WO2012119344A1 - 一种聚合物基纳米氧化锰深度净化水中微量铊的方法 - Google Patents

一种聚合物基纳米氧化锰深度净化水中微量铊的方法 Download PDF

Info

Publication number
WO2012119344A1
WO2012119344A1 PCT/CN2011/073633 CN2011073633W WO2012119344A1 WO 2012119344 A1 WO2012119344 A1 WO 2012119344A1 CN 2011073633 W CN2011073633 W CN 2011073633W WO 2012119344 A1 WO2012119344 A1 WO 2012119344A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese oxide
concentration
polymer
water
based nano
Prior art date
Application number
PCT/CN2011/073633
Other languages
English (en)
French (fr)
Inventor
吕路
万顺利
潘丙才
张炜铭
安东
Original Assignee
南京大学
江苏永泰环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学, 江苏永泰环保科技有限公司 filed Critical 南京大学
Priority to US14/003,837 priority Critical patent/US20130341280A1/en
Publication of WO2012119344A1 publication Critical patent/WO2012119344A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28052Several layers of identical or different sorbents stacked in a housing, e.g. in a column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3221Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond the chemical bond being an ionic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the invention relates to a deep purification method for trace strontium in water, and more particularly to a method for deep purifying trace strontium in water by using nanometer manganese oxide composite material with high adsorption capacity and selectivity for hydrazine.
  • strontium As a natural component of the earth's crust, strontium is widely found in various environmental media, and its content is generally low. However, human activities such as mining and metal smelting tend to increase the concentration of strontium in local waters and soils. ⁇ has strong accumulation toxicity, the adult lethal dose is 10 15 mg / kg, its toxicity effect on mammals is much greater than Hg, Pb, As and so on. Excessive intake of sputum can cause hair loss, diarrhea, muscle atrophy, permanent damage to the nervous system, and so on. Due to the high toxicity of cockroaches, the US EAP stipulates that the maximum residue of cockroaches in drinking water is 2 ⁇ g/L, and the safety standards for drinking water in China will be controlled below 0.1 ⁇ g/L.
  • nano-manganese oxide particles have high adsorption selectivity for heavy metals such as Pb, Cd, Hg, Ce, etc., and can be regenerated and reused by adjusting the pH value.
  • heavy metals such as Pb, Cd, Hg, Ce, etc.
  • the nanocomposite solves the problem that the nanometer manganese oxide particles will directly produce a large pressure drop when applied directly to the fluid system; at the same time, the Donnan film effect generated by the resin surface solidification charge greatly enhances the material to the target pollutant.
  • the adsorption selectivity increases the working adsorption capacity of the composite.
  • cockroaches due to the special nature of cockroaches, it has not been well used for its treatment. Summary of the invention
  • the present invention provides a method for deep purification of trace bismuth in water by polymer-based nano-manganese oxide, which can compete for cations Ca 2+ , Mg 2+ , Na + , K + , etc. in coexistence.
  • concentration is much higher than that of strontium, the effluent content of effluent can still meet the national drinking water safety control standards.
  • a method for deeply purifying trace bismuth in water by polymer-based nano-manganese oxide the steps of which are:
  • step (C) Stop the adsorption when the adsorbed effluent reaches the leak point, and desorb and regenerate the polymer-based nano-manganese oxide filler in step (B) by using the mixed solution of HC1 and Ca(N0 3 ) 2 as a desorbent.
  • the post filler can be used repeatedly.
  • the content of cerium in the hydrazine-containing water in step (A) is 0.01-0.5 mg/L, and the concentration of each coexisting competitive cation (such as Ca 2+ , Mg 2+ , Na + , K + , Sr 2+ , etc.) in water is generally ⁇ 50 mg/L.
  • step (B) the water body treated in the step (A) is passed through a packed column packed with a polymer-based nano manganese oxide composite at 10 to 50 ° C at 10 100 BV/h (BV is a resin bed volume). Or inside the filter bed.
  • BV is a resin bed volume
  • the nano composite material is a cation exchange resin as a precursor, preferably D001 (produced by Hangzhou Zhengguang Resin Co., Ltd.), D113 (produced by Jiangsu Yongtai Environmental Protection Technology Co., Ltd.), 001 X 7 (produced by Jiangsu Yongtai Environmental Protection Technology Co., Ltd.), Amberlite IR 252 (produced by Rohm Haas Co., USA); the carrier is nano-manganese oxide particles, the gauge diameter is generally 5 180 nm, and its content is controlled (in terms of Mn) 4 to 15%.
  • D001 produced by Hangzhou Zhengguang Resin Co., Ltd.
  • D113 produced by Jiangsu Yongtai Environmental Protection Technology Co., Ltd.
  • 001 X 7 produced by Jiangsu Yongtai Environmental Protection Technology Co., Ltd.
  • Amberlite IR 252 produced by Rohm Haas Co., USA
  • the carrier is nano-manganese oxide particles,
  • the desorbent is desorbed and regenerated at a flow rate of 0.5-10 BV/h at a temperature of 10 to 60 °C.
  • the mass percentage concentration of HC1 or Ca(N0 3 ) 2 in the mixed solution in the step (C) is 0.3 to 5%. 3, beneficial effects
  • the invention provides an advanced treatment method for a trace amount of strontium in water by using an organic-inorganic composite material carrying nano-manganese oxide particles as an adsorbent.
  • the advantages of the present invention are as follows: (1) When the concentration of coexisting competitive cations (such as Ca 2+ , Mg 2+ , Na + , K + , Sr 2+ , etc.) is much higher, the deep treatment of trace amounts of water in the water can still be achieved. Reduce the hydrazine concentration below 0.1 g/L. 2 These materials have large processing capacity, fast adsorption speed, and can be regenerated and reused. 3 This technology fills the technical gap of economical and efficient treatment of trace bismuth polluted water to a certain extent.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of Tl + in trace bismuth contaminated water is 400 g/L
  • the concentration of Tl 3+ is 50 ⁇ g/L
  • the concentration of Ca 2+ is 20 mg/L
  • the concentration of Mg 2+ is 25 mg/L
  • the concentration of Na + is 35 mg. /L
  • K + concentration is 15 mg / L
  • pH pH is 3.5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 7, after filtration, the upper column is adsorbed.
  • the adsorption column is ⁇ 50 ⁇ 360 mm; it is filled with 100 mL (about 148 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content was 4.1 mmol/g; the resin contained manganese oxide content was 10.2% (calculated as Mn), and the manganese oxide particle size was 10-50 nm (80% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 10 BV/h, with a throughput of 1050 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Desorption was carried out by passing 800 mL of a mixture of 0.3% HCl and 5% Ca(N0 3 ) 2 at a temperature of 30 ⁇ 5 ° C at a flow rate of 100 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of Tl + in trace cesium contaminated water is 400 g/L
  • the concentration of Tl 3+ is 50 ⁇ g/L
  • the concentration of Ca 2+ is 20 mg/L
  • the concentration of Mg 2+ is 15 mg/L
  • the concentration of Na + is 35 mg. /L
  • K + concentration is 15 mg / L
  • pH is 3.5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 7.5, and filter the column to adsorb.
  • Adsorption column size is ⁇ 50 ⁇ 360 mm; filled with wet polymer-based nano-manganese oxide material 100 mL (about 148 g).
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content was 4.1 mmol/g; the resin contained manganese oxide content was 10.2% (calculated as Mn), and the manganese oxide particle size was 10-50 nm (80% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 10 BV/h, with a throughput of 1030 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Desorption was carried out by passing 800 mL of a 0.4% mixed solution of HC1 and 5% Ca(N0 3 ) 2 at a temperature of 30 ⁇ 5 ° C at a flow rate of 100 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of Tl + in trace bismuth contaminated water is 450 g/L
  • the concentration of Tl 3+ is 50 ⁇ g/L
  • the concentration of Ca 2+ is 20 mg/L
  • the concentration of Mg 2+ is 25 mg/L
  • the concentration of Na + is 35 mg. /L
  • K + concentration is 15 mg / L
  • pH is 3.5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 5, and filter and adsorb on the upper column.
  • the adsorption column size is ⁇ 50 ⁇ 360 mm; the inside is filled with 100 mL (about 135 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content was 4.1 mmol/g; the resin contained manganese oxide content was 10.2% (calculated as Mn), and the manganese oxide particle size was 10-50 nm (80% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 10 BV/h, with a throughput of 1130 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Deionization was carried out by passing 800 mL of a mixture of 0.3% HCl and 5% Ca(N0 3 ) 2 at a temperature of 30 ⁇ 5 ° C at a flow rate of 100 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of Tl + in trace bismuth contaminated water is 400 g/L
  • the concentration of Tl 3+ is 50 ⁇ g/L
  • the concentration of Ca 2+ is 20 mg/L
  • the concentration of Mg 2+ is 25 mg/L
  • the concentration of Na + is 35 mg. /L
  • K + concentration is 15 mg / L
  • pH 4 Add an appropriate amount of NaOH solution to adjust the pH to 8.5, and filter the column to adsorb.
  • the adsorption column size is ⁇ 50 ⁇ 360 mm; the inside is filled with 100 mL (about 137 g) of wet polymer-based nano-manganese oxide material.
  • the mother of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd., and the resin skeleton is polystyrene.
  • Desorption was carried out by passing 1000 mL of a 0.5% mixed solution of 0.5% HC1 and 3% Ca(N0 3 ) 2 at a temperature of 50 ⁇ 5 ° C at a flow rate of 200 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of Tl + in trace bismuth contaminated water is 200 g/L
  • the concentration of Tl 3+ is 18 ⁇ g/L
  • the concentration of Ca 2+ is 14 mg/L
  • the concentration of Mg 2+ is 15 mg/L
  • the concentration of Na + is 24 mg.
  • K + concentration is 10 mg / L
  • pH pH is 5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 6, and filter the column to adsorb.
  • the adsorption column size is ⁇ 50 ⁇ 360 mm; the inside is filled with 100 mL (about 137 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content was 4.1 mmol/g; the resin contained manganese oxide content was 4.3% (in terms of Mn), and the manganese oxide particle size was 5-40 nm (85% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 20 BV/h.
  • the treatment volume is 2100 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • the desorption rate is greater than 98.5%.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of Tl + in trace bismuth contaminated water is 200 g/L
  • the concentration of Tl 3+ is 25 ⁇ g/L
  • the concentration of Ca 2+ is 14 mg/L
  • the concentration of Mg 2+ is 15 mg/L
  • the concentration of Na + is 24 mg.
  • K + concentration is 10 mg / L
  • pH is 4.5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 5, and filter and adsorb on the upper column.
  • the adsorption column size is ⁇ 50 ⁇ 360 mm; the inside is filled with 100 mL (about 137 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content is 4.1 mmol/g; the resin has a manganese oxide content of 4.3% (in terms of Mn), wherein The manganese oxide particle size is 5-40 nm (85% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 30 BV/h.
  • the treatment volume is 1900 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • the desorption rate is greater than 99.5%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 130 g/L
  • the concentration of Tl 3+ is 12 g/L
  • the concentration of Ca 2+ is 16 mg/L
  • the concentration of Mg 2+ is 7 mg/L
  • the concentration of Na + is 18 mg/L.
  • the K + concentration is 1 mg/L and the pH is 5.5. Add an appropriate amount of NaOH solution to adjust the pH to 7.5, and filter the column to adsorb.
  • the adsorption column is ⁇ 20 ⁇ 300 ⁇ ; it contains 20 mL (about 26 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is 001 X 7 resin produced by Yongtai Environmental Protection Technology Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 7%, the particle size range is 0.4-0.6 mm, and the average pore diameter is 4.2.
  • Nm the surface linkage sulfonic acid group content is 4.9 mmol / g; the resin contained manganese oxide content of 5.7% (in terms of Mn), wherein the manganese oxide particle size is 5-60 nm (80% or more).
  • a trace amount of cesium-contaminated water passes through the resin bed at a flow rate of 35 BV/h, and the treatment amount is 3100 BV, and the concentration of total cesium in the effluent falls below 0.1 g/L.
  • Desorption was carried out by passing 180 mL of a mixture of 0.7% HCl and 5% Ca(N0 3 ) 2 at a temperature of 40 ⁇ 5 ° C at a flow rate of 100 mL/h through the resin bed.
  • the desorption rate was greater than 98.7%.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 90 g/L
  • the concentration of Tl 3+ is 15 g/L
  • the concentration of Ca 2+ is 12 mg/L
  • the concentration of Mg 2+ is 8 mg/L
  • the concentration of Na + is 13 mg/L.
  • the K + concentration was 6 mg/L and the pH was 9.5.
  • Add an appropriate amount of HCl solution to adjust the pH to 8, and filter and adsorb on the upper column.
  • the adsorption column is ⁇ 32 ⁇ 360 ⁇ ; it is filled with 50 mL (about 75 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content was 4.1 mmol/g; the resin contained manganese oxide content was 13.5% (in terms of Mn), and the manganese oxide particle size was 20-100 nm (more than 90%).
  • Desorption was carried out by passing 400 mL of a mixture of 0.6% HCl and 4% Ca(N0 3 ) 2 at a temperature of 20 ⁇ 5 ° C at a flow rate of 200 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 70 g/L
  • the concentration of Tl 3+ is 2 g/L
  • the concentration of Ca 2+ is 7 mg/L
  • the concentration of Mg 2+ is 5 mg/L
  • the concentration of Na + is 10 mg/L.
  • K+ concentration is 2 mg/L
  • pH 4.5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 6.5, and filter and adsorb on the upper column.
  • the adsorption column is ⁇ 50 X 360 mm; it contains 100 mL (about 129 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of this material is Amberlite IR 252 resin manufactured by Rohm Haas Co., USA; the content of manganese oxide supported in the resin is 4.5% (in terms of Mn), and the size of manganese oxide particles is 5-40 nm (85% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 45 BV/h, with a throughput of 5800 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Deionization was carried out by passing 800 mL of a mixture of 0.3% HCl and 2.5% Ca(N0 3 ) 2 at a temperature of 50 ⁇ 5 ° C at a flow rate of 200 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of Tl + in trace bismuth contaminated water is 10 g/L
  • the concentration of Tl 3+ is 2 g/L
  • the concentration of Ca 2+ is 8 mg/L
  • the concentration of Mg 2+ is 6 mg/L
  • the concentration of Na + is 13 mg/L.
  • the concentration of L, K + is 2 mg/L and the pH is 6.
  • Add an appropriate amount of NaOH solution to adjust the pH to 7, after filtration, the upper column is adsorbed.
  • the adsorption column is ⁇ 20 X 300 mm; it is filled with 20 mL (about 25 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content was 4.1 mmol/g ; the resin contained manganese oxide content was 8.5% (in terms of Mn), and the manganese oxide particle size was 20-100 nm (more than 90%).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 95 BV/h.
  • the treatment capacity is 16800 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 9 g/L
  • the concentration of Tl 3+ is 1 g/L
  • the concentration of Ca 2+ is 2 mg/L
  • the concentration of Mg 2+ is 1 mg/L
  • the concentration of Na + is 6 mg/L.
  • K + concentration of 2 mg / L pH of 6.
  • a suitable amount of NaOH solution was added to adjust the pH to 7.5, which was filtered and passed through a filter bed.
  • the filter bed is made of L100 XB100 XH400 mm; it contains 2500 mL (about 3425 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is 001 X 7 resin produced by Yongtai Environmental Protection Technology Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 7%, the particle size range is 0.4-0.6 mm, and the average pore diameter is 4.2.
  • the surface linkage sulfonic acid group content is 4.9 mmol / g; the resin contained manganese oxide content 8.5% (in terms of Mn), wherein the manganese oxide particle size is 5-60 nm (85% or more).
  • Mn manganese oxide particle size
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 100 BV/h, with a throughput of 15700 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • the desorption rate is greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 50 g/L
  • the concentration of Tl 3+ is 2 g/L
  • the concentration of Ca 2+ is 7 mg/L
  • the concentration of Mg 2+ is 5 mg/L
  • the concentration of Na + is 14 mg/L.
  • K + concentration is 3 mg / L
  • pH is 6.
  • a suitable amount of NaOH solution was added to adjust the pH to 7.5, which was filtered and passed through a filter bed.
  • the filter bed is made of L100 XB100 XH400 mm; it contains 2500 mL (about 3425 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content was 4.1 mmol/g; the resin contained manganese oxide content of 6% (in terms of Mn), wherein the manganese oxide particle size was 5-40 nm (85% or more).
  • traces of cesium contaminated water pass through the resin bed at a flow rate of 50 BV/h, with a treatment capacity of 6700 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • Example 13 With 20 L of a mixture of 0.9% HCl and 4.5% Ca(N0 3 ) 2 at a temperature of 20 ⁇ 5 ° C and a flow rate of 2000 mL / h through the resin bed for desorption, the desorption rate is greater than 99%.
  • Example 13 With 20 L of a mixture of 0.9% HCl and 4.5% Ca(N0 3 ) 2 at a temperature of 20 ⁇ 5 ° C and a flow rate of 2000 mL / h through the resin bed for desorption, the desorption rate is greater than 99%.
  • Example 13 Example 13:
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 60 g/L
  • the concentration of Tl 3+ is 5 g/L
  • the concentration of Ca 2+ is 6 mg/L
  • the concentration of Mg 2+ is 7 mg/L
  • the concentration of Na + is 10 mg/L.
  • the K+ concentration is 4 mg/L and the pH is 4.5. Add an appropriate amount of NaOH solution to adjust the pH to 5.5, and filter the column to adsorb.
  • the adsorption column is ⁇ 50 X 360 mm; it contains 100 mL of wet polymer-based nano-manganese oxide material (about 139 g).
  • the parent of this material is 001 X 7 resin produced by Yongtai Environmental Protection Technology Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 7%, the particle size range is 0.4-0.6 mm, and the average pore diameter is 4.2.
  • Nm the surface linkage sulfonic acid group content is 4.9 mmol / g; the resin contained manganese oxide content 8.7% (in terms of Mn), wherein the manganese oxide particle size is 10-60 nm (85% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 45 BV/h.
  • the treatment volume is 6100 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • Desorption was carried out by passing 1000 mL of a mixture of 0.9% HCl and 4.5% Ca(N0 3 ) 2 at a temperature of 50 ⁇ 5 ° C at a flow rate of 200 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 300 g/L
  • the concentration of Tl 3+ is 35 ⁇ g/L
  • the concentration of Ca 2+ is 46 mg/L
  • the concentration of Mg 2+ is 37 mg/L
  • the concentration of Na + is 15 mg/L.
  • the L, K + concentration was 7 mg/L and the pH was 8.5.
  • Add an appropriate amount of HCl solution to adjust the pH to 6.5, and filter on the upper column for adsorption.
  • the adsorption column is ⁇ 32 X 360 mm; it contains 50 mL (about 74 g) of wet polymer-based nano-manganese oxide material.
  • the parent of this material is 001 X 7 resin produced by Yongtai Environmental Protection Technology Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 7%, the particle size range is 0.4-0.6 mm, and the average pore diameter is 4.2.
  • Nm the surface linkage sulfonic acid group content is 4.9 mmol / g; the resin contained manganese oxide content of 14.7% (in terms of Mn), wherein the manganese oxide particle size is 100-160 nm (85% or more).
  • traces of cesium contaminated water pass through the resin bed at a flow rate of 15 BV/h, with a throughput of 1400 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Desorption was carried out by passing 600 mL of a 0.5% mixed solution of 0.5% HCl and 3% Ca(N0 3 ) 2 at a flow rate of 400 mL/h through a resin bed at a temperature of 20 ⁇ 5 ° C.
  • the desorption rate was greater than 99%.
  • Example 15 A trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of cesium in trace cesium-contaminated water is 100 g/L
  • the concentration of Tl 3+ is 35 ⁇ g/L
  • the concentration of Ca 2+ is 16 mg/L
  • the concentration of Mg 2+ is 8 mg/L
  • the concentration of Na + is 9 mg/L.
  • the concentration of L, K + is 6 mg/L and the pH is 5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 7, after filtration, the upper column is adsorbed.
  • the adsorption column is ⁇ 50 X 360 mm; it is filled with 100 mL (about 157 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content is 4.1 mmol/g; the resin has a manganese oxide content of 15% (in terms of Mn), wherein the manganese oxide particle size is 100-150 nm (more than 90%).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 40 BV/h.
  • the treatment volume is 3850 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Desorption was carried out by passing 800 mL of a mixture of 1% HCl and 2% Ca(N0 3 ) 2 at a temperature of 40 ⁇ 5 ° C at a flow rate of 100 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 50 g/L
  • the concentration of Tl 3+ is 4 g/L
  • the concentration of Ca 2+ is 5 mg/L
  • the concentration of Mg 2+ is 3 mg/L
  • the concentration of Na + is 11 mg/L.
  • K + concentration is 1 mg / L
  • pH pH is 5.
  • a suitable amount of NaOH solution was added to adjust the pH to 8.5, which was filtered and passed through a filter bed.
  • the filter bed is made of L100 XB50 XH400 mm; it contains 1000 mL (about 1420 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is 001 X 7 resin produced by Yongtai Environmental Protection Technology Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 7%, the particle size range is 0.4-0.6 mm, and the average pore diameter is 4.2.
  • the surface linkage sulfonic acid group content is 4.9 mmol / g; the resin contained manganese oxide content 10.8% (in terms of Mn), wherein the manganese oxide particle size is 10-50 nm (85% or more).
  • Mn manganese oxide particle size
  • the desorption rate is greater than 99%.
  • Pretreatment of a trace amount of strontium contaminated water through polyethylene glycol containing polymer-based nano-manganese oxide material Ethene filter bed The concentration of strontium in trace cesium contaminated water is 100 g/L, the concentration of Tl 3+ is 10 g/L, the concentration of Ca 2+ is 15 mg/L, the concentration of Mg 2+ is 10 mg/L, and the concentration of Na + is 22 mg/L. , K + concentration is 3 mg / L, pH is 5. Add an appropriate amount of NaOH solution to adjust the pH to 7, filter and pass through the filter bed.
  • the filter bed is made of L100 XB50 XH400 mm; it contains 1000 mL (about 1450 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content is 4.1 mmol/g; the resin contains manganese oxide content of 8% (in terms of Mn), wherein the manganese oxide particle size is 10-70 nm (more than 90%).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 40 BV/h.
  • the treatment volume is 3900 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • the desorption rate is greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 65 g/L
  • the concentration of Tl 3+ is 3 g/L
  • the concentration of Ca 2+ is 5 mg/L
  • the concentration of Mg 2+ is 7 mg/L
  • the concentration of Na + is 9 mg/L.
  • K + concentration is 2 mg / L
  • pH is 4.5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 7.5, and filter the column to adsorb.
  • the adsorption column is ⁇ 50 X 360 mm; it contains 100 mL (about 141 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D113 resin produced by Yongtai Environmental Protection Technology Co., Ltd., which is a macroporous weakly acidic acrylic cation exchange resin with a total exchange capacity of 11.8 mmol/g, a particle size of 0.35-0.55 mm, and a wet-light density of 0.72-0.8 g/mL; the content of manganese oxide supported in the resin is 9.1% (in terms of Mn), wherein the size of the manganese oxide particles is 10-60 nm (85% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 45 BV/h.
  • the treatment volume is 5950 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • the desorption rate is greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 350 g/L
  • the concentration of Tl 3+ is 25 ⁇ g/L
  • the concentration of Ca 2+ is 36 mg/L
  • the concentration of Mg 2+ is 27 mg/L
  • the concentration of Na + is 45 mg/ L
  • K + concentration of 5 mg / L pH
  • pH pH
  • Add an appropriate amount of HCl solution to adjust the pH to 6.5, and filter on the upper column for adsorption.
  • the adsorption column is ⁇ 32 X 360 mm; it contains 50 mL (about 67 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D113 resin produced by Yongtai Environmental Protection Technology Co., Ltd., which is a macroporous weakly acidic acrylic cation exchange resin with a total exchange capacity of 11.8 mmol/g, a particle size of 0.35-0.55 mm, and a wet-light density of 0.72-0.8 g/mL; the content of manganese oxide supported in the resin is 11.7% (in terms of Mn), wherein the size of the manganese oxide particles is 100-150 nm (85% or more).
  • traces of cesium contaminated water pass through the resin bed at a flow rate of 20 BV/h.
  • the treatment volume is 1250 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • Desorption was carried out by passing 600 mL of a 0.9% mixed solution of 0.9% HCl and 5% Ca(N0 3 ) 2 at a flow rate of 400 mL/h through a resin bed at a temperature of 20 ⁇ 5 ° C.
  • the desorption rate was greater than 98.7%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 45 g/L
  • the concentration of Tl 3+ is 5 g/L
  • the concentration of Ca 2+ is 4 mg/L
  • the concentration of Mg 2+ is 2 mg/L
  • the concentration of Na + is 15 mg/L.
  • K + concentration is 1 mg / L
  • pH is 5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 7, filter and pass through the filter bed.
  • the filter bed is available in L100 XB50 XH400 mm; it contains 1000 mL (about 1425 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is Amberlite IR 252 resin produced by Rohm Haas Co., USA; the content of manganese oxide supported in the resin is 12.8% (in terms of Mn), and the size of manganese oxide particles is 100-150 nm (85% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 70 BV/h.
  • the treatment capacity is 7200 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • the desorption rate is greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 45 g/L
  • the concentration of Tl 3+ is 3 g/L
  • the concentration of Ca 2+ is 7 mg/L
  • the concentration of Mg 2+ is 5 mg/L
  • the concentration of Na + is 14 mg/L.
  • K + concentration is 1 mg / L
  • pH is 5.
  • a suitable amount of NaOH solution was added to adjust the pH to 7.5, which was filtered and passed through a filter bed.
  • the filter bed is made of L100 XB50 XH400 mm; it contains 1000 mL (about 1420 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D113 resin produced by Yongtai Environmental Protection Technology Co., Ltd., which is a macroporous weakly acidic acrylic cation exchange resin with a total exchange capacity of 11.8 mmol/g and a particle size of 0.35-0.55 mm.
  • the wet density is 0.72-0.8 g/mL; the manganese oxide content in the resin is 11.8% (in terms of Mn), and the manganese oxide particle size is 50-100 nm (85% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 75 BV/h.
  • the treatment volume is 7500 BV, and the total enthalpy concentration in the effluent drops below 0.1 g/L.
  • the desorption rate is greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 15 g/L
  • the concentration of Tl 3+ is 2 g/L
  • the concentration of Ca 2+ is 2 mg/L
  • the concentration of Mg 2+ is 1 mg/L
  • the concentration of Na + is 9 mg/L.
  • K + concentration is 1 mg / L
  • pH is 6.
  • a suitable amount of NaOH solution was added to adjust the pH to 8.5, filtered and passed through a filter bed.
  • the filter bed is available in L100 XB100 XH400 mm; it contains 2500 mL (about 3400 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D113 resin produced by Yongtai Environmental Protection Technology Co., Ltd., which is a macroporous weakly acidic acrylic cation exchange resin with a total exchange capacity of 11.8 mmol/g, a particle size of 0.35-0.55 mm, and a wet-light density of 0.72-0.8 g/mL; the manganese oxide content in the resin is 8.2% (calculated as Mn), and the manganese oxide particle size is 5-60 nm (85% or more).
  • traces of cesium contaminated water pass through the resin bed at a flow rate of 90 BV/h, with a throughput of 15500 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • the desorption rate is greater than 99%.
  • a trace amount of cerium contaminated water is pretreated and passed through a polyethylene adsorption column packed with a polymer-based nano-manganese oxide material.
  • the concentration of Tl + in trace cesium-contaminated water was 70 g/L
  • the concentration of Tl 3+ was 5 g/L
  • the concentration of Ca 2+ was 10 mg/L
  • the concentration of Mg 2+ was 6 mg/L
  • the concentration of Na + was 13 mg/L.
  • the L, K + concentration was 6 mg/L and the pH was 9.5.
  • Add an appropriate amount of HCl solution to adjust the pH to 8.5, and filter the column to adsorb.
  • the adsorption column size is ⁇ 20 ⁇ 300 mm; the inside is filled with 20 mL (about 25 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is D001 resin produced by Hangzhou Zhengguang Resin Co., Ltd.
  • the resin skeleton is polystyrene-divinylbenzene, the degree of crosslinking is 8%, the specific surface area is 20.2 m 2 /g, and the average pore diameter is 23.2 nm.
  • the surface-bonded sulfonic acid group content was 4.1 mmol/g; the resin contained manganese oxide content was 8.5% (in terms of Mn), and the manganese oxide particle size was 20-100 nm (more than 90%).
  • Desorption was carried out by passing 400 mL of a mixture of 0.6% HCl and 4% Ca(N0 3 ) 2 at a temperature of 35 ⁇ 5 ° C at a flow rate of 200 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium-contaminated water is 280 g/L
  • the concentration of Tl 3+ is 15 ⁇ g/L
  • the concentration of Ca 2+ is 45 mg/L
  • the concentration of Mg 2+ is 30 mg/L
  • the concentration of Na + is 15 mg/L.
  • the L, K + concentration was 3 mg/L and the pH was 8.5.
  • Add an appropriate amount of HCl solution to adjust the pH to 5.5, and filter the column to adsorb.
  • the adsorption column is ⁇ 32 X 360 mm; it contains 50 mL (about 68 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is Amberlite IR 252 resin manufactured by Rohm Haas Co., USA; the content of manganese oxide supported in the resin is 14.2% (in terms of Mn), and the size of manganese oxide particles is 120-180 nm (85% or more).
  • traces of cesium contaminated water pass through the resin bed at a flow rate of 20 BV/h, with a throughput of 1500 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Desorption was carried out by passing 500 mL of a mixture of 0.7% HCl and 3.5% Ca(N0 3 ) 2 at a temperature of 30 ⁇ 5 ° C at a flow rate of 400 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 125 g/L
  • the concentration of Tl 3+ is 10 g/L
  • the concentration of Ca 2+ is 15 mg/L
  • the concentration of Mg 2+ is 6 mg/L
  • the concentration of Na + is 18 mg/L.
  • K + concentration is 2 mg / L
  • pH is 5.5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 7.5, and filter the column to adsorb.
  • the adsorption column is ⁇ 20 ⁇ 300 ⁇ ; it contains 20 mL (about 26 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is Amberlite IR 252 resin manufactured by Rohm Haas Co., USA; the manganese oxide content in the resin is 6.7% (in terms of Mn), and the manganese oxide particle size is 20-70 nm (80% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 35 BV/h, and the treatment volume is 3200 BV.
  • the concentration of total cesium in the effluent drops below 0.1 ⁇ g/L.
  • Desorption was carried out by passing 180 mL of a mixture of 0.7% HCl and 5% Ca(N0 3 ) 2 at a temperature of 20 ⁇ 5 ° C at a flow rate of 100 mL/h through the resin bed.
  • the desorption rate was greater than 98.9%.
  • Example 26 A trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 12 g/L
  • the concentration of Tl 3+ is 1 g/L
  • the concentration of Ca 2+ is 3 mg/L
  • the concentration of Mg 2+ is 1 mg/L
  • the concentration of Na + is 6 mg/L.
  • K + concentration is 1 mg / L
  • pH is 6.
  • a suitable amount of NaOH solution was added to adjust the pH to 8.5, filtered and passed through a filter bed.
  • the filter bed is available in L100 XB100 XH400 mm; it contains 2500 mL (about 3400 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of the material is Amberlite IR 252 resin manufactured by Rohm Haas Co., USA; the content of manganese oxide supported in the resin is 7.5% (in terms of Mn), and the size of the manganese oxide particles is 5-60 nm (85% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 90 BV/h, with a throughput of 15400 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Desorption was carried out by passing a mixture of 25 L of 0.9% HCl and 4.5% Ca(N0 3 ) 2 at a temperature of 40 ⁇ 5 ° C at a flow rate of 2000 mL/h through the resin bed.
  • the desorption rate was greater than 99%.
  • a trace of cesium-contaminated water is pretreated and passed through a polyethylene filter bed containing a polymer-based nano-manganese oxide material.
  • the concentration of strontium in trace cesium contaminated water is 140 g/L
  • the concentration of Tl 3+ is 7 g/L
  • the concentration of Ca 2+ is 12 mg/L
  • the concentration of Mg 2+ is 6 mg/L
  • the concentration of Na + is 28 mg/L.
  • K + concentration is 2 mg / L
  • pH is 4.5.
  • Add an appropriate amount of NaOH solution to adjust the pH to 7, after filtration, the upper column is adsorbed.
  • the adsorption column size is ⁇ 20 X 300 mm; it contains 20 mL (about 22 g) of wet polymer-based nano-manganese oxide material.
  • the precursor of this material is D113 resin produced by Yongtai Environmental Protection Technology Co., Ltd., which is a macroporous weakly acidic acrylic cation exchange resin with a total exchange capacity of 11.8 mmol/g, a particle size of 0.35-0.55 mm, and a wet-light density of 0.72-0.8 g/mL; the content of manganese oxide supported in the resin is 3.7% (in terms of Mn), wherein the manganese oxide particle size is 3 ⁇ 4 5-40 nm (80% or more).
  • traces of cesium-contaminated water pass through the resin bed at a flow rate of 40 BV/h.
  • the treatment volume is 2950 BV, and the total enthalpy concentration in the effluent drops below 0.1 ⁇ g/L.
  • Desorption was carried out by passing 180 mL of a mixture of 0.7% HCl and 4% Ca(N0 3 ) 2 at a temperature of 10 ⁇ 5 ° C at a flow rate of 100 mL/h through the resin bed.
  • the desorption rate was greater than 98.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Description

一种聚合物基纳米氧化锰深度净化水中微量铊的方法 技术领域
本发明涉及水中微量铊的深度净化方法,更具体的说是一种利用对铊具有高 吸附容量和选择性的纳米氧化锰复合材料深度净化水体中微量铊的方法。
背景技术
铊作为地壳的一种天然成分, 广泛存在于各种环境介质中, 一般含量较低, 但人为活动如矿山开采和金属冶炼等往往会使局部水域及土壤中铊浓度大幅增 加。 铊具有强蓄积性毒性, 成人致死量为 10 15 mg/kg, 其对哺乳动物的毒性效 应远大于 Hg、 Pb、 As等。 摄入过量的铊会导致毛发脱落、 腹泻、 肌肉萎缩、 神 经系统的永久性损伤等。 鉴于铊的高毒性, 美国 EAP规定饮用水中铊的最大残 留量为 2 μ g/L, 中国饮用水安全卫生标准将铊控制在 0.1 μ g/L以下。
目前报道的针对铊污染水治理技术并不多见。 美国 EPA推荐使用活性铝净 化法和离子交换法, 这两类方法操作成本较高, 处理深度偏低; 文献中也有报道 采用化学沉淀法(如采用硫化物沉淀法)去除水体中铊, 该方法操作简便, 但易 引起二次污染, 且处理深度也难以满足要求; 近来, 一些学者也提出了采用吸附 法净化水体中微量铊, 由于铊的化学性质更接近与碱金属, 而与常规的重金属离 子性能差距较远, 目前常用的吸附剂总体对铊的选择性不高、 再生性能差, 实际 应用前景较差。总体而言, 目前世界各国仍然非常缺乏经济高效的铊污染水的深 度处理技术。
近几十年来, 已有研究表明纳米氧化锰颗粒对 Pb、 Cd、 Hg、 Ce等重金属具 有高效的吸附选择性, 且可通过调节 pH值实现再生和反复使用。 但由于纳米氧 化锰颗粒尺寸极细 (一般在微米或纳米维度内), 直接应用于固定床吸附时易产 生极高的流体压降, 致使吸附系统迅速失效。 为解决这一技术难题, 本发明发明 人南京大学潘丙才教授及其领导的课题组曾以聚合物树脂作为载体,通过表面沉 积技术将纳米水合氧化锰颗粒担载于聚合物树脂的孔道表面制成纳米复合材料, 并实现了水中常规重金属如 Pb、 Cd、 Zn 等的深度净化 [Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Science of the Total Environment 2009, 407, 5471-5477; Selective Adsorption of Cd(II) and Zn(II) Ions by Nano-Hydrous Manganese Dioxide (HMO)-Encapsulated Cation Exchanger. Industrial Engineering & Chemistry Research 2010, 49, 7474-7579]。 这种纳米复合材料既解决了纳米氧化锰颗粒直接 应用于流态系统时将产生巨大的压力降的问题;同时又利用树脂表面固化电荷产 生的 Donnan膜效应, 大大强化了材料对目标污染物的吸附选择性, 提高了复合 材料的工作吸附量。 但由于铊的特殊性质, 一直不能很好的用于对它的处理。 发明内容
1、 要解决的技术问题
针对水中微量铊难以实现深度净化的技术瓶颈,本发明提供一种聚合物基纳 米氧化锰深度净化水中微量铊的方法, 能够在共存竞争阳离子 Ca2+、 Mg2+、 Na+、 K+等的浓度远高于铊时,仍可以使出水的铊的含量达到国家规定的饮用水安全控 制标准。
2、 技术方案
一种聚合物基纳米氧化锰深度净化水中微量铊的方法, 其步骤为:
(Α) 将微量铊污染的水的 ρΗ值调节至 5~8.5, 过滤;
(Β)将经步骤 (Α)处理后的水通过装填有聚合物基纳米氧化锰的填料塔或滤 床, 使得水中铊被选择性吸附到该纳米复合材料上;
(C) 当吸附出水中铊达到泄漏点时停止吸附, 用 HC1和 Ca(N03)2混合溶 液作为脱附剂对步骤 (B) 中聚合物基纳米氧化锰的填料进行脱附再生, 再生后 的填料可反复使用。
步骤 (A)中含铊水中铊的含量为 0.01-0.5 mg/L, 水中每种共存竞争性阳离子 (如 Ca2+、 Mg2+、 Na+、 K+、 Sr2+等) 的浓度一般 <50 mg/L。
步骤 (B)中在 5~50°C下将步骤 (A)中处理过的水体以 10 100 BV/h (BV为树 脂床层体积)通过装填有聚合物基纳米氧化锰复合材料的填料塔或滤床内。所述 的纳米复合材料是以阳离子交换树脂为母体, 优选为 D001 (杭州争光树脂有限 公司生产), D113 (江苏永泰环保科技有限公司生产), 001 X 7 (江苏永泰环保 科技有限公司生产), Amberlite IR 252 (美国 Rohm Haas Co.生产) 等; 担载物 为纳米氧化锰颗粒, 尺径一般为 5 180 nm, 其含量控制在 (以 Mn计) 4~15%。
步骤 (C)中脱附剂在 10~60°C温度下以 0.5-10 BV/h的流量对复合材料进行脱 附再生。 步骤 (C)中混合溶液中 HC1或 Ca(N03)2的质量百分比浓度为 0.3-5%。 3、 有益效果
本发明以担载纳米氧化锰颗粒的有机 -无机复合材料为吸附剂, 提供了一种 水中微量铊的深度处理方法。 本发明的效益在于: ①在共存竞争性阳离子 (如 Ca2+、 Mg2+、 Na+、 K+、 Sr2+等) 的浓度远高铊时, 仍能实现水体微量铊的深度 处理, 使出水的铊浓度降低至 0.1 g/L以下。 ②该类材料处理量大, 吸附速度 快, 且可再生与反复利用。③此技术一定程度上填补了经济高效处理微量铊污染 水的技术空白。
具体实施方式
以下通过实施例进一步说明本发明。
实施例 1
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。微量铊污染水中 Tl+浓度为 400 g/L, Tl3+浓度为 50 μ g/L, Ca2+ 浓度为 20 mg/L, Mg2+浓度为 25 mg/L, Na+浓度为 35 mg/L, K+浓度为 15 mg/L, pH值为 3.5。 加入适量 NaOH溶液调节 pH值至 7, 过滤后上柱吸附。 吸附柱规 格为 Φ 50 Χ 360 mm; 内装填有湿态聚合物基纳米氧化锰材料 100 mL (约 148 g)。 该材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙 烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表 面键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 10.2% (以 Mn计), 其 中氧化锰颗粒尺寸为 10-50 nm ( 80%以上)。 在 25 ± 5 ° C下, 微量铊污染水以 10 BV/h的流量通过树脂床层,处理量为 1050 BV,出水中总铊的浓度降到 0.1 μ g/L以下。
用 800 mL质量浓度为 0.3% HC1和 5% Ca(N03)2混合溶液在 30 ± 5 ° C的温 度下以 100 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 2
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。微量铊污染水中 Tl+浓度为 400 g/L, Tl3+浓度为 50 μ g/L, Ca2+ 浓度为 20 mg/L, Mg2+浓度为 15 mg/L, Na+浓度为 35 mg/L, K+浓度为 15 mg/L, pH值为 3.5。 加入适量 NaOH溶液调节 pH值至 7.5, 过滤后上柱吸附。 吸附柱 规格为 Φ 50 Χ 360 mm; 内装填有湿态聚合物基纳米氧化锰材料 100 mL (约 148 g)。 该材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚 苯乙烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表面键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 10.2% (以 Mn计), 其中氧化锰颗粒尺寸为 10-50 nm ( 80%以上)。 在 5 ±2° C下, 微量铊污染水以 10 BV/h的流量通过树脂床层,处理量为 1030 BV,出水中总铊的浓度降到 0.1 μ g/L以下。
用 800 mL质量浓度为 0.4% HC1和 5% Ca (N03) 2混合溶液在 30± 5 ° C的 温度下以 100 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 3
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。微量铊污染水中 Tl+浓度为 450 g/L, Tl3+浓度为 50 μ g/L, Ca2+ 浓度为 20 mg/L, Mg2+浓度为 25 mg/L, Na+浓度为 35 mg/L, K+浓度为 15 mg/L, pH值为 3.5。 加入适量 NaOH溶液调节 pH值至 5, 过滤后上柱吸附。 吸附柱规 格为 Φ 50 Χ 360 mm; 内装填有湿态聚合物基纳米氧化锰材料 100 mL (约 135g)。 该材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙 烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表 面键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 10.2% (以 Mn计), 其 中氧化锰颗粒尺寸为 10-50 nm ( 80%以上)。 在 45 ± 5 ° C下, 微量铊污染水以 10 BV/h的流量通过树脂床层,处理量为 1130 BV,出水中总铊的浓度降到 0.1 μ g/L以下。
用 800 mL质量浓度为 0.3% HC1和 5% Ca(N03)2混合溶液在 30± 5 ° C的温 度下以 100 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 4:
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。微量铊污染水中 Tl+浓度为 400 g/L, Tl3+浓度为 50 μ g/L, Ca2+ 浓度为 20 mg/L, Mg2+浓度为 25 mg/L, Na+浓度为 35 mg/L, K+浓度为 15 mg/L, pH值为 4。 加入适量 NaOH溶液调节 pH值至 8.5, 过滤后上柱吸附。 吸附柱规 格为 Φ 50 Χ 360 mm; 内装填有湿态聚合物基纳米氧化锰材料 100 mL (约 137g)。 该材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙 烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表 面键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 4.3% (以 Mn计), 其中 氧化锰颗粒尺寸为 5-40 nm( 85%以上)。在 30± 5 ° C下,微量铊污染水以 10 BV/h 的流量通过树脂床层,处理量为 950 BV,出水中总铊的浓度降到 0.1 μ g/L以下。
用 1000 mL质量浓度为 0.5% HC1和 3% Ca(N03)2混合溶液在 50± 5 ° C的 温度下以 200 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 5:
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。微量铊污染水中 Tl+浓度为 200 g/L, Tl3+浓度为 18 μ g/L, Ca2+ 浓度为 14 mg/L, Mg2+浓度为 15 mg/L, Na+浓度为 24 mg/L, K+浓度为 10 mg/L, pH值为 5。 加入适量 NaOH溶液调节 pH值至 6, 过滤后上柱吸附。 吸附柱规格 为 Φ 50 Χ 360 mm; 内装填有湿态聚合物基纳米氧化锰材料 100 mL (约 137 g)。 该材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙 烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表 面键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 4.3% (以 Mn计), 其中 氧化锰颗粒尺寸为 5-40 nm( 85%以上)。在20± 5 ° C下,微量铊污染水以 20 BV/h 的流量通过树脂床层, 处理量为 2100 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 1000 mL质量浓度为 0.8% HC1和 4% Ca(N03)2混合溶液在 10 ±2° C的 温度下以 500 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 98.5%。
实施例 6:
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。微量铊污染水中 Tl+浓度为 200 g/L, Tl3+浓度为 25 μ g/L, Ca2+ 浓度为 14 mg/L, Mg2+浓度为 15 mg/L, Na+浓度为 24 mg/L, K+浓度为 10 mg/L, pH值为 4.5。 加入适量 NaOH溶液调节 pH值至 5, 过滤后上柱吸附。 吸附柱规 格为 Φ 50 Χ 360 mm; 内装填有湿态聚合物基纳米氧化锰材料 100 mL (约 137 g)。 该材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙 烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表 面键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 4.3% (以 Mn计), 其中 氧化锰颗粒尺寸为 5-40 nm( 85%以上)。在 40± 5 ° C下,微量铊污染水以 30 BV/h 的流量通过树脂床层, 处理量为 1900 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 1000 mL质量浓度为 0.8% HC1和 4% Ca(N03)2混合溶液在 50 ±2° C的 温度下以 200 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99.5%。
实施例 7:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 130 g/L, Tl3+浓度为 12 g/L, Ca2+浓 度为 16 mg/L, Mg2+浓度为 7 mg/L, Na+浓度为 18 mg/L, K+浓度为 1 mg/L, pH 值为 5.5。 加入适量 NaOH溶液调节 pH值至 7.5, 过滤后上柱吸附。 吸附柱规格 为 Φ20 Χ 300 ιηιη; 内装有湿态聚合物基纳米氧化锰材料 20 mL (约 26 g)。 该材 料的母体为永泰环保科技有限公司生产的 001 X 7树脂, 该树脂骨架为聚苯乙烯- 二乙烯苯, 交联度为 7%, 粒径范围为 0.4-0.6 mm, 平均孔直径为 4.2 nm, 表面 键联磺酸基含量为 4.9 mmol/g; 树脂内负载氧化锰含量 5.7% (以 Mn计), 其中氧 化锰颗粒尺寸为 5-60 nm ( 80%以上)。在 10±2° C下,微量铊污染水以 35 BV/h 的流量通过树脂床层, 处理量为 3100 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 180 mL质量浓度为 0.7% HC1和 5% Ca(N03)2混合溶液在 40± 5 ° C的温 度下以 100 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 98.7%。
实施例 8:
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。 微量铊污染水中 Τ 浓度为 90 g/L, Tl3+浓度为 15 g/L, Ca2+ 浓度为 12 mg/L, Mg2+浓度为 8 mg/L, Na+浓度为 13 mg/L, K+浓度为 6 mg/L, pH值为 9.5。 加入适量 HCl溶液调节 pH值至 8, 过滤后上柱吸附。 吸附柱规格 为 Φ 32 Χ 360 ιηιη; 内装填有湿态聚合物基纳米氧化锰材料 50 mL (约 75 g)。 该 材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表面 键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 13.5% (以 Mn计), 其中 氧化锰颗粒尺寸为 20-100 nm (90%以上)。 在 35 ± 5 ° C下, 微量铊污染水以 45 BV/h的流量通过树脂床层, 处理量为 3920 BV, 出水中总铊的浓度降到 0.1 μ g/L以下。
用 400 mL质量浓度为 0.6% HC1和 4% Ca(N03)2混合溶液在 20 ± 5 ° C的温 度下以 200 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 9:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 70 g/L, Tl3+浓度为 2 g/L, Ca2+浓度 为 7 mg/L, Mg2+浓度为 5 mg/L, Na+浓度为 10 mg/L, K+浓度为 2 mg/L, pH值 为 4.5。 加入适量 NaOH溶液调节 pH值至 6.5, 过滤后上柱吸附。 吸附柱规格为 Φ 50 X 360 mm; 内装有湿态聚合物基纳米氧化锰材料 100 mL (约 129 g)。 该材 料的母体为美国 Rohm Haas Co.生产的 Amberlite IR 252树脂; 树脂内负载氧化 锰含量 4.5% (以 Mn计), 其中氧化锰颗粒尺寸为 5-40 nm ( 85%以上)。 在 35 ± 5 ° C下, 微量铊污染水以 45 BV/h的流量通过树脂床层, 处理量为 5800 BV, 出 水中总铊的浓度降到 0.1 μ g/L以下。
用 800 mL质量浓度为 0.3% HC1和 2.5% Ca(N03)2混合溶液在 50± 5 ° C的 温度下以 200 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 10:
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。 微量铊污染水中 Tl+浓度为 10 g/L, Tl3+浓度为 2 g/L, Ca2+ 浓度为 8 mg/L, Mg2+浓度为 6 mg/L, Na+浓度为 13 mg/L, K+浓度为 2 mg/L, pH 值为 6。 加入适量 NaOH溶液调节 pH值至 7, 过滤后上柱吸附。 吸附柱规格为 Φ 20 X 300 mm; 内装填有湿态聚合物基纳米氧化锰材料 20 mL (约 25 g)。 该材 料的母体为杭州争光树脂有限公司生产的 D001 树脂, 该树脂骨架为聚苯乙烯- 二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表面 键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 8.5% (以 Mn计), 其中氧 化锰颗粒尺寸为 20-100 nm(90%以上)。在 35 ± 5 ° C下,微量铊污染水以 95 BV/h 的流量通过树脂床层, 处理量为 16800 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 400 mL质量浓度为 0.8% HC1和 4.5% Ca(N03)2混合溶液在 45 ± 5 ° C的 温度下以 200 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 11 :
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 9 g/L, Tl3+浓度为 1 g/L, Ca2+浓度为 2 mg/L, Mg2+浓度为 1 mg/L, Na+浓度为 6 mg/L, K+浓度为 2 mg/L, pH值为 6。 加入适量 NaOH溶液调节 pH值至 7.5,过滤后通过滤床。滤床规格为 L100 XB100 XH400 mm; 内装有湿态聚合物基纳米氧化锰材料 2500 mL (约 3425g)。 该材 料的母体为永泰环保科技有限公司生产的 001 X 7树脂, 该树脂骨架为聚苯乙烯- 二乙烯苯, 交联度为 7%, 粒径范围为 0.4-0.6 mm, 平均孔直径为 4.2 nm, 表面 键联磺酸基含量为 4.9 mmol/g; 树脂内负载氧化锰含量 8.5% (以 Mn计), 其中氧 化锰颗粒尺寸为 5-60 nm( 85%以上)。在 45 ± 5 ° C下,微量铊污染水以 100 BV/h 的流量通过树脂床层, 处理量为 15700 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 25 L质量浓度为 0.4% HC1和 4.5% Ca(N03)2混合溶液在 30± 5 ° C的温 度下以 2000 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 12:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 50 g/L, Tl3+浓度为 2 g/L, Ca2+浓度为 7 mg/L, Mg2+浓度为 5 mg/L, Na+浓度为 14 mg/L, K+浓度为 3 mg/L, pH值为 6。 加入适量 NaOH溶液调节 pH值至 7.5,过滤后通过滤床。滤床规格为 L100 XB100 XH400 mm; 内装有湿态聚合物基纳米氧化锰材料 2500 mL (约 3425 g)。 该材 料的母体为杭州争光树脂有限公司生产的 D001 树脂, 该树脂骨架为聚苯乙烯- 二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表面 键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 6% (以 Mn计), 其中氧化 锰颗粒尺寸为 5-40 nm ( 85%以上)。 在 15 ± 5 ° C下, 微量铊污染水以 50 BV/h 的流量通过树脂床层, 处理量为 6700 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 20 L质量浓度为 0.9% HC1和 4.5% Ca(N03)2混合溶液在 20± 5 ° C的温 度下以 2000 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。 实施例 13 :
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 60 g/L, Tl3+浓度为 5 g/L, Ca2+浓度 为 6 mg/L,Mg2+浓度为 7 mg/L, Na+浓度为 10 mg/L, K+浓度为 4 mg/L, pH值为 4.5。 加入适量 NaOH溶液调节 pH值至 5.5, 过滤后上柱吸附。 吸附柱规格为 Φ 50 X 360 mm; 内装有湿态聚合物基纳米氧化锰材料 100 mL (约 139 g)。 该材料 的母体为永泰环保科技有限公司生产的 001 X 7 树脂, 该树脂骨架为聚苯乙烯- 二乙烯苯, 交联度为 7%, 粒径范围为 0.4-0.6 mm, 平均孔直径为 4.2 nm, 表面 键联磺酸基含量为 4.9 mmol/g; 树脂内负载氧化锰含量 8.7% (以 Mn计), 其中氧 化锰颗粒尺寸为 10-60 nm( 85%以上)。在 45 ± 5 ° C下,微量铊污染水以 45 BV/h 的流量通过树脂床层, 处理量为 6100 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 1000 mL质量浓度为 0.9% HC1和 4.5% Ca(N03)2混合溶液在 50 ± 5 ° C的 温度下以 200 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 14:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 300 g/L, Tl3+浓度为 35 μ g/L, Ca2+浓 度为 46 mg/L, Mg2+浓度为 37 mg/L, Na+浓度为 15 mg/L, K+浓度为 7 mg/L, pH 值为 8.5。 加入适量 HC1溶液调节 pH值至 6.5, 过滤后上柱吸附。 吸附柱规格为 Φ 32 X 360 mm; 内装有湿态聚合物基纳米氧化锰材料 50 mL (约 74 g)。 该材料 的母体为永泰环保科技有限公司生产的 001 X 7 树脂, 该树脂骨架为聚苯乙烯- 二乙烯苯, 交联度为 7%, 粒径范围为 0.4-0.6 mm, 平均孔直径为 4.2 nm, 表面 键联磺酸基含量为 4.9 mmol/g; 树脂内负载氧化锰含量 14.7% (以 Mn计), 其中 氧化锰颗粒尺寸为 100-160 nm ( 85%以上)。 在 25 ± 5 ° C下, 微量铊污染水以 15 BV/h的流量通过树脂床层,处理量为 1400 BV,出水中总铊的浓度降到 0.1 μ g/L以下。
用 600 mL质量浓度为 0.5% HC1和 3% Ca(N03)2混合溶液在 20 ± 5 ° C的温 度下以 400 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 15: 将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。微量铊污染水中 Τ 浓度为 100 g/L, Tl3+浓度为 35 μ g/L, Ca2+ 浓度为 16 mg/L, Mg2+浓度为 8 mg/L, Na+浓度为 9 mg/L, K+浓度为 6 mg/L, pH 值为 5。 加入适量 NaOH溶液调节 pH值至 7, 过滤后上柱吸附。 吸附柱规格为 Φ 50 X 360 mm; 内装填有湿态聚合物基纳米氧化锰材料 100 mL (约 157 g)。 该 材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表面 键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 15% (以 Mn计), 其中氧 化锰颗粒尺寸为 100-150 nm (90%以上)。 在 25 ± 5 ° C下, 微量铊污染水以 40 BV/h的流量通过树脂床层, 处理量为 3850 BV, 出水中总铊的浓度降到 0.1 μ g/L以下。
用 800 mL质量浓度为 1% HC1和 2% Ca(N03)2混合溶液在 40 ± 5 ° C的温度 下以 100 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 16:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 50 g/L, Tl3+浓度为 4 g/L, Ca2+浓度 为 5 mg/L, Mg2+浓度为 3 mg/L, Na+浓度为 11 mg/L, K+浓度为 1 mg/L, pH值 为 5。加入适量 NaOH溶液调节 pH值至 8.5,过滤后通过滤床。滤床规格为 L100 XB50 XH400 mm; 内装有湿态聚合物基纳米氧化锰材料 1000 mL (约 1420 g)。 该材料的母体为永泰环保科技有限公司生产的 001 X 7树脂, 该树脂骨架为聚苯 乙烯 -二乙烯苯, 交联度为 7%, 粒径范围为 0.4-0.6 mm, 平均孔直径为 4.2 nm, 表面键联磺酸基含量为 4.9 mmol/g; 树脂内负载氧化锰含量 10.8% (以 Mn计), 其中氧化锰颗粒尺寸为 10-50 nm ( 85%以上)。在 15 ± 5 ° C下, 微量铊污染水以 70 BV/h的流量通过树脂床层,处理量为 7000 BV,出水中总铊的浓度降到 0.1 μ g/L以下。
用 8000 mL质量浓度为 0.3% HC1和 3% Ca(N03)2混合溶液在 55 ± 5 ° C的 温度下以 500 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 17:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 100 g/L, Tl3+浓度为 10 g/L, Ca2+浓 度为 15 mg/L, Mg2+浓度为 10 mg/L, Na+浓度为 22 mg/L, K+浓度为 3 mg/L, pH 值为 5。加入适量 NaOH溶液调节 pH值至 7,过滤后通过滤床。滤床规格为 L100 XB50 XH400 mm; 内装有湿态聚合物基纳米氧化锰材料 1000 mL (约 1450 g)。 该材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙 烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表 面键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 8% (以 Mn计), 其中氧 化锰颗粒尺寸为 10-70 nm(90%以上)。在 35 ± 5 ° C下,微量铊污染水以 40 BV/h 的流量通过树脂床层, 处理量为 3900 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 5000 mL质量浓度为 0.5% HC1和 5% Ca(N03)2混合溶液在 50± 5 ° C的 温度下以 2000 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 18:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 65 g/L, Tl3+浓度为 3 g/L, Ca2+浓度 为 5 mg/L, Mg2+浓度为 7 mg/L, Na+浓度为 9 mg/L, K+浓度为 2 mg/L, pH值为 4.5。 加入适量 NaOH溶液调节 pH值至 7.5, 过滤后上柱吸附。 吸附柱规格为 Φ 50 X 360 mm; 内装有湿态聚合物基纳米氧化锰材料 100 mL (约 141 g)。 该材料 的母体为永泰环保科技有限公司生产的 D113树脂, 该树脂为大孔型弱酸性丙烯 酸系阳离子交换树脂, 全交换容量为 11.8 mmol/g, 粒径为 0.35-0.55 mm, 湿视密 度为 0.72-0.8 g/mL; 树脂内负载氧化锰含量 9.1% (以 Mn计), 其中氧化锰颗粒尺 寸为 10-60 nm ( 85%以上)。在 45 ± 5 ° C下, 微量铊污染水以 45 BV/h的流量通 过树脂床层, 处理量为 5950 BV, 出水中总铊的浓度降到 0.1 g/L以下。
用 1000 mL质量浓度为 0.8% HC1和 4% Ca(N03)2混合溶液在 40± 5 ° C的 温度下以 200 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 19:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 350 g/L, Tl3+浓度为 25 μ g/L, Ca2+浓 度为 36 mg/L, Mg2+浓度为 27 mg/L, Na+浓度为 45 mg/L, K+浓度为 5 mg/L, pH 值为 8.5。 加入适量 HC1溶液调节 pH值至 6.5, 过滤后上柱吸附。 吸附柱规格为 Φ 32 X 360 mm; 内装有湿态聚合物基纳米氧化锰材料 50 mL (约 67 g)。 该材料 的母体为永泰环保科技有限公司生产的 D113树脂, 该树脂为大孔型弱酸性丙烯 酸系阳离子交换树脂, 全交换容量为 11.8 mmol/g, 粒径为 0.35-0.55 mm, 湿视密 度为 0.72-0.8 g/mL; 树脂内负载氧化锰含量 11.7% (以 Mn计), 其中氧化锰颗粒 尺寸为 100-150 nm ( 85%以上)。在 25 ± 5 ° C下, 微量铊污染水以 20 BV/h的流 量通过树脂床层, 处理量为 1250 BV, 出水中总铊的浓度降到 0.1 g/L以下。
用 600 mL质量浓度为 0.9% HC1和 5% Ca(N03)2混合溶液在 20 ± 5 ° C的温 度下以 400 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 98.7%。
实施例 20:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 45 g/L, Tl3+浓度为 5 g/L, Ca2+浓度 为 4 mg/L, Mg2+浓度为 2 mg/L, Na+浓度为 15 mg/L, K+浓度为 1 mg/L, pH值 为 5。 加入适量 NaOH溶液调节 pH值至 7, 过滤后通过滤床。 滤床规格为 L100 XB50 XH400 mm; 内装有湿态聚合物基纳米氧化锰材料 1000 mL (约 1425 g)。 该材料的母体为美国 Rohm Haas Co.生产的 Amberlite IR 252树脂; 树脂内负载 氧化锰含量 12.8% (以 Mn计), 其中氧化锰颗粒尺寸为 100-150 nm ( 85%以上)。 在 15 ± 5 ° C下, 微量铊污染水以 70 BV/h的流量通过树脂床层, 处理量为 7200 BV, 出水中总铊的浓度降到 0.1 g/L以下。
用 8000 mL质量浓度为 0.5% HC1和 3% Ca(N03)2混合溶液在 55 ± 5 ° C的 温度下以 500 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 21 :
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 45 g/L, Tl3+浓度为 3 g/L, Ca2+浓度 为 7 mg/L, Mg2+浓度为 5 mg/L, Na+浓度为 14 mg/L, K+浓度为 1 mg/L, pH值 为 5。加入适量 NaOH溶液调节 pH值至 7.5,过滤后通过滤床。滤床规格为 L100 XB50 XH400 mm; 内装有湿态聚合物基纳米氧化锰材料 1000 mL (约 1420 g)。 该材料的母体为永泰环保科技有限公司生产的 D113树脂, 该树脂为大孔型弱酸 性丙烯酸系阳离子交换树脂, 全交换容量为 11.8 mmol/g, 粒径为 0.35-0.55 mm, 湿视密度为 0.72-0.8 g/mL; 树脂内负载氧化锰含量 11.8% (以 Mn计), 其中氧化 锰颗粒尺寸为 50-100 nm ( 85%以上)。在 25 ± 5 ° C下,微量铊污染水以 75 BV/h 的流量通过树脂床层, 处理量为 7500 BV, 出水中总铊的浓度降到 0.1 g/L以 下。
用 8000 mL质量浓度为 0.3% HC1和 3% Ca(N03)2混合溶液在 45 ± 5 ° C的 温度下以 500 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 22:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 15 g/L, Tl3+浓度为 2 g/L, Ca2+浓度 为 2 mg/L, Mg2+浓度为 1 mg/L, Na+浓度为 9 mg/L, K+浓度为 1 mg/L, pH值为 6。 加入适量 NaOH溶液调节 pH值至 8.5, 过滤后通过滤床。 滤床规格为 L100 XB100 XH400 mm; 内装有湿态聚合物基纳米氧化锰材料 2500 mL (约 3400 g)。 该材料的母体为永泰环保科技有限公司生产的 D113树脂, 该树脂为大孔型弱酸 性丙烯酸系阳离子交换树脂, 全交换容量为 11.8 mmol/g, 粒径为 0.35-0.55 mm, 湿视密度为 0.72-0.8 g/mL; 树脂内负载氧化锰含量 8.2% (以 Mn计), 其中氧化锰 颗粒尺寸为 5-60 nm ( 85%以上)。 在 15 ± 5 ° C下, 微量铊污染水以 90 BV/h的 流量通过树脂床层,处理量为 15500 BV,出水中总铊的浓度降到 0.1 μ g/L以下。
用 25 L质量浓度为 0.5% HC1和 5% Ca(N03)2混合溶液在 20± 5 ° C的温度 下以 2000 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 23 :
将一种微量铊污染水经预处理后通过装填有聚合物基纳米氧化锰材料的聚 乙烯吸附柱。 微量铊污染水中 Tl+浓度为 70 g/L, Tl3+浓度为 5 g/L, Ca2+ 浓度为 10 mg/L, Mg2+浓度为 6 mg/L, Na+浓度为 13 mg/L, K+浓度为 6 mg/L, pH值为 9.5。 加入适量 HC1溶液调节 pH值至 8.5, 过滤后上柱吸附。 吸附柱规 格为 Φ20 Χ 300 mm; 内装填有湿态聚合物基纳米氧化锰材料 20 mL (约 25 g)。 该材料的母体为杭州争光树脂有限公司生产的 D001树脂, 该树脂骨架为聚苯乙 烯 -二乙烯苯, 交联度为 8%, 比表面积为 20.2 m2/g, 平均孔直径为 23.2 nm, 表 面键联磺酸基含量为 4.1 mmol/g; 树脂内负载氧化锰含量 8.5% (以 Mn计), 其中 氧化锰颗粒尺寸为 20-100 nm (90%以上)。 在 35 ± 5 ° C下, 微量铊污染水以 45 BV/h的流量通过树脂床层, 处理量为 4600 BV, 出水中总铊的浓度降到 0.1 μ g/L以下。
用 400 mL质量浓度为 0.6% HC1和 4% Ca(N03)2混合溶液在 35 ± 5 ° C的温 度下以 200 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 24:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 280 g/L, Tl3+浓度为 15 μ g/L, Ca2+浓 度为 45 mg/L, Mg2+浓度为 30 mg/L, Na+浓度为 15 mg/L, K+浓度为 3 mg/L, pH 值为 8.5。 加入适量 HC1溶液调节 pH值至 5.5, 过滤后上柱吸附。 吸附柱规格为 Φ 32 X 360 mm; 内装有湿态聚合物基纳米氧化锰材料 50 mL (约 68 g)。 该材料 的母体为美国 Rohm Haas Co.生产的 Amberlite IR 252树脂; 树脂内负载氧化锰 含量 14.2% (以 Mn计), 其中氧化锰颗粒尺寸为 120-180 nm ( 85%以上)。 在 25 ± 5 ° C下, 微量铊污染水以 20 BV/h的流量通过树脂床层, 处理量为 1500 BV, 出水中总铊的浓度降到 0.1 μ g/L以下。
用 500 mL质量浓度为 0.7% HC1和 3.5% Ca(N03)2混合溶液在 30± 5 ° C的 温度下以 400 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 25:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 125 g/L, Tl3+浓度为 10 g/L, Ca2+浓 度为 15 mg/L, Mg2+浓度为 6 mg/L, Na+浓度为 18 mg/L, K+浓度为 2 mg/L, pH 值为 5.5。 加入适量 NaOH溶液调节 pH值至 7.5, 过滤后上柱吸附。 吸附柱规格 为 Φ20 Χ 300 ιηιη; 内装有湿态聚合物基纳米氧化锰材料 20 mL (约 26 g)。 该材 料的母体为美国 Rohm Haas Co.生产的 Amberlite IR 252树脂; 树脂内负载氧化 锰含量 6.7% (以 Mn计), 其中氧化锰颗粒尺寸为 20-70 nm ( 80%以上)。在 10±2 ° C下, 微量铊污染水以 35 BV/h的流量通过树脂床层, 处理量为 3200 BV, 出 水中总铊的浓度降到 0.1 μ g/L以下。
用 180 mL质量浓度为 0.7% HC1和 5% Ca(N03)2混合溶液在 20± 5 ° C的温 度下以 100 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 98.9%。
实施例 26: 将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 12 g/L, Tl3+浓度为 1 g/L, Ca2+浓度 为 3 mg/L, Mg2+浓度为 1 mg/L, Na+浓度为 6 mg/L, K+浓度为 1 mg/L, pH值为 6。 加入适量 NaOH溶液调节 pH值至 8.5, 过滤后通过滤床。 滤床规格为 L100 XB100 XH400 mm; 内装有湿态聚合物基纳米氧化锰材料 2500 mL (约 3400 g)。 该材料的母体为美国 Rohm Haas Co.生产的 Amberlite IR 252树脂; 树脂内负载氧 化锰含量 7.5% (以 Mn计), 其中氧化锰颗粒尺寸为 5-60 nm ( 85%以上)。 在 45 ± 5 ° C下,微量铊污染水以 90 BV/h的流量通过树脂床层,处理量为 15400 BV, 出水中总铊的浓度降到 0.1 μ g/L以下。
用 25 L质量浓度为 0.9% HC1和 4.5% Ca(N03)2混合溶液在 40± 5 ° C的温 度下以 2000 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 99%。
实施例 27:
将一种微量铊污染水经预处理后通过装有聚合物基纳米氧化锰材料的聚乙 烯滤床。 微量铊污染水中 Τ 浓度为 140 g/L, Tl3+浓度为 7 g/L, Ca2+浓度 为 12 mg/L, Mg2+浓度为 6 mg/L, Na+浓度为 28 mg/L, K+浓度为 2 mg/L, pH值 为 4.5。加入适量 NaOH溶液调节 pH值至 7, 过滤后上柱吸附。 吸附柱规格为 Φ 20 X 300 mm; 内装有湿态聚合物基纳米氧化锰材料 20 mL (约 22 g)。 该材料的 母体为永泰环保科技有限公司生产的 D113树脂, 该树脂为大孔型弱酸性丙烯酸 系阳离子交换树脂, 全交换容量为 11.8 mmol/g, 粒径为 0.35-0.55mm, 湿视密度 为 0.72-0.8 g/mL; 树脂内负载氧化锰含量 3.7% (以 Mn计), 其中氧化锰颗粒尺寸 ¾ 5-40 nm ( 80%以上)。 在 10±2° C下, 微量铊污染水以 40 BV/h的流量通过 树脂床层, 处理量为 2950 BV, 出水中总铊的浓度降到 0.1 μ g/L以下。
用 180 mL质量浓度为 0.7% HC1和 4% Ca(N03)2混合溶液在 10± 5 ° C的温 度下以 100 mL/h的流量顺流通过树脂床层进行脱附, 脱附率大于 98.5%。

Claims

权 利 要 求 书
1. 一种聚合物基纳米氧化锰深度净化水中微量铊的方法, 其步骤为:
(A)将微量铊污染的水的 PH值调节至 545, 过滤;
(B)将经步骤 (A)处理后的水通过装填有聚合物基纳米氧化锰的填料塔或滤床, 使 得水中铊被选择性吸附到该纳米复合材料上;
(C)当吸附出水中铊达到泄漏点时停止吸附, 用 HC1和 Ca(N03)2混合溶液作为脱 附剂对步骤 (B ) 中聚合物基纳米氧化锰的填料进行脱附再生, 再生后的填料可 反复使用。
2. 根据权利要求 1所述的聚合物基纳米氧化锰深度净化水中微量铊的方法, 其 特征在于步骤 (A)中微量铊污染的水中铊的存在形态为一价阳离子 Tl+或者三价 阳离子 Tl3+,其总含量为 0.01-0.5 mg/L;水中共存竞争性阳离子 K+、 Ca2 Mg2 Na+或 Sr2+的浓度 < 50 mg/L。
3. 根据权利要求 2所述的聚合物基纳米氧化锰深度净化水中微量铊的方法, 其 特征在于步骤B)中所述的聚合物基纳米氧化锰的载体为阳离子型交换树脂。
4. 根据权利要求 3所述的聚合物基纳米氧化锰深度净化水中微量铊的方法, 其 特征在于步骤B)中所述的聚合物基纳米氧化锰的载体为 D001、 D113、 001 X 7 或 Amberlite IR 252树脂。
5. 根据权利要求 1〜4中任一项所述的聚合物基纳米氧化锰深度净化水中微量铊 的方法, 其特征在于步骤 (B)中所述的聚合物基纳米氧化锰这一复合材料中氧化 锰颗粒尺径为 5-180 nm; 固载量以 Mn计为 4-15%。
6. 根据权利要求 1~4中任一项所述的聚合物基纳米氧化錳深度净化水中微量铊 的方法, 其特征在于步骤B)的吸附温度为 5-50°C, 流量为每小时 10-100树脂床 层体积 BV。
7. 根据权利要求 1-4中任一项所述的一种聚合物基纳米氧化锰深度净化水中微 量铊的方法, 其特征在于歩骤 (C)中混合溶液中 HC1或 Ca(N03)2的质量百分比浓 度为 0.3-5%, 再生温度为 10-60 °C, 再生流量为 0.5-10 BV/h。
PCT/CN2011/073633 2011-03-10 2011-05-04 一种聚合物基纳米氧化锰深度净化水中微量铊的方法 WO2012119344A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/003,837 US20130341280A1 (en) 2011-03-10 2011-05-04 Deep purification method for removing trace thallium in water by using polymer-based nanosized manganese oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100576402A CN102173517B (zh) 2011-03-10 2011-03-10 一种聚合物基纳米氧化锰深度净化水中微量铊的方法
CN201110057640.2 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012119344A1 true WO2012119344A1 (zh) 2012-09-13

Family

ID=44516822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073633 WO2012119344A1 (zh) 2011-03-10 2011-05-04 一种聚合物基纳米氧化锰深度净化水中微量铊的方法

Country Status (3)

Country Link
US (1) US20130341280A1 (zh)
CN (1) CN102173517B (zh)
WO (1) WO2012119344A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117181202A (zh) * 2023-09-20 2023-12-08 南京信息工程大学 一种阴离子树脂基纳米铈-锰氧化物复合材料及制法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028850B1 (fr) * 2014-11-20 2019-06-21 Saur Procede et installation de traitement de fluide aqueux contenant du thallium
CN106145451A (zh) * 2016-08-24 2016-11-23 湖南省环境保护科学研究院 一种含铊废水的处理方法
CN113600130A (zh) * 2021-08-18 2021-11-05 广州大学 负载纳米零价锰生物炭的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468810A (zh) * 2003-01-31 2004-01-21 同济大学 催化铝内电解处理污水的方法
CN101088938A (zh) * 2007-06-29 2007-12-19 东莞东运机械制造有限公司 重金属污水的处理方法
US7329354B2 (en) * 1998-06-09 2008-02-12 Ppt Technologies, Llc Purification of organic solvent fluids
CN101638353A (zh) * 2009-08-07 2010-02-03 连云港金康医药科技有限公司 在液相中用edta钙钠盐作为螯合剂去除有机化合物中残余金属的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186357B (zh) * 2007-12-18 2010-06-02 南京大学 树脂基纳米水合氧化铁深度净化重金属微污染水体的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329354B2 (en) * 1998-06-09 2008-02-12 Ppt Technologies, Llc Purification of organic solvent fluids
CN1468810A (zh) * 2003-01-31 2004-01-21 同济大学 催化铝内电解处理污水的方法
CN101088938A (zh) * 2007-06-29 2007-12-19 东莞东运机械制造有限公司 重金属污水的处理方法
CN101638353A (zh) * 2009-08-07 2010-02-03 连云港金康医药科技有限公司 在液相中用edta钙钠盐作为螯合剂去除有机化合物中残余金属的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117181202A (zh) * 2023-09-20 2023-12-08 南京信息工程大学 一种阴离子树脂基纳米铈-锰氧化物复合材料及制法与应用

Also Published As

Publication number Publication date
CN102173517A (zh) 2011-09-07
US20130341280A1 (en) 2013-12-26
CN102173517B (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
WO2010025617A1 (zh) 复合树脂深度净化水体中微量磷的方法
CN101186357B (zh) 树脂基纳米水合氧化铁深度净化重金属微污染水体的方法
Cho et al. Synthesis of hydrous zirconium oxide-impregnated chitosan beads and their application for removal of fluoride and lead
Prashantha Kumar et al. Nanoscale materials as sorbents for nitrate and phosphate removal from water
Xie et al. Physical and chemical treatments for removal of perchlorate from water–a review
Dimirkou et al. Use of clinoptilolite and an Fe-overexchanged clinoptilolite in Zn2+ and Mn2+ removal from drinking water
JP5482979B2 (ja) 吸着剤
Sun et al. Biotemplated fabrication of a 3D hierarchical structure of magnetic ZnFe2O4/MgAl-LDH for efficient elimination of dye from water
CN103706333B (zh) 一种载氧化锆除磷生物复合材料的制备及除磷方法
WO2006088083A1 (ja) オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材
Yuan et al. Adsorption performance and mechanism for phosphate removal by cerium hydroxide loaded on molecular sieve
Çoruh et al. Adsorption of copper (II) ions on montmorillonite and sepiolite clays: equilibrium and kinetic studies
WO2012119344A1 (zh) 一种聚合物基纳米氧化锰深度净化水中微量铊的方法
Rahman et al. Cyclic tetra [(indolyl)-tetra methyl]-diethane-1, 2-diamine (CTet) impregnated hydrous zirconium oxide as a novel hybrid material for enhanced removal of fluoride from water samples
CN111892229B (zh) 一种深度净化并高效回收生化尾水中微量磷的方法
CN115041152B (zh) 一种基于树脂基载钕纳米复合材料及其制备方法和在深度去除水中磷酸根的应用
CN101643289A (zh) 一种水体中微量硒的深度去除方法
Thilagan et al. Continuous fixed bed column adsorption of copper (II) ions from aqueous solution by calcium carbonate
Chen et al. New insight into the bioinspired sub-10 nm Sn (HPO4) 2 confinement for efficient heavy metal remediation in wastewater
CN103285829A (zh) 应用锆基磷酸盐杂化功能吸附剂去除废水中微量磷的方法
Wang et al. The mechanisms of conventional pollutants adsorption by modified granular steel slag
Wen et al. Effective roxarsone (ROX) and arsenate (As (V)) sequestration from water with magnetic hollow Fe3O4-based Mg/Al layered double hydroxide: Performance and mechanism
CN101204644A (zh) 海水改性赤泥陶粒除砷吸附剂的制备及应用方法
Yang et al. Enhancing the adsorption function of F-by iron and zirconium doped zeolite: Characterization and parameter optimization
Badeenezhad et al. Efficiency of the activated carbon and clinoptilolite particles coated with iron oxide magnetic nanoparticles in removal of methylene blue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14003837

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860534

Country of ref document: EP

Kind code of ref document: A1