WO2012117991A1 - Negative electrode active material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell - Google Patents
Negative electrode active material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell Download PDFInfo
- Publication number
- WO2012117991A1 WO2012117991A1 PCT/JP2012/054710 JP2012054710W WO2012117991A1 WO 2012117991 A1 WO2012117991 A1 WO 2012117991A1 JP 2012054710 W JP2012054710 W JP 2012054710W WO 2012117991 A1 WO2012117991 A1 WO 2012117991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- lithium ion
- ion secondary
- electrode active
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode active material for a lithium ion secondary battery, a negative electrode using the same, and a lithium ion secondary battery, and in particular, has a high capacity, high charge / discharge efficiency, and charge / discharge It is related with the negative electrode active material which can implement
- Lithium ion secondary batteries are used mainly in portable devices, and higher capacities are required as the devices used become smaller and more multifunctional.
- the negative electrode active material used in the present lithium ion secondary battery is a carbon-based material such as artificial graphite or natural graphite, and has a theoretical capacity of 372 mAh / g, and a further increase in capacity cannot be expected. .
- a method of forming a negative electrode by forming these materials as a thin film on a current collector by CVD, sputtering, vapor deposition, plating, or the like has been proposed.
- this thin film type negative electrode it is possible to suppress pulverization of the negative electrode active material as compared with a conventional coated negative electrode prepared by applying a slurry containing a powdered negative electrode active material together with a binder or the like on a current collector, Furthermore, since the current collector and the active material can be integrated with good adhesion, it is known that the electron conductivity in the negative electrode is improved.
- a conventional negative electrode in which a negative electrode active material is formed by applying a slurry-like coating liquid of a negative electrode active material, a conductive material, and a binder, and the negative electrode active material and the current collector are made of a resin having low conductivity.
- the binding force is weak because it is bound with a binding material and the amount of resin used must be kept to a minimum so that the internal resistance does not increase. For this reason, if the volume expansion of Si itself cannot be suppressed, problems such as pulverization and separation of the negative electrode active material during charge and discharge, cracks in the negative electrode, and decrease in conductivity between the active materials occur, resulting in a decrease in capacity. Resulting in. That is, the charge / discharge cycle characteristics are poor, and the secondary battery has a short life.
- Patent Document 2 does not suppress the volume expansion of Si itself, but binds the negative electrode active material and the current collector with a resin having insufficient bonding force. It has not been able to exert a sufficient effect for suppressing deterioration. Furthermore, since a carbon nanofiber production process is required, both productivity and economy are low. In addition, the technique described in Patent Document 3 is difficult to uniformly disperse nano-sized components, and the actual situation is that it cannot contribute to the improvement of charge / discharge cycle characteristics.
- the thin film type negative electrode greatly improves the electrode characteristics
- when a thin film having an active material amount that satisfies the actual capacity required for electronic devices such as personal computers and mobile phones is formed the charge / discharge cycle characteristics deteriorate, There was a tendency for the serviceable life to be repeated. For this reason, when used in a lithium ion secondary battery, the amount of the active material is necessarily reduced, so that the application is limited and it is difficult to put it to practical use.
- the use of the foamed current collector increases the thickness of the electrode. As a result, the energy density of the electrode and the energy density of the battery are reduced. It was. Further, since the edge portion of the foamed portion of the current collector is easily exposed during electrode processing, there is a problem that an internal short circuit is likely to occur through the thin separator.
- the present invention has been made in view of the above-described problems.
- the object of the present invention is to provide a lithium ion battery that does not easily deteriorate even after repeated charge and discharge, has a long battery life, and provides a high charge and discharge capacity.
- a negative electrode active material for a secondary battery, a negative electrode using the negative electrode active material, and a lithium ion secondary battery having a long life and high energy density are provided.
- the present inventors have introduced a second element having an atomic radius as large as Si into a negative electrode active material mainly composed of silicon (Si). Therefore, insertion (charge) and desorption between the lattices of silicon active material without charging too much strain between the lattices or atoms of the negative electrode active material, and when charging / discharging Li ions with a small ion radius. It has been found that (discharge) can be easily generated without failure, and generation of useless irreversible capacity due to residual Li ions accompanying discharge after charging can be reduced. The present invention has been made based on these findings.
- An active material used for a negative electrode for a lithium ion secondary battery which is composed of particles containing silicon as a main component and containing at least 0.05% by mass of element A, and the element with respect to the atomic radius r 0 of silicon
- a negative electrode active material for a lithium ion secondary battery wherein the atomic radius r A of A satisfies a relationship of
- the element A is at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As Negative electrode active material for secondary batteries.
- the negative electrode active material for a lithium ion secondary battery according to (1) further comprising oxygen or fluorine.
- a nonaqueous electrolyte secondary battery comprising an active material layer formed by applying and drying a coating liquid containing the negative electrode active material described in (1) on one or both surfaces of a negative electrode current collector Negative electrode.
- a negative electrode current collector having protrusions on the surface, and a thin film negative electrode active material formed on the surface of the negative electrode current collector, containing silicon as a main component and containing at least 0.05% by mass of element A
- the element A is an element in which the atomic radius r A of the element A with respect to the atomic radius r 0 of silicon satisfies a relationship of
- the negative electrode for a lithium ion secondary battery according to (6) wherein the negative electrode active material layer further contains oxygen or fluorine.
- the negative electrode current collector is a copper foil, and the surface of the copper foil on which the active material layer is provided is subjected to an electrolytic surface roughening treatment to provide a protrusion, and the surface roughness Rz is 1 ⁇ m.
- (11) having a positive electrode capable of inserting and extracting lithium ions, a negative electrode according to (5) or (6), and a separator disposed between the positive electrode and the negative electrode, and having lithium ion conductivity
- a lithium ion secondary battery wherein the positive electrode, the negative electrode, and the separator are provided in an electrolyte.
- a negative electrode active material that realizes a lithium-ion secondary battery having high capacity, high charge / discharge efficiency, and excellent cycle characteristics without being peeled off or removed from the current collector even after repeated charge / discharge.
- Substance materials can be obtained.
- the cross-sectional schematic diagram which shows an example of the negative electrode for lithium ion secondary batteries which concerns on 1st Embodiment.
- the cross-sectional schematic diagram which shows an example of the negative electrode for lithium ion secondary batteries which concerns on 2nd Embodiment.
- the cross-sectional schematic diagram which shows an example of the lithium ion secondary battery which concerns on this invention.
- Negative electrode for lithium ion secondary battery according to first embodiment First, a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIG.
- a slurry-like coating liquid containing the negative electrode active material 3, the conductive material 4, and the binder 6 is applied to one or both surfaces of the negative electrode current collector 9 and dried.
- the active material layer 5 is formed.
- the negative electrode active material 3 in the present invention is characterized by comprising Si-based particles having a characteristic component structure.
- the negative electrode active material for a lithium ion secondary battery of the present invention has a particulate form, and the particles contain silicon as a main component and at least an element A as a second element. Since silicon is an element that easily stores lithium, the particles also have lithium storage capacity. In addition, silicon has an advantage that the cost is relatively low among elements having lithium storage ability.
- the element A is an element in which the atomic radius r A approximates the atomic radius r 0 (0.117 nm) of Si, and satisfies the relationship
- an element having an atomic radius that is too small or too large compared to the atomic radius of Si is mainly composed of Si lattice or Si. It will be included in the system. Elements that are too large intrude into the interstitial position of Si and cause vacancies, causing excessive strain on the Si lattice. Elements that are too small also become excessive solid solubility limits and cause a large amount of diffusion. Giving excessive strain due to alloying. Such elements themselves do not contribute to the subsequent charge / discharge without inhibiting the electrochemical movement of Li ions or desorbing the alloyed Li ions entering the Si lattice during charging and desorbing during discharging. Therefore, there is a possibility of generating an irreversible capacity, which is not preferable as the negative electrode active material of the present invention.
- element A can be used by selecting one or more from the group of P, Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Se, and Br.
