WO2012120740A1 - 超音波照射デバイスおよび超音波照射装置 - Google Patents

超音波照射デバイスおよび超音波照射装置 Download PDF

Info

Publication number
WO2012120740A1
WO2012120740A1 PCT/JP2011/078569 JP2011078569W WO2012120740A1 WO 2012120740 A1 WO2012120740 A1 WO 2012120740A1 JP 2011078569 W JP2011078569 W JP 2011078569W WO 2012120740 A1 WO2012120740 A1 WO 2012120740A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
container
irradiation device
irradiation
ultrasonic wave
Prior art date
Application number
PCT/JP2011/078569
Other languages
English (en)
French (fr)
Inventor
博士 鶴田
峰雪 村上
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2012120740A1 publication Critical patent/WO2012120740A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • A61B17/2251Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves characterised by coupling elements between the apparatus, e.g. shock wave apparatus or locating means, and the patient, e.g. details of bags, pressure control of bag on patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • A61B17/2251Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves characterised by coupling elements between the apparatus, e.g. shock wave apparatus or locating means, and the patient, e.g. details of bags, pressure control of bag on patient
    • A61B2017/2253Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves characterised by coupling elements between the apparatus, e.g. shock wave apparatus or locating means, and the patient, e.g. details of bags, pressure control of bag on patient using a coupling gel or liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0039Ultrasound therapy using microbubbles

