WO2012119455A1 - 一种提取mos管沿沟道电荷分布的方法 - Google Patents

一种提取mos管沿沟道电荷分布的方法 Download PDF

Info

Publication number
WO2012119455A1
WO2012119455A1 PCT/CN2011/081475 CN2011081475W WO2012119455A1 WO 2012119455 A1 WO2012119455 A1 WO 2012119455A1 CN 2011081475 W CN2011081475 W CN 2011081475W WO 2012119455 A1 WO2012119455 A1 WO 2012119455A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
curve
charge
stress
charge pump
Prior art date
Application number
PCT/CN2011/081475
Other languages
English (en)
French (fr)
Inventor
黄如
杨东
谭斐
安霞
张兴
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to US13/499,275 priority Critical patent/US20130013245A1/en
Publication of WO2012119455A1 publication Critical patent/WO2012119455A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Definitions

  • the invention relates to the field of semiconductor device testing, in particular to a test extraction method for interface state and gate dielectric charge distribution in a MOS tube. Background technique
  • the device size has also been gradually reduced to deep submicron to nanometer order.
  • device performance is constantly evolving.
  • the reduction in feature size of the device also brings various reliability issues, including hot carrier effects, NBTI, and oxide breakdown with time (TDDB).
  • the reliability problem is mainly due to the external stress causing some traps in the Si/Si0 2 interface and the gate dielectric layer in the device, which seriously affects various characteristics of small-sized devices. Therefore, it is especially important to be able to accurately measure the interface charge state and the trap charge density in the gate dielectric layer.
  • is the average interface state density
  • g is the basic charge amount
  • / is the pulse frequency
  • AE is the energy difference between the silicon surface inversion and the Fermi level at the time of accumulation.
  • VLSI manufacturing technology is rapidly developing at the nanometer scale, and the power supply voltage is not scaled down as the device's channel length, junction depth, and gate oxide thickness are reduced in size and substrate doping concentration is increased. This results in a significant increase in the local lateral and longitudinal electric fields of the channel region. Under the action of local strong electric field, the reliability of MOS devices is severely challenged, and the local charge generated at the interface and in the gate dielectric layer is also critical to the performance of the device. Since most of the traditional charge pump methods can only calculate the average charge density generated at the entire interface, although some people can roughly calculate the interface state due to stress and the distribution of dielectric layer charge along the channel direction by changing the test conditions and structures. However, it is necessary to carry out a very complicated calculation process.
  • An object of the present invention is to provide a method for extracting charge distribution along a channel interface state and a gate dielectric due to stress generation based on a charge pump method.
  • Scheme 1 A method for extracting charge distribution along a channel of a MOS transistor, which is applied to extraction of interface state and gate dielectric charge distribution in a MOS transistor, and is characterized in that it comprises the following steps:
  • the implementation step of the step b) is (the method flow diagram is shown in FIG. 2, and the flowchart diagram is shown in FIG. 3):
  • the distribution of the local corresponding point threshold voltage Vth and the flatband voltage Vft along the channel is obtained: If the original MOS tube interface state is evenly distributed before stress (good process conditions), the curve measured by the pre-stress charge pump method is obtained. Regarding the distribution of the local corresponding point threshold voltage Vth and the flatband voltage Vft along the channel (Equation 2), the distribution results are shown in Fig. 4.
  • Equation 3 ⁇ ⁇ Local charge pump current, 1 w is the maximum charge pump current generated by the tube;
  • Equation 5 where ⁇ is the gate dielectric unit capacitance;
  • is the gate dielectric unit capacitance;
  • the interface state density due to stress is much larger than the interface state density at the interface with good original process conditions, and the local primitive interface state is ignored in the comparison. influences.
  • a preferred implementation of the solution 1 is characterized in that, in the step a), the test circuit is open at the source end, the source end of the MOS tube is suspended, the drain end is shorted to the substrate, and the gate end is externally connected.
  • the frequency and amplitude are fixed, the reference voltage V bas / varies the pulse voltage.
  • Scheme 4 A preferred implementation of the scheme 1, characterized in that in the step a), the test circuit is open at the drain end,
  • the drain end of the MOS transistor is suspended, the source terminal is shorted to the substrate, and the gate terminal is externally connected with a fixed frequency and amplitude, and the reference voltage V bas / varies the pulse voltage.
  • Scheme 5 A preferred implementation of Scheme 3 or 4, characterized in that the fixed pulse amplitude is greater than the difference between the flatband voltage Vfb and the threshold voltage Vth .
  • Scheme 6 A preferred implementation of Scheme 3 or 4, characterized in that the fixed pulse frequency is greater than 500 Hz.
  • Scheme 7 A preferred implementation of Scheme 1, characterized in that in step a), the stress is hot electron injection
  • FIG. 1 is a schematic diagram of an improved source open circuit charge pump current test
  • FIG. 2 is a flow chart of a method for extracting a charge distribution according to the present invention
  • 3 is a schematic diagram of a flow chart; wherein 3a is a charge pump current curve before and after a pair of source open circuit stresses, 3b is a charge pump current curve before and after a pair of drain open circuit stresses, and 3c is a local threshold voltage before and after stress and local level Band voltage along the channel profile; Figure 5.
  • P _V bas6 curve where Origin is the curve measured before stress, two Origin curves are coincident; Post-stress is the curve measured after stress;
  • Figure 6 is the distribution of interface state charge along the channel due to stress in the example; 7 In the example, the charge of the gate dielectric layer due to stress is along the channel profile.
  • the amplitude of the pulse voltage should be greater than the difference between the threshold voltage Vth and the flatband voltage Vfb , and simultaneously scanning the reference voltage, so that two sets of stress pump currents can be obtained before and after the stress.
  • the curve see Figure 5, where the two origin curves coincide. Referring to the method described in Scheme 2 of the Summary of the Invention, the interface state charge generated by the stress condition and the distribution of the gate dielectric layer charge along the drain end into the channel are finally obtained (see FIGS. 6 and 7).
  • the interface state charge of the MOSFET and the gate dielectric layer charge extraction method of the present invention can quickly extract the distribution of the interface state charge of the M0S tube and the charge of the gate dielectric layer along the channel after the stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

一种提取 MOS管沿沟道电荷分布的方法
技术领域
本发明涉及半导体器件测试领域, 具体是针对 M0S管中界面态与栅介质电荷分布的测试 提取方法。 背景技术
近几十年来, 随着电路的集成度的提高,器件尺寸也逐渐缩小到深亚微米以至纳米量级。 同时, 随着器件特征尺寸缩小, 器件性能也在不断变化发展。 但是, 器件特征尺寸的减小也 带来了各种可靠性问题, 其中主要包括热载流子效应、 NBTI以及氧化层随时间的击穿(TDDB) 等。 可靠性问题主要是由于外加应力导致器件内 Si/Si02界面以及栅介质层中产生一些陷阱, 严重影响着小尺寸器件的各种特性。 所以, 能够准确地测量界面态与栅介质层中陷阱电荷密 度对于器件可靠性的研究尤为重要。
由于在外界应力下产生的界面陷阱和栅介质层电荷具有非均匀分布的特点, 因此靠传统 的中带阈值电压方法、 电容(C-V)方法, 导纳 (Conductance )方法, 深能级瞬态谱(DLTS) 和随机电报噪声 (Random Telegraph Noise ) 很难可靠、 准确地测量器件在外界应力下产生 的缺陷。 而目前比较广泛应用的测量界面态电荷密度的方法主要是电荷泵技术 (Charge Pumping) 。 电荷泵技术于 1969年由 J. St印 hen. Brugler提出, 主要的原理如图 1所示, 器件的源漏同 时加一反偏电压, 栅极加一脉冲电压。 当给匪 OS器件栅极加一正脉冲电压高于阈值电压 Vth, 使表面被深耗尽而进入反型状态时, 电子将从源漏区流入沟道,其中一部分会被界面态俘获。 当栅脉冲电压值低于平带电压 vfb, 使器件表面返回积累状态时, 沟道中的可动电子由于反偏 作用又回到源和漏区。 陷落在界面态中的电子由于具有较长的退陷时间常数, 在沟道消失之 后仍然陷落在界面态中, 将与来自衬底的多数载流子复合, 产生衬底电流 ι。Ρ。 由于 ι。Ρ电流大 小对界面陷阱非常敏感, 它直接正比于界面态密度、 器件栅面积和栅脉冲频率, 所以界面陷 阱的变化会直接反映在 I。P上。 其中公式 1反映了他们之间的关系
^ (公式 1 ) qxAreax f xAE
^为平均界面态密度, g是基本电荷量, 是栅面积, /是脉冲频率, AE是硅表面 反型与积累时费米能级之间的能量差。
VLSI制造技术正向纳米尺度迅速发展, 在器件的沟道长度、 结深和栅氧厚度等尺寸等比 缩小和衬底掺杂浓度增加的同时, 电源电压并未能随之等比例缩小, 这就导致沟道区的局部 横向和纵向电场显著增加。在局部强电场作用下, M0S器件的可靠性受到了严峻的挑战, 同时 在界面处和栅介质层中产生的局部电荷对器件的性能影响也很关键。 由于传统的电荷泵方法 大多只能计算出整个界面处产生的平均电荷密度, 尽管有人通过改变测试条件与结构能粗略 地计算出由于应力产生的界面态和介质层电荷沿沟道方向的分布, 但都需要进行十分复杂的 计算过程, 需要通过不断地改变栅脉冲幅度或改变漏端与衬底的偏压, 测出一系列不同栅脉 冲基准电压下的电荷泵曲线, 根据获得的最大值电流获得各新电荷沿沟道方向的分布。 因此 传统的基于电荷泵法提取器件沿沟道方向的界面态和栅介质层电荷分布需要进行大量的测试 与计算, 过程相当繁琐。 发明内容
本发明的目的在于提供一种基于电荷泵法提取 M0S管因应力产生沿沟道界面态与栅介质 电荷分布的方法。
本发明提供的技术方案如下:
方案 1 : 一种提取 MOS管沿沟道电荷分布的方法,应用于 MOS管中界面态与栅介质电荷分 布的提取, 其特征在于, 包括如下步骤:
a) 构造测试电路,采用固定脉冲幅度、改变基准电压的电荷泵电流测试法测得应力前后 M0S管漏端开路和源端开路的四条电荷泵电流曲线 (如图 5) , 一对为源端开路原始 曲线 Originl 和应力后源端开路曲线 Post-stressl, 一对为漏端开路原始曲线 0rigin2和应力后漏端开路曲线 Post-stress2, 其中两条 Origin曲线 (Originl和 0rigin2) 重合; 采用电荷泵法测量电荷泵电流曲线时, 应分别将漏端或源端开路, 以便能分别测试得到从源端到沟道中央或从漏端到沟道中央的电荷分布,具体测试电 路图见图 1;
寻找原始曲线(Origin)上任意一点 A对应到应力后曲线(Post-stress)上一点 B, 通 过局部点 A处的电荷泵电流变化量和电压的变化估算局部产生界面态电荷和栅介质 层电荷量。
作为方案 1 的一种优选实现, 其特征在于, 所述步骤 b) 的实现步骤为 (方法流程 图如图 2, 流程图图示参图 3) :
根据原始曲线得到关于局部对应点阈值电压 Vth和平带电压 Vft沿沟道的分布: 假使应力前原始的 MOS管界面态均匀分布 (工艺条件良好), 由应力前电荷泵法测量 的曲线得到关于局部对应点阈值电压 Vth和平带电压 Vft沿沟道的分布(公式 2), 分布 的结果见图 4,
hP{Vth)^qxfxDu W x (公式 2) 其中 为沟道中的某一点位置, 取值为- LxIcp(Vth)
X:
/cf>max (公式 3) ^ ^局部电荷泵电流, 1 w为该管产生的最大电荷泵电流;
) 任意选取 Originl曲线在区域 I上的一点 A (处于每条曲线电流最大值点左侧曲线定 义为该曲线的区域 I, 右侧曲线定义为区域 II);
) 枚举 Post-stressl曲线在区域 I上的点 (ί=1,2,3··· ),得到电荷泵电流变化量 Alcp( ) ΔΛ^, (χ) =
(公式 4)
AFft(x)xCt
ΔΛ^οχ(χ) = + AN,(x)
(公式 5) 其中 为栅介质单位电容; ) 从局部阈值电压和平带电压分布图(参图 3c)找到 Originl曲线上点 A在区域 II上对 应的点 C, 根据阈值电压和平带电压偏移关系式 (公式 6和公式 7), 其中假设类受 主界面态占据能带中部以上, 类施主界面态占据能带中部以下, 在 Post-stressl 曲线 区域 II上找到对应的 D点;
(X) = qANot (x) I Cox - qANit (x) / 2Cm (公式 6 )
Δ (χ) = qANot(x) I Cox + qANu(x) 12Cox (公式 ) ) 从局部阈值电压或平带电压分布图(参图 3c)找到 Origin2曲线上点 A' 对应 Originl 曲线上点 A (根据局部阈值电压或平带电压值相等) , 重复步骤 4找到 Origin2曲线 上点 A' 在区域 II上对应的点 C' ) 记 B和 A两点之间的电荷泵电流差为 Alepl D和 C两点之间的电荷泵电流差为 Alcp2 因 C点和 C' 点因应力产生的电荷泵电流变化量相同, 记 D' 和 C' 两点之间的电荷泵 电流差为 Alep2' , 根据关系式 Alep2' =Δΐερ2在曲线 Post-stress2区域 II上找到对应的 D' 点; ) 根据阈值电压和平带电压偏移关系式 (公式 6和公式 7), 在 Post-stress2区域 I上找 到与点 A' 对应的点 B' (参步骤 4) ) 因应力产生的界面态密度远大于原始工艺条件良好的界面上的界面态密度,在比较中 忽略局部原始界面态的影响。 记 B和 A两点之间的电荷泵电流差为 Δΐερ1 ' , 应力前后
Figure imgf000006_0001
(两组电流差相同), 在 Post-stressl曲线区 域 I上枚举点 B, 直到 \Icpl+Alcpl +Δΐφ2 (或 Alcp2 ) 9) 当找到对应点 B时, 也得到了局部 ANlt(x)和 AN。t(x), 即在应力后新增界面态电荷和 栅介质层电荷沿沟道的分布。
方案 3 : 作为方案 1的一种优选实现,其特征在于,在歩骤 a)中,所述测试电路为源端开路, MOS管的源端悬空, 漏端和衬底短接, 栅端外接频率和幅度固定、 基准电压 Vbas /变 化的脉冲电压。
方案 4: 作为方案 1的一种优选实现,其特征在于,在步骤 a)中,所述测试电路为漏端开路,
MOS管的漏端是悬空,源端和衬底短接,栅端外接频率和幅度固定、基准电压 Vbas/变 化的脉冲电压。
方案 5: 作为方案 3或 4的一种优选实现, 其特征在于, 固定脉冲幅值大于平带电压 Vfb和阈 值电压 Vth之差。 方案 6: 作为方案 3或 4的一种优选实现, 其特征在于, 固定脉冲频率大于 500Hz。 方案 7: 作为方案 1 的一种优选实现, 其特征在于, 在步骤 a) 中, 所述应力为热电子注入
(HCI)应力。 本发明的有益效果- 与现有的提取分布方法相比, 这种方法能够在计算机的辅助下能简单快捷提取出从漏或 源端到沟道中电荷的分布, 省去了大量的繁琐的反复测试, 可以为器件可靠性的改进提供有 效的依据。 附图说明 图 1 改进的源端开路电荷泵电流测试原理图;
图 2本发明提取电荷分布的方法流程图;
图 3流程图图示说明图; 其中 3a为一对源端开路应力前后的电荷泵电流曲线, 3b为 一对漏端开路应力前后的电荷泵电流曲线, 3c为应力前后局部阈值电压和局部平 带电压沿沟道分布图; 图 5 应力前后所测试出的四条源端开路电荷泵电流 I。P_Vbas6曲线;其中 Origin为应力前 测得的曲线, 两条 Origin曲线重合; Post-stress为应力后测得的曲线; 图 6 实例中因应力产生的界面态电荷沿沟道分布图; 图 7 实例中因应力产生的栅介质层电荷沿沟道分布图。 具体实施方式
下面参照附图, 更详细地描述出本发明的最佳实施例。 本例实施测试的 M0S管为醒 OS (PM0S与之类似), 选取工艺条件良好、 界面态均匀的丽 OS 管, 其宽(W)和长(L)分别为 6um和 0. 5um。在经过 1000s热载流子应力注入后, 对其界面态和栅 介质层电荷进行了测试。如图 1采用了源漏一端开路、一段接入反向偏置电压的电荷泵电流测 试法。在栅极加上一固定频率、固定幅度的脉冲电压,脉冲电压的幅度值应大于阈值电压 Vth和 平带电压 Vfb之差,同时扫描基准电压,这样就可以得到两组应力前后电荷泵电流曲线,见图 5, 其中两条 origin曲线重合。 参照发明内容中方案 2所述的方法,最终得到因应力条件产生的界面态电荷和栅介质层电 荷沿沿漏端到沟道中的分布图 (见图 6和图 7 ) 。
综上所述, 采用本发明的 M0S管界面态电荷和栅介质层电荷提取方法, 可快速提取在应 力后 M0S管界面态电荷和栅介质层电荷沿沟道的分布情况。

Claims

权 利 要 求
1. 一种提取 MOS管沿沟道电荷分布的方法, 应用于 MOS管中界面态与栅介质电荷分布的 提取, 其特征在于, 包括如下歩骤:
a) 构造测试电路,采用固定脉冲幅度、改变基准电压的电荷泵电流测试法测得应力前后 M0S管漏端开路和源端开路的四条电荷泵电流曲线;
b) 寻找原始曲线上任意一点 A对应到应力后曲线上一点 B, 通过局部点 A的电荷泵电 流变化量和电压的变化估算局部产生界面态电荷和栅介质层电荷量。
2. 如权利要求 1所述的方法, 其特征在于, 所述步骤 b) 的实现步骤为:
1) 根据原始曲线得到关于局部对应点阈值电压 vth和平带电压 vft沿沟道的分布;
2) 任意选取 Origml曲线在区域 I上的一点 A;
3) 枚举 Post-stress 1曲线在区域 I上的点 ¾,得到电荷泵电流变化量 Alep(x;i和局部阈值电 压漂移量 AVth(x),计算出 A点到 B点处界面态电荷变化量 ANit(x)和栅介质电荷变化量
4) 从局部阈值电压和平带电压分布图找到 Originl曲线上点 A在区域 II上对应的点 C, 根据阈值电压和平带电压偏移关系式,在 Post-stressl曲线区域 II上找到对应的 D点;
5) 从局部阈值电压或平带电压分布图找到 Origin2曲线上点 A'对应 Originl曲线上点 A, 重复步骤 4找到 Origin2曲线上点 A' 在区域 Π上对应的点 C' ;
6) 记 B和 A两点之间的电荷泵电流差为 Al£pl, D和 C两点之间的电荷泵电流差为 Δΐφ2 ;
D' 和 C' 两点之间的电荷泵电流差为 Alcp2' , 根据关系式 Δΐερ2' =Δΐερ2在曲线 Post-stress2区域 II上找到对应的 D ' 点;
7) 根据阈值电压和平带电压偏移关系式, 在 Post-stress2区域 I上找到与点 A' 对应的 点 B, ;
8) 记 8和入两点之间的电荷泵电流差为 , 应力前后所测得的电荷泵电流最大值之 差为 Alcp,max, 在 Post-stressl曲线区域 I上枚举点 B, 直到 Alcpl+Alcpl, +Alcp2 (或八 Icp2, ) =A1C
9) 当找到对应点 B时, 也得到了局部 ANlt(x)和 AN。t(x), 即在应力后新增界面态电荷和 栅介质层电荷沿沟道的分布。
3. 如权利要求 1所述的方法, 其特征在于, 在歩骤 a) 中, 所述测试电路为源端开路, MOS 管的源端悬空, 漏端和衬底短接, 栅端外接频率和幅度固定、 基准电压 Vbas/变化的脉冲电
4. 如权利要求 1所述的方法, 其特征在于, 在步骤 a) 中, 所述测试电路为漏端开路, MOS 管的漏端是悬空, 源端和衬底短接, 栅端外接频率和幅度固定、 基准电压 Vbas6变化的脉冲 电压。
5. 如权利要求 3或 4所述的方法,其特征在于, 固定脉冲幅值大于平带电压 Vfb和阈值电压 Vth 之差。
6. 如权利要求 3或 4所述的方法, 其特征在于, 固定脉冲频率大于 500Hz。
7. 如权利要求 1所述的方法, 其特征在于, 在步骤 a) 中, 所述应力为热电子注入应力。
PCT/CN2011/081475 2011-03-07 2011-10-28 一种提取mos管沿沟道电荷分布的方法 WO2012119455A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/499,275 US20130013245A1 (en) 2011-03-07 2011-10-28 Method for obtaining distribution of charges along channel in mos transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110053772.8 2011-03-07
CN201110053772A CN102163568B (zh) 2011-03-07 2011-03-07 一种提取mos管沿沟道电荷分布的方法

Publications (1)

Publication Number Publication Date
WO2012119455A1 true WO2012119455A1 (zh) 2012-09-13

Family

ID=44464719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081475 WO2012119455A1 (zh) 2011-03-07 2011-10-28 一种提取mos管沿沟道电荷分布的方法

Country Status (3)

Country Link
US (1) US20130013245A1 (zh)
CN (1) CN102163568B (zh)
WO (1) WO2012119455A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163568B (zh) * 2011-03-07 2012-10-10 北京大学 一种提取mos管沿沟道电荷分布的方法
CN103094144B (zh) * 2011-10-31 2015-11-25 无锡华润上华科技有限公司 一种用于预估mos管的阈值电压的方法
CN102520331B (zh) * 2011-12-02 2013-12-11 北京大学 用于sti型ldmos器件的界面陷阱测试方法
CN102692543B (zh) * 2012-06-01 2015-03-18 西安邮电大学 一种基于栅控漏极产生电流提取mosfet平带电压和阈值电压的方法
CN103474369B (zh) * 2013-08-21 2016-01-20 北京大学 一种提取半导体器件栅介质层陷阱时间常数的方法
CN103869230B (zh) * 2014-01-20 2017-10-24 南京大学 一种表征小尺寸cmos器件中界面态和氧化层陷阱局域分布的方法
CN104851818B (zh) * 2014-02-14 2017-12-22 中芯国际集成电路制造(上海)有限公司 介质层缺陷的检测方法和检测装置
CN104714165B (zh) * 2015-03-30 2017-10-10 苏州华维纳纳米科技有限公司 界面陷阱能级分布的光电导分析方法
CN106298564B (zh) * 2015-05-19 2019-05-21 中芯国际集成电路制造(上海)有限公司 一种FinFET器件界面态的测量结构及测量方法、电子装置
CN106356313B (zh) * 2016-11-04 2018-12-14 东南大学 横向绝缘栅双极型晶体管界面态的测试方法及5端口器件
CN108318796B (zh) * 2017-12-12 2020-04-10 东南大学 一种三端口碳化硅基功率器件界面态测试方法
CN108021777B (zh) * 2017-12-28 2021-09-03 上海华力微电子有限公司 一种闪烁噪声统计模型的建模方法及其提取方法
CN109001609B (zh) * 2018-07-17 2020-12-22 马丽娟 计算纳米cmos器件中应力致界面态密度变化量的电荷泵方法
CN110045193A (zh) * 2019-03-06 2019-07-23 珠海博雅科技有限公司 一种浮栅器件电报噪声测量系统及测量方法
CN113805030B (zh) * 2021-09-24 2023-09-05 桂林航天工业学院 一种基于单片机的晶体管参数智能检测系统
CN116224003B (zh) * 2022-12-26 2023-11-14 重庆大学 Mos型半导体器件的阈值电压稳定性测试电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136347A (zh) * 2007-09-29 2008-03-05 上海集成电路研发中心有限公司 一种mos管界面态的测试方法
CN101183134A (zh) * 2007-12-13 2008-05-21 上海宏力半导体制造有限公司 电荷泵电流测试方法
CN102163568A (zh) * 2011-03-07 2011-08-24 北京大学 一种提取mos管沿沟道电荷分布的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911694B2 (en) * 2001-06-27 2005-06-28 Ricoh Company, Ltd. Semiconductor device and method for fabricating such device
JP2003197792A (ja) * 2001-12-28 2003-07-11 Sanyo Electric Co Ltd 半導体装置
ATE409350T1 (de) * 2005-06-03 2008-10-15 Imec Inter Uni Micro Electr Extraktionsverfahren für die lastverteilung in einem halbleiterbauelement
US7890891B2 (en) * 2005-07-11 2011-02-15 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
CN101114661A (zh) * 2006-07-25 2008-01-30 格科微电子(上海)有限公司 Cmos图像传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136347A (zh) * 2007-09-29 2008-03-05 上海集成电路研发中心有限公司 一种mos管界面态的测试方法
CN101183134A (zh) * 2007-12-13 2008-05-21 上海宏力半导体制造有限公司 电荷泵电流测试方法
CN102163568A (zh) * 2011-03-07 2011-08-24 北京大学 一种提取mos管沿沟道电荷分布的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, SIYANG ET AL.: "Technique Research of Measuring Interface-states Based on CP Method in N-LDMOS", RESEARCH & PROGRESS OF SSE SOLID STATE ELECTRONICS, vol. 29, no. 4, December 2009 (2009-12-01), pages 597 - 601, 605 *
SU, YU ET AL.: "Charge Pumping Measurement for Determining Band-to-Band-Tunneling Induced Interface Damage During Erasing Operation of FLASH", CHINESE JOURNAL OF SEMICONDUCTORS, vol. 22, no. 1, January 2001 (2001-01-01), pages 69 - 73 *

Also Published As

Publication number Publication date
CN102163568B (zh) 2012-10-10
CN102163568A (zh) 2011-08-24
US20130013245A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2012119455A1 (zh) 一种提取mos管沿沟道电荷分布的方法
CN102621473B (zh) 一种实时监控nbti效应界面态产生的测试方法
Maity et al. Study of Interface Charge Densities for ZrO2 and HfO2 Based Metal‐Oxide‐Semiconductor Devices
CN102680875B (zh) 从soi pmosfet中分离两种可靠性效应导致阈值电压漂移的方法
Cho et al. Interface Trap Characterization of a 5.8-$\hbox {\rm {\AA}} $ EOT p-MOSFET Using High-Frequency On-Chip Ring Oscillator Charge Pumping Technique
Maity et al. Analysis of interface charge densities for high-k dielectric materials based metal oxide semiconductor devices
US6486692B1 (en) Method of positive mobile iron contamination (PMIC) detection and apparatus of performing the same
Ji et al. Interface states beyond band gap and their impact on charge carrier mobility in MOSFETs
JP2005142304A (ja) トランジスタの評価方法
Huang et al. Lateral nonuniformity of effective oxide charges in MOS capacitors with Al/sub 2/O/sub 3/gate dielectrics
US6731130B1 (en) Method of determining gate oxide thickness of an operational MOSFET
Lu et al. Detection of Stress-Induced Interface Trap Generation on High-$ k $ Gated nMOSFETs in Real Time by Stress-and-Sense Charge Pumping Technique
Ramanan et al. A novel methodology using pulsed-IV for interface or border traps characterization on AlGaN/GaN MOSHFETs
Kim et al. An extraction method of the energy distribution of interface traps by an optically assisted charge pumping technique
Lin et al. Surface nonuniformity-induced frequency dispersion in accumulation capacitance for silicon MOS (n) capacitor
Martens et al. Applicability of charge pumping on germanium MOSFETs
Pan The Gate-Controlled Diode, High-Frequency, and Quasi-Static $ C $–$ V $ Techniques for Characterizing Advanced Vertical Trenched Power MOSFETs
Hussin et al. Characterization of NBTI-induced positive charges in 16 nm FinFET
Chindalore et al. An experimental study of the effect of quantization on the effective electrical oxide thickness in MOS electron and hole accumulation layers in heavily doped Si
Drach et al. Border traps in nanoscale MOSFET gate dielectric
Maslougkas Gate oxide characterization of 4H-SiC MOS capacitors: A study of the effects of electrical stress on the flat-band voltage of n-type substrate 4H-SiC MOS capacitors
CN107293589A (zh) 半导体结构及其形成方法和检测方法
Satter et al. Direct extraction of interface trap states from the low frequency gate CV characteristics of MOS devices with ultrathin high-К gate dielectrics
Hwu et al. Indication of lateral nonuniformity of effective oxide charges in high-k gate dielectrics by Terman's method
Maity et al. Analysis of Interface Charge Density: Application to High-k Material Tantalum Pentoxide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13499275

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860203

Country of ref document: EP

Kind code of ref document: A1