- These elements A are elements that do not combine with Li, or elements that form a compound that has a small amount of occlusion of lithium even when combined with Li and does not cause a large density change compared to silicon. Volume expansion and contraction of silicon during discharge can be suppressed.
- the element A may form a compound with silicon, or may exist as a simple substance or a solid solution except for Fe. When the compound is formed, it does not matter whether it is crystalline or amorphous.
- the element A is preferably at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As.
- P, Cr, Mn, Fe, Co, Ni, Cu, and As are economical elements with relatively low costs and are practical.
- Si and Si 2 M type or SiM 2 type compounds can be formed, and the effect of suppressing volume expansion and contraction is high.
- More than 0.05% by mass of the above element A is contained in the particles.
- the total content of these elements is set to 0.05% by mass or more.
- the content 0.05% by mass or more By making the content 0.05% by mass or more, volume expansion / contraction of silicon during charge / discharge can be effectively suppressed.
- the upper limit of the content of the element A is not particularly defined, it can be arbitrarily determined within a range of less than 50% by mass in consideration of the lithium storage capacity of silicon and the like. Even if the amount of the element A is sufficiently smaller than that of Si, the effect of suppressing the volume expansion and contraction can be obtained.
- the particles according to the present invention may further contain oxygen or fluorine as the third element.
- oxygen and fluorine have small atomic radii, as shown in Table 1 above, the ionic radius r A ′ is comparable in size to the atomic radius r 0 (0.117 nm) of Si, causing extra strain.
- the change in the volume of silicon can be suppressed and the charge / discharge cycle life can be further improved without obstructing the penetration and desorption of Li ions.
- Oxygen and fluorine are combined and dispersed with a part of Li, and also have an effect of stabilizing the active material.
- Ag and Cd although the ionic radius is comparable to the atomic radius r 0 of Si, it does not form an ion-binding compound with Si, so the third element constituting the negative electrode active material of the present invention It is not preferable.
- oxygen and fluorine may be uniformly contained in the entire particle, or may be contained, for example, in part of the surface portion or the like.
- the oxygen and fluorine contents are preferably 0.5% by mass or more in order to maintain high charge / discharge characteristics, and the total with the element A content is preferably 50% by mass or less.
- Such particles according to the present invention may have an average primary particle size of 10 nm to 5 ⁇ m.
- Some conventional negative electrode active material materials mainly composed of silicon suppress the influence of volume expansion and contraction by reducing the average particle diameter, but the particles constituting the negative electrode active material of the present invention are primary particles. Even if it is used from the nanometer order to the micrometer order of secondary particles, the effect can be sufficiently exhibited. Therefore, an active material having an appropriate size can be obtained according to the application and various purposes. For example, if the negative electrode active material is composed of nano-scale to sub-micron order particles having an average particle diameter of 10 nm, the Li ion conductivity and electron conductivity paths are short, and the current collecting property is good and easy to maintain. , Cycle characteristics can also be improved.
- the negative electrode active material is composed of particles of micron order to 5 ⁇ m level, a slurry-like coating liquid having excellent coating properties on the current collector surface can be prepared, and a thick film can be easily formed. Thus, a high actual capacity can be secured.
- the particles according to the present invention can also be used as secondary particles obtained by granulating primary particles.
- the secondary particles The average particle size of the particles is preferably 20 ⁇ m or less, and more preferably about 5 ⁇ m or less. From the viewpoint of particle handling, the average particle size is preferably 10 nm or more.
- the shape of the particles is not particularly limited, and may be, for example, a substantially spherical body or a linear body. Since the fine particles are usually present in an aggregated state, the average particle size of the particles here refers to the average particle size of the primary particles.
- the particle size can be measured by using image information of an electron microscope (SEM) and a volume-based median diameter of a dynamic light scattering photometer (DLS).
- the average particle size confirm the particle shape in advance using an SEM image, obtain the particle size by image analysis (for example, “A Image-kun” (registered trademark) manufactured by Asahi Kasei Engineering), or disperse the particles in a solvent to obtain DLS (for example, , DLS-8000 manufactured by Otsuka Electronics Co., Ltd.). If the fine particles are sufficiently dispersed and not agglomerated, almost the same measurement results can be obtained with SEM and DLS. In addition, even when the shape of the particle is a highly developed structure such as acetylene black, the average particle size is defined by the primary particle size here, and the average particle size can be obtained by image analysis of the SEM photograph. it can.
- image analysis for example, “A Image-kun” (registered trademark) manufactured by Asahi Kasei Engineering
- DLS for example, , DLS-8000 manufactured by Otsuka Electronics Co., Ltd.
- the average particle size is defined by the primary particle size here, and the
- the average particle size of secondary particles can be determined by image analysis of SEM photographs.
- “having silicon as a main component” means that the silicon content is the largest among the elements constituting the particles, and the silicon content is preferably 50% by mass or more, more preferably 70%. It shows that it is at least mass%.
- the second element and the third element are the elements constituting the particles other than silicon, and the element group having a characteristic role is referred to as the second element or the third element. And there is no relationship with the content of both.
- the negative electrode active material of the present invention described above may have a crystalline structure that is crystalline, microcrystalline, amorphous, or a mixture thereof. This is because any crystalline form becomes amorphous by alloying with Li ions during charging.
- the method for producing the negative electrode active material of the present invention is not particularly limited, and for example, by using various known particle (powder) production methods, those having the composition and average particle diameter as described above can be produced. it can.
- a typical example of the production of the nano-sized particles constituting the negative electrode active material is a gas phase synthesis method.
- a raw material powder blended to have a desired composition by plasma CVD synthesis is turned into plasma, heated to the equivalent of 10,000 K, and then cooled, so that nano-sized particles having an average particle size of about 10 nm to about 100 nm
- the negative electrode active material of this invention which consists of can be manufactured.
- a high frequency coil 43 for generating plasma is wound around the upper outer wall of the reaction chamber 33.
- An AC voltage of several MHz is applied to the high frequency coil 43 from the high frequency power supply 45.
- a preferred frequency is 4 MHz.
- the upper outer wall around which the high-frequency coil 43 is wound is a cylindrical double tube made of quartz glass or the like, and cooling water is passed through the gap to prevent the quartz glass from melting by the plasma 47.
- a sheath gas supply port 39 is provided in the upper part of the reaction chamber 33 together with the raw material powder supply port 35.
- the raw material powder 37 supplied from the raw material powder feeder is supplied into the plasma 47 through the raw material powder supply port 35 together with the carrier gas 42 (rare gas such as helium and argon).
- the sheath gas 41 is supplied to the reaction chamber 33 through the sheath gas supply port 39.
- the raw material powder supply port 35 is not necessarily installed above the plasma 47 as shown in FIG. 2, and a nozzle can be installed in the lateral direction of the plasma 47.
- the raw material powder supply port 35 may be water-cooled with cooling water. Note that the properties of the raw material of the nano-sized particles supplied to the plasma 47 are not limited to powder, and a slurry-like coating liquid of raw material powder or a gaseous raw material may be supplied.
- the reaction chamber 33 plays a role of maintaining the pressure in the plasma reaction part and suppressing the dispersion of the produced fine powder.
- the reaction chamber 33 is also water-cooled to prevent damage due to the plasma 47.
- a suction tube is connected to the side of the reaction chamber 33, and a filter 49 for collecting the synthesized fine powder is installed in the middle of the suction tube.
- the suction pipe connecting the reaction chamber 33 and the filter 49 is also water-cooled with cooling water.
- the pressure in the reaction chamber 33 is adjusted by the suction capability of a vacuum pump (VP) installed on the downstream side of the filter 49.
- VP vacuum pump
- the method for producing nano-sized particles is a bottom-up method in which the nano-sized particles are deposited from plasma into a solid via a gas and a liquid, and thus become spherical at the droplet stage.
- the top-down method of reducing large particles such as the crushing method and the mechanochemical method
- the shape of the particles is rugged and the shape is greatly different.
- the nanosized particle which comprises the negative electrode active material which concerns on this invention is obtained by using mixed powder of each powder of Si and the element A for raw material powder. When there are a plurality of elements A, a mixed powder of a plurality of types of powders can be used.