Definitions

  • the present invention relates to an ultrasonic irradiation device and an ultrasonic irradiation apparatus.
  • an ultrasonic irradiation device that performs treatment by irradiating a focal region with ultrasonic waves is known (for example, see Patent Document 1).
  • the ultrasonic wave propagating liquid is filled in an applicator equipped with a transducer that generates ultrasonic waves and a coupling film that transmits ultrasonic waves.
  • the applicator is exchanged with the transducer.
  • an applicator including a transducer for generating ultrasonic waves must be prepared for each irradiation target, and the cost is high when there are a large number of irradiation targets. There is.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an ultrasonic irradiation device and an ultrasonic irradiation apparatus that can be applied to a large number of irradiation targets at low cost.
  • the present invention provides the following means.
  • the first aspect of the present invention has an ultrasonic wave permeable film that transmits ultrasonic waves in at least a part of the wall surface, and stores an ultrasonic wave propagation liquid that propagates ultrasonic waves.
  • An ultrasonic irradiation device that detachably attaches a container to be closed and closes the opening, and is disposed at a position facing the ultrasonic permeable membrane in the container with the container attached, and radiates ultrasonic waves.
  • An ultrasonic element including an irradiation surface to perform, and a bubble restriction unit that restricts bubbles existing in the container to outside the propagation region of the ultrasonic wave irradiated from the ultrasonic element in a state where the container is attached. It is a sound wave irradiation device.
  • the irradiation surface of the ultrasonic element and the ultrasonic transmission film in the container are arranged to face each other.
  • the irradiation area of the sound wave is filled with the ultrasonic wave propagation liquid. Therefore, when ultrasonic waves are irradiated from the irradiation surface of the ultrasonic element, the ultrasonic waves propagate through the ultrasonic wave propagation liquid, pass through the ultrasonic transmission film, and reach the irradiation target.
  • bubbles may be mixed in the ultrasonic wave propagation liquid in the container, but even in this case, the bubbles are restricted by the bubble restriction unit so as not to enter the ultrasonic wave propagation region.
  • the bubble restriction unit By restricting the bubbles outside the propagation region, it is possible to suppress irregular reflection of ultrasonic waves due to the bubbles, failure due to adhesion of the bubbles to the ultrasonic element, and the like, and it is possible to efficiently irradiate the irradiation target with ultrasonic waves.
  • the holding part which attaches the said container so that attachment or detachment is possible is provided,
  • limiting part is provided in this holding part It may be done.
  • the ultrasonic element is arranged so that the irradiation surface is exposed in the container, and the bubble restriction part is arranged in the container. Accordingly, an ultrasonic wave that can irradiate ultrasonic waves through an ultrasonic wave propagation liquid while limiting the bubbles outside the ultrasonic wave propagation area by the bubble restriction unit provided in the holding part simply by attaching the container to the holding part.
  • the structure of the irradiation device can be simplified.
  • the bubble restriction portion may be a concave portion.
  • limiting part may be arrange
  • the ultrasonic irradiation device can be tilted in any direction regardless of the circumferential direction.
  • the bubbles can be restricted outside the ultrasonic wave propagation region by the bubble restricting portion arranged at the position.
  • the holding portion is provided with a through hole having one end opened in the container and the other end opened outside the container in a state where the container is attached. It is good. By doing in this way, after attaching a container, an ultrasonic propagation liquid can be inject
  • limiting part may be a recessed part, and the said through-hole may open in the said recessed part.
  • the second aspect of the present invention is an ultrasonic irradiation device including an ultrasonic element having an irradiation surface for irradiating ultrasonic waves, and is detachably provided to the ultrasonic irradiation device and is opened in one direction.
  • An ultrasonic transmission membrane that transmits ultrasonic waves to at least a part of the wall surface, and a container that stores an ultrasonic propagation liquid that transmits ultrasonic waves.
  • the sound wave irradiation device When the sound wave irradiation device is attached to the container so as to close the opening, the sound wave irradiation device is disposed so as to face the ultrasonic permeable membrane of the container, or at least one of the container or the ultrasonic wave irradiation device, or When the container is attached to the ultrasonic irradiation device between the ultrasonic irradiation device and the container and the inside of the container is filled with the ultrasonic wave propagation liquid, the container exists in the container.
  • An ultrasonic irradiation apparatus including a bubble filter that limits the bubbles to the ultrasound propagation outside the region irradiated from the ultrasonic element.
  • the irradiation surface of the ultrasonic element and the ultrasonic transmission film in the container are arranged to face each other.
  • the irradiation area of the sound wave is filled with the ultrasonic wave propagation liquid. Therefore, when ultrasonic waves are irradiated from the irradiation surface of the ultrasonic element, the ultrasonic waves propagate through the ultrasonic wave propagation liquid, pass through the ultrasonic transmission film, and reach the irradiation target.
  • bubbles may be mixed in the ultrasonic wave propagation liquid in the container, but in this case as well, bubbles are generated between at least one of the container and the ultrasonic irradiation device, or between the container and the ultrasonic irradiation device. It is restricted so as not to enter the propagation region by the bubble restricting portion provided in. By restricting the bubbles outside the propagation region, it is possible to suppress irregular reflection of ultrasonic waves due to the bubbles, failure due to adhesion of the bubbles to the ultrasonic element, and the like, and it is possible to efficiently irradiate the irradiation target with ultrasonic waves.
  • An ultrasonic irradiation device 2 and an ultrasonic irradiation apparatus 1 according to a first embodiment of the present invention will be described below with reference to the drawings.
  • An ultrasonic irradiation apparatus 1 according to this embodiment includes an ultrasonic irradiation device 2 shown in FIG. 1A and a container 3 that is detachably attached to the ultrasonic irradiation device 2 (see FIG. 1B). And.
  • the container 3 has a container body 4 made of a hard material having a tapered center hole 4 a penetrating substantially in the center in the thickness direction, and a center hole of the container body 4. And an ultrasonic transmission film 5 stretched so as to close the opening on the small diameter side of 4a.
  • the container 3 having the ultrasonically permeable membrane 5 as a bottom surface, opened in one direction toward the large diameter side of the central hole 4a, and capable of storing the ultrasonic wave propagation liquid A (see FIG. 2) in a liquid-tight state therein. It is configured.
  • An opening on the large-diameter side where the container 3 is opened is provided with a fitting inner surface 6 made of a cylindrical surface into which an ultrasonic irradiation device 2 described later is fitted.
  • the ultrasonic transmission film 5 has a property of transmitting ultrasonic waves U (see FIG. 2).
  • the ultrasonic permeable membrane 5 has an acoustic impedance substantially equal to that of the ultrasonic wave propagation liquid (water in this embodiment) A stored in the container 3, and is applied to the ultrasonic wave U that has propagated through the ultrasonic wave propagation liquid A.
  • the ultrasonic transmission film 5 does not become an obstacle to propagation.
  • the ultrasonic irradiation device 2 includes a focused ultrasonic element 8 (ultrasonic element) including an irradiation surface that irradiates an ultrasonic wave U, and a focused ultrasonic element 8. And a holding member 9 that holds the irradiation surface 7 so as to be exposed.
  • the irradiation surface 7 of the focusing ultrasonic element 8 is formed in a concave shape made of a paraboloid, and in the ultrasonic wave propagation liquid A, an ultrasonic wave that converges to a point separated from the irradiation surface 7 by a predetermined distance. U is irradiated.
  • the holding member 9 has a fitting outer surface 10 fitted to the fitting inner surface 6 of the container 3 so as to close the opening of the container 3.
  • the fitting outer surface 10 is constituted by a cylindrical surface having an outer diameter that is slightly smaller than the inner diameter of the fitting inner surface 6 of the container 3.
  • a circumferential groove 10a is formed in the middle of the fitting outer surface 10 in the axial direction, and the space between the fitting inner surface 6 and the fitting outer surface 10 is hermetically sealed in the circumferential groove 10a.
  • An O-ring 11 is disposed.
  • the holding member 9 includes a focusing ultrasonic element 8 at the center of the end surface 12 positioned radially inward of the fitting outer surface 10.
  • the end surface 12 of the holding member 9 is provided with an annular groove-shaped recess 13 (bubble limiting portion) formed at a position surrounding the outside of the focused ultrasonic element 8.
  • the holding member 9 opens the opening of the container 3 as shown in FIG.
  • the space inside the container 3 is sealed.
  • the focused ultrasonic element 8 and the recess 13 are disposed in the closed container 3, and the irradiation surface 7 of the focused ultrasonic element 8 is disposed so as to face the ultrasonic transmission film 5.
  • the ultrasonic wave propagation liquid A is filled between the ultrasonic transmission film 5 and the ultrasonic wave transmission film 5.
  • the ultrasonic irradiation apparatus 1 assembled in this way is arranged so that the container 3 is arranged below the ultrasonic irradiation device 2, the ultrasonic irradiation apparatus 1 is provided on the end surface 12 of the holding member 9 in the container 3.
  • the recessed portion 13 is opened downward.
  • reference numeral 14 denotes a drive unit for driving the focused ultrasonic element 8
  • reference numeral 15 denotes a cable for connecting the drive unit 14 and the focused ultrasonic element 8.
  • the ultrasonic irradiation device 2 and the ultrasonic irradiation apparatus 1 configured as described above will be described with reference to FIG.
  • the distance from the surface of the living body B to the lesioned part C in advance. Is obtained by ultrasonic diagnosis or the like, and the container 3 having a depth dimension obtained by subtracting this distance from the focal length of the focused ultrasonic element 8 is selected.
  • the ultrasonic wave propagation liquid A is stored in a water tank having a volume in which the selected container 3 is completely immersed, and the container 3 is submerged in the water tank so that the entire container 3 is filled with the ultrasonic wave propagation liquid A.
  • the end surface 12 of the ultrasonic irradiation device 2 is submerged in the same water tank, and the irradiation surface 7 of the focusing ultrasonic element 8 is immersed in the ultrasonic wave propagation liquid A.
  • the fitting outer surface 10 of the holding member 9 and the fitting inner surface 6 of the container 3 are fitted in the water tank.
  • the irradiation surface 7 of the focused ultrasonic element 8 and the ultrasonic transmission film 5 disposed on the bottom surface of the container 3 face each other, and the ultrasonic wave propagation liquid A is interposed between the irradiation surface 7 and the ultrasonic transmission film 5. Is satisfied, the opening of the container 3 is sealed by the holding member 9.
  • the ultrasonic wave irradiation device 2 is arranged at the upper part and the container 3 is arranged at the lower part, and is arranged upward.
  • the bottom surface of the container 3 is pressed against the surface of the living body B to which ultrasonic jelly or the like is applied.
  • the bubble 17 when the bubble 17 is located in the vicinity of the irradiation surface 7 of the focused ultrasonic element 8, the bubble 17 tends to stay on the concave irradiation surface 7, but the irradiation surface can be easily obtained by tilting the ultrasonic irradiation device 1.
  • the bubbles 17 can escape radially outward from 7 and can be accommodated in the recesses 13 arranged radially outward of the focused ultrasonic element 8.
  • the recessed part 13 is arrange
  • the bubbles 17 are maintained in the state of being captured in the recesses 13 unless the ultrasonic irradiation device 1 is greatly tilted, and the focused ultrasonic element 8 and the ultrasonic transmission film 5. In order not to enter the propagation region of the ultrasonic wave U formed between the two, the outside of the propagation region is limited.
  • the driving signal generated from the driving unit 14 is sent to the focusing ultrasonic element 8 through the cable 15, so that the ultrasonic wave U is irradiated from the irradiation surface 7.
  • the ultrasonic wave U irradiated from the focused ultrasonic element 8 propagates through the ultrasonic wave propagation liquid A in the container 3, passes through the ultrasonic transmission film 5, and is irradiated into the living body B.
  • the ultrasonic wave U irradiated to can focus on the position of the lesioned part C in the living body B with high accuracy and irradiate the lesioned part C with the high-intensity ultrasonic wave U.
  • the irradiation distance is replaced with the container 3 having a depth dimension obtained by subtracting the irradiation distance from the focal length, and the ultrasonic wave U is irradiated in the same procedure.
  • the ultrasonic irradiation device 2 and the ultrasonic irradiation apparatus 1 unlike the conventional apparatus that replaces the container 3 together with the ultrasonic element 8, only the container 3 can be attached and detached according to the irradiation distance. Therefore, there is an advantage that it is not necessary to replace the expensive focused ultrasonic element 8 and can be applied to many irradiation objects at low cost.
  • a cell D taken out from a living body is selected as an irradiation target, it is placed in a culture container 18 such as a petri dish filled with a culture solution E containing a gene and microbubbles or nanobubbles.
  • a culture container 18 such as a petri dish filled with a culture solution E containing a gene and microbubbles or nanobubbles.
  • the ultrasonic permeable membrane 5 of the container 3 is brought into contact with the culture solution E, and ultrasonic waves U are irradiated.
  • the ultrasonic wave U is irradiated from the ultrasonic irradiation device 2 toward the cell D, the microbubbles or nanobubbles existing in the vicinity of the cell D are crushed, and a hole is made in the surface of the cell D by the impact generated at that time.
  • the present invention can also be applied to the use of introducing the gene in the culture medium E into the hole.
  • the cells D are accommodated in a culture vessel 18 filled with the culture solution E, and microbubbles and genes are injected into the culture solution E.
  • the bottom surface of the ultrasonic irradiation apparatus 1 is brought into contact with the culture vessel 18.
  • the culture solution E is filled so that there is no air layer between the ultrasonic permeable membrane 5 on the bottom surface of the container 3 and the culture container 18, and the ultrasonic wave disposed at the lower end of the container 3 of the ultrasonic irradiation device 2. It installs so that the sound-permeable film 5 and the culture solution E may contact
  • the cell D to be irradiated is not directly touched. Even the ultrasonic wave U can be irradiated. Moreover, since the rigidity of the container 3 is high, the ultrasonic irradiation device 2 can be stabilized when the container 3 is installed in the culture container 18, and the irradiation position is prevented from blurring and directed toward the cell D. The ultrasonic wave U can be irradiated with high accuracy.
  • the ultrasonic wave U is irradiated to the cell D that has entered the culture vessel 18 as an irradiation target, but the irradiation target is not limited to the cell D. Also, the purpose of irradiation is not limited to therapeutic use or gene introduction.
  • the ultrasonic irradiation device 20 and the ultrasonic irradiation apparatus 21 according to the second embodiment of the present invention will be described below.
  • parts having the same configurations as those of the ultrasonic irradiation device 1 and the ultrasonic irradiation apparatus 2 according to the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the ultrasonic irradiation device 20 is different from the ultrasonic device 1 according to the first embodiment in that the holding member 9 has a through hole 22.
  • One end of the through hole 22 opens into the recess 13, and the other end opens to an outer surface other than the end surface 12, for example, the side surface 9 a.
  • the through-hole 22 is provided in two places spaced apart in the circumferential direction.
  • the ultrasonic irradiation device 20 and the ultrasonic irradiation apparatus 21 will be described.
  • the ultrasonic wave propagation liquid A is injected from the opening on the side surface of the container 3 through one through hole 22. Since the through-holes 22 are provided at two locations, the ultrasonic wave propagation liquid A is injected into the container 3 through the one through-hole 22, and the air present in the container 3 is discharged from the other through-hole 22. It can be released at the same time.
  • the ultrasonic wave propagation liquid A injected from the through hole 22 is filled into the container 3 in a state where the opening portion is closed by the holding member 9. Therefore, when attaching the container 3 to the ultrasonic irradiation device 20, it is not necessary to handle the container 3 storing the ultrasonic wave propagation liquid A, and it is not necessary to handle the container 3 carefully so that the ultrasonic wave propagation liquid A does not spill. There is an advantage. That is, handling when the container 3 is attached or carried is facilitated. In addition, since the through hole 22 is opened in the recess 13, the bubbles 17 captured by the recess 13 can escape to the outside of the container 3 through the through hole 22.
  • the opening outside the through hole 22 may be closed by a lid member (not shown).
  • the through hole 22 is opened in the recess 13, but the through hole 22 may not be opened in the recess 13.
  • one end may be opened on the end surface 12 that is not the recess 13, and the other end may be opened outside the container 3.
  • the bubble control part may be formed in the surrounding wall shape which protrudes from the end surface 12.
  • the ultrasonic wave irradiation device 21 is tilted to restrict the bubbles in the circumferential wall shape at any position in the circumferential direction. Air bubbles can be restricted outside the section.
  • the circumferential groove-shaped thing formed over the perimeter in the radial direction outward of the focusing ultrasonic element 8 was illustrated as the recessed part 13, it replaced with this, and one or more provided in the circumferential direction part was replaced with this.
  • the bubble limiting portion such as the concave portion 13 is provided on the end surface 12 of the holding member 9. It may be provided on both the container 3 and the end surface 12. Further, as shown in FIG. 5, the end surface 12 of the holding member 9 is provided with a convex portion 9 b that holds the focused ultrasonic element 8, and the focused ultrasonic element 8 protrudes into the central hole 4 a of the container 3.
  • the annular recess 13 may be formed between the container 3 and the protrusion 9 b of the holding member 9.
  • the shape of the tip of the container 3 that is fitted to the inner surface of the cell of the culture container 18 containing the culture solution is employed.
  • the ultrasonic transmission film 5 may be made of a polymer material and has an acoustic impedance substantially equal to that of the ultrasonic wave propagation liquid A.
  • the depth and shape of the container 3 are not limited to this embodiment. In accordance with the irradiation object, it is possible to select and exchange the container 3 and the shape having a depth equivalent to the distance obtained by subtracting the distance from the ultrasonic transmission film 5 to the irradiation object from the focal length.
  • the fitting outer surface 10 of the holding member 9 only needs to be liquid-tightly connected, and the position of the O-ring 11 provided on the fitting outer surface 10 is not limited to the position of the first embodiment. Further, the fitting portion adopts a screw instead of the fitting outer surface 10, and instead of the O-ring 11, a gap between screws fastened by a sealing material such as a seal tape is sealed in a liquid-tight state. Also good.
  • the position of the ultrasonic transmissive film 5 and the position of the focused ultrasonic element 8 held by the holding member 9 are not limited to the positions of the above-described embodiments, and the irradiation surface 7 of the focused ultrasonic element 8 is the ultrasonic transmissive film. It is only necessary that the container 3 and the ultrasonic irradiation device 2 are connected so as to face 5. Moreover, in this embodiment, although the number of the through-holes 22 was two, it should just be one or more. In that case, the air inside the container 3 may be released to the outside of the container 3 through the same through hole 22 while injecting the ultrasonic wave propagation liquid A through the through hole 22.
  • the container 3 has been described as being made of a hard material with little deformation, but may be made of a soft material. Even in this case, when the container 3 is brought into direct contact with the observation target, the irradiation distance is fixed to be in close contact with the irradiation target. Furthermore, if the container 3 made of a soft material is used, the container 3 can be easily adhered to a flexible irradiation target, and the irradiation efficiency of the ultrasonic wave U can be improved. Furthermore, there is an advantage that the surface of the irradiation target is hardly damaged.
  • the focused ultrasonic element 8 that irradiates the ultrasonic wave U that is focused at one point separated from the irradiation surface 7 by a predetermined distance in the ultrasonic wave propagation liquid A is illustrated.
  • one that irradiates an ultrasonic wave U made of a plane wave may be adopted.
  • the container 3 is exchanged and attached to the culture container 18 that is in contact with the culture container 18 or the irradiation object itself, and the bubbles are excluded from the propagation region.
  • the sound wave U can be efficiently irradiated.
  • a Ultrasonic wave propagation liquid U Ultrasound 1,21 Ultrasonic irradiation device 2,20 Ultrasonic irradiation device 3 Container 5 Ultrasonic transmission film 7 Irradiation surface 8 Focusing ultrasonic element (ultrasonic element) 9 Holding member (holding part) 13 Concave part (bubble restriction part) 22 Through hole

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 照射対象によって容器を換えるだけで、超音波を使用した様々なアプリケーションに対応する。一方向に開放された開口を有するとともに、壁面の少なくとも一部に超音波を透過する超音波透過膜(5)を有し、超音波を伝播する超音波伝播液(16)を貯留する容器(3)を着脱可能に取り付けて開口を閉塞する超音波照射デバイス(2)であって、容器(3)を取り付けた状態で、該容器(3)内において超音波透過膜(5)に対向する位置に配置され、超音波を照射する照射面(7)を備える超音波素子(8)と、容器(3)を取り付けた状態で、該容器(3)内に存在する気泡を超音波素子(8)から照射される超音波の伝播領域外に制限する気泡制限部(13)とを備える超音波照射デバイス(2)を提供する。

Description

超音波照射デバイスおよび超音波照射装置
 本発明は、超音波照射デバイスおよび超音波照射装置に関するものである。
 従来、焦点領域に超音波を照射し治療を行う超音波照射デバイスが知られている(例えば、特許文献1参照。)。
 この超音波照射デバイスでは、超音波を発生する送受波器と超音波を透過させるカップリング膜とを備えたアプリケータ内に超音波伝播液を充満させており、異なる照射対象の治療を行う場合には、アプリケータを送受波器ごと交換することとしている。
特開2004-167034号公報
 しかしながら、特許文献の超音波照射デバイスでは、超音波を発生する送受波器を含むアプリケータを照射対象ごとに用意しなければならず、照射対象が多数に及ぶ場合にはコストが高く付くという不都合がある。
 本発明は、このような事情に鑑みてなされたものであって、低コストで多数の照射対象に適用することができる超音波照射デバイスおよび超音波照射装置を提供することを目的としている。
 上記目的を達成するために、本発明は以下の手段を提供する。
 本発明の第1の態様は、一方向に開放された開口を有するとともに、壁面の少なくとも一部に超音波を透過する超音波透過膜を有し、超音波を伝播する超音波伝播液を貯留する容器を着脱可能に取り付けて前記開口を閉塞する超音波照射デバイスであって、前記容器を取り付けた状態で、該容器内において前記超音波透過膜に対向する位置に配置され、超音波を照射する照射面を備える超音波素子と、前記容器を取り付けた状態で、該容器内に存在する気泡を前記超音波素子から照射される超音波の伝播領域外に制限する気泡制限部とを備える超音波照射デバイスである。
 本発明の第1の態様によれば、超音波伝播液を貯留した容器の開口を閉塞するように取り付けると、超音波素子の照射面と容器内の超音波透過膜とが対向配置され、超音波の照射領域が超音波伝播液で満たされる。したがって、超音波素子の照射面から超音波が照射されると、超音波は超音波伝播液を伝播し、超音波透過膜を透過して照射対象に到達する。
 この場合に、容器内の超音波伝播液内に気泡が混入することがあるが、その場合においても気泡が気泡制限部によって、超音波の伝播領域内に入らないように制限される。伝播領域外に気泡を制限することで、気泡による超音波の乱反射や気泡の超音波素子への付着による故障等を抑えることができ、照射対象に効率良く超音波を照射することができる。
 上記の第1の態様においては、前記照射面を露出させた状態に前記超音波素子を保持するとともに、前記容器を着脱可能に取り付ける保持部を備え、該保持部に、前記気泡制限部が設けられていてもよい。
 このようにすることで、保持部に容器を取り付けると、容器内に照射面が露出するよう超音波素子が配置されるとともに気泡制限部が容器内に配置される。これにより、容器を保持部に取り付けるだけで、保持部に設けられた気泡制限部によって気泡を超音波の伝播領域外に制限しつつ、超音波伝播液を介して超音波を照射可能な超音波照射デバイスの構造を簡単にすることができる。
 また、上記の第1の態様においては、前記気泡制限部が、凹部であってもよい。
 このようにすることで、容器を取り付ける際に容器内の超音波伝播液内に気泡が混入した場合においても、凹部が下向きに開口する姿勢に配置することで、超音波伝播液内を上昇する気泡を凹部内に捕捉して、簡易に超音波の伝播領域内に入らないように制限することができる。
 また、上記の第1の態様においては、前記気泡制限部が、前記超音波素子の周縁よりも外側に全周にわたって配置されていてもよい。
 このようにすることで、容器内の超音波伝播液内に混入した気泡が、超音波伝播領域内に存在する場合には、どの方向に超音波照射デバイスを傾けても、周方向のいずれかの位置に配置されている気泡制限部によって、気泡を超音波の伝播領域外に制限することができる。
 また、上記の第1の態様においては前記保持部に、前記容器が取り付けられた状態で、一端が前記容器内に開口し、他端が前記容器外に開口する貫通孔が設けられている構成としてもよい。
 このようにすることで、容器を取り付けた後に、容器外から貫通孔を介して超音波伝播液を注入することができる。これにより、開口部を開放したままの状態で超音波伝播液を貯留した容器を取り扱わずに済み、容器を取り付ける際や持ち運ぶ際などでの取扱いが容易になる。
 また、上記構成においては、前記気泡制限部が凹部であり、前記貫通孔が前記凹部内に開口していてもよい。
 このようにすることで、凹部に捕捉して、超音波の伝播領域外に制限した気泡を、凹部に開口する貫通孔を介して容器外に逃がすことができる。
 また、本発明の第2の態様は、超音波を照射する照射面を有する超音波素子を備える超音波照射デバイスと、該超音波照射デバイスに対して着脱可能に設けられ、一方向に開放された開口を有するとともに、壁面の少なくとも一部に超音波を透過する超音波透過膜を有し、超音波を伝播する超音波伝播液を貯留する容器とを備え、前記超音波素子が、前記超音波照射デバイスを前記容器に前記開口を閉塞するように取り付けたときに、前記容器の前記超音波透過膜に対向するように配置され、前記容器または前記超音波照射デバイスの少なくとも一方に、または、前記超音波照射デバイスと前記容器との間に、前記容器を前記超音波照射デバイスに取り付けて、前記容器内部を超音波伝播液によって満たしたときに、前記容器内に存在する気泡を前記超音波素子から照射される超音波の伝播領域外に制限する気泡制限部を備える超音波照射装置である。
 本発明の第2の態様によれば、超音波伝播液を貯留した容器の開口を閉塞するように取り付けると、超音波素子の照射面と容器内の超音波透過膜とが対向配置され、超音波の照射領域が超音波伝播液で満たされる。したがって、超音波素子の照射面から超音波が照射されると、超音波は超音波伝播液を伝播し、超音波透過膜を透過して照射対象に到達する。
  この場合に、容器内の超音波伝播液内に気泡が混入することがあるが、その場合においても気泡が、容器または超音波照射デバイスの少なくとも一方、または、容器と超音波照射デバイスとの間に設けた気泡制限部によって、伝播領域内に入らないように制限される。伝播領域外に気泡を制限することで、気泡による超音波の乱反射や気泡の超音波素子への付着による故障等を抑えることができ、照射対象に効率良く超音波を照射することができる。
 本発明によれば、低コストで多数の照射対象に適用することができるという効果を奏する。
本発明の第1の実施形態に係る超音波照射デバイスおよび超音波照射装置を示す縦断面図である。 図1の超音波照射デバイスを組み立てた超音波照射装置を示す縦断面図である。 図1の超音波照射装置の照射対象が培養容器内の細胞であることを示す縦断面図である。 本発明の第1の実施形態の変形例に係る超音波照射装置を示す縦断面図である。 図2の超音波照射装置の変形例を示す縦断面図である。
 本発明の第1の実施形態に係る超音波照射デバイス2および超音波照射装置1について、図面を参照して以下に説明する。
 本実施形態に係る超音波照射装置1は、図1(a)に示される超音波照射デバイス2と、該超音波照射デバイス2に着脱可能に取り付けられる容器3(図1(b)参照。)とを備えている。
 容器3は、図1(b)に示されるように、略中央に厚さ方向に貫通するテーパ状の中央穴4aを有し硬質な材料からなる容器本体4と、該容器本体4の中央穴4aの小径側の開口を閉塞するように張られた超音波透過膜5とを備えている。これにより、超音波透過膜5を底面とし、中央穴4aの大径側に一方向に開放され、内部に超音波伝播液A(図2参照。)を液密状態に貯留可能な容器3が構成されている。容器3の開放された大径側の開口には、後述する超音波照射デバイス2を嵌合させる円筒面からなる嵌合内面6が設けられている。
 超音波透過膜5は、超音波U(図2参照。)を透過させる性質を有している。超音波透過膜5は、容器3内に貯留する超音波伝播液(本実施形態においては水)Aと略同等の音響インピーダンスを有し、超音波伝播液A内を伝播してきた超音波Uに対して超音波透過膜5が伝播の障害とならないようになっている。
 本実施形態に係る超音波照射デバイス2は、図1(a)に示されるように、超音波Uを照射する照射面を備える集束超音波素子8(超音波素子)と、集束超音波素子8の照射面7を露出させるように保持する保持部材9とを備えている。
 集束超音波素子8の照射面7は、放物曲面からなる凹面状に形成されており、超音波伝播液A内においては、該照射面7から所定の距離だけ離れた一点に集束する超音波Uを照射するようになっている。
 保持部材9は、容器3の開口を閉塞するように容器3の嵌合内面6と嵌合する嵌合外面10を有している。嵌合外面10は、容器3の嵌合内面6の内径寸法より若干小さい外径寸法を有する円筒面によって構成されている。嵌合外面10の軸方向の途中位置には、全周にわたって周溝10aが形成され、該周溝10a内には、嵌合内面6と嵌合外面10との間を液密状態に密閉するOリング11が配置されている。
 また、保持部材9は、嵌合外面10の半径方向内方に位置する端面12の中央に集束超音波素子8を備えている。そして、保持部材9の端面12には、該集束超音波素子8の外側を取り囲む位置に形成された円環の溝状の凹部13(気泡制限部)が設けられている。
 超音波照射デバイス2の嵌合外面10と超音波伝播液Aを満たした容器3の嵌合内面6とを嵌合させると、図2に示されるように、保持部材9によって容器3の開口が閉塞され、容器3内の空間が密閉される。このとき、閉塞された容器3内には、集束超音波素子8および凹部13が配置され、集束超音波素子8の照射面7が超音波透過膜5に対向して配置され、照射面7と超音波透過膜5との間に超音波伝播液Aが満たされるようになっている。
 そして、このようにして組み立てられた超音波照射装置1を、容器3が超音波照射デバイス2の下側に配されるように配置すると、容器3内において保持部材9の端面12に設けられている凹部13が下向きに開口するようになっている。
 集束超音波素子8から照射される超音波Uの焦点距離は一定であるため、容器3の中央穴4aの軸方向長さを変更することにより、超音波透過膜5の位置から、超音波透過膜5を透過して容器3の外部に照射される超音波Uの焦点位置までの距離を変更することができるようになっている。つまり、照射対象および照射目的に応じて、異なる深さの容器3が選択的に取り付けられるようになっている。
 図中、符号14は、集束超音波素子8を駆動するための駆動部、符号15は、駆動部14と集束超音波素子8とを接続するケーブルである。
 このように構成された本実施形態に係る超音波照射デバイス2および超音波照射装置1の作用について、図2を用いて説明する。
 本実施形態に係る超音波照射デバイス2を用いて、照射対象として、例えば、生体B内に存在する病変部Cに超音波Uを照射するには、予め生体B表面から病変部Cまでの距離を超音波診断等によって把握しておき、この距離を集束超音波素子8の焦点距離から減算した深さ寸法の容器3を選択する。そして、選択された容器3が完全に浸る容積の水槽内に超音波伝播液Aを貯留しておき、容器3を水槽内に沈めて、容器3内全体が超音波伝播液Aで満たされるようにする。
 続いて、同じ水槽内に超音波照射デバイス2の端面12を沈めて、集束超音波素子8の照射面7を超音波伝播液A内に浸す。そして、水槽内で保持部材9の嵌合外面10と、容器3の嵌合内面6とを嵌合させる。これにより、集束超音波素子8の照射面7と容器3の底面に配置されている超音波透過膜5とが対向し、照射面7と超音波透過膜5との間に超音波伝播液Aが満たされた状態で、容器3の開口が保持部材9によって密閉される。
 超音波照射装置1を使用して生体B内の病変部Cに超音波Uを照射するには、超音波照射デバイス2が上部に、容器3が下部となるように配置して、上向きに配置され超音波ゼリー等が塗布された生体Bの表面に容器3の底面を押し当てる。これにより、容器3内において保持部材9の端面12に設けられている凹部13が上に凸となるので、超音波伝播液A内に気泡17が存在している場合には、超音波伝播液A内を上昇する気泡17を凹部13内に容易に収容することが可能となる。
 例えば、気泡17が集束超音波素子8の照射面7近傍に位置する場合には、気泡17は凹面状の照射面7に留まりやすいが、超音波照射装置1を傾けることにより、容易に照射面7から半径方向外方に気泡17を逃がし、集束超音波素子8の半径方向外方に配置されている凹部13内に収容することができる。ここで、本実施形態においては、凹部13が、集束超音波素子8の半径方向外方に全周にわたって配置されているので、超音波照射装置1をいずれの方向に傾けても、気泡17を凹部13に逃がすことができる。
 そして、気泡17は、凹部13内に一旦収容されると、超音波照射装置1を大きく傾けない限り、凹部13内に捕獲された状態に維持され、集束超音波素子8と超音波透過膜5との間に形成される超音波Uの伝播領域内に入らないように、伝播領域外に制限される。
 この状態で、駆動部14から発せられた駆動信号がケーブル15を通して集束超音波素子8に送られることにより、照射面7から超音波Uが照射される。集束超音波素子8から照射された超音波Uは、容器3内の超音波伝播液A内を伝播し、超音波透過膜5を透過して、生体B内に照射される。超音波伝播膜5から超音波Uの焦点位置までの距離が、予め把握されている生体B表面から病変部Cまでの深さに一致するように容器3が選択されているので、生体B内に照射された超音波Uは、生体B内の病変部Cの位置に精度よく焦点を結び、病変部Cに高強度の超音波Uを照射することができる。
 そして、この場合において、容器3の着脱時に容器3内に気泡17が混入していたとしても、その気泡17を凹部13内に捕獲させることによって、超音波Uの照射時には伝播領域外に制限されるので、気泡17が病変部Cに照射される超音波Uの障害とならないようにすることができる。
 また、生体B表面から病変部Cまでの距離を変えて照射したい場合は、その照射距離を焦点距離から減算した深さ寸法の容器3に交換し、同様の手順で超音波Uを照射する。
 すなわち、本実施形態に係る超音波照射デバイス2および超音波照射装置1によれば、超音波素子8ごと容器3を交換する従来の装置とは異なり、容器3だけを照射距離に応じて着脱可能に接続するので、高価な集束超音波素子8を交換せずに済み、低コストで多くの照射対象に適用することができるという利点がある。
 なお、本実施形態においては、容器3を照射対象である生体Bの表面に直接接触させる用途について説明したが、これに代えて、容器3を照射対象に直接接触させない用途に使用することにしてもよい。
 例えば、図3に示されるように、照射対象として生体から取り出した細胞Dが選択される場合には、遺伝子とマイクロバブルあるいはナノバブルとを含む培養液Eを満たしたシャーレ等の培養容器18内に細胞Dを収容した状態で、容器3の超音波透過膜5を培養液Eに接触させ、超音波Uを照射する。超音波照射デバイス2から細胞Dに向けて超音波Uを照射すると、細胞D近傍に存在しているマイクロバブルあるいはナノバブルを破砕し、その際に発生する衝撃によって細胞D表面に穴を開け、その穴に培養液E内の遺伝子を導入する用途にも適用することができる。
 さらに具体的には、培養液Eで満たした培養容器18内に細胞Dを収容し、培養液E内にマイクロバブルと遺伝子を注入しておく。この状態で、超音波照射装置1の底面を培養容器18に接触させる。このとき、容器3底面の超音波透過膜5と培養容器18との間に空気層がなくなるように培養液Eを満たしておき、超音波照射デバイス2の容器3の下端に配されている超音波透過膜5と培養液Eとが接するように設置する。これにより、細胞Dに向けて超音波Uを照射することが可能となり、これにより、培養液E中に注入されている遺伝子を、超音波Uの照射によって開いた穴に導入することができる。
 超音波Uが細胞Dの近傍で集束することとなる深さの容器3を選択して、培養容器18の上端に容器3の底面を押し当てることで、照射対象である細胞Dに直接触れなくても超音波Uを照射することができる。
 また、容器3の剛性が高いため、培養容器18に容器3を設置した際に、超音波照射デバイス2を安定させることができ、照射位置がブレることを防止して、細胞Dに向けて精度よく超音波Uを照射することができる。
 また、本実施形態においては、照射対象として培養容器18に入った細胞Dに超音波Uを照射したが、照射対象は細胞Dに限らない。また、照射目的も治療用や遺伝子を導入することに限定されるものではない。
 次に、本発明の第2の実施形態に係る超音波照射デバイス20および超音波照射装置21について以下に説明する。
 なお、本実施形態において、上述した第1の実施形態に係る超音波照射デバイス1および超音波照射装置2と構成を共通とする箇所には同一符号を付して説明を省略する。
 本実施形態に係る超音波照射デバイス20は、図4に示されるように、保持部材9に貫通孔22を有する点で、第1の実施形態に係る超音波デバイス1と相違している。
 貫通孔22は、その一端が凹部13内に開口し、他端は端面12以外の外面、例えば側面9aに開口している。これにより、保持部材9に容器3が取り付けられた状態では、貫通孔22は、一端が容器3内に開口し、他端が容器3外に開口するようになっている。また、本実施形態では、貫通孔22は、周方向に間隔をあけた2箇所に設けられている。
 このように構成された本実施形態に係る超音波照射デバイス20および超音波照射装置21の作用について説明する。
 超音波照射デバイス20と、超音波伝播液Aの入っていない空の容器3とを接続させた後に、一方の貫通孔22を介して容器3側面の開口から超音波伝播液Aを注入する。貫通孔22は2箇所に設けられているので、一方の貫通孔22を介して容器3内に超音波伝播液Aを注入し、他方の貫通孔22から容器3内に存在している空気を同時に放出させることができる。
 貫通孔22から注入された超音波伝播液Aは保持部材9によって開口部分を閉塞された状態の容器3内に充填されていく。したがって、超音波照射デバイス20に容器3を取り付ける際に、超音波伝播液Aを貯留した容器3を取り扱う必要がなく、超音波伝播液Aがこぼれないように容器3を慎重に取り扱わずに済むという利点がある。すなわち、容器3を取り付ける際や持ち運ぶ際などでの取扱いが容易になる。
 また、貫通孔22を凹部13内に開口させているので、凹部13によって捕捉した気泡17を貫通孔22を介して容器3外に逃がすことができる。
 なお、本実施形態においては、貫通孔22の外側の開口を蓋部材(図示略)によって閉塞してもよい。このようにすることで、超音波照射装置21を傾けたときに、貫通孔22から超音波伝播液Aが外部にこぼれるのを防ぐことができる。
 また、本実施形態においては、貫通孔22が凹部13内に開口していることとしたが、貫通孔22が凹部13内に開口していなくてもよい。この場合、保持部材9に容器3が取り付けられた状態で、一端が凹部13ではない端面12に開口し、他端が容器3外に開口していればよい。
 本実施形態では、気泡制限部として凹部13を例示したが、気泡制御部は端面12から突出する周壁状に形成されていてもよい。この場合、集束超音波素子8の周縁よりも外側の凹部13と同等の位置に全周にわたって配置すればよい。
 容器3内の超音波伝播液A内に混入した気泡17が、超音波Uの伝播領域内に存在する場合に、超音波照射装置21を傾けて周方向のいずれか位置において周壁状の気泡制限部の外側に気泡を制限することができる。
 また、凹部13として、集束超音波素子8の半径方向外方に全周にわたって形成された周溝状のものを例示したが、これに代えて、周方向の一部に設けられた一つ以上の窪みからなる凹部13を採用してもよい。また、周方向に間隔をあけた複数の窪みからなる凹部13を採用してもよい。
 また、上記各実施形態に係る超音波照射デバイス2,20および超音波照射装置1,21においては、保持部材9の端面12に凹部13等の気泡制限部を設けることとしたが、容器3側に設けてもよいし、容器3および端面12の両方に設けてもよい。
 また、図5に示されるように、保持部材9の端面12に、集束超音波素子8を保持する凸部9bを設け、集束超音波素子8を容器3の中央穴4a内に突出させることで、容器3と保持部材9の凸部9bとの間に環状の凹部13を形成することにしてもよい。図5に示す例では、容器3の先端の形状として、培養液を収容した培養容器18のセルの内面に嵌合する形状を採用している。
 また、本実施形態では超音波伝播液Aとして水を用いているが、他の液体や、診断で使われる超音波ゼリーのようなものを採用してもよい。また、超音波透過膜5は、高分子材料からなり、超音波伝播液Aとほぼ等しい音響インピーダンスを持つものであればよい。
 さらに、容器3の深さおよび形状は本実施形態に限らない。照射対象に合わせて、超音波透過膜5から照射対象までの距離を焦点距離から引いた分の深さの容器3および形状を選択し、交換することが可能である。
 保持部材9の嵌合外面10は液密に接続されていればよく、嵌合外面10に設けたOリング11の位置は、第1の実施形態の位置に限らない。また、嵌合部は、嵌合外面10に代えてネジを採用し、Oリング11に代えて、シールテープ等のシール材により締結されるネジ間の隙間を液密状態に密閉することにしてもよい。
 超音波透過膜5の位置および保持部材9が保持する集束超音波素子8の位置は、上記実施形態の位置に限定されるものではなく、集束超音波素子8の照射面7が超音波透過膜5と対向するように容器3と超音波照射デバイス2が接続されていればよい。
 また、本実施形態では、貫通孔22の数を2つとしたが、1つ以上あればよい。その場合、超音波伝播液Aを貫通孔22を介して注入しながら、同じ貫通孔22を介して容器3の内部の空気を容器3外に放出させればよい。
 本実施形態では、容器3としては、変形の少ない硬質な材料からなるものを用いることとして説明したが、軟質な材料からなるものを用いてもよい。このようにする場合でも、容器3を観察対象に直接接触させる場合には、照射対象と密着するため照射距離が固定される。さらに、軟質材料からなる容器3を用いれば、柔軟な照射対象に密着させ易く、超音波Uの照射効率を向上させることができる。さらに、照射対象の表面を傷つけにくいという利点もある。
 また、本実施形態においては、超音波素子として、超音波伝播液A内において、照射面7から所定の距離だけ離れた一点に集束する超音波Uを照射する集束超音波素子8を例示したが、これに代えて、平面波からなる超音波Uを照射するものを採用してもよい。この場合においても、容器3が接触することとなる培養容器18や照射対象自体の形態に合わせた形態の容器3に交換して取り付け、その際に、伝播領域内から気泡を排除して、超音波Uを効率よく照射することができる。
A 超音波伝播液
U 超音波
1,21 超音波照射装置
2,20 超音波照射デバイス
3 容器
5 超音波透過膜
7 照射面
8 集束超音波素子(超音波素子)
9 保持部材(保持部)
13 凹部(気泡制限部)
22 貫通孔

Claims (7)

  1.  一方向に開放された開口を有するとともに、壁面の少なくとも一部に超音波を透過する超音波透過膜を有し、超音波を伝播する超音波伝播液を貯留する容器を着脱可能に取り付けて前記開口を閉塞する超音波照射デバイスであって、
     前記容器を取り付けた状態で、該容器内において前記超音波透過膜に対向する位置に配置され、超音波を照射する照射面を備える超音波素子と、
     前記容器を取り付けた状態で、該容器内に存在する気泡を前記超音波素子から照射される超音波の伝播領域外に制限する気泡制限部とを備える超音波照射デバイス。
  2.  前記照射面を露出させた状態に前記超音波素子を保持するとともに、前記容器を着脱可能に取り付ける保持部を備え、
     該保持部に、前記気泡制限部が設けられている請求項1に記載の超音波照射デバイス。
  3.  前記気泡制限部が、凹部である請求項1または請求項2に記載の超音波照射デバイス。
  4.  前記気泡制限部が、前記超音波素子の周縁よりも外側に全周にわたって配置されている請求項1から請求項3のいずれかに記載の超音波照射デバイス。
  5.  前記保持部に、容器が取り付けられた状態で、一端が容器内に開口し、他端が容器外に開口する貫通孔が設けられている請求項2に記載の超音波照射デバイス。
  6.  前記気泡制限部が凹部であり、前記貫通孔が前記凹部内に開口している請求項5に記載の超音波照射デバイス。
  7.  超音波を照射する照射面を有する超音波素子を備える超音波照射デバイスと、
     該超音波照射デバイスに対して着脱可能に設けられ、一方向に開放された開口を有するとともに、壁面の少なくとも一部に超音波を透過する超音波透過膜を有し、超音波を伝播する超音波伝播液を貯留する容器とを備え、
     前記超音波素子が、前記超音波照射デバイスを前記容器に前記開口を閉塞するように取り付けたときに、前記容器の前記超音波透過膜に対向するように配置され、
     前記容器または前記超音波照射デバイスの少なくとも一方に、または、前記超音波照射デバイスと前記容器との間に、前記容器を前記超音波照射デバイスに取り付けて、前記容器内部を超音波伝播液によって満たしたときに、前記容器内に存在する気泡を前記超音波素子から照射される超音波の伝播領域外に制限する気泡制限部を備える超音波照射装置。
PCT/JP2011/078569 2011-03-10 2011-12-09 超音波照射デバイスおよび超音波照射装置 WO2012120740A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-053274 2011-03-10
JP2011053274A JP2012187275A (ja) 2011-03-10 2011-03-10 超音波照射デバイスおよび超音波照射装置

Publications (1)

Publication Number Publication Date
WO2012120740A1 true WO2012120740A1 (ja) 2012-09-13

Family

ID=46797721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078569 WO2012120740A1 (ja) 2011-03-10 2011-12-09 超音波照射デバイスおよび超音波照射装置

Country Status (2)

Country Link
JP (1) JP2012187275A (ja)
WO (1) WO2012120740A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067928A1 (de) * 2022-09-30 2024-04-04 Richard Wolf Gmbh Vorrichtung zur applikation von schallwellen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061126A1 (ja) * 2012-10-18 2014-04-24 エイブル株式会社 培養槽用の蓋部およびそれを備えた培養装置
JP6544533B2 (ja) * 2016-12-20 2019-07-17 学校法人帝京大学 ソノポレーションシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104358A (ja) * 1999-10-08 2001-04-17 Toshiba Corp 超音波治療装置
JP2004167034A (ja) * 2002-11-21 2004-06-17 Toshiba Corp 超音波照射装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104358A (ja) * 1999-10-08 2001-04-17 Toshiba Corp 超音波治療装置
JP2004167034A (ja) * 2002-11-21 2004-06-17 Toshiba Corp 超音波照射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067928A1 (de) * 2022-09-30 2024-04-04 Richard Wolf Gmbh Vorrichtung zur applikation von schallwellen

Also Published As

Publication number Publication date
JP2012187275A (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
Hensel et al. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments
JP2013514831A5 (ja)
JP5992707B2 (ja) ポリマーバイオプロセス容器とともに用いる複合センサアセンブリ、ポリマーバイオプロセス容器とともに用いる複合アセンブリ、およびセンサまたは複合アセンブリの製造プロセス
JP2671135B2 (ja) 細胞の超音波破砕装置
AU2010237531B2 (en) Treatment of a sample with focused acoustic energy
RU2007133546A (ru) Устройство и способ ультразвуковой очистки и дезинфекции
WO2012120740A1 (ja) 超音波照射デバイスおよび超音波照射装置
JP2014519397A (ja) 音響処理容器及び音響処理方法
CA2752715C (en) Hifu induced cavitation with reduced power threshold
JP2007530207A (ja) 複数流体室を備える超音波プローブ
US6578659B2 (en) Ultrasonic horn assembly
JP2005507749A (ja) 体外高密度焦点式超音波治療装置の超音波源において使用するための伝達媒体を収容するための収容手段
JPH04215748A (ja) 衝撃波発生器および医用超音波アプリケータ
JP5725901B2 (ja) 超音波プローブ用治具及び超音波プローブ装置、並びに、超音波プローブ用治具の製造方法
US11422115B2 (en) Ultrasound test method, and related test device and well plate
JP2018099059A (ja) ソノポレーションシステム
JP2018038305A (ja) 生物組織破砕容器
Gray et al. Studying cavitation enhanced therapy
US11351549B2 (en) Ultrasound test method, and related test device and well plate
JP6541138B1 (ja) 超音波照射装置
CN115651840B (zh) 可非侵入式超声激励和长时程成像的细胞培养装置
KR101916841B1 (ko) 수침식 초음파 발생장치가 장착된 바이오칩 및 이를 이용한 관찰시스템
JP2003517848A (ja) 超音波角アッセンブリ
CN111808746A (zh) 一种超声声场适形的基因转染装置
JP2012005602A (ja) 超音波照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860335

Country of ref document: EP

Kind code of ref document: A1