention has the advantages of high precision, low precision of lens calibration and low focusing efficiency.
  • the invention provides a parabolic surface two-dimensional focusing of a metal material with high precision of production process, high precision self-calibration of the optical axis of the lens, and high focusing efficiency.
  • a method of manufacturing an X-ray combined refractive lens is a parabolic surface two-dimensional focusing of a metal material with high precision of production process, high precision self-calibration of the optical axis of the lens, and high focusing efficiency.
  • a method for manufacturing a parabolic two-dimensional focusing X-ray combined refraction lens of a metal material comprising the following steps:
  • the first opening is formed by a first parabolic hole and a square hole, the square hole has a total of n, the square hole has a side length of 1 + 5;
  • step (H) placing the sample processed in step (G) into an electroforming solution for electroforming, the electroforming metal material being copper or nickel or iron or chromium;
  • (K) fabricating a photolithographic reticle of a sub-mirror of a glass-based metallic chromium material by electron beam etching, the photolithographic reticle of the sub-mirror comprising a clamping arm and a plurality of coaxial rows disposed on the clamping arm
  • the square of the cloth is embedded in the mirror body, and the square embedded mirror body has n, which is the same as the square hole number of the mother mirror, and the square embedded mirror body has a cross section of two symmetric parabolic openings connected to each other.
  • a center of the second parabolic hole coincides with a center of the square embedded mirror body, the square embedded mirror body has a side length of 1, and the square is embedded in the mirror body and the clamping arm In one piece, the thickness of the clamping arm is t;
  • step (N) growing a surface of the sample treated by the step (M) by sputtering or evaporation a layer of copper or a film of aluminum or gold material as an electroformed cathode film;
  • step (S) The sample processed in the step (R) is placed in an electroforming solution for electroforming, and the electroforming metal material is copper or nickel or iron or chromium, but the electroforming cathode film material is not the same as the electroformed metal material;
  • step (U) placing the sample processed in step (T) into an acetone solution to remove the KMP C5315 photoresist and the SU-8 photoresist thereon, and removing the BP212 photoresist and the underlying silicon wafer;
  • step (V) removing the electroformed cathode film by a chemical etching method on the sample processed by the step (U) to form a sub-mirror of a parabolic two-dimensional focusing X-ray combined refraction lens of a metal material;
  • a distance between a center of the first parabolic hole and a center of the square hole is 1, and in the step (K), the two squares are embedded between the mirror bodies The distance is 1.
  • the long axis of the first parabolic hole and the second parabolic hole is in a range of
  • short axis range 32 microns to 222 microns, 1 range 50 microns to 250 microns, ⁇ ranges from 1 micron to 2 microns, ⁇ ranges from 20 to 100, and t ranges from 50 Micron to 100 microns.
  • the technical idea of the present invention is: Designing a metal material parabolic two-dimensional focusing X-ray combined refraction lens, comprising a glass substrate and a mother mirror, the mother mirror being mounted on the glass substrate, the mother mirror comprising a mother mirror
  • the main body and the first parabolic cavity and the square cavity formed by the two symmetrical parabolic openings in a section spaced apart on the main body of the main body, the center of each first parabolic cavity and the square cavity
  • the centers are all located on the same straight line in the longitudinal direction of the main body, and the first parabolic cavity is provided to refract X-rays to focus the X-ray radiation in the direction of the short axis of the first parabolic cavity.
  • a first paraboloid in which a sub-mirror is embedded in each square cavity, and the cross-section of the sub-mirror is square Forming a second parabolic cavity formed by two symmetric parabolic openings in the center of the sub-mirror, the second parabolic cavity being provided for refracting X-rays to achieve X-ray radiation a second paraboloid focused in a direction of a short axis of the second parabolic cavity, the first paraboloid and the second paraboloid being orthogonal to each other.
  • a plurality of embedded mirror bodies are mounted on the clamping arms, and the center-to-center spacing of the adjacent embedded mirror bodies is equal to the center-to-center spacing of adjacent square cavities.
  • the embedded mirror body is a square body, and both the major axis and the minor axis of the second parabolic cavity are smaller than the side of the square body, and the center line of the square body coincides with the center line of the second parabolic cavity
  • the side length of the square cavity is longer than the side of the square body, and the depth of the first parabolic cavity and the depth of the square cavity are both equal to the side length of the square.
  • the distance between the center of the square cavity and the center of the first parabolic cavity is equal to the side length of the cube.
  • a major axis of the first parabolic cavity is equal to a major axis of the second parabolic cavity
  • a minor axis of the first parabolic cavity is equal to a minor axis of the second parabolic cavity
  • the mother mirror and the sub mirror are assembled under a microscope to form a parabolic two-dimensional focusing X-ray combined refraction lens of the present invention (as shown in FIG. 1 ), and the z-axis of the coordinate system shown in FIG. 1 is The optical axis of a parabolic two-dimensional focused X-ray combined refractive lens of a metallic material.
  • the two-dimensional focusing function of the parabolic two-dimensional focusing X-ray combined refraction lens of the metal material is completed by a two-dimensional focusing refraction unit (shown in FIG.
  • the two-dimensional poly The focal refraction unit is composed of a pair of mutually perpendicular paraboloids along the y-axis and along the X-axis.
  • the incident X-ray beam is directed toward the parabolic two-dimensional focusing X-ray combined refraction lens along the z-axis direction of the coordinate system as shown in FIG. 1, and is subjected to multiple refraction of the two-dimensional focus refraction unit from the paraboloid of the metal material. After the two-dimensional focused X-ray combined refractive lens emerges, a two-dimensional focused focal spot is formed.
  • the beneficial effects of the present invention are mainly as follows: 1. Invented a novel X micro-structure device--a method for fabricating a parabolic surface two-dimensional focusing X-ray combined refraction lens of a metal material, which is used for actual production of the novel X-ray device; 2. Metal material parabolic two-dimensional focusing X-ray combined refraction lens has a single device to achieve two-dimensional focusing of the X-ray beam, and the calibration accuracy is high and convenient; 3. The planar micro-machining technology is adopted, and the device has a large aspect ratio, The material is limited in size and can be integrated and molded at one time.
  • Figure la is a front view of a parabolic two-dimensional focused X-ray combined refraction lens of the metallic material of the present invention.
  • Figure 1b is a plan view of a parabolic two-dimensional focused X-ray combined refractive lens of the metallic material of the present invention.
  • Figure lc is an enlarged view of a portion I of the two-dimensional focus refraction unit in the parabolic two-dimensional focusing X-ray combined refraction lens of the metallic material of the present invention.
  • 2b is a parabolic two-dimensional focusing X-ray combined refraction lens of a metal material of the present invention
  • 0 represents the origin of the Cartesian coordinate system
  • x, y, z represent the X-axis
  • R is the radius of curvature at the apex of the parabola
  • g is the optical axis
  • a is the photolithographic mask Shading section.
  • the X axis and the z axis of the Cartesian coordinate system of 1 are calculated by the above equation, and the square holes have a total of n, and the side length of the square hole is 1+ ⁇ ;
  • step (H) placing the sample processed in step (G) into an electroforming solution for electroforming, the electroforming metal material being copper or nickel or iron or chromium;
  • (K) fabricating a photolithographic reticle of a sub-mirror of a glass-based metallic chromium material by electron beam etching, the photolithographic reticle of the sub-mirror comprising a clamping arm and a plurality of coaxial rows disposed on the clamping arm
  • the square of the cloth is embedded in the mirror body, the square is embedded in the mirror body, n is the same as the square hole number of the mother mirror, and the square embedded mirror body has a second parabola formed by two symmetric parabolic shapes.
  • step (S) The sample processed in the step (R) is placed in an electroforming solution for electroforming, and the electroforming metal material is copper or nickel or iron or chromium, but the electroforming cathode film material is not the same as the electroformed metal material;
  • step (U) placing the sample processed in step (T) into an acetone solution to remove the KMP C5315 photoresist and the SU-8 photoresist thereon, and removing the BP212 photoresist and the underlying silicon wafer;
  • step (V) removing the electroformed cathode film by a chemical etching method on the sample processed by the step (U) to form a sub-mirror of a parabolic two-dimensional focusing X-ray combined refraction lens of a metal material;
  • step (A) the distance between the center of the first parabolic hole and the center of the square hole is 1, and in the step (K), the distance between the two squares embedded in the mirror body is 1.
  • the metal material parabolic two-dimensional focusing X-ray combined refractive lens of the embodiment comprises a glass substrate, a mother mirror on the glass substrate and a sub-mirror embedded in the mother mirror (as shown in FIG. 1 ).
  • the glass substrate is used as a metal material parabolic two-dimensional focusing X-ray
  • the line combines the base of the refractive lens, the mother mirror is fabricated on the glass substrate, and the mother mirror comprises a mother mirror body material and a first parabolic cavity and a square cavity sequentially arranged on the body material, the square cavity Used for embedding a submirror.
  • the sub-mirror comprises a clamping arm and an embedded mirror body.
  • the embedded mirror body is square, and a square has a second parabolic cavity.
  • the embedded mirror body of the sub-mirror is embedded from above the mother mirror.
  • the mirror is in a square cavity.
  • the parabolic surface of the first parabolic cavity in the mother mirror and the second parabolic cavity in the sub-mirror completes the refraction of X-rays to focus the X-ray radiation along the short axis of the parabola.
  • the two-dimensional focusing function of the parabolic two-dimensional focusing X-ray combined refraction lens of the metal material is completed by one of two-dimensional focusing refraction units (shown in FIG. 1c), the two-dimensional focusing refraction unit, It is composed of two mutually perpendicular paraboloids along the y-axis and along the X-axis.
  • the incident X-ray beam is directed toward the metallic material parabolic two-dimensional focusing X-ray combined refraction lens along the z-axis direction of the coordinate system as shown in FIG. 1, and is subjected to multiple refraction of the two-dimensional focus refraction unit from the metal material. After the parabolic two-dimensional focused X-ray combined refractive lens emerges, a two-dimensional focused focal spot is formed.
  • the long axis is 42 microns
  • the short axis is 32 microns
  • 1 is 50 microns
  • is 1 micron
  • 20
  • t is 50 microns
  • the electroformed cathode film is copper material
  • the electroformed metal material is nickel.
  • Example 3 all fabrication steps are the same as in Example 1, except that the major axis is 242 microns, the minor axis is 222 microns, 1 is 250 microns, ⁇ is 2 microns, ⁇ is 100, and t is 100 microns.
  • the electroformed cathode film is made of aluminum and the electroformed metal material is nickel.
  • the major axis is 200 ⁇ m
  • the minor axis is 180 ⁇ m
  • 1 is 210 ⁇ m
  • is 1.5 ⁇ m
  • 80
  • t 80 ⁇ m.
  • the electroformed cathode film is a gold material
  • the electroformed metal material is iron.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

说 明 书
金属材料抛物面型二维聚焦 X射线组合折射透镜的制作方法 技术领域
本发明涉及一种新型 X射线微结构光学器件一抛物面型二维聚焦 X射线组合折射透镜的制作方法, 适用于金属材料二维聚焦 X射线组 合折射透镜制作的场合。
背景技术
X射线组合透镜是 A. Snigirev在 1996年提出的一种适用于高能 X 射线波段(即 X射线辐射能量超过 5keV )的、基于折射效应的 X射线 微结构光学器件。 具有不需要折转光路、 高温稳定性好且易冷却、 结 构简单紧凑、 对透镜表面粗糙度要求低等优点。 在超高分辨率 X射线 诊断科学和技术领域有广泛的应用前景。 近年来, 基于 X射线组合透 镜的各种 X射线诊断技术研究非常活跃。 比如用于样本中元素分布测 量的高能 X射线荧光微层析实验系统; 利用铝材料 X射线组合透镜的 中子显微镜; 以及用于单细胞检测、 化学微分析、 早期胸部肿瘤检测 等的高能 X射线实验系统等等。
最初的 X射线组合透镜是采用计算机精密控制钻孔的方法, 在铝 金属材料上制作出几十至几百个顺序排布的圆柱状孔来实现的, 对 X 射线进行一维聚焦, 并利用其开展 X射线探测和诊断技术研究。 之后 为了提高制作精度, 多采用平面微制作技术 (包括薄膜沉积, 光学刻 蚀、 电子束刻蚀、 离子束刻蚀等技术) 制作截面形状为圆形、 抛物面 形、 椭圆面形的 X射线组合透镜, 组合透镜材料扩展到铝、 硅、 锂、 硼、 碳、 氧化铝、 有机材料 PMMA等等, 聚焦的效果大幅度改善, 只 是这样的 X射线组合透镜依然是一维聚焦的。 然而, X射线探测和诊 断技术应用领域,通常需要微米甚至亚微米量级的 X射线探测光斑(即 聚焦焦斑), 而不仅仅是聚焦焦线。 因此必须发展能够对 X射线辐射进 行二维聚焦的 X射线组合透镜。
目前二维聚焦的 X射线组合透镜国内尚未见报道, 国际上主要采 取两种方式来达到对 X射线二维聚焦的目的。 一是将两个一维聚焦 X 射线组合透镜正交放置, 分别对 X射线束进行水平方向线聚焦和垂直 方向线聚焦, 以达到二维聚焦的目的 (C.G. Schroer, et αί, Appl. Phys. Lett., 2003, vol.82, ppl485-1487 ), 只需要制作一维 X射线组合透镜, 而不涉及二维 X射线组合透镜的制作技术。 二是采用模压技术来制作 二维聚焦的 X射线组合透镜 (B. Lengeler, et al, Appl. Phys. Lett., 1999, vol.74, pp3924-3926 ) ,即首先采用精密机械制造技术制作旋转抛物面形 的透镜折射单元模具, 然后在铝材料上压制一个个单个的组合透镜折 射单元, 最后将组合透镜折射单元一个一个顺序排列组合起来形成二 维聚焦的 X射线组合透镜。
发明内容
为了克服已有二维聚焦 X射线组合折射透镜的制作方法的制作工 艺精度不够高、 得到的透镜校准精度低、 聚焦效率低的不足, 本发明 提供一种制作工艺精度高、 得到的透镜光轴可高精度自校准、 聚焦效 率高的金属材料抛物面型二维聚焦 X射线组合折射透镜的制作方法。
本发明解决其技术问题所采用的技术方案是:
一种金属材料抛物面型二维聚焦 X射线组合折射透镜的制作方法, 所述制作方法包括以下步骤:
( 1 )所述金属材料抛物面型二维聚焦 X射线组合折射透镜的母镜的 制作步骤:
(A)用电子束刻蚀技术制作玻璃基底金属铬材料的母镜的光刻 掩模版, 所述母镜的光刻掩模版由多个顺序间隔同轴排布的截 面为两条对称的抛物线形开口相接构成的第一抛物线形孔和正 方形孔组成, 所述正方形孔共有 n个, 所述正方形孔的边长为 1+5;
(Β ) 对玻璃基板进行清洁处理;
(C) 在经步骤 (Β ) 处理的玻璃基板表面上用溅射或蒸发方法 生长一层铜或铝或金材料薄膜, 作为电铸阴极薄膜;
(D)在生长好的电铸阴极薄膜上自旋涂覆一层 BP212正性光刻 胶, 并烘烤固化;
(Ε)在烘烤固化后的 BP212正性光刻胶上自旋涂覆一层厚度为 1的 SU-8光刻胶;
(F) 对涂覆好的 SU-8光刻胶依次进行曝光、 显影和坚膜, 使 用步骤 (Α) 制成的母镜的光刻掩模版; (G) 对经步骤 (F) 处理的样片进行清洗, 并去除上表面暴露 出的 BP212正性光刻胶;
(H) 把经步骤 (G) 处理的样片放入电铸液中进行电铸, 电铸 金属材料为铜或镍或铁或铬;
(I)当电铸金属材料的厚度与 SU-8光刻胶厚度相等,即为 1时, 取出样片并进行清洗, 去除残留的电铸液;
(J) 将经步骤 (I) 处理的样片放入丙酮溶液中, 去除 BP212 正性光刻胶及其上面的 SU-8光刻胶, 制成金属材料抛物面型二 维聚焦 X射线组合折射透镜的母镜;
(2)所述金属材料抛物面型二维聚焦 X射线组合折射透镜的子镜 的制作步骤:
(K)用电子束刻蚀技术制作玻璃基底金属铬材料的子镜的光刻 掩模版, 所述子镜的光刻掩模版包括夹持臂和布置在夹持臂上 的多个同轴排布的正方形嵌入镜体,所述正方形嵌入镜体共有 n 个, 与所述母镜的正方形孔个数相同, 所述正方形嵌入镜体中 有截面为两条对称的抛物线形开口相接构成的第二抛物线形 孔, 所述第二抛物线形孔的中心与所述正方形嵌入镜体的中心 重合, 所述正方形嵌入镜体的边长为 1, 所述正方形嵌入镜体与 所述夹持臂为一体, 所述夹持臂的厚度为 t;
(L) 对硅片衬底进行清洁处理;
(M) 在经步骤 (L) 处理的硅片衬底表面自旋涂覆一层 BP212 光刻胶, 并进行前烘;
(N)在经步骤(M) 处理的样片表面用溅射或蒸发方法生长一 层铜或铝或金材料薄膜, 作为电铸阴极薄膜;
(0)在经步骤(N)处理的样片表面自旋涂覆一层 KMP C5315 光刻胶
(P) 在经步骤 (0) 处理的样片表面自旋涂覆一层厚度为 1 的 SU-8光刻胶;
(Q)对涂覆好的 SU-8光刻胶依次进行曝光、 显影和坚膜, 使用 步骤 (K) 制成的子镜的光刻掩模版;
(R) 使用 KMP C5315光刻胶去胶剂去除上表面暴露出的 KMP C5315光刻胶;
(S ) 把经步骤 (R) 处理的样片放入电铸液中进行电铸, 电铸 金属材料为铜或镍或铁或铬, 但电铸阴极薄膜材料与电铸金属 材料不能相同;
(T) 当电铸金属材料的厚度与 SU-8 光刻胶厚度相等, 即为 1 时, 取出样片并进行清洗, 去除残留的电铸液;
(U)将经步骤(T)处理的样片放入丙酮溶液中,去除 KMP C5315 光刻胶及其上面的 SU-8光刻胶, 同时去除 BP212光刻胶及其下 面硅片;
(V)对经步骤(U)处理的样片使用化学腐蚀方法去除电铸阴极 薄膜,制成金属材料抛物面型二维聚焦 X射线组合折射透镜的子 镜;
(3 )所述金属材料抛物面型二维聚焦 X射线组合折射透镜的组装 步骤:
(W)将制成的母镜和子镜置于显微镜下, 发现并夹住子镜的夹持 臂,将子镜的嵌入镜体对准母镜的正方形孔,所述母镜的第一抛物 线形和所述子镜的第二抛物线形相互呈正交结构,子镜上的 n个嵌 入镜体与母镜上的 n个正方形孔一一对应,嵌入并轻轻压紧,完成 金属材料抛物面型二维聚焦 X射线组合折射透镜的制作。
进一步, 所述步骤 (A) 中, 所述第一抛物线形孔的中心与正方形 孔的中心之间的距离为 1, 所述步骤 (K) 中, 所述两个正方形嵌入镜 体之间的距离为 1。
再进一步, 所述第一抛物线形孔和第二抛物线形孔的长轴范围为
42微米到 242微米、 短轴范围为 32微米到 222微米, 1的范围为 50微 米到 250微米, δ的范围为 1微米到 2微米, η的范围为 20到 100个, t的范围为 50微米到 100微米。
本发明的技术构思为: 设计了一种金属材料抛物面型二维聚焦 X 射线组合折射透镜,包括玻璃基板和母镜,所述母镜安装在所述玻璃基 板上,所述母镜包括母镜主体和在所述母镜主体上顺序间隔布置的截面 为两条对称的抛物线形开口相接构成的第一抛物线形空腔和正方形空 腔,各个第一抛物线形空腔的中心和正方形空腔中心均位于所述母镜主 体的长度方向的同一直线上, 所述第一抛物线形空腔设有用以对 X射 线进行折射以达到对 X射线辐射沿第一抛物线形空腔短轴方向聚焦的 第一抛物面,各个正方形空腔内嵌入子镜体,所述子镜体的截面呈正方 形,所述子镜体正中设有两条对称的抛物线形开口相接构成的第二抛物 线形空腔, 所述第二抛物线形空腔设有用以对 X射线进行折射以达到 对 X射线辐射沿第二抛物线形空腔短轴方向聚焦的第二抛物面, 所述 第一抛物面与所述第二抛物面相互呈正交结构。
所述第一抛物线形空腔中的两条对称的抛物线的方程表示为 x2=2Rz, 所述第二抛物线形空腔中的两条对称的抛物线的方程表示为 y2=2Rz, 其中 R为抛物线顶点处的曲率半径, x、 y、 z分别代表图 1中 直角坐标系的 X轴、 y轴和 z轴, 所述第一和第二抛物线型空腔的长轴 和短轴可由上述两个方程计算得出。
多个嵌入镜体安装在夹持臂上, 相邻嵌入镜体的中心间距与相邻 正方形空腔的中心间距相等。 所述嵌入镜体为正方体, 所述第二抛物 线形空腔的长轴和短轴均比所述正方体边长小, 所述正方体的中心线 与所述第二抛物线形空腔的中心线重合, 所述正方形空腔的边长比所 述正方体边长大, 所述第一抛物线形空腔的深度和正方形空腔的深度 均与所述正方体的边长相等。 所述正方形空腔的中心和第一抛物线形 空腔的中心之间的距离与所述正方体的边长相等。 所述第一抛物线形 空腔的长轴和所述第二抛物线形空腔的长轴相等, 所述第一抛物线形 空腔的短轴和所述第二抛物线形空腔的短轴相等, 也可以不相等。
所述母镜和子镜, 经在显微镜下组装后, 即形成本发明金属材料抛 物面型二维聚焦 X射线组合折射透镜(如图 1所示), 图 1所示坐标系 的 z轴为所述金属材料抛物面型二维聚焦 X射线组合折射透镜的光轴。 所述金属材料抛物面型二维聚焦 X射线组合折射透镜的二维聚焦功能, 由其内的一个个二维聚焦折射单元 (如图 lc所示) 完成, 所述二维聚 焦折射单元, 由一个沿 y轴、一个沿 X轴的两个相互垂直的抛物面共同 构成。 入射 X射线束沿着如图 1所示坐标系的 z轴方向射向抛物面型 二维聚焦 X射线组合折射透镜, 经一个个二维聚焦折射单元的多次折 射, 从所述金属材料抛物面型二维聚焦 X射线组合折射透镜出射后, 形成二维聚焦焦斑。
本发明的有益效果主要表现在: 1、 发明了一种新型 X微结构器件 --金属材料抛物面型二维聚焦 X射线组合折射透镜的制作方法,用于对 该新型 X射线器件的实际制作; 2、金属材料抛物面型二维聚焦 X射线 组合折射透镜具有单个器件实现对 X射线束二维聚焦的功能, 且校准 精度高、 方便; 3、 采用平面微细加工技术, 器件深宽比大, 对材料限 制小, 可以一体化、 一次性精密加工成型。
附图说明
图 la是本发明金属材料抛物面型二维聚焦 X射线组合折射透镜 的正视图。
图 lb是本发明金属材料抛物面型二维聚焦 X射线组合折射透镜 的俯视图。
图 lc是本发明金属材料抛物面型二维聚焦 X射线组合折射透镜 中二维聚焦折射单元的局部 I的放大图。
图 Id是本发明金属材料抛物面型二维聚焦 X射线组合折射透镜 中二维聚焦折射单元的局部 I的俯视图。
图 2a是本发明金属材料抛物面型二维聚焦 X射线组合折射透镜 的母镜的光刻掩模版示意图
图 2b是本发明金属材料抛物面型二维聚焦 X射线组合折射透镜 的子镜的光刻掩模版示意图
其中: 0表示直角坐标系的原点, x、 y、 z分别代表直角坐标系的 X轴、 y轴和 z轴, R为抛物线顶点处的曲率半径, g表示光轴, a为 光刻掩模版的遮光部分。
具体实施方式
下面结合附图对本发明作进一步描述。
实施例 1
参照图 la〜图 2b, 一种金属材料抛物面型二维聚焦 X射线组合折 射透镜的制作方法, 具体步骤如下:
( 1 )所述金属材料抛物面型二维聚焦 X射线组合折射透镜的母镜的 制作步骤:
(A)用电子束刻蚀技术制作玻璃基底金属铬材料的母镜的光刻 掩模版, 所述母镜的光刻掩模版由多个顺序间隔同轴排布的截 面为两条对称的抛物线形构成的第一抛物线形孔和正方形孔组 成, 所述第一抛物线形孔中的两条对称的抛物线的方程表示为 x2=2Rz, 其中 R为抛物线顶点处的曲率半径, x、 z分别代表图
1中直角坐标系的 X轴和 z轴,所述第一抛物线形孔的长轴和短 轴可由上述方程计算得出, 所述正方形孔共有 n个, 所述正方 形孔的边长为 1+δ;
(Β ) 对玻璃基板进行清洁处理;
(C) 在经步骤 (Β ) 处理的玻璃基板表面上用溅射或蒸发方法 生长一层铜或铝或金材料薄膜, 作为电铸阴极薄膜; (D)在生长好的电铸阴极薄膜上自旋涂覆一层 BP212正性光刻 胶, 并烘烤固化;
(E)在烘烤固化后的 BP212正性光刻胶上自旋涂覆一层厚度为 1的 SU-8光刻胶;
(F) 对涂覆好的 SU-8光刻胶依次进行曝光、 显影和坚膜, 使 用步骤 (A) 制成的母镜的光刻掩模版;
(G) 对经步骤 (F) 处理的样片进行清洗, 并去除上表面暴露 出的 BP212正性光刻胶;
(H) 把经步骤 (G) 处理的样片放入电铸液中进行电铸, 电铸 金属材料为铜或镍或铁或铬;
(I)当电铸金属材料的厚度与 SU-8光刻胶厚度相等,即为 1时, 取出样片并进行清洗, 去除残留的电铸液;
(J) 将经步骤 (I) 处理的样片放入丙酮溶液中, 去除 BP212 正性光刻胶及其上面的 SU-8光刻胶, 制成金属材料抛物面型二 维聚焦 X射线组合折射透镜的母镜;
(2)所述金属材料抛物面型二维聚焦 X射线组合折射透镜的子镜 的制作步骤:
(K)用电子束刻蚀技术制作玻璃基底金属铬材料的子镜的光刻 掩模版, 所述子镜的光刻掩模版包括夹持臂和布置在夹持臂上 的多个同轴排布的正方形嵌入镜体,所述正方形嵌入镜体共有 n 个, 与所述母镜的正方形孔个数相同, 所述正方形嵌入镜体中 有截面为两条对称的抛物线形构成的第二抛物线形孔, 所述第 二抛物线形孔中的两条对称的抛物线的方程表示为 y2=2Rz, 其 中 R为抛物线顶点处的曲率半径, y、 z分别代表图 1中直角坐 标系的 y轴和 z轴,所述第二抛物线形孔的长轴和短轴可由上述 方程计算得出, 所述第二抛物线形孔的中心与所述正方形嵌入 镜体的中心重合, 所述正方形嵌入镜体的边长为 1, 所述正方形 嵌入镜体与所述夹持臂为一体, 所述夹持臂的厚度为 t;
(L) 对硅片衬底进行清洁处理;
(M) 在经步骤 (L) 处理的硅片衬底表面自旋涂覆一层 BP212 光刻胶, 并进行前烘;
(N)在经步骤(M) 处理的样片表面用溅射或蒸发方法生长一 层铜或铝或金材料薄膜, 作为电铸阴极薄膜;
(0)在经步骤(N)处理的样片表面自旋涂覆一层 KMP C5315 光刻胶
(P) 在经步骤 (0) 处理的样片表面自旋涂覆一层厚度为 1 的 SU-8光刻胶;
(Q)对涂覆好的 SU-8光刻胶依次进行曝光、 显影和坚膜, 使用 步骤 (K) 制成的子镜的光刻掩模版;
(R) 使用 KMP C5315光刻胶去胶剂去除上表面暴露出的 KMP C5315光刻胶;
(S ) 把经步骤 (R) 处理的样片放入电铸液中进行电铸, 电铸 金属材料为铜或镍或铁或铬, 但电铸阴极薄膜材料与电铸金属 材料不能相同;
(T) 当电铸金属材料的厚度与 SU-8 光刻胶厚度相等, 即为 1 时, 取出样片并进行清洗, 去除残留的电铸液;
(U)将经步骤(T)处理的样片放入丙酮溶液中,去除 KMP C5315 光刻胶及其上面的 SU-8光刻胶, 同时去除 BP212光刻胶及其下 面硅片;
(V)对经步骤(U)处理的样片使用化学腐蚀方法去除电铸阴极 薄膜,制成金属材料抛物面型二维聚焦 X射线组合折射透镜的子 镜;
(3 )所述金属材料抛物面型二维聚焦 X射线组合折射透镜的组装 步骤:
(W)将制成的母镜和子镜置于显微镜下, 发现并夹住子镜的夹持 臂,将子镜的嵌入镜体对准母镜的正方形孔,所述母镜的第一抛物 线形和所述子镜的第二抛物线形相互呈正交结构,子镜上的 n个嵌 入镜体与母镜上的 n个正方形孔一一对应,嵌入并轻轻压紧,完成 金属材料抛物面型二维聚焦 X射线组合折射透镜的制作。
所述步骤 (A) 中, 所述第一抛物线形孔的中心与正方形孔的中心 之间的距离为 1, 所述步骤 (K) 中, 所述两个正方形嵌入镜体之间的 距离为 1。
本实施例的金属材料抛物面型二维聚焦 X射线组合折射透镜, 包 括玻璃基板,一个位于玻璃基板上的母镜和一个嵌入母镜的子镜共同组 成(如图 1所示)。 所述玻璃基板作为金属材料抛物面型二维聚焦 X射 线组合折射透镜的底座,所述母镜制作在玻璃基板上,母镜包括母镜主 体材料和在主体材料上顺序排列的第一抛物线形空腔和正方形空腔共 同构成,所述正方形空腔为嵌入子镜所用。所述子镜包括夹持臂和嵌入 镜体共同组成,所述嵌入镜体为正方形, 正方形正中有第二抛物线形空 腔, 所述子镜的嵌入镜体从所述母镜的上方嵌入母镜的正方形空腔中。 所述母镜中的第一抛物线形空腔和所述子镜中的第二抛物线形空腔的 抛物面完成对 X射线的折射, 达到对 X射线辐射沿抛物线短轴方向的 聚焦。 所述金属材料抛物面型二维聚焦 X射线组合折射透镜的二维聚 焦功能, 由其内的一个个二维聚焦折射单元 (如图 lc所示) 完成, 所 述二维聚焦折射单元, 由一个沿 y轴、一个沿 X轴的两个相互垂直的抛 物面共同构成。 入射 X射线束沿着如图 1所示坐标系的 z轴方向射向 金属材料抛物面型二维聚焦 X射线组合折射透镜, 经一个个二维聚焦 折射单元的多次折射, 从所述金属材料抛物面型二维聚焦 X射线组合 折射透镜出射后, 形成二维聚焦焦斑。
其中: 长轴为 42微米, 短轴为 32微米, 1为 50微米, δ为 1微米, η为 20个, t为 50微米, 电铸阴极薄膜为铜材料, 电铸金属材料为镍。
实施例 2
参照图 la〜图 2b, 所有制作步骤与实施例 1相同, 只是其中长轴 为 242微米, 短轴为 222微米, 1为 250微米, δ为 2微米, η为 100个, t为 100微米, 电铸阴极薄膜为铝材料, 电铸金属材料为镍。 实施例 3
参照图 la〜图 2b, 所有制作步骤与实施例 1相同, 只是其中长轴 为 200微米, 短轴为 180微米, 1为 210微米, δ为 1.5微米, η为 80 个, t为 80微米, 电铸阴极薄膜为金材料, 电铸金属材料为铁。
本说明书的实施例所述的内容仅仅是对发明构思的实现形式的列 举, 本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式, 本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到 的等同技术手段。

Claims

权 利 要 求 书
1、 一种金属材料抛物面型二维聚焦 X射线组合折射透镜的制作方法, 其特征在于: 所述制作方法包括以下步骤:
( 1 )所述金属材料抛物面型二维聚焦 X射线组合折射透镜的母镜的 制作步骤:
(A)用电子束刻蚀技术制作玻璃基底金属铬材料的母镜的光刻 掩模版, 所述母镜的光刻掩模版由多个顺序间隔同轴排布的截 面为两条对称的抛物线形开口相接构成的第一抛物线形孔和正 方形孔组成, 所述正方形孔共有 n个, 所述正方形孔的边长为 1+5;
(Β ) 对玻璃基板进行清洁处理;
(C) 在经步骤 (Β ) 处理的玻璃基板表面上用溅射或蒸发方法 生长一层铜或铝或金材料薄膜, 作为电铸阴极薄膜;
(D)在生长好的电铸阴极薄膜上自旋涂覆一层 BP212正性光刻 胶, 并烘烤固化;
(Ε)在烘烤固化后的 BP212正性光刻胶上自旋涂覆一层厚度为 1的 SU-8光刻胶;
(F) 对涂覆好的 SU-8光刻胶依次进行曝光、 显影和坚膜, 使 用步骤 (Α) 制成的母镜的光刻掩模版;
(G) 对经步骤 (F) 处理的样片进行清洗, 并去除上表面暴露 出的 BP212正性光刻胶;
(Η) 把经步骤 (G) 处理的样片放入电铸液中进行电铸, 电铸 金属材料为铜或镍或铁或铬;
(I)当电铸金属材料的厚度与 SU-8光刻胶厚度相等,即为 1时, 取出样片并进行清洗, 去除残留的电铸液;
(J) 将经步骤 (I) 处理的样片放入丙酮溶液中, 去除 BP212 正性光刻胶及其上面的 SU-8光刻胶, 制成金属材料抛物面型二 维聚焦 X射线组合折射透镜的母镜;
(2)所述金属材料抛物面型二维聚焦 X射线组合折射透镜的子镜 的制作步骤:
(K)用电子束刻蚀技术制作玻璃基底金属铬材料的子镜的光刻 掩模版, 所述子镜的光刻掩模版包括夹持臂和布置在夹持臂上 的多个同轴排布的正方形嵌入镜体,所述正方形嵌入镜体共有 n 个, 与所述母镜的正方形孔个数相同, 所述正方形嵌入镜体中 有截面为两条对称的抛物线形开口相接构成的第二抛物线形 孔, 所述第二抛物线形孔的中心与所述正方形嵌入镜体的中心 重合, 所述正方形嵌入镜体的边长为 1, 所述正方形嵌入镜体与 所述夹持臂为一体, 所述夹持臂的厚度为 t;
(L) 对硅片衬底进行清洁处理;
(M) 在经步骤 (L) 处理的硅片衬底表面自旋涂覆一层 BP212 光刻胶, 并进行前烘;
(N)在经步骤(M) 处理的样片表面用溅射或蒸发方法生长一 层铜或铝或金材料薄膜, 作为电铸阴极薄膜;
(0)在经步骤(N)处理的样片表面自旋涂覆一层 KMP C5315 光刻胶
(P) 在经步骤 (O) 处理的样片表面自旋涂覆一层厚度为 1 的 SU-8光刻胶;
(Q)对涂覆好的 SU-8光刻胶依次进行曝光、 显影和坚膜, 使用 步骤 (K) 制成的子镜的光刻掩模版;
(R) 使用 KMP C5315光刻胶去胶剂去除上表面暴露出的 KMP C5315光刻胶;
(S ) 把经步骤 (R) 处理的样片放入电铸液中进行电铸, 电铸 金属材料为铜或镍或铁或铬, 但电铸阴极薄膜材料与电铸金属 材料不能相同;
(T) 当电铸金属材料的厚度与 SU-8 光刻胶厚度相等, 即为 1 时, 取出样片并进行清洗, 去除残留的电铸液;
(U)将经步骤(T)处理的样片放入丙酮溶液中,去除 KMP C5315 光刻胶及其上面的 SU-8光刻胶, 同时去除 BP212光刻胶及其下 面硅片;
(V)对经步骤(U)处理的样片使用化学腐蚀方法去除电铸阴极 薄膜,制成金属材料抛物面型二维聚焦 X射线组合折射透镜的子 镜;
(3 )所述金属材料抛物面型二维聚焦 X射线组合折射透镜的组装 步骤:
(W)将制成的母镜和子镜置于显微镜下, 发现并夹住子镜的夹持 臂,将子镜的嵌入镜体对准母镜的正方形孔,所述母镜的第一抛物 线形和所述子镜的第二抛物线形相互呈正交结构,子镜上的 n个嵌 入镜体与母镜上的 n个正方形孔一一对应,嵌入并轻轻压紧,完成 金属材料抛物面型二维聚焦 X射线组合折射透镜的制作。
2、如权利要求 1所述的金属材料抛物面型二维聚焦 X射线组合折射透 镜的制作方法, 其特征在于: 所述步骤 (A) 中, 所述第一抛物线形孔 的中心与正方形孔的中心之间的距离为 1, 所述步骤 (K) 中, 所述两 个正方形嵌入镜体之间的距离为 1。
3、如权利要求 1或 2所述的金属材料抛物面型二维聚焦 X射线组合折 射透镜的制作方法,其特征在于:所述第一抛物线形孔和第二抛物线形 孔的长轴范围为 42微米到 242微米、 短轴范围为 32微米到 222微米, 1的范围为 50微米到 250微米, δ的范围为 1微米到 2微米, η的范围 为 20到 100个, t的范围为 50微米到 100微米。
PCT/CN2011/075747 2011-03-16 2011-06-14 金属材料抛物面型二维聚焦x射线组合折射透镜的制作方法 WO2012122751A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/027,201 US9027221B2 (en) 2011-03-16 2013-09-14 Method for manufacturing compound refractive lens for focusing X-rays in two dimensions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110063257.8 2011-03-16
CN201110063257 2011-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/027,201 Continuation-In-Part US9027221B2 (en) 2011-03-16 2013-09-14 Method for manufacturing compound refractive lens for focusing X-rays in two dimensions

Publications (1)

Publication Number Publication Date
WO2012122751A1 true WO2012122751A1 (zh) 2012-09-20

Family

ID=44745765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075747 WO2012122751A1 (zh) 2011-03-16 2011-06-14 金属材料抛物面型二维聚焦x射线组合折射透镜的制作方法

Country Status (3)

Country Link
US (1) US9027221B2 (zh)
CN (1) CN102214493B (zh)
WO (1) WO2012122751A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454298A (zh) * 2013-08-15 2013-12-18 浙江工业大学 一种微束x射线荧光分析方法
CN103454299A (zh) * 2013-08-15 2013-12-18 浙江工业大学 便携式微束x射线荧光光谱仪

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679391B (zh) * 2016-01-18 2017-06-30 浙江工业大学 一种x射线组合折射透镜聚焦光学系统优化方法
DE102016116541B4 (de) 2016-09-05 2023-02-23 Karlsruher Institut für Technologie Röntgenlinsenanordnung
CN106441141B (zh) * 2016-12-05 2023-03-17 南京科远智慧科技集团股份有限公司 一种燃烧检测系统及其燃烧检测方法
DE102017123851B4 (de) 2017-10-13 2019-06-13 Karlsruher Institut für Technologie Röntgenlinsenanordnung, sowie Herstellungsverfahren dafür
CN108417288B (zh) * 2018-04-23 2020-01-10 浙江工业大学 一种微型化x射线阵列组合折射透镜集成组件的制作方法
US11919264B2 (en) 2020-09-30 2024-03-05 Uchicago Argonne, Llc Method of printing and implementing refractive X-ray optical components
CN115508922A (zh) * 2022-09-16 2022-12-23 中国科学院上海高等研究院 一种利用离子束加工x射线复合折射透镜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786742A (zh) * 2005-12-07 2006-06-14 乐孜纯 铝材料一维x射线折衍射微结构器件的制作方法
KR20060086076A (ko) * 2005-01-26 2006-07-31 최재호 엑스선 복합굴절렌즈 시스템 제조 방법
CN101221829A (zh) * 2008-01-07 2008-07-16 浙江工业大学 纳米聚焦x射线组合透镜的制作方法
CN102157216A (zh) * 2011-02-17 2011-08-17 浙江工业大学 Su-8材料镶嵌式二维聚焦x射线组合折射透镜的制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091798A (en) * 1997-09-23 2000-07-18 The Regents Of The University Of California Compound refractive X-ray lens
JP3590317B2 (ja) * 1999-03-01 2004-11-17 住友重機械工業株式会社 X線レンズ及びその製造方法
US6674583B2 (en) * 2001-06-25 2004-01-06 Adelphi Technology, Inc. Fabrication of unit lenses for compound refractive lenses
US6718009B1 (en) * 2002-09-13 2004-04-06 The University Of Chicago Method of making of compound x-ray lenses and variable focus x-ray lens assembly
JP2005207962A (ja) * 2004-01-26 2005-08-04 Japan Synchrotron Radiation Research Inst Be材による放物面型X線屈折レンズの製造方法及び多段積層モジュール
CN102157217B (zh) * 2011-03-16 2013-01-16 浙江工业大学 抛物面型二维聚焦x射线组合折射透镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060086076A (ko) * 2005-01-26 2006-07-31 최재호 엑스선 복합굴절렌즈 시스템 제조 방법
CN1786742A (zh) * 2005-12-07 2006-06-14 乐孜纯 铝材料一维x射线折衍射微结构器件的制作方法
CN101221829A (zh) * 2008-01-07 2008-07-16 浙江工业大学 纳米聚焦x射线组合透镜的制作方法
CN102157216A (zh) * 2011-02-17 2011-08-17 浙江工业大学 Su-8材料镶嵌式二维聚焦x射线组合折射透镜的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YE, JIAN ET AL. ET AL.: "Design and manufacture of a Cu compound X-ray refractive lens", OPTICAL TECHNIQUE, vol. 30, no. 1, 2004, pages 20 - 23 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454298A (zh) * 2013-08-15 2013-12-18 浙江工业大学 一种微束x射线荧光分析方法
CN103454299A (zh) * 2013-08-15 2013-12-18 浙江工业大学 便携式微束x射线荧光光谱仪

Also Published As

Publication number Publication date
US20140013573A1 (en) 2014-01-16
US20140250666A9 (en) 2014-09-11
US9027221B2 (en) 2015-05-12
CN102214493B (zh) 2013-01-16
CN102214493A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2012122751A1 (zh) 金属材料抛物面型二维聚焦x射线组合折射透镜的制作方法
JP4200223B2 (ja) マイクロレンズ用金型、マイクロレンズおよびそれらの製法
US20060126185A1 (en) Microlens array sheet and method for manufacturing the same
CN202034080U (zh) 抛物面型二维聚焦x射线组合折射透镜
JP5261823B2 (ja) 光学モジュールおよびその製造方法
CN111063471A (zh) Angel型龙虾眼X射线聚焦光学器件及其制备、检测方法
CN109031482B (zh) 一种制备微透镜结构的方法
CN100476460C (zh) 一种变焦距x射线组合透镜及其制作方法
CN111965739A (zh) 一种双焦距微透镜阵列结构的简便制备方法
CN102157216B (zh) Su-8材料镶嵌式二维聚焦x射线组合折射透镜的制作方法
CN201975093U (zh) 镶嵌式二维聚焦x射线组合折射透镜
CN102157217B (zh) 抛物面型二维聚焦x射线组合折射透镜
JPH0763904A (ja) 複合球面マイクロレンズアレイ及びその製造方法
JP2011185781A (ja) 電磁波集光シート
CN1327250C (zh) 聚甲基丙烯酸甲酯材料一维x射线折衍射微结构器件的制作方法
CN1811491A (zh) 一种x射线组合透镜及其制作工艺
CN102789128A (zh) 一种制备图案化ZnO纳米棒阵列的方法
Hudec et al. Innovative technologies for future astronomical x-ray mirrors
CN102136305B (zh) 镶嵌式二维聚焦x射线组合折射透镜
JP3590317B2 (ja) X線レンズ及びその製造方法
JP5679976B2 (ja) 照射によりコージエライトガラス体を製造する方法およびそれにより得られたガラス体
RU205730U1 (ru) Пиролизованная линза для рентгеновского излучения
TWI382548B (zh) A two-dimensional polymer grating of the solar cells
RU205417U1 (ru) Пиролизованный объектив для рентгеновского излучения
CN2572716Y (zh) 有机材料高能x射线聚焦组合透镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860988

Country of ref document: EP

Kind code of ref document: A1