- a typical example of the production of micron-sized particles constituting the negative electrode active material is an atomizing method.
- an alloy gas melted to have a desired composition by a gas atomizing method is used as an inert gas flow.
- the negative electrode active material of the present invention consisting of micron-sized particles of submicron to about 5 ⁇ m can be produced by supplying the liquid to the inside and quenching.
- the Si-based active material can be oxidized or fluorinated, and the negative electrode active material containing oxygen or fluorine as the third element
- the material can be manufactured.
- oxygen when contained, it may be exposed to a heated air atmosphere.
- the negative electrode active material material in addition to silicon, is composed of particles containing at least an element A having an atomic radius similar to that of silicon, and the element A is an excessively large strain between Si lattices or Si atoms. Without charge, insertion (charge) and desorption (discharge) between the Si-based active material lattices can be easily performed without any obstacles when charging and discharging Li ions having a small ion radius. Generation of useless irreversible capacity due to residual Li ions accompanying discharge can be reduced.
- a negative electrode active material is provided. Furthermore, by including oxygen or fluorine having an ionic radius close to the Si atomic radius as the third element, a negative electrode active material having further improved charge / discharge cycle characteristics and battery life is provided.
- This negative electrode active material can have an average particle size set in a wide range of 10 nm to 5 ⁇ m, and a negative electrode active material having a particle size according to the application can be easily adjusted.
- the negative electrode for a lithium ion secondary battery of the present invention is obtained by applying and drying a slurry-like coating liquid containing the negative electrode active material of the present invention, a conductive material and a binder on one or both surfaces of a negative electrode current collector.
- a slurry-like coating liquid containing the negative electrode active material of the present invention, a conductive material and a binder on one or both surfaces of a negative electrode current collector.
- the negative electrode active material of the present invention, conductive material, binder, thickener, solvent, and other coating liquid materials are charged into a mixer and kneaded to form a slurry-like coating liquid. It can manufacture by apply
- the solid distribution number of the coating liquid is 25 to 90% by mass of the negative electrode active material of the present invention, 0 to 70% by mass of the conductive material, 1 to 30% by mass of the binder, and 0 to 25% by mass of the thickener. Can be adjusted appropriately.
- a general kneader used for preparing a slurry-like coating liquid as shown in FIG. 3 can be used, and a coating liquid called a kneader, a stirrer, a disperser, a mixer, a ball mill, or the like.
- a coating liquid called a kneader, a stirrer, a disperser, a mixer, a ball mill, or the like.
- a coating liquid called a kneader, a stirrer, a disperser, a mixer, a ball mill, or the like.
- SBR styrene butadiene rubber
- polysaccharides such as 1 type or a mixture of 2 types or more.
- PVdF polyvinylidene fluoride
- N-methyl-2-pyrrolidone can be used as a solvent.
- the conductive material is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, and silver.
- a single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used.
- general carbon black such as furnace black and acetylene black can be used.
- silicon is exposed on the surface of the negative electrode active material of the present invention, the conductivity becomes low, so it is preferable to add carbon nanohorn as a conductive material.
- the carbon nanohorn has a structure in which a graphene sheet is rounded into a conical shape, and the actual form is an aggregate of a shape like a radial sea urchin with many CNHs facing the apex to the outside. Exists as.
- the outer diameter of the sea urchin-like aggregate of CNH is about 50 nm to 250 nm. In particular, it is preferable to use CNH having an average particle size of about 80 nm.
- the average particle size of the conductive material also refers to the average particle size of the primary particles. Even when the structure shape is highly developed such as acetylene black (AB), the average particle diameter can be defined by the primary particle diameter here, and the average particle diameter can be obtained by image analysis of the SEM photograph.
- AB acetylene black
- both a particulate conductive material and a wire-shaped conductive material may be used.
- the wire-shaped conductive material is a wire made of a conductive material, and the conductive materials listed for the particulate conductive material can be used.
- As the wire-shaped conductive material a linear body having an outer diameter of 300 nm or less, such as carbon fiber, carbon nanotube, copper nanowire, or nickel nanowire, can be used.
- AB or copper powder as the particulate conductive material
- VGCF Vapor Carbon Carbon Fiber
- wire-shaped conductive material only the wire-shaped conductive material may be used without adding the particulate conductive material.
- the length of the wire-shaped conductive material is preferably 0.1 ⁇ m to 2 mm.
- the outer diameter of the conductive material is preferably 4 nm to 1000 nm, more preferably 25 nm to 200 nm. If the length of the conductive material is 0.1 ⁇ m or more, the length is sufficient to increase the productivity of the conductive material, and if the length is 2 mm or less, the coating liquid can be easily applied. Further, when the outer diameter of the conductive material is thicker than 4 nm, synthesis is easy, and when the outer diameter is thinner than 1000 nm, the coating liquid is easily kneaded.
- the measuring method of the outer diameter and length of the conductive material can be performed by image analysis by SEM.
- the binder is a resin binder, and a fluorocarbon resin such as polyvinylidene fluoride (PVdF), a rubber system such as styrene butadiene rubber (SBR), or an organic material such as polyimide (PI) or acrylic is used. be able to.
- PVdF polyvinylidene fluoride
- SBR styrene butadiene rubber
- PI polyimide
- acrylic acrylic
- Application of the coating liquid to the current collector can be performed by, for example, applying the coating liquid on one side of the current collector using a coater.
- a coater a general coating apparatus that can apply the coating liquid to the current collector can be used.
- a roll coater as shown in FIG. 4 a coater using a doctor blade, a comma coater, a die coater, or the like. is there.
- the current collector can be composed of a material that is not alloyed with lithium.
- a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel can be used. These metals may be used alone or in their respective alloys.
- the thickness is preferably about 4 ⁇ m to 35 ⁇ m, more preferably about 6 ⁇ m to 20 ⁇ m, depending on the application. From the viewpoint of the thinness, strength, conductivity, etc. of the foil, it is preferable to use a copper foil.
- the negative electrode current collector is preferably one in which the surface of the copper foil is subjected to an electrolytic surface roughening treatment and a protrusion is provided.
- the surface roughness Rz of the current collector having the protrusions is preferably 1 ⁇ m to 6 ⁇ m. Since the negative electrode active material material expands by alloying with lithium, the surface shape of the current collector is made into an appropriate fine rough surface shape with a surface roughness Rz of 1 ⁇ m to 6 ⁇ m by electrolytic surface roughening treatment, and the specific surface area is increased.
- the negative electrode when the negative electrode is formed so that the amount of the active material per unit area is reduced, the stress due to expansion and contraction of the negative electrode active material is caused by the gap between the protrusions even when the volume change occurs in the negative electrode active material due to charge and discharge. Can be relaxed, and the cycle characteristics can be improved. Further, since the surface area is increased, the negative electrode active material layer formed on the surface of the current collector can be supported by the necessary amount as the negative electrode with good adhesion.
- the surface roughness Rz obtained by the electrolytic surface roughening treatment is less than 1 ⁇ m, the surface area of the current collector is not sufficiently large, so that the amount of the negative electrode active material that can be supported becomes insufficient, and the unit area per unit area Since the charge / discharge sites of the battery are reduced, the cycle characteristics are also deteriorated. If the surface roughness Rz due to the electrolytic surface roughening treatment exceeds 6 ⁇ m, the thickness of the current collector becomes too large, which adversely affects the formation of the negative electrode active material layer. For example, a jelly roll type cylindrical shape or a square shape Since it becomes difficult to put it into practical use as a current collector for a negative electrode of a lithium ion secondary battery, it is not preferable.
- the surface roughness Rz in the present invention is defined by the ten-point average roughness of Japanese Industrial Standard JIS B0601-1994.
- Such protrusions are formed on the metal foil surface by wet (electroplating, electroless plating, chemical etching, electrochemical etching, etc.) methods, dry methods (evaporation, chemical ion deposition, etc.), painting, polishing, etc. It can be formed using a roughening treatment technique.
- a metal foil having a surface roughness Rz of 0.5 ⁇ m to 3 ⁇ m is subjected to electrolytic surface roughening treatment.
- a double-sided glossy foil or a double-sided smooth foil formed by an electrolytic method or a rolling method can be used as the metal foil before the roughening treatment.
- the reason why the surface roughness Rz is 0.5 ⁇ m or more is because it is a small realistic roughness for a double-sided glossy foil or a double-sided smooth foil. If the surface roughness Rz exceeds 3 ⁇ m, the variation in roughness after the formation of protrusions increases. This is not preferable.
- the untreated foil even if it is an untreated foil, there is a surface roughness Rz of 1 ⁇ m or more, but the unevenness formed during the manufacture of the foil also includes gentle unevenness, ensuring adhesion with the active material layer Therefore, it is not preferable to use the untreated foil as it is. It is important to form irregularities with complicated shapes by roughening treatment. Furthermore, by subjecting the metal foil having a surface roughness in the above range to a roughening treatment, the protrusions formed on the current collector become uniform on the same surface and on both the front and back surfaces. It exhibits better adhesion, and the negative electrode active material layer is less likely to fall off, which can contribute to extending the life of the negative electrode and securing the actual capacity.
- the electrolytic surface roughening treatment is to roughen the surface by forming a plating film having irregularities on the surface of the untreated foil.
- a generally used roughening method by plating is used. be able to. That is, by electroplating using an aqueous copper sulfate solution by so-called burn plating to form a granular copper plating layer on the foil surface, a normal film-like plating (capsule) is formed on the granular copper plating layer. Protruding portions that prevent the particles from falling off can be formed.
- This burn plating is preferable because it allows uniform control and reproducibility of the plating layer and is excellent in quality control.
- the material of the current collector is copper, it is preferable because a protrusion having a complicated shape can be formed by electroplating. By using the electrolytic copper foil, it is possible to easily form a current collector with little variation.
- a rust-preventing layer can be formed on the current collector on which the protrusions are formed by nickel or zinc plating, chromate treatment, or silane coupling treatment.
- this rust preventive layer for example, it is possible to prevent or suppress deterioration over time from manufacture to stock and deterioration due to a high-temperature atmosphere during formation of the negative electrode active material layer. In addition, excessive diffusion between the current collector component and the negative electrode active material component is prevented, and this contributes to maintaining good adhesion.
- the prepared coating solution is uniformly applied to the current collector, then dried at about 50 to 150 ° C., and passed through a roll press to adjust the thickness, whereby a negative electrode for a lithium ion battery can be obtained. .
- the bonding force between the negative electrode active material layer and the current collector is high, and the stress due to the expansion and contraction of the negative electrode active material is reduced.
- the cycle characteristics of the electrode can be improved.
- a negative electrode 61 for a lithium ion secondary battery of the present invention comprises a negative electrode current collector 67 having a protrusion 65 on the surface, and a thin film negative electrode active material layer 63 formed on the surface of the negative electrode current collector 67.
- the negative electrode active material layer 63 in the present invention is made of a silicon-based thin film having a characteristic component structure, and a negative electrode current collector 67 having a specific form is used for the negative electrode active material layer 63. ing.
- the negative electrode active material layer 63 of the present invention is a thin film integrally formed on the surface of the negative electrode current collector 67 and contains silicon as a main component and at least an element A as a second element. Since silicon is an element that easily stores lithium, this negative electrode active material layer also has a high lithium storage capacity. In addition, silicon has an advantage that the cost is relatively low among elements having lithium storage ability.
- Element A is contained in an amount of 0.05% by mass or more in the negative electrode active material layer.
- the total content of these elements is set to 0.05% by mass or more.
- the upper limit of the content of the element A is not particularly defined, it can be arbitrarily determined within a range of less than 50% by mass in consideration of the lithium storage capacity of silicon and the like. Even if the amount of the element A is sufficiently smaller than that of Si, the effect of suppressing the volume expansion and contraction can be obtained.
- the negative electrode active material layer according to the present invention may further contain oxygen or fluorine as the third element.
- oxygen and fluorine have small atomic radii, as shown in Table 1 above, the ionic radius r A ′ is comparable in size to the atomic radius r 0 (0.117 nm) of Si, causing extra strain.
- the change in the volume of silicon can be suppressed and the charge / discharge cycle life can be further improved without obstructing the penetration and desorption of Li ions.
- Oxygen and fluorine are combined and dispersed with a part of Li, and also have an effect of stabilizing the active material.
- the ion radius is comparable to the atomic radius r 0 of Si, it is difficult to form an ion-binding compound, so that the third active material layer constituting the negative electrode active material layer according to the present invention is formed. It is not preferable as an element.
- oxygen and fluorine may be uniformly contained in the entire active material layer, or may be contained, for example, in part of the surface portion or the like.
- the oxygen and fluorine contents are preferably 0.5% by mass or more in order to maintain high charge / discharge characteristics, and the total with the element A content is preferably 50% by mass or less.
- Such a negative electrode active material layer according to the present invention is practically required to have a thickness of at least 1 ⁇ m or more, and has a thickness of about 1 ⁇ m to 6 ⁇ m for high energy density applications such as electronic equipment. It is desirable.
- silicon as a main component means that the silicon content is the largest among the elements constituting the active material layer, and the silicon content is preferably 50% by mass or more, more preferably. Indicates 70% by mass or more.
- the second element and the third element are the elements constituting the particles other than silicon, and the element group having a characteristic role is referred to as the second element or the third element. And there is no relationship with the content of both.
- the above-described negative electrode active material layer of the present invention may have a crystalline structure that is crystalline, microcrystalline, amorphous, or a state in which these are mixed. This is because any crystalline form becomes amorphous by alloying with Li ions during charging.
- the method for forming the negative electrode active material layer according to the present invention is not particularly limited, and for example, by using various known film forming methods, a thin film having the composition and thickness as described above can be formed. it can. Specifically, for example, a sputtering method, a vapor deposition method, a CVD method, and the like can be exemplified. According to these methods, it is easy to form a uniform thin film.
- the negative electrode current collector according to the present invention can be made of a material that is not alloyed with lithium.
- a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel can be used. These metals may be used alone or in their respective alloys. From the viewpoint of the thinness, strength, conductivity, etc. of the foil, it is preferable to use copper foil.
- the current collector preferably has a thickness of about 4 ⁇ m to 35 ⁇ m, more preferably about 6 ⁇ m to 20 ⁇ m, excluding the protrusions.
- the negative electrode current collector in the present invention has a protrusion.
- This protrusion is preferably provided by subjecting the surface of the copper foil to an electrolytic surface roughening treatment, and the surface roughness Rz is preferably 1 ⁇ m to 6 ⁇ m.
- the negative electrode active material material expands by alloying with lithium, so that the surface shape of the current collector is an appropriate fine rough surface shape with a surface roughness Rz of 1 ⁇ m to 6 ⁇ m to increase the specific surface area.
- the negative electrode active material layer is expanded and contracted by the gap between the protrusions. This is because stress can be relaxed and cycle characteristics can be improved. Further, since the surface area is increased, the negative electrode active material layer formed on the surface of the current collector can be supported by the necessary amount as the negative electrode with good adhesion.
- the surface roughness Rz due to the protrusion is less than 1 ⁇ m, it is difficult to carry the negative electrode active material layer directly formed as a thin film on the current collector without peeling. Further, even if the negative electrode active material layer according to the present invention is used, the surface area of the current collector is not sufficiently large, so that the amount of the negative electrode active material that can be supported becomes insufficient, and the unit area is Since the charge / discharge sites of the battery are reduced, the cycle characteristics are also deteriorated. When the surface roughness Rz exceeds 6 ⁇ m, the thickness measured by the micrometer of the current collector becomes too large, which adversely affects the formation of the negative electrode active material layer.
- the surface roughness Rz in the present invention is defined by the ten-point average roughness of Japanese Industrial Standard JIS B0601-1994.
- Such protrusions are applied to the smooth surface of the metal foil by a wet (electroplating, electroless plating, chemical etching or electrochemical etching) method, a dry (evaporation, chemical ion deposition, etc.) method, and coating, It can be formed using a surface roughening technique such as polishing.
- a surface roughening technique such as polishing.
- a double-sided glossy foil or a double-sided smooth foil formed by an electrolytic method or a rolling method can be used as the metal foil before the roughening treatment.
- the reason why the surface roughness Rz is 0.5 ⁇ m or more is because it is a small realistic roughness for a double-sided glossy foil or a double-sided smooth foil. If the surface roughness Rz exceeds 3 ⁇ m, the variation in roughness after the formation of protrusions increases. This is not preferable.
- the untreated foil even if it is an untreated foil, there is a surface roughness Rz of 1 ⁇ m or more, but the unevenness formed during the manufacture of the foil also includes gentle unevenness, ensuring adhesion with the active material layer Therefore, it is not preferable to use the untreated foil as it is. It is important to form irregularities with complicated shapes by roughening treatment. Further, by subjecting the double-sided smooth foil having the above surface roughness to a roughening treatment, the protrusions formed on the current collector become uniform on the same surface and on both the front and back surfaces, and further with the negative electrode active material layer. Good adhesion is exhibited, and the negative electrode active material layer is less likely to fall off, which can contribute to extending the life of the negative electrode and securing the actual capacity.
- the electrolytic surface roughening treatment is to roughen the surface by forming a plating film having irregularities on the surface of the untreated foil.
- a generally used roughening method by plating is used. be able to. That is, by electroplating using an aqueous copper sulfate solution by so-called burn plating and forming a granular copper plating layer on the surface of the foil, an ordinary film-like plating ( The projection can be formed by performing capsule plating. This burn plating is preferable because it allows uniform control and reproducibility of the plating layer and is excellent in quality control.
- the material of the current collector is copper, it is preferable because a protrusion having a complicated shape can be formed by electroplating.
- a rust-preventing layer can be formed on the current collector on which the protrusions are formed by nickel or zinc plating, chromate treatment, or silane coupling treatment.
- this rust preventive layer for example, it is possible to prevent or suppress deterioration over time from manufacture to stock and deterioration due to a high-temperature atmosphere during formation of the negative electrode active material layer. In addition, excessive diffusion between the current collector component and the negative electrode active material component is prevented, and this contributes to maintaining good adhesion.
- the negative electrode active material layer includes at least an element A having an atomic radius of the same size as that of silicon in addition to silicon. Insertion (charging) and desorption (discharging) between silicon-based active material lattices can be easily generated without any problems when charging / discharging Li ions with a small ion radius without giving too much strain between Si atoms. It is possible to reduce generation of useless irreversible capacity due to residual Li ions accompanying discharge after charging.
- a negative electrode for a lithium ion secondary battery Furthermore, by including oxygen or fluorine having an ionic radius close to the Si atomic radius as the third element, a negative electrode for a lithium ion secondary battery with improved charge / discharge cycle characteristics and battery life is provided.
- the negative electrode current collector has a predetermined surface roughness, a negative electrode for a lithium ion secondary battery is provided in which the effect of the negative electrode active material layer as described above is sufficiently exhibited.
- the lithium ion secondary battery 11 of the present invention is disposed between the positive electrode 13 capable of inserting and extracting lithium ions, the negative electrode 1 for a lithium ion secondary battery according to the present invention, and the positive electrode 13 and the negative electrode 1.
- the positive electrode 13, the negative electrode 1, and the separator 15 are provided in an electrolyte 17 having lithium ion conductivity.
- the positive electrode can be produced by directly applying and drying a composition of the positive electrode active material on a metal current collector such as an aluminum foil.
- the composition of the positive electrode active material can be prepared by mixing a positive electrode active material, a conductive additive, a binder, and a solvent.
- Positive electrode active material Any positive electrode active material can be used as long as it is generally used.
- the conductive additive is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, and silver.
- a single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used.
- general carbon black such as furnace black and acetylene black can be used.
- carbon nanohorn as a conductive support agent.
- the carbon nanohorn (CNH) has a structure in which a graphene sheet is rounded into a conical shape, and the actual form is an aggregate of a shape like a radial sea urchin with many CNHs facing the apex to the outside. Exists as.
- the outer diameter of the sea urchin-like aggregate of CNH is about 50 nm to 250 nm. In particular, CNH having an average particle size of about 80 nm is preferable.
- the average particle size of the conductive aid refers to the average particle size of the primary particles. Even when the structure shape is highly developed such as acetylene black (AB), the average particle size is defined by the primary particle size here.
- the particle size can be measured by using image information of an electron microscope (SEM) and a volume-based median diameter of a dynamic light scattering photometer (DLS).
- SEM electron microscope
- DLS dynamic light scattering photometer
- confirm the particle shape in advance using an SEM image obtain the particle size by image analysis (for example, “A Image-kun” (registered trademark) manufactured by Asahi Kasei Engineering), or disperse the particles in a solvent to obtain DLS (for example, , DLS-8000 manufactured by Otsuka Electronics Co., Ltd.). If the fine particles are sufficiently dispersed and not agglomerated, almost the same measurement results can be obtained with SEM and DLS.
- both a particulate conductive aid and a wire-shaped conductive aid may be used.
- the wire-shaped conductive aid is a wire made of a conductive material, and the conductive materials listed in the particulate conductive aid can be used.
- As the wire-shaped conductive assistant a linear body having an outer diameter of 300 nm or less, such as carbon fiber, carbon nanotube, copper nanowire, or nickel nanowire, can be used.
- AB or copper powder as the particulate conductive aid
- VGCF vapor grown carbon fiber
- the length of the wire-shaped conductive assistant is preferably 0.1 ⁇ m to 2 mm.
- the outer diameter of the conductive aid is preferably 4 nm to 1000 nm, more preferably 25 nm to 200 nm. If the length of the conductive auxiliary agent is 0.1 ⁇ m or more, the length is sufficient to increase the productivity of the conductive auxiliary agent, and if the length is 2 mm or less, application of the slurry is easy. Further, when the outer diameter of the conductive auxiliary agent is larger than 4 nm, the synthesis is easy, and when the outer diameter is thinner than 1000 nm, the slurry is easily kneaded.
- the measuring method of the outer diameter and length of the conductive material can be performed by image analysis using SEM.
- the binder is a resin binder, such as a fluororesin such as polyvinylidene fluoride (PVdF), a rubber system such as styrene butadiene rubber (SBR), and a polyimide (PI) or a water-soluble acrylic binder.
- a fluororesin such as polyvinylidene fluoride (PVdF)
- PVdF polyvinylidene fluoride
- SBR styrene butadiene rubber
- PI polyimide
- NMP N-methyl-2-pyrrolidone
- composition of the positive electrode active material adjusted as described above is uniformly applied to one surface of the current collector using, for example, a coater.
- a coater a general coating apparatus capable of applying the composition to the current collector can be used.
- the current collector is a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel. Each may be used alone or may be an alloy of each.
- the thickness is preferably 4 ⁇ m to 35 ⁇ m, more preferably 6 ⁇ m to 20 ⁇ m, although depending on the application. After the composition of the positive electrode active material is applied, it is dried at about 50 to 150 ° C., and the positive electrode is obtained through a roll press in order to adjust the thickness.
- Any separator can be used as long as it has a function of insulating electronic conduction between the positive electrode and the negative electrode and is usually used in a lithium ion secondary battery.
- a microporous polyolefin film can be used.
- Electrolyte Various electrolytes and electrolytes having lithium ion conductivity can be used as the electrolyte.
- an organic electrolytic solution non-aqueous electrolytic solution
- an inorganic solid electrolyte inorganic solid electrolyte
- a polymer solid electrolyte inorganic solid electrolyte
- organic electrolyte solvent examples include carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate; diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di Ethers such as butyl ether and diethylene glycol dimethyl ether; aprotic such as benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, ⁇ -butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylchlorobenzene, nitrobenzene Solvent, or two of these solvents Mixed solvent of the above can be cited.
- carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl
- the electrolyte of the organic electrolyte includes LiPF 6 , LiClO 4 , LiBF 4 , LiAlO 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 )
- a mixture of one or more electrolytes made of a lithium salt such as 2 can be used.
- a compound capable of forming an effective solid electrolyte interface coating on the surface of the negative electrode active material is added.
- a substance having an unsaturated bond in the molecule and capable of reductive polymerization during charging such as vinylene carbonate (VC) is added.
- a solid lithium ion conductor can be used in place of the organic electrolyte.
- a solid polymer electrolyte in which the lithium salt is mixed with a polymer made of polyethylene oxide, polypropylene oxide, polyethyleneimine, or the like, or a polymer gel electrolyte in which a polymer material is impregnated with an electrolytic solution and processed into a gel shape can be used.
- An inorganic material such as 2 S—SiS 2 or a phosphorus sulfide compound may be used as the inorganic solid electrolyte.
- a battery element is formed by arranging a separator between the positive electrode as described above and the negative electrode for a lithium ion battery of the present invention. After winding or stacking such battery elements into a cylindrical or rectangular battery case, an electrolyte is injected to obtain a lithium ion secondary battery.
- the positive electrode 13 and the negative electrode 1 are laminated in the order of separator-negative electrode-separator-positive electrode via the separator 15,
- the electrode plate group is formed by winding the positive electrode 13 so as to be on the inner side, and this is inserted into the battery can 19.
- the positive electrode 13 is connected to the positive electrode terminal 25 via the positive electrode lead 23, and the negative electrode 1 is connected to the battery can 19 via the negative electrode lead 21, and chemical energy generated inside the lithium ion secondary battery 11 is externally output as electric energy. It can be taken out.
- the battery can 19 is filled with the electrolyte 17 so as to cover the electrode plate group, and then the upper end (opening) of the battery can 19 is composed of a circular lid plate and a positive electrode terminal 25 on the upper portion thereof, and a safety valve mechanism is provided therein.
- the lithium ion secondary battery according to the present invention is composed of particles containing Si having a higher capacity per unit volume than carbon and a second element having an atomic radius similar to that of Si, and generating irreversible capacity. Since the negative electrode active material is used to decrease the capacity, the capacity is larger than that of a conventional lithium ion secondary battery, and the particles are difficult to expand and contract and are not easily pulverized, so that the cycle characteristics are good.
- the negative electrode for a lithium ion secondary battery of the present invention has a high bonding force between the negative electrode active material layer and the current collector and can relieve stress due to expansion and contraction of the negative electrode active material, the cycle An economical lithium ion secondary battery having excellent characteristics is provided.
- Example 1 A negative electrode active material is applied to produce a negative electrode] (Preparation of current collector) Electrolytic plating was performed on a 10 ⁇ m thick electrolytic copper foil (Furukawa Electric NC-WS foil, surface roughness Rz 1.5 ⁇ m) to produce a current collector with protrusions.
- the plating conditions are as follows.
- cathode electrolysis was performed under conditions appropriately selected together with electrolysis time for obtaining a predetermined surface shape determined in advance together with the conditions of (a).
- negative electrode active material 1 As the negative electrode active material, nano-sized particles of Si, Si—B, Si—P, Si—Fe, and Si—Ni were produced using the plasma CVD apparatus of FIG. As raw materials, Si powder, B powder with an atomic radius of 0.09 nm, P powder with 0.11 nm, Fe powder with 0.12 nm, and Ni powder with 0.12 nm were mixed as appropriate. These mixed powders were dried, and nanosized particles were produced by continuously supplying them with a carrier gas into the Ar gas plasma generated in the reaction chamber.
- Ar gas was introduced to atmospheric pressure. This exhaustion and Ar gas introduction were repeated three times to exhaust the residual air in the reaction vessel. Thereafter, Ar gas was introduced into the reaction vessel as a plasma gas at a flow rate of 13 L / min, an AC voltage was applied to the high frequency coil, and high frequency plasma was generated by a high frequency electromagnetic field (frequency 4 MHz). The plate power at this time was 20 kW. Ar gas having a flow rate of 1.0 L / min was used as a carrier gas for supplying the raw material powder. The obtained fine powder was subjected to a fine oxidation treatment for preventing dust explosion for 12 hours after production, and then collected with a filter.
- negative electrode active material 2 a molten alloy of a predetermined composition of Si—B or Si—P is prepared, and finely powdered by a known nitrogen gas atomizing method, and then a Si—P or Si—B based microparticle is prepared. Metric-size active material particles were obtained.
- the negative electrode active material prepared as described above was mixed using a ball mill in which 10% by mass of carbon black was mixed as a conductive material and the inside was replaced with nitrogen.
- the mixed powder and polyimide as a binder were mixed at a mass ratio of 95: 5, and then NMP (N-methyl-2-pyrrolidone) was added as a solvent and sufficiently kneaded to obtain a negative electrode coating solution.
- This negative electrode coating solution was applied to a current collector to a thickness of 15 ⁇ m and baked at 300 ° C. for 10 minutes. Then, it was rolled to a density of 2 g / cm 3 with a roll press and punched into a 2 cm 2 disk shape to obtain a negative electrode.
- Example 1-1, 1-2 A negative electrode using two kinds of nano-sized Si—P particles with different P concentrations synthesized by the plasma method as an active material was used as a test electrode for evaluation of electrochemical characteristics.
- Examples 1-3, 1-4 The nano-sized Si—P particles of Example 1 were oxidized, and the electrochemical characteristics were evaluated using a negative electrode using Si—P—O particles into which oxygen was introduced as an active material.
- Example 1-5 The micron-sized Si—P particles synthesized by the atomization method were oxidized, and the negative electrode using the Si—P—O particles introduced with oxygen as the active material was used as a test electrode, and the electrochemical characteristics were evaluated.
- Example 1-6 The electrochemical characteristics were evaluated using a negative electrode using nano-sized Si—Fe particles synthesized by the plasma method as an active material as a test electrode.
- Example 1-7 The electrochemical characteristics were evaluated using a negative electrode using nano-sized Si—Ni particles synthesized by the plasma method as an active material as a test electrode.
- Electrochemical characteristics were evaluated using a negative electrode using Si—Fe—O particles and Si—Ni—O particles obtained by oxidizing the Si—Fe and Si—Ni particles of Examples 4 to 5 as active material materials, respectively, as test electrodes. .
- Comparative Examples 1-1 to 1-3 As a comparative example, a negative electrode using nano-sized Si simple particles, nano-sized Si—B particles, and micron-sized Si—B particles as active material materials was used for evaluation of electrochemical characteristics as test electrodes.
- the obtained negative electrode was processed into a disk shape having a diameter of 20 mm, and used as a working electrode in electrochemical property evaluation.
- a mixed solvent of ethylene carbonate + diethyl carbonate (1: 1 by volume) in which lithium metal is dissolved as a counter electrode and a reference electrode and 1 mol of LiPF 6 is used as an electrolyte these are put in a beaker together with a working electrode, A chemical characterization cell was fabricated.
- the initial charge / discharge was performed at 0.1 CA, the charge was performed up to 0.02 V (until 0.05 CA was reached at a constant potential), and the discharge was performed up to 1.5 V.
- charging was performed at 0.2 CA at 0.02 V (until reaching 0.05 CA at a constant potential), and discharging was performed at 0.2 CA up to 1.5 V.
- the evaluation temperature was 25 ° C. Evaluation was made under such conditions, and the capacity retention rate was determined from the discharge capacity cycle of the first charge / discharge and the discharge capacity at the 50th cycle.
- the definition of the capacity maintenance rate is as follows.
- Capacity retention ratio (discharge capacity at the 50th cycle / discharge capacity at the first cycle) ⁇ 100
- Table 2 shows the specifications of the negative electrode used as the test electrode and the capacity retention rate of the test evaluation result. The capacity shown in the table is the capacity per mass of silicon.
- the atomic radii of Examples 1-1 to 1-9 approximate to the atomic radius of Si (0.117 nm) as compared to the active material made of only Si of Comparative Example 1-1.
- ⁇ 0.1 has a capacity retention ratio of about It has been found that it can be increased more than twice. It can be determined that the current collector has a protrusion having an appropriate shape on the surface, has good adhesion to the active material, and contributes to the charge / discharge cycle life.
- the active material material preferably contains oxygen molecules.
- an increase in the average particle diameter of the active material material due to the introduction of oxygen atoms does not greatly affect the capacity retention rate.
- the negative electrode active material of the present invention is not limited to this. Absent.
- the second element only needs to be an element satisfying the relationship of at least an atomic radius of
- P, Fe, Ni, for example, Cr It is presumed that the same result can be obtained even when Co, Cu, or the like is used or fluorine is used as the third element.
- the method of forming the protrusions of the current collector of the present invention is not limited to this. If the technique can form a stable film having a protrusion having a predetermined surface roughness on the surface of the current collector, it is presumed that the same tendency result as in this example can be obtained.
- Example 2 A negative electrode is produced by forming a film on a current collector] (Preparation of negative electrode for lithium ion secondary battery 1) A negative electrode active material layer having a composition of Si, Si—P, Si—As, Si—B, and Si—N is formed on the surface of the current collector obtained in the same manner as in Example 1, A negative electrode for a secondary battery was produced. Specifically, the negative electrode active material layer was formed using a catalytic chemical vapor deposition (Cat-CVD) apparatus under the following conditions.
- Cat-CVD catalytic chemical vapor deposition
- a Si thin film For the formation of a Si thin film, monosilane gas is used as a source gas, the flow rate is 20 sccm, the current collector temperature is 250 ° C., the tungsten wire catalyst body temperature is 1800 ° C., and the basic conditions are appropriately formed according to the film thickness. The membrane time was adjusted.
- phosphine gas was supplied at a flow rate of 10 sccm or 1 sccm in addition to monosilane gas as a source gas.
- As is contained as the second element, in addition to the monosilane gas, 10 sccm of arsine gas is used as the source gas, in the case of containing B, 10 sccm of diborane gas, and in the case of containing N, ammonia gas. 100 sccm was supplied.
- Example 2-1 to 2-3 Three negative electrode active material layers were formed on the current collector provided with the protrusions by changing the P content and thickness by the Cat-CVD method to obtain a negative electrode.
- Example 2-4 A negative electrode active material layer containing Si and P was formed on the current collector provided with the protrusions by a Cat-CVD method, and further oxidized by a thermostatic bath to obtain a negative electrode containing Si, P, and O.
- Example 2-5 The negative electrode of Example 2-3 was oxidized in a thermostatic bath to form a negative electrode active material layer containing Si, P, and O to obtain a negative electrode.
- Example 2-6 A negative electrode active material layer containing Si, P, and O was formed on the current collector provided with the protrusions by reactive sputtering to obtain a negative electrode.
- Example 2-7 A negative electrode active material layer containing Si and As was formed on the current collector provided with the protrusions by a Cat-CVD method to form a negative electrode.
- Example 2-8 The negative electrode of Example 2-7 was oxidized in a thermostatic bath to form a negative electrode active material layer containing Si, As, and O to obtain a negative electrode.
- Example 2-9 A negative electrode active material containing Si and P by a Cat-CVD method, which is different from Example 2-1, in which a copper foil having a smooth surface is subjected to a roughening treatment and has a protrusion but a small surface roughness. A layer was formed as a negative electrode.
- a negative electrode active material layer containing Si and P was formed by a Cat-CVD method on a double-sided smooth copper foil (Rz 1.5 ⁇ m WS foil, untreated foil) not provided with a protrusion, thereby forming a negative electrode.
- the cross section of the negative electrode active material layer of the produced negative electrode was analyzed using an X-ray microanalyzer (EPMA), and the two to three components were quantified by the ZAF correction method.
- the results are shown in Table 2 as subcomponent concentrations.
- the subcomponent concentration represents the ratio (mass%) of the subcomponent when the mass of all the components constituting the layer is 100.
- the atomic radii of Examples 2-1 to 2-8 approximated the atomic radius of Si (0.117 nm) as compared with the negative electrode having an active material layer composed only of Si of Comparative Example 2-1. ,
- the negative electrode active material layer according to the present invention has a remarkable discharge capacity and capacity retention ratio in combination with a current collector having a sufficiently large surface roughness Rz. It was confirmed that the charge / discharge cycle characteristics were further improved.
- the negative electrode of Example 2-9 had a discharge capacity and capacity maintenance comparable to the negative electrode of Comparative Example 2-1, although the film thickness and silicon mass were about half that of Comparative Example 2-1. Have a rate.
- the negative electrode of the present invention is not limited to this.
- the second element only needs to be an element satisfying the relationship of at least an atomic radius of
- P and As for example, Fe, Ni, It is presumed that the same result can be obtained even when Cr, Co, Cu or the like is used or fluorine is used as the third element.
- the method of forming the protrusions of the current collector of the present invention is not limited to this. If the technique can form a stable film having a protrusion having a predetermined surface roughness on the surface of the current collector, it is presumed that the same tendency result as in this example can be obtained.
- Plasma 49 ......... Filter 53 ......... Mixer 55 ......... Coating liquid 57 ......... Coating liquid raw material 59 ......... Coater 61 ......... Negative electrode 63 ......... Negative electrode active Material layer 65 ......... Protrusions 67 ......... Negative electrode current collector
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention can provide a negative electrode active material for a lithium ion secondary cell can be provided, the material having a high capacity, a high charge and discharge efficiency, and exceptional cycle properties. This negative electrode active material is characterized in including silicon as a main component and at least 0.05 % by weight of element A, the atomic radius rA of element A in relation to the atomic radius rO of silicon satisfying the relationship │(rA-rO)/rO│≤0.1. This negative electrode for a lithium ion secondary cell is obtained by applying the negative electrode active material to a collector or forming the material into a film on the collector.
Description
本発明は、リチウムイオン二次電池用負極活物質材料、これを用いた負極、およびリチウムイオン二次電池に関するものであり、特に、高容量で、高い充放電効率を有し、さらに、充放電を繰り返しても集電体から剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池を実現可能な負極活物質材料に関する。
The present invention relates to a negative electrode active material for a lithium ion secondary battery, a negative electrode using the same, and a lithium ion secondary battery, and in particular, has a high capacity, high charge / discharge efficiency, and charge / discharge It is related with the negative electrode active material which can implement | achieve the lithium ion secondary battery excellent in cycling characteristics, without peeling and removing from a collector even if it repeats.
リチウムイオン二次電池は、携帯機器を中心に使用されており、使用機器の小型化や多機能化に伴って高容量化が要求されている。しかし、現在のリチウムイオン二次電池に使用されている負極活物質は、人造黒鉛や天然黒鉛などの炭素系材料であり、理論容量が372mAh/gであって、これ以上の容量増大は望めない。
Lithium ion secondary batteries are used mainly in portable devices, and higher capacities are required as the devices used become smaller and more multifunctional. However, the negative electrode active material used in the present lithium ion secondary battery is a carbon-based material such as artificial graphite or natural graphite, and has a theoretical capacity of 372 mAh / g, and a further increase in capacity cannot be expected. .
そのため、理論容量がより大きいシリコン(Si)や錫(Sn)等の金属材料やその酸化物材料を用いた負極が提案され(例えば、特許文献1参照)、特に高比容量が得られるシリコンが注目されている。これらの材料は、初期の数サイクル程度は非常に高い容量を示すが、充放電を繰り返すことによって活物質の膨張収縮による微粉化が生じ、負極活物質が集電体から脱落するため、従来の炭素系負極活物質材料と比較して、サイクル特性が劣り寿命が短いという問題があった。
For this reason, a negative electrode using a metal material such as silicon (Si) or tin (Sn) having a larger theoretical capacity or an oxide material thereof has been proposed (for example, see Patent Document 1). Attention has been paid. These materials show a very high capacity in the initial few cycles, but by repeating charging and discharging, pulverization occurs due to expansion and contraction of the active material, and the negative electrode active material falls off the current collector. As compared with the carbon-based negative electrode active material, there is a problem that the cycle characteristics are inferior and the life is short.
そこで、Si系活物質の表面にカーボンナノファイバを生長させ、その弾性作用により負極活物質粒子の膨張収縮の際の歪を緩和し、サイクル寿命を向上させるという提案が開示されている(例えば、特許文献2参照)。
Therefore, a proposal has been disclosed in which carbon nanofibers are grown on the surface of a Si-based active material, the strain during expansion and contraction of the negative electrode active material particles is relaxed by its elastic action, and the cycle life is improved (for example, Patent Document 2).
また、SiやSnなどのLiと合金化が可能な活物質と、CuやFeなどのLiと合金化しない元素とを混成合金化させる提案もなされている(例えば、特許文献3参照)。
Also, a proposal has been made to form a hybrid alloy of an active material that can be alloyed with Li, such as Si or Sn, and an element that is not alloyed with Li, such as Cu or Fe (see, for example, Patent Document 3).
また、これらの材料を、CVD法、スパッタリング法、蒸着法またはめっき法等により、集電体上に薄膜として形成して負極を作製する方法が提案されている。この薄膜型負極によると、集電体上に粉末状の負極活物質をバインダー等と共に含むスラリーを塗布して作製する従来の塗布型負極と比較して、負極活物質の微粉化を抑制でき、さらに、集電体と活物質とを密着性良く一体化することができるため、負極における電子伝導性が良好となることが知られている。
In addition, a method of forming a negative electrode by forming these materials as a thin film on a current collector by CVD, sputtering, vapor deposition, plating, or the like has been proposed. According to this thin film type negative electrode, it is possible to suppress pulverization of the negative electrode active material as compared with a conventional coated negative electrode prepared by applying a slurry containing a powdered negative electrode active material together with a binder or the like on a current collector, Furthermore, since the current collector and the active material can be integrated with good adhesion, it is known that the electron conductivity in the negative electrode is improved.
さらに、発泡状の集電体上に負極活物質の薄膜を形成することで、集電体と負極活物質の密着性をより高く維持したまま、電池の容量を確保することが提案されている(例えば、特許文献4参照)。
Furthermore, it has been proposed to form a negative electrode active material thin film on a foamed current collector to ensure battery capacity while maintaining higher adhesion between the current collector and the negative electrode active material. (For example, refer to Patent Document 4).
しかしながら、負極活物質と導電材と結着材とのスラリー状の塗布液を塗工して負極活物質を形成する従来の負極は、負極活物質と集電体とを導電性の低い樹脂の結着材で結着しており、樹脂の使用量は内部抵抗が大きくならないように最小限に抑える必要があるため結合力が弱い。このため、Si自体の体積膨張を抑制できないと、充放電時における負極活物質の微粉化および剥離、負極の亀裂の発生、活物質間の導電性が低下等の問題が発生して容量が低下してしまう。すなわち、充放電サイクル特性が悪く、2次電池の寿命が短いという問題を有していた。
However, a conventional negative electrode in which a negative electrode active material is formed by applying a slurry-like coating liquid of a negative electrode active material, a conductive material, and a binder, and the negative electrode active material and the current collector are made of a resin having low conductivity. The binding force is weak because it is bound with a binding material and the amount of resin used must be kept to a minimum so that the internal resistance does not increase. For this reason, if the volume expansion of Si itself cannot be suppressed, problems such as pulverization and separation of the negative electrode active material during charge and discharge, cracks in the negative electrode, and decrease in conductivity between the active materials occur, resulting in a decrease in capacity. Resulting in. That is, the charge / discharge cycle characteristics are poor, and the secondary battery has a short life.
そして、特許文献2に記載の発明は、Siの体積膨張自体を抑制するものではなく、負極活物質と集電体とを結合力の不十分な樹脂で結着しているため、サイクル特性の劣化の抑制には十分な効果を発揮できていない。さらに、カーボンナノファイバの生産工程を必要とするため、生産性と経済性が共に低い。また、特許文献3に記載の技術は、ナノサイズの成分を均質に分散させることが困難であり、充放電サイクル特性の改善には貢献できていないのが実状である。
The invention described in Patent Document 2 does not suppress the volume expansion of Si itself, but binds the negative electrode active material and the current collector with a resin having insufficient bonding force. It has not been able to exert a sufficient effect for suppressing deterioration. Furthermore, since a carbon nanofiber production process is required, both productivity and economy are low. In addition, the technique described in Patent Document 3 is difficult to uniformly disperse nano-sized components, and the actual situation is that it cannot contribute to the improvement of charge / discharge cycle characteristics.
このように、負極活物質材料として期待されているSiは、充放電時の体積変化が大きいため、Siを含む活物質粒子は割れが発生し易く、そのため粒子内の集電性が劣化し易く、依然としてサイクル寿命が短いという欠点が残されている。
As described above, since Si, which is expected as a negative electrode active material, has a large volume change during charge and discharge, active material particles containing Si are liable to be cracked, and thus current collection within the particles is likely to deteriorate. Still, the shortcoming is that the cycle life is short.
また、前記の薄膜型負極は、電極特性が大きく向上するものの、パソコンや携帯電話等の電子機器用途に必要な実容量を満たす活物質量の薄膜を形成すると、充放電サイクル特性が悪化し、繰り返し使用可能な寿命が短くなる傾向があった。そのため、リチウムイオン二次電池に用いる場合は、必然的に活物質量を少なくする必要があるため用途が限定され、汎用的な実用化は困難であった。
In addition, although the thin film type negative electrode greatly improves the electrode characteristics, when a thin film having an active material amount that satisfies the actual capacity required for electronic devices such as personal computers and mobile phones is formed, the charge / discharge cycle characteristics deteriorate, There was a tendency for the serviceable life to be repeated. For this reason, when used in a lithium ion secondary battery, the amount of the active material is necessarily reduced, so that the application is limited and it is difficult to put it to practical use.
また、特許文献4に記載の発明において、発泡状の集電体の使用は、電極の厚みが大きくなるため、結果として、電極のエネルギー密度の低下および電池のエネルギー密度の低下を導いてしまっていた。そしてさらに、電極加工時に、集電体の発泡部のエッジ部分が露出しやすいために、薄いセパレータを貫通して内部短絡を発生しやすいという問題もあった。
In the invention described in Patent Document 4, the use of the foamed current collector increases the thickness of the electrode. As a result, the energy density of the electrode and the energy density of the battery are reduced. It was. Further, since the edge portion of the foamed portion of the current collector is easily exposed during electrode processing, there is a problem that an internal short circuit is likely to occur through the thin separator.
本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、充放電を繰り返しても容易に劣化せず、電池寿命が長く、高い充放電容量が得られるリチウムイオン二次電池用負極活物質材料と、その負極活物質材料を用いた負極、および長寿命で高エネルギー密度を有するリチウムイオン二次電池を提供することである。
The present invention has been made in view of the above-described problems. The object of the present invention is to provide a lithium ion battery that does not easily deteriorate even after repeated charge and discharge, has a long battery life, and provides a high charge and discharge capacity. A negative electrode active material for a secondary battery, a negative electrode using the negative electrode active material, and a lithium ion secondary battery having a long life and high energy density are provided.
本発明者は、上記目的を達成するために鋭意検討した結果、シリコン(Si)を主成分とする負極活物質材料に、Siと同程度の大きさの原子半径を有する第2元素を導入することにより、負極活物質材料の格子または原子間に大きすぎる歪を与えることなく、また、イオン半径の小さなLiイオンの充放電の際の、シリコン活物質格子間への挿入(充電)と脱離(放電)を障害無く容易に生じさせることができ、充電後の放電に伴うLiイオン残留による無駄な不可逆容量の発生を減少することが可能なことを見出すに至った。本発明は、これらの知見に基づきなされたものである。
As a result of intensive studies to achieve the above object, the present inventors have introduced a second element having an atomic radius as large as Si into a negative electrode active material mainly composed of silicon (Si). Therefore, insertion (charge) and desorption between the lattices of silicon active material without charging too much strain between the lattