WO2012119471A1 - 一种高专一性的测定小rna的方法 - Google Patents

一种高专一性的测定小rna的方法 Download PDF

Info

Publication number
WO2012119471A1
WO2012119471A1 PCT/CN2011/083724 CN2011083724W WO2012119471A1 WO 2012119471 A1 WO2012119471 A1 WO 2012119471A1 CN 2011083724 W CN2011083724 W CN 2011083724W WO 2012119471 A1 WO2012119471 A1 WO 2012119471A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
rna
evagreen
small rna
cdna
Prior art date
Application number
PCT/CN2011/083724
Other languages
English (en)
French (fr)
Inventor
谭若颖
吴鸿菲
龚祖埙
丁航海
Original Assignee
上海盛元生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海盛元生物技术有限公司 filed Critical 上海盛元生物技术有限公司
Priority to US14/001,267 priority Critical patent/US9290801B2/en
Publication of WO2012119471A1 publication Critical patent/WO2012119471A1/zh
Priority to US15/054,882 priority patent/US20160177376A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification

Definitions

  • the present invention relates to the fields of biomedicine, genetic engineering and detection, and more particularly to a highly specific method for assaying small RNAs, which can be applied to detect non-coding RNAs, thereby describing the condition or state of certain diseases. . Background technique
  • Mi croRNAs small RNAs are a new class of non-coding RNAs that regulate a certain or some of the 3 ' non-coding regions (3 ' s UTR ) of its complementary antisense mRNA by sequence specific binding These target mRNA transcription and stability.
  • RNAs such as let-7 RNA, miR-1, miR-34, miR-60 and miR-87, are highly conserved in vertebrate and vertebrates. This indicates that they can recognize target sequences of multiple sites and/or multiple genes with conserved functions.
  • stRNA such as l in-4 and l et-7
  • stRNA plays a very important role in regulating developmental processes, such as: neuronal regeneration, Dauer larval formation, vulvar formation, and ultimate differentiation of epithelial cells.
  • Small RNAs are usually folded and cut from 60 to 70 nucleotides of RNA precursor. Some small RNAs can be detected as soon as they are expressed, while others can only be detected when peaks are expressed.
  • small RNA precursors are not easily degraded under the protection of their binding proteins, so usually only one strand of the hairpin structure is sheared and accumulated. It is speculated that these binding proteins can regulate the transcriptional repression of small RNAs. Small RNA precursors can form mature small RNAs after the participation of the Di cer RNAsel l l and the Argonaute family of enzymes.
  • Small RNA plays an extremely important role in many biological activities such as growth, division, differentiation, development, apoptosis and disease occurrence. To date, more than 1,200 small RNAs have been discovered in human cells (http://www.mirbase.org/), and these small RNAs are involved in the regulation of at least 60% of human genes.
  • Small RNA is an important biological marker for tumor classification, disease diagnosis, prediction, and assessment of prognosis.
  • Tumor-associated small RNAs in serum or plasma have been used as biomarkers for tumor diagnosis.
  • Detection and quantification of small RNAs are important tools for the discovery of certain target genes and pathways, the study of disease mechanisms, the assessment of drug safety and efficacy, disease diagnosis and prognosis assessment. Therefore, it is possible to determine various small RNAs in specific fine The number in the cell is quite important.
  • RNAs are particularly important. For example, compare the content of small RNAs in different tissues and compare the changes in the amount of small RNA in tissues before and after stimulation (physical or chemical treatment). Since small RNA families with similar sequences will exist in the same cell, it is particularly important to have a highly sensitive and specific detection method. Furthermore, it would be great if there were methods for high-throughput screening of samples such as homogenization and multiplexing.
  • RNA quantitative analysis methods including small RNA chip matrices, SYBR-Green I based small RNA quantitative reverse transcription PCR (Raymond, CK, Roberts, BS Garrett- Engele, P., Lim, LP, and Johnson, JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11,), based on the lotus ring Taqman method (Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33 (20) : el79), microbead method and high-throughput sequencing.
  • EvaGreen is a double-stranded DNA-binding dye. It has low inhibition of PCR reaction, good dissolution curve, high photostability and thermal stability, no mutagenicity and no cytotoxicity. EvaGreen was applied to the determination of fluorescence quantitative PCR and dissolution profiles (Mao F, Leung WY, Xin X. 2007. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 9; 7:76.).
  • a method of detecting a small RNA comprising the steps of: (a) adding a polyA tail to the 3' end of the small RNA for the small RNA sample to be detected;
  • the detecting comprises qualitative detection and quantitative detection.
  • the detecting comprises achieving quantitative detection by detecting the fluorescence intensity.
  • the small RNA sample to be detected is extracted from the sample to be detected.
  • the extracted RNA is total RNA extracted from a sample with or without small RNA.
  • step (d) the presence or absence or amount of the amplification product is determined by detecting the fluorescence value of the EvaGreen dye.
  • the forward primer has the following characteristics:
  • the 3' end sequence of the forward primer is identical or substantially identical to the 5' end sequence of the small RNA to be detected, and the Tm value of the 3' end sequence and the cDNA is 45-65 ° C;
  • the length of the forward primer is 8-50 bp.
  • the reverse primer has the following characteristics:
  • the 3' end of the reverse primer has a first complementary region of 0-15 bases in length complementary to the 3' end sequence of the small RNA to be detected;
  • the intermediate sequence of the reverse primer is a polyT of 8-30 bases in length;
  • the 5' end sequence of the reverse primer such that the entire reverse primer and cDNA have a Tm value of 45-75 ° C;
  • the reverse primer is 12-50 bp in length.
  • the sample to be tested is selected from the group consisting of animal samples, food, feed, and drugs.
  • the sample to be tested is selected from the group consisting of body fluids, dairy products, vegetables, meat, meat products, or water.
  • step (a) the addition of the PolyA tail is carried out by polymerization of Ploy(A) polymerase, and AMP is added to the 3' end of the small RNA to form a polyA tail.
  • the polyA tail has 8-200 A, preferably 10-100 A, and most preferably 12-50 A.
  • the small RNA is an RNA molecule having a length of 15 to 200 nucleotides (more preferably, a length of 18 to 100 bp).
  • the small RNA is a non-coding RNA.
  • the polyA tail in the method is replaced with another polyN tail selected from the group consisting of: a poly (C) tail, or a poly (G) tail, or a poly (U) tail;
  • step (b) a primer complementary or substantially complementary to the polyN tail of the small RNA is added to anneal the primer to the small RNA to which the polyN tail is added;
  • step (c) the small RNA added with the polyN tail is reverse transcribed to form a cDNA.
  • a method for increasing the specificity of binding of a primer to a template in a polymerase chain reaction comprising the steps of: adding an EvaGreen fluorescent dye to a reaction system of a polymerase chain reaction.
  • the EvaGreen fluorescent dye has an optical density value between 0.01 and 2 at 475 nm in the reaction system.
  • an EvaGreen fluorescent dye for use as an agent for increasing the binding specificity of a primer to a template in a polymerase chain reaction.
  • an EvaGreen fluorescent dye for the preparation of an agent which enhances the binding specificity of a primer to a template in a polymerase chain reaction.
  • a method for obtaining non-coding RNA information in a sample to be detected comprising the steps of:
  • step (b) For the RNA extracted in step (a), add a polyA tail to the 3' end of the non-coding RNA; (c) adding a primer complementary to the polyA tail of the non-coding RNA, such that the primer anneals to the non-coding RNA with polyA;
  • the detection employs a real-time fluorescent quantitative PCR method for detecting EvaGreen real-time fluorescence changes.
  • the polyA tail in the method is replaced with another polyN tail selected from the group consisting of a poly(C) tail, or a poly(G) tail, or a poly(U) tail.
  • the information of the obtained non-coding RNA can be used to describe the condition or state of a certain disease of a subject (including but not limited to: a mammal such as a human). This method is especially useful in the following situations:
  • RNA At a certain stage of a disease, the expression of a non-coding RNA is increased;
  • Both of these conditions include the expression of most non-coding RNAs in a disease.
  • Figure 1 shows the flow of EvaGreen real-time fluorescence quantification for detection of small RNAs. The steps from top to bottom are: addition of poly (A) tail; RT primer and RNA annealing; reverse transcription reaction; and PCR amplification using forward and reverse primers.
  • Figure 2 shows the structure of the forward primer in one example of the present invention.
  • Figure 3 shows the structure of the reverse primer in one example of the present invention.
  • Figure 4 shows the let-7a template concentration gradient amplification curve.
  • Figure 5 shows that the amount of small RNA template is linear with the Cq value.
  • Figure 6 shows the results of cross-reactivity specificity and sensitivity comparison between SYBR Green fluorescent quantitative PCR and EvaGreen fluorescent quantitative PCR.
  • Figure 7 shows the melting curves for the effects of primer-template binding for specific binding (solid line) and non-specific binding (dashed line) with different fluorescent dyes: EvaGreen (channel 1) and SYBR Green (channel 2) .
  • Trace 1 (curve 1) is the negative of the fluorescence value of EvaGreen and the primer combined with the specific template for temperature derivation
  • Trace 3 (curve 3) is the fluorescence value of SYBR Green I and the primer combined with the specific template.
  • Trace 2 (curve 2) is the negative of the fluorescence value of EvaGreen and the primer combined with the non-specific template for temperature derivation;
  • Trace 4 (curve 4) is SYBR Green I and the primer and non-specific The fluorescence value of the template combination is negative for temperature derivation.
  • EvaGreen as a DNA-binding dye can significantly increase the specificity of primer-template binding in PCR reactions. Specifically, EvaGreen is particularly useful for distinguishing and detecting structural differences, although there is no significant difference in sensitivity between the two without the addition of another commonly used DNA-binding dye, SYBR Green I.
  • Small small molecule RNA On the basis of this, the present invention has developed a new highly specific method for the determination of small RNA.
  • the invention provides an experimental method for detecting, classifying and quantifying small RNAs with advantages.
  • the method of detecting small RNA of the present invention is suitable for detecting microRNAs (small RNAs) or other small molecule nucleotides such as s iRNA.
  • a quantitative PCR method based on EvaGreen (especially real-time quantitative PCR) is provided, which is suitable for quantitative detection of small RNA.
  • Quantitative PCR based on EvaGreen can be further extended for quantitative detection of mRNA and gene expression. the term
  • EvaGreen As used herein, the terms “EvaGreen”, “Eva Green” or “EvaGreen Dyes” are used interchangeably and refer to a DNA binding dye manufactured by Biotium under the trade name EvaGreen, which is a simultaneous application for real-time PCR. And dyes for high resolution melting curve (HRM) analysis. This dye selectively binds to double-stranded ruthenium through a new mechanism called “release on demand.” This machine The system ensures low PCR inhibition while also allowing high resolution melting curve (HRM) analysis below the dye saturation concentration. Since EvaGreen dyes are similar in spectral properties to FAM and SYBR Green I, this dye is compatible with all commercial qPCR instruments. In addition, unlike SYBR Green I and SYBR GreenER, EvaGreen dyes are very stable and non-mutagenic and cytotoxic.
  • the term "primer” refers to a generic term for a oligodeoxynucleotide that, in pair with a template, can be used to synthesize a DNA strand complementary to a template under the action of a DNA polymerase.
  • the primer may be natural RNA, DNA, or any form of natural nucleotide.
  • the primer may even be a non-natural nucleotide such as LNA or ZNA.
  • the primer is “substantially” (or “substantially") complementary to a particular sequence on a strand on the template.
  • the primer must be sufficiently complementary to a strand on the template to initiate extension, but the sequence of the primer does not have to be fully complementary to the sequence of the template. For example, at the 5' end of a primer complementary to the template at the 3' end, a sequence that is not complementary to the template is added, such primers are still substantially complementary to the template. As long as there are sufficiently long primers to bind well to the template, the non-fully complementary primers can also form a primer-template complex with the template for amplification.
  • Poly(A) polymerase refers to a class of enzymes that can utilize ATP as a substrate to add multiple to hundreds of AMPs at the 3' hydroxyl end of the RNA.
  • Poly(A) polymerase can be extracted from prokaryotic or eukaryotic organisms. Due to the lack of specificity of these enzymes, these enzymes can use CTP, or GTP, or UTP as substrates to add multiple to hundreds of CMP or GMP, or UMP at the 3' hydroxyl end of the RNA. If the non-coding RNA is an added poly(C) tail, or a poly(G) tail, or a poly(U) tail, in this invention, the primer complementary to the tail also changes accordingly.
  • Poly(U) polymerase is a different enzyme than Poly(A) polymerase. It can use UTP as a substrate to add multiple to hundreds of UMPs at the 3' hydroxyl end of RNA. It can also use ATP, or CTP, or GTP as a substrate, non-specifically, to add multiple to hundreds of AMP or CMP, or GMP, at the 3' hydroxy terminus of RNA. Therefore, in the present invention, Poly(A) polymerase has the same efficacy as Poly(U) polymerase.
  • polyA tail is an oligomeric to poly A (AMP, adenylate) added at the 3' end of the RNA in the first step of the invention.
  • This "polyA tail” can be replaced by "polyC tail”, “polyG tail”, “polyU tail”. Accordingly, the sequence of primers introduced in the next step that are complementary to the tail, or substantially complementary, also changes.
  • the "polyA tail” can also be added by RNA Li gase.
  • the forward primer can generally be divided into two parts, the primer of the 3' end part is completely complementary to the 5' end of the template small RNA, the annealing temperature is generally between 45 and 65 degrees Celsius, and the other part of the primer has an additional sequence of 5' end ( Tail) Increases the annealing temperature of the entire primer to between 50 and 75 degrees Celsius ( Figure 2).
  • the reverse primer consists of three parts: the first part, the 3' end of the primer is 0 to 15 bases and is fully complementary to the 3' end of the small RNA; the middle part is about 10 to 30 bases of 10 to 30 dT, Complementary to the tail of Poly (A) added to the small RNA; the third part is an additional sequence (tail) of 0 to 40 bases (Fig. 3). It should be understood that when the third portion is 0 bases, the reverse primer may be composed of only 2 portions.
  • the reaction reaction is carried out by a reaction mother liquid containing EvaGreen.
  • the reaction procedure can be conventional for two temperature conditions (e.g., 95 degrees Celsius denaturation; 60 degrees Celsius annealing and extension) or three reaction temperature conditions (e.g., 95 degrees Celsius denaturation; 50 degrees Celsius annealing and 72 degrees Celsius extension).
  • the reaction must be carried out in a buffer system containing magnesium ions, dNTPs, and EvaGreen, a double-stranded DNA-binding dye.
  • the small RNA which can be detected by the method of the present invention is not particularly limited in length, and is usually 15-200 bp, preferably 18-100 bp, and more preferably 19-40 bp.
  • the biological sample containing small RNA which can be detected by the method of the present invention is not particularly limited. It should be understood that biological samples are a very broad concept and may be one or more cells, or may be samples or cultures (including microbial cultures), even samples of synthetic origin.
  • the biological sample can be an animal sample, including human samples such as body fluids, solid samples such as bone or tissue.
  • the sample may also be liquid or solid food or feed and drugs such as dairy products, vegetables, meat and meat products, water, and the like. Samples can be derived from any domestic or wild animal, such as ungulates, bears, fish, rabbits, rodents, etc.
  • RNA detection and quantification of small RNA is the discovery of its target genes and pathways, the study of disease mechanisms, and drug safety.
  • An important tool for assessing holistic and efficacy, disease diagnosis and prognosis assessment For example, compare the content of small RNAs in different tissues and compare the changes in the amount of small RNA in tissues before and after stimulation (physical or chemical treatment).
  • Small RNAs in serum or plasma can also be important biological markers for tumor classification, disease diagnosis, prediction, and assessment of prognosis.
  • NTC is a substrate-free control
  • Template amount hsa-let7a, SEQ ID NO: 1 or Table 1
  • forward primer SEQ ID NO: 9 or Table 1
  • reverse primer SEQ ID NO: 10 or Table 1
  • the inventors used 4 X for 8 small RNA members of the human let 7 family (sequences shown in SEQ ID Nos: 1-8 or Table 1). 10 6 copies of the small RNA as a template, PCR reaction with a specific PCR primer pair (sequence shown in SEQ ID NO: 9-24 or shown in Table 1), and detection of each small RNA member for each different PCR The specificity and sensitivity of the PCR reaction of the primers.
  • let-7a represents small RNA let-7a
  • Let-7A represents a specific primer pair for small RNA let-7a
  • NTC means no template.
  • the activity value of the paired pairing reaction when the specific primer is used is positioned as 100
  • the activity value of the cross reaction is the ratio of the activity value to the pairing reaction.
  • the sensitivity of the measurement is relatively close compared with the two hydrazine-binding dyes EvaGreen and SYBR Green, but the specificity of EvaGreen is significantly higher than that of SYBR Green D.
  • 500 nM let-7e forward primer (SEQ ID NO: 13) and 500 nM c7e (SEQ ID NO: 26) can form a fully paired double strand Structure (curves 1, 3)
  • 500 nM c7a (SEQ ID NO: 25) was used as a control to form a non-specific double-stranded structure with the let-7e forward primer (curves 2, 4).
  • the reaction was carried out in 50 mM Tris (pH 8.0) buffer containing 2. 5 mM magnesium chloride.
  • c is the fluorescence drop when curve 1 and curve 2 reach the peak temperature of curve 1;
  • d SYBR is the fluorescence drop when curve 3 and curve 4 reach the peak temperature of curve 3. The high drop indicates that the two binding states are different, and the small difference indicates that the two binding states are small.
  • d CTa is greater than d SYBR Description: Non-specificity is less in EvaGreen than in SYBR Green.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

一种高专一性的测定小 RNA的方法
技术领域
本发明涉及生物医学、 基因工程和检测领域, 更具体地涉及一种高专一性 的测定小 RNA的方法, 该方法可应用于检测非编码 RNA, 从而对某些疾病的情 况或状态进行描述。 背景技术
Mi croRNAs (小 RNA)是一类新发现的非编码 RNA, 它通过序列专一性地结合 到和它互补反义的 mRNA的 3 ' 非编码区(3 ' s UTR)来调控某个或某些目标 mRNA 转录及稳定性。
大多数小 RNA, 如 let- 7 RNA, miR- 1, miR- 34, miR- 60及 miR- 87在无脊 椎动物及脊椎动物中均是高度保守的。 这说明它们能识别多个位点及(或)多个 保守功能的基因的靶序列。
通过对秀丽线虫基因组的分析, 发现了另一种小 RNA 的亚型一小时序
RNA (stRNA, 如 l in-4和 l et-7)。 stRNA在调控发育过程中起到非常重要的作 用, 例如: 神经元再生、 Dauer 幼虫的形成、 外阴形成以及下皮细胞的终极分 化。
小 RNA通常由 60〜70个核苷酸的 RNA前体折叠、 剪切而成。 一些小 RNA 一经表达即可被检测到, 而一些则仅在表达峰值时才可被检测到。
可能由于小 RNA前体在其结合蛋白的保护下, 使其不易被降解, 因此通常 只有一个发卡结构的链被剪切下, 并积累起来。 推测这些结合蛋白可以调节小 RNA的转录抑制作用。 小 RNA的前体在 Di cer RNAsel l l及 Argonaute家族的酶 的参与反应后才能形成成熟的小 RNA。
小 RNA在生长、 分裂、 分化、 发育、 凋亡及疾病的发生等众多生物学活动 中起着极其重要的作用。 迄今为止, 在人的细胞里, 已发现了 1200 多种小 RNA (http : //www. mirbase. org/) , 这些小 RNA参与调控了至少 60%人类基因。
小 RNA是肿瘤分类、 疾病诊断、 预测及评估预后情况的重要生物学标记。 血清或血浆中的与肿瘤相关小 RNA已作为肿瘤诊断的生物学标记。 小 RNA的检 测及定量是某些靶基因及通路的发现、 疾病机理的研究、 药物安全性及功效的 评估、 疾病诊断及预后评估的重要工具。 因此, 能够确定各种小 RNA在特定细 胞中的数量是相当重要的。
在一些情况下, 小 RNA的定量测定显得尤为重要。 比如, 比较不同组织中 的小 RNA的含量, 比较外因剌激前后(物理或化学治疗)组织中小 RNA的量的变 化。 由于序列相似的小 RNA家族在同一细胞中均会存在, 因此能否有个灵敏度 高, 又具备专一性好的检测方法显得尤为重要。 再者, 如果能有应用于高通量 筛选样品的的方法如均质法、 多重法那就再好不过了。
现今, 已有多种的小 RNA定量分析方法面世, 其中包括小 RNA芯片矩阵, 基于 SYBR- Green I的小 RNA定量反转录 PCR法 ( Raymond, C. K., Roberts, B. S. Garrett- Engele, P., Lim, L. P. , and Johnson, J. M. (2005) Simple, quantitative primer-extensionPCR assay for direct monitoring of microRNAsand short-interfering RNAs. RNA 11,), 基于莲状环形的 Taqman 法 (Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. 2005. Real-time quantification of microRNAs by stem-loop RT- PCR. Nucleic Acids Res 33(20) :el79) , 微珠法及高通量测序等。
然而, 以上所及的所有方法都各有缺陷。 例如, 基于杂交的测定法(微矩 阵或微珠)灵敏度及专一性均不理想; 基于 SYBR-Green I的方法背景高, 专一 性差; 使用茎状环形的 Taqman 法专一性虽不太差, 但价格昂贵, 费工费时, 且有偏差, 难于应用于高通量筛选。
EvaGreen是一种双链 DNA绑定染料。 它对 PCR反应抑制低、 溶解曲线佳、 光稳定性和热稳定性高, 且不诱变, 无细胞毒性。 EvaGreen被应用于荧光定量 PCR和溶解曲线的测定(Mao F, Leung WY, Xin X. 2007. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 9;7:76. )。
虽然 BioRac Qiagen, Agilent等公司均有基于 EvaGreen的 PCR反应液 销售, 且许多实验室也有使用自配的基于 EvaGreen 的反应液的报道, 但没有 报道或暗示过 EvaGreen可提高反应专一性。
综上所述, 目前本领域尚缺乏高灵敏度、 高专一性且价格低廉的检测小 RNA的方法。 发明内容 本发明的目的就是提供一种高灵敏度、 高专一性且价格低廉的检测小 RNA 的方法。 在本发明的第一方面,提供了一种检测小 RNA的方法,所述的方法包括步骤: (a) 对于待检测的小 RNA样品, 在小 RNA的 3'端添加 polyA尾;
(b) 加入与所述的小 RNA的 polyA尾部互补或基本互补的引物, 从而使所述引 物与添加了 polyA尾的小 RNA进行退火;
(c) 反转录所述的添加了 polyA尾的小 RNA, 形成 cDNA;
(d) 使用与所述 cDNA互补的正向引物和反向引物, 在含有 EvaGreen荧光染料 的 PCR反应体系中, 对所述 cDNA进行 PCR扩增, 从而形成双链 DNA-EvaGreen荧光 染料复合物, 并且在扩增过程之中或扩增过程之后, 检测扩增产物的有无和 /或数 量, 从而确定待检测的小 RNA的存在与否和 /或数量。
在另一优选例中, 所述的检测包括定性检测和定量检测。
在另一优选例中, 所述的检测包括通过对荧光强度的检测来达到定量检测小 在另一优选例中, 所述的待检测的小 RNA样品是从待检测样本中抽提出的 在另一优选例中, 所述的抽提出的 RNA是从含有或不含小 RNA的样品中抽提 出的总 RNA。
在另一优选例中, 在步骤 (d)中, 通过检测 EvaGreen染料的荧光值, 来确定扩 增产物的有无或数量。
在另一优选例中, 所述的正向引物具有以下特征:
(i) 正向引物的 3'端序列为与待检测的小 RNA的 5'端序列相同或基本相同, 并 且 3'端序列与 cDNA的 Tm值为 45-65°C;
(ii) 正向引物的 5'端序列使得整个正向引物与 cDNA的 Tm值为 45-75°C ; 和
(iii) 正向引物的长度为 8-50 bp。
在另一优选例中, 所述的反向引物具有以下特征:
(i) 反向引物的 3'端具有与待检测的小 RNA的 3'端序列互补的、 长度为 0-15个 碱基的第一互补区;
(ii) 反向引物的中间序列为长度为 8-30个碱基的 polyT; (iii) 反向引物的 5'端序列使得整个反向引物与 cDNA的 Tm值为 45-75°C ; 和
(iv) 反向引物的长度为 12-50 bp。
在另一优选例中, 所述的待检测样本选自下组: 动物样品、 食物、 饲料、 和 药物。
在另一优选例中, 所述的待检测样本选自下组: 体液、 乳制品、 蔬菜、 肉类、 肉制品、 或水。
在另一优选例中, 在步骤 (a), 所述的添加 PolyA尾是通过在 Ploy(A)聚合酶的 催化下, 在小 RNA的 3'端聚合加上 AMP, 从而形成 polyA尾。
在另一优选例中, polyA尾具有 8-200个 A, 较佳地 10-100个 A, 最佳地 12-50个 A。
在另一优选例中, 所述的小 RNA是长度 15〜200个核甘酸 (更佳地, 长度为 18-100bp)的 RNA分子。 较佳地, 所述的小 RNA是非编码 RNA。
在另一优选例中, 所述的方法中的 polyA尾被选自下组的其他 polyN尾替换: poly(C)尾, 或 poly(G)尾, 或 poly(U)尾; 并且
在步骤 (b)中, 加入与所述的小 RNA的 polyN尾部互补或基本互补的引物, 从而 使所述引物与添加了 polyN尾的小 RNA进行退火; 和
在步骤 (c)中, 反转录所述的添加了 polyN尾的小 RNA, 形成 cDNA。
在本发明的第二方面, 提供了一种提高聚合酶链反应中引物与模板的结合专 一性的方法, 包括步骤: 在聚合酶链反应的反应体系中, 添加 EvaGreen荧光染料。
在另一优选例中, 在所述的反应体系中, EvaGreen荧光染料在 475纳米的光密 度值在 0.01到 2之间。
在本发明的第三方面, 提供了一种 EvaGreen荧光染料的用途, 它用作提高聚 合酶链反应中引物与模板的结合专一性的试剂。
在本发明的第四方面, 提供了一种 EvaGreen荧光染料的用途, 它用于制备提 高聚合酶链反应中引物与模板的结合专一性的试剂。
在本发明的第五方面,提供了一种获取待检测样本中非编码 RNA信息的方法, 包括步骤:
(a) 从所述的待检测样本抽提含有所述非编码 RNA的 RNA样品;
(b) 对于步骤 (a)抽提出的 RNA, 在非编码 RNA的 3'端添加 polyA尾; (c) 加入与所述的非编码 RNA的 polyA尾部互补的引物, 从而使得所述引物与 带 polyA的非编码 RNA进行退火;
(d) 反转录所述的含 polyA尾的非编码 RNA, 形成 cDNA;
(e) 使用与所述 cDNA互补的正向引物和反向引物, 在含有 EvaGreen荧光染料 的 PCR反应体系中, 对所述 cDNA进行 PCR扩增, 从而形成双链 DNA-EvaGreen荧光 染料复合物; 并且在扩增过程之中或扩增过程之后, 检测扩增产物的有无和 /或数 量, 从而获得所述非编码 RNA的信息, 其中所述信息包括所述非编码 RNA是否存 在于所述样品中以及存在的数量。
在另一优选例中, 所述的检测采用检测 EvaGreen实时荧光变化的实时荧光定 量 PCR法。
在另一优选例中, 所述的方法中的 polyA尾被选自下组的其他 polyN尾替换: poly(C)尾, 或 poly(G)尾, 或 poly(U)尾。
在另一优选例中, 利用所获得的非编码 RNA的信息, 可用于对检测对象 (其中 包括但并不限于: 哺乳动物如人)的某种疾病的情况或状态进行描述。 该方法尤其 适用于以下情况:
a.在某种疾病的某个阶段, 某个非编码 RNA的表达量增加;
b.在某种疾病的某个阶段, 某个非编码 RNA的表达量减小。
上述两种情况包含了多数非编码 RNA在某种疾病中的表达情况。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文 (如实施例) 中具体描述的各技术特征之间都可以互相组合, 从而构成新的或优选的技术方 案。 限于篇幅, 在此不再一一累述。 附图说明
图 1显示了 EvaGreen实时荧光定量法检测小 RNA的流程。 从上至下各步 骤依次是: 加 poly (A)尾; RT引物与 RNA退火; 反转录反应; 和使用正向引物 和反向引物进行 PCR扩增。
图 2显示了本发明一个实例中正向引物的结构。
图 3显示了本发明一个实例中反向引物的结构。
图 4显示了 let-7a模板浓度梯度扩增曲线。
图 5显示了小 RNA模板的量与 Cq值呈线性关系。 图 6显示了 SYBR Green荧光定量 PCR法与 EvaGreen荧光定量 PCR法的交 叉反应专一性与灵敏度比较结果。
图 7显示了含有不同的荧光染料: EvaGreen (通道一)及 SYBR Green (通道二) 对于专一性结合(实线)以及非专一性结合(虚线)的引物与模板结合的影响的 融解曲线。 图中, Trace 1 (曲线 1)是 EvaGreen和引物与专一性模板结合的荧 光值对温度求导的负数; Trace 3 (曲线 3)是 SYBR Green I和引物与专一性模 板结合的荧光值对温度求导的负数; Trace 2 (曲线 2)是 EvaGreen和引物与非专 一性模板结合的荧光值对温度求导的负数; Trace 4 (曲线 4)是 SYBR Green I和 引物与非专一性模板结合的荧光值对温度求导的负数。 具体实施方式
本发明人经过广泛而深入的研究, 意外地发现, EvaGreen作为一种 DNA结 合染料居然能够显著提高 PCR反应中引物与模板结合的专一性。 具体地, 与不 添加另一常用的 DNA结合染料 SYBR Green I相比, 虽然两者灵敏度上无明显 区别, 但是 EvaGreen可以显著提高反应的专一性, 因此 EvaGreen特别适用于 区分和检测结构差异极小的小分子 RNA。 在此基础上, 本发明开发了新的高专 一性测定小 RNA的方法。 本发明提供了一种具有优势的小 RNA检测、 分类及定量的实验方法。 本发 明的检测小 RNA的方法适用于检测 microRNAs (小 RNAs)或其他小分子核苷酸, 如 s iRNA。
在此发明中,提供了一种基于 EvaGreen的定量 PCR法(尤其是实时定量 PCR 法), 它适用于定量检测小 RNA。 基于 EvaGreen的定量 PCR法可以进一步扩展 应用于 mRNA及基因表达的定量检测。 术语
如本文所用, 术语 " EvaGreen " , " Eva Green " 或 " EvaGreen 染料" 可 互换使用,指是 Biot ium 公司生产的一种商品名为 EvaGreen的 DNA结合染料, 它是一种同时适用于实时 PCR和高分辨率熔解曲线(HRM)分析的染料。这种染料 通过一种被称为 "按要求释放" 的全新机制, 选择性的结合双链 匪。 这一机 制保证了较低的 PCR抑制作用, 同时也允许在染料饱和浓度以下进行高分辨率 熔解曲线(HRM)分析。 由于 EvaGreen 染料在光谱特性上类似于 FAM 以及 SYBR Green I, 因此 这种染料兼容所有商业化的 qPCR仪器。 此外, 和 SYBR Green I 以及 SYBR GreenER不同的是, EvaGreen 染料非常稳定且无致突变性和细胞毒 性。
EvaGreen ® 染料的结构信息在例如美国专利 US7, 776, 567中有详细描述。 如本文所用, 术语 "引物 " 指的是在与模板配对, 在 DNA聚合酶的作用 下能以其为起点进行合成与模板互补的 DNA链的寡居核苷酸的总称。 引物可以 是天然的 RNA、 DNA, 也可以是任何形式的天然核苷酸。 引物甚至可以是非天然 的核苷酸如 LNA或 ZNA等。
引物 "大致上" (或 "基本上")与模板上一条链上的一个特殊的序列互补。 引物必须与模板上的一条链充分互补才能开始延伸, 但引物的序列不必与模板 的序列完全互补。 比如, 在一个 3 ' 端与模板互补的引物的 5 ' 端加上一段与 模板不互补的序列, 这样的引物仍大致上与模板互补。 只要有足够长的引物能 与模板充分的结合, 非完全互补的引物也可以与模板形成引物-模板复合物, 从而进行扩增。
如本文所用, 术语 " Poly(A)聚合酶", 是指一类酶, 这类酶可以利用 ATP 作为底物, 在 RNA的 3 ' 羟基末端添加多个到几百个 AMP。 Poly(A)聚合酶可以 从原核或真核生物中提取。 由于这类酶的专一性不强, 这类酶可以分别利用 CTP , 或 GTP, 或 UTP作为底物, 在 RNA的 3 ' 羟基末端添加多个到几百个 CMP 或 GMP, 或 UMP。 如果非编码 RNA是添加了的 poly(C)尾, 或是 poly(G)尾, 或是 poly(U)尾, 在此发明中, 与尾部互补的引物也相应变化。 Poly(U)聚合酶是和 Poly(A)聚合酶不同, 但类似的酶。 它可以利用 UTP作为底物, 在 RNA 的 3 ' 羟基末端添加多个到几百个 UMP。 它也可以非特异性地分别利用 ATP, 或 CTP, 或 GTP作为底物,在 RNA 的 3 ' 羟基末端添加多个到几百个 AMP或 CMP,或 GMP。 因此, 在本发明中, Poly(A)聚合酶和 Poly(U)聚合酶有同样的功效。
如本文所用, 术语 " polyA尾", 是本发明第一步中在 RNA的 3'端添加的寡 聚到多聚 A(AMP, 腺苷酸)。 这个 " polyA尾" 可用 " polyC尾" , " polyG尾" , " polyU尾" 替代。 相应地, 在下一步引入的和尾部互补, 或基本互补的引物的 序列也要变化。 " polyA尾" 也可以通过 RNA 链接酶 (RNA Li gase)加上。 现参见图 1, 本发明的一种优选的技术方案包括以下步骤:
(1) 从含有或不含小 RNA的样品中抽提总 RNA。 在 Poly(A)聚合酶的催 化下在小 RNA的 3'端聚合加上 AMP, 使小 RNA形成一个 polyA尾。
(2) 加入与 polyA互补的引物, 退火。
(3) 在反转录酶的催化下, 反转录小 RNA使之成为 cDNA。
(4) 使用正、 反向引物及含有 EvaGreen的荧光染料的 PCR反应混合母液 对 cDNA进行扩增
(5) 在扩增过程中, 实时检测 EvaGreen染料的荧光值的变化。
本发明中, 优选的引物结构如图 2和图 3所示。
正向引物一般可以分为 2部分, 3 ' 端部分的引物与模板小 RNA的 5 ' 端完 全互补, 退火温度一般在 45〜65摄氏度之间, 而引物的另一部分一 5 ' 端的附 加序列(尾)将整条引物的退火温度提高到 50〜75摄氏度之间(图 2)。
反向引物则由 3部分组成:第一部分,引物的 3 ' 端 0〜15个碱基与小 RNA 的 3 ' 端完全互补; 中间部分, 约 10〜30个碱基为 10〜30个 dT, 与小 RNA加 上的 Poly (A)的尾互补; 第三部分为一个 0〜40碱基的附加序列(尾)(图 3)。 应理解, 当第三部分为 0碱基时, 反向引物可以只有 2部分构成。
PCR反应的进行需要含有 EvaGreen的反应母液。 反应程序可以是常规的 2 个温度条件的(如 95摄氏度变性; 60摄氏度退火及延伸)或 3个反应温度的条 件(如 95摄氏度变性; 50摄氏度退火及 72摄氏度延伸)。反应须在含有镁离子、 dNTP、 及 EvaGreen——双链 DNA绑定染料的缓冲体系中进行。
可用本发明方法检测的小 RNA, 其长度没有特别限制, 通常为 15-200bp, 较佳地为 18-100bp , 更佳地为 19- 40bp。
可用本发明方法检测的含小 RNA的生物学样品没有特别限制。 应理解, 生 物学样品是十分广泛的一个概念, 可以是一个或多个细胞, 也可以是样本或培 养物(包括微生物培养物), 甚至包括合成来源的样本。 通常, 生物样本可以是 动物样品, 包括人类样品如体液、 固体样品如骨骼或组织。 样品也可以是液态 或固态食物或饲料及药物, 如乳制品、 蔬菜、 肉类及肉制品、 水等。 样品可以 来源于任何家养或野生动物, 如有蹄类、 熊类、 鱼类、 兔类、 啮齿类等。 应用
小 RNA的检测及定量是其靶基因及通路的发现、 疾病机理的研究、 药物安 全性及功效的评估、 疾病诊断及预后评估的重要工具。 比如, 比较不同组织中 的小 RNA的含量, 比较外因剌激前后(物理或化学治疗)组织中小 RNA的量的变 化。 血清或血浆中小 RNA也可作为肿瘤分类、 疾病诊断、 预测及评估预后情况 的重要生物学标记。 本发明的主要优点在于:
(a) 专一性非常强。
(b) 灵敏度高。
(c) 同时适合高通量筛选和精细筛选
(d) 重复性高。
(e) 价格便宜。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说 明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方 法,通常按照常规条件,例如 Sambrook等人,分子克隆:实验室手册(New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂 商所建议的条件。 实施例 1
在实时荧光定量 PCR法中 EvaGreen具有更高的专一性
本发明人试验了 4 X 106, 4 X 105, 4 X 104, 4 X 103, 4 X 102, 40, 4, 以及 0 (NTC) (NTC为无底物对照)个分子的模板量(hsa-let7a, SEQ ID N0 : 1或表 1), 使用正向引物(SEQ ID NO : 9或表 1)及反向引物(SEQ ID NO : 10或表 1)连同含 有 EvaGreen的 PCR反应母液进行实时荧光定量 PCR反应。 表 1 小 RNA以及引物序列
Figure imgf000010_0001
hss - let - 7f 6 UGAGGUAGUAGAUUGUAUAGUU hsa - let - 7g 7 UGAGGUAGUAGUUUGUACAGUU hsa - let - 7 i 8 UGAGGUAGUAGUUUGUGCUGUU l et- 7a 正向引物 9 CCCCGTGAGGTAGTAGGTTGTATA l et- 7b 正向引物 10 CCGGAGGTAGTAGGTTGTGT l et- 7c 正向引物 11 GCCGGTAGTAGGTTGTATGGT l et- 7d 正向引物 12 CCCCAGGTAGTAGGTTGCAT l et- 7e 正向引物 13 CGGGAGGTAGGAGGTTGTAT l et- 7f 正向引物 14 CCCCCTGAGGTAGTAGATTGTATAG l et- 7g 正向引物 15 CCCCGTGAGGTAGTAGTTTGTAC l et- 7 i 正向引物 16 CGGGAGGTAGTAGTTTGTGC l et-7a 反向引物 17 GATATTCGCACGCATTTTTTTTTTTTTTAAC l et-7b 反向引物 18 TCGCACGCATTTTTTTTTTTTTTAACC l et-7c 反向引物 19 GGATATTCGCACGCATTTTTTTTTTTTTTA l et-7d 反向引物 20 GATATTCGCACGCATTTTTTTTTTTTTTAACT l et-7e 反向引物 21 GATATTCGCACGCATTTTTTTTTTTTTTAACT l et-7f 反向引物 22 GGATATTCGCACGCATTTTTTTTTTTTTTAA l et-7g 反向引物 23 GATATTCGCACGCATTTTTTTTTTTTTTAACT l et-7 i 反向引物 24 ATATTCGCACGCATTTTTTTTTTTTTTAACA c7a 25 AACTATACTTCCTACTACCTCT c7e 26 AACTATACTTCCTCCTACCTCT 结果如图 4、 图 5和图 6所示。 其中, 图 5显示了灵敏度、 线性及模板浓 度动态范围。
在测试含有 EvaGreen的 PCR的专一性实验中, 针对人类 let 7家族的 8 个小 RNA成员(序列如 SEQ ID No : 1-8所示或表 1所示), 本发明人分别使用 4 X 106个拷贝数的小 RNA作为模板, 用特异性 PCR 引物对(序列如 SEQ ID NO: 9-24所示或表 1所示)进行 PCR反应, 并检测各小 RNA成员对各个不同的 PCR 引物的 PCR反应的专一性及灵敏度。
本实施例同时采用了 EvaGreen和 SYBR Green两种双链匪结合染料, 对 其专一性及灵敏度进行对比。 如果同族的反应的 Ct值比非同族的 ct值低一个 Ct值, 则非同族的反应相当于同族反应的 50%, 即其交叉反应为 50%; 同理, 如果同族的反应的 Ct值比非同族的 Ct值低 2个 Ct值, 则非同族的反应相当 于同族反应的 25%, 即其交叉反应为 25%; 以此类推, 如果同族的反应的 Ct值 比非同族的 Ct值低 3个 Ct值, 则非同族的反应相当于同族反应的 12. 5%, 即 其交叉反应为 12. 5%; 如果同族的反应的 Ct值比非同族的 Ct值低 4个 Ct值, 则非同族的反应相当于同族反应的 6. 25%, 即其交叉反应为 6. 25%。 在小 RNA 检测实验中, 普遍可以接受低于 5%的交叉反应。
本实施例中,同时使用了 EvaGreen及 SYBR Green两种双链 DNA结合染料, 对 l et 7家族的 8个小 RNA成员实时荧光定量反应的专一性及灵敏度进行对比。
结果如图 6所示, 在所有的 49个交叉反应中, 8个基于 SYBR Green染料 的定量 PCR有大于 5%的交叉反应, 最高的交叉反应高于 70%, 相比之下, 基于 EvaGreen染料的交叉反应均小于 5%。因此,基于 EvaGreen的实时荧光定量 PCR 法的专一性高于基于 SYBR Green的实时荧光定量 PCR法。
众所周知, 小 RNA的序列很短中, 且不同小 RNA的序列很相似, 因此能区 分不同小 RNA的专一性引物显得尤为重要。
令人非常意外的是, 从图 6以及表 2A和 2B可发现, 在 EvaGreen反应中, 表征非特异性交叉反应的相对值总和为 15. 1 (见表 2A)。 与之相反, 在 SYBR GREEN反应中, 表征非特异性交叉反应的相对值总和高达 161 (见表 2B)。 换言 之,对于同样的引物对,同样的小 RNA, SYBR Green的交叉反应居然比 EvaGreen 的交叉反应高出 10倍之多(161. 3, 14. 8=10. 89)。 即, 使用 EvaGreen把专一性 提高了一个数量级。
Figure imgf000012_0001
Figure imgf000013_0001
注:在表 2A和 2B中, let-7a表示小 RNA let-7a; Let- 7A表示针对小 RNA let-7a 的特异性引物对; 依此类推。 NTC表示无模板。
其中, 将使用特异性引物时的配对配对反应的活性值定位为 100, 交叉反应 的活性值为相对于配对反应的活性值的比值。 结果汇总
在本实施例的小分子 RNA的测定中, 应用两种匪结合染料 EvaGreen和 SYBR Green相比,测定的灵敏度比较接近,但 EvaGreen的专一性明显高于 SYBR GreenD 实施例 2
退火实验证明 EvaGreen具有更高的专一性
分别使用 EvaGreen (组 A)或 SYBR Green的染料(组 B), 500nM的 let-7e 正向引物(SEQ ID NO : 13)与 500nM的 c7e (SEQ ID NO : 26)可形成完全配对的双 链结构(曲线 1, 3), 使用 500nM c7a (SEQ ID NO : 25)作为对照与 let-7e正向 引物形成非专一性的的双链结构(曲线 2, 4)。 该反应在 50mM 的 Tris (pH8. 0), 且含有 2. 5 mM的氯化镁的缓冲液中进行。
结果如图 7所示。 无论使用 EvaGreen或 SYBR Green染料, 专一性结合的 的双链退火曲线峰值的温度均高于非专一性结合双链的峰值峰值的温度, 这证 明专一性结合的退火温度较非专一性结合的高。 然而, 对于专一性结合与非专 一性结合的曲线峰值之间的温度差使用 EvaGre en (TSeVa)染料时明显大于使用 SYBR Green (TSSYBR)。 这个实验参数证明了在 EvaGreen 的染料中, 引物的专一 性强。
另外, c 是在曲线 1与 曲线 2在曲线 1达到峰值的温度时的荧光落差; dSYBR是在曲线 3与 曲线 4在曲线 3达到峰值的温度时的荧光落差。落差的高表 明两个结合状态差别大, 落差的小表明两个结合状态差别小。 dCTa大于 dSYBR 说 明: 非专一性结合在 EvaGreen 中要比在 SYBR Green 中少。 这两个退火实验 参数, 从两个角度进一步验证了在 PCR 试验中观察到的现象, 证实了我们的发 现有其物理学基础。
综上所述, 退火实验进一步证明, EvaGreen法在退火时较 SYBR Green法 有更高的专一性。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献 被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后, 本领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申 请所附权利要求书所限定的范围。

Claims

权 利 要 求
1. 一种检测小 RNA的方法, 其特征在于, 所述的方法包括步骤:
(a) 对于待检测的小 RNA样品, 在小 RNA的 3'端添加 polyA尾;
(b) 加入与所述的小 RNA的 polyA尾部互补或基本互补的引物, 从而使所述引 物与添加了 polyA尾的小 RNA进行退火;
(c) 反转录所述的添加了 polyA尾的小 RNA, 形成 cDNA;
(d) 使用与所述 cDNA互补的正向引物和反向引物, 在含有 EvaGreen荧光染料 的 PCR反应体系中, 对所述 cDNA进行 PCR扩增, 从而形成双链 DNA-EvaGreen荧光 染料复合物, 并且在扩增过程之中或扩增过程之后, 检测扩增产物的有无和 /或数 量, 从而确定待检测的小 RNA的存在与否和 /或数量。
2. 如权利要求 1所述的方法, 其特征在于, 在步骤 (d)中, 通过检测 EvaGreen 染料的荧光值, 来确定扩增产物的有无或数量。
3. 如权利要求 1所述的方法, 其特征在于, 所述的正向引物具有以下特征:
(i) 正向引物的 3'端序列为与待检测的小 RNA的 5'端序列相同或基本相同, 并 且 3,端序列与 cDNA的 Tm值为 45-65°C;
(ii) 正向引物的 5'端序列使得整个正向引物与 cDNA的 Tm值为 45-75°C ; 和 (iii) 正向引物的长度为 8-50 bp。
4. 如权利要求 1所述的方法, 其特征在于, 所述的反向引物具有以下特征: (i) 反向引物的 3'端具有与待检测的小 RNA的 3'端序列互补的、 长度为 0-15个 碱基的第一互补区;
(ii) 反向引物的中间序列为长度为 8-30个碱基的 polyT;
(iii) 反向引物的 5'端序列使得整个反向引物与 cDNA的 Tm值为 45-75°C ; 和
(iv) 反向引物的长度为 12-50 bp。
5. 如权利要求 1所述的方法, 其特征在于, 所述的待检测样本选自下组: 动 物样品、 食物、 饲料、 和药物。
6. 一种提高聚合酶链反应中引物与模板的结合专一性的方法, 其特征在于, 包括步骤: 在聚合酶链反应的反应体系中, 添加 EvaGreen荧光染料。
7. 如权利要求 6所述的方法, 其特征在于, 在所述的反应体系中, EvaGreen 荧光染料在 475纳米的光密度值在 0.01到 2之间。
8. 一种 EvaGreen荧光染料的用途, 其特征在于, 用作提高聚合酶链反应中引 物与模板的结合专一性的试剂。
9. 一种 EvaGreen荧光染料的用途, 其特征在于, 用于制备提高聚合酶链反应 中引物与模板的结合专一性的试剂。
10.一种获取待检测样本中非编码 RNA信息的方法, 其特征在于, 包括步骤:
(a) 从所述的待检测样本抽提含有所述非编码 RNA的 RNA样品;
(b) 对于步骤 (a)抽提出的 RNA, 在非编码 RNA的 3'端添加 polyA尾;
(c) 加入与所述的非编码 RNA的 polyA尾部互补的引物, 从而使得所述引物与 带 polyA的非编码 RNA进行退火;
(d) 反转录所述的含 polyA尾的非编码 RNA, 形成 cDNA;
(e) 使用与所述 cDNA互补的正向引物和反向引物, 在含有 EvaGreen荧光染料 的 PCR反应体系中, 对所述 cDNA进行 PCR扩增, 从而形成双链 DNA-EvaGreen荧光 染料复合物; 并且在扩增过程之中或扩增过程之后, 检测扩增产物的有无和 /或数 量, 从而获得所述非编码 RNA的信息, 其中所述信息包括所述非编码 RNA是否存 在于所述样品中以及存在的数量。
PCT/CN2011/083724 2011-03-08 2011-12-08 一种高专一性的测定小rna的方法 WO2012119471A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/001,267 US9290801B2 (en) 2011-03-08 2011-12-08 Detection method of micro-RNA with high specificity
US15/054,882 US20160177376A1 (en) 2011-03-08 2016-02-26 Detection method of micro-rna with high specificity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110054104.7A CN102676637B (zh) 2011-03-08 2011-03-08 一种高专一性的测定小rna的方法
CN201110054104.7 2011-03-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/001,267 A-371-Of-International US9290801B2 (en) 2011-03-08 2011-12-08 Detection method of micro-RNA with high specificity
US15/054,882 Continuation US20160177376A1 (en) 2011-03-08 2016-02-26 Detection method of micro-rna with high specificity

Publications (1)

Publication Number Publication Date
WO2012119471A1 true WO2012119471A1 (zh) 2012-09-13

Family

ID=46797465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083724 WO2012119471A1 (zh) 2011-03-08 2011-12-08 一种高专一性的测定小rna的方法

Country Status (3)

Country Link
US (2) US9290801B2 (zh)
CN (1) CN102676637B (zh)
WO (1) WO2012119471A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2914741B1 (en) 2012-11-02 2017-08-16 Life Technologies Corporation Novel compositions and methods for enhancing pcr specificity
KR20160098097A (ko) * 2015-02-09 2016-08-18 (주) 하임바이오텍 마이크로알앤에이 검출용 키트 및 방법
EP3259373B1 (en) * 2015-02-17 2022-07-27 Bio-Rad Laboratories, Inc. Small nucleic acid quantification using split cycle amplification
US10563250B2 (en) 2015-03-13 2020-02-18 Life Technologies Corporation Methods, compositions and kits for small RNA capture, detection and quantification
EP3476945B1 (en) * 2016-07-21 2022-10-12 Heimbiotek Inc. Mirna detecting method
KR101874089B1 (ko) * 2016-07-21 2018-07-03 (주) 하임바이오텍 알앤에이 검출용 키트 및 방법
KR102343373B1 (ko) * 2020-03-09 2021-12-24 (주)하임바이오텍 miRNA 동시 다중 검출 방법 및 이를 이용한 miRNA 검출용 키트
WO2023023673A2 (en) 2021-08-20 2023-02-23 Kasa Bio, L.L.C. Compositions and methods for multiplex detection of mirna and other polynucelotides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092016A2 (en) * 2007-01-26 2008-07-31 Stratagene California Methods, compositions, and kits for detection of micro rna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192937B2 (en) * 2004-04-07 2012-06-05 Exiqon A/S Methods for quantification of microRNAs and small interfering RNAs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092016A2 (en) * 2007-01-26 2008-07-31 Stratagene California Methods, compositions, and kits for detection of micro rna

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, XIN ET AL.: "miRNA Quantification Methods Basing on PCR Technique", CHINA BIOTECHNOLOGY, vol. 30, no. 11, 2010, pages 88 - 93 *
MAO, F. ET AL.: "Characterization of Eva Green and the implication of its physicochemical properties for q PCR applications.", BMC BIOTECHNOLOGY., vol. 7, 2007, pages 76 *
SHI, R. ET AL.: "Facile means for quantifying micro RNA expression by real-time PCR.", BIOTECHNIQUES., vol. 39, no. 4, 2005, pages 519 - 524 *

Also Published As

Publication number Publication date
US9290801B2 (en) 2016-03-22
CN102676637A (zh) 2012-09-19
US20160177376A1 (en) 2016-06-23
CN102676637B (zh) 2016-02-03
US20140295434A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
US9909179B2 (en) Single-cell nucleic acid analysis
Li et al. Advances in isothermal amplification: novel strategies inspired by biological processes
US8314220B2 (en) Methods compositions, and kits for detection of microRNA
Balcells et al. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers
CN105164279B (zh) 靶核酸的多重分析
WO2012119471A1 (zh) 一种高专一性的测定小rna的方法
JP5851496B2 (ja) 修飾ステムループオリゴヌクレオチドが仲介する逆転写および塩基間隔が制限された定量的pcr
JP5749656B2 (ja) 低分子rna種の定量化のための方法
CN107429292B (zh) 底数大于2的指数核酸扩增
US20160304936A1 (en) Quantification of mutant alleles and copy number variation using digital pcr with nonspecific dna-binding dyes
EP4077717B1 (en) Method of detecting an analyte
Lan et al. Linear-hairpin variable primer RT-qPCR for MicroRNA
EP3055430B1 (en) Method for the detection of target nucleic acid sequences
JP2022111253A (ja) 未分化マーカー遺伝子高感度検出法
CN101981205A (zh) 包含检测细胞角蛋白7的mRNA用引物的试剂
WO2021222289A1 (en) Pseudo-complementary bases in genotyping and nucleic acid sequencing
CN105247076B (zh) 使用拼装序列扩增片段化的目标核酸的方法
Xu et al. A Molecular Review of the Detection of Specific Nucleic Acids by Amplification and Hybridization Characterization of Microbial Diversity in the Food Chain: A Molecular Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14001267

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11860361

Country of ref document: EP

Kind code of ref document: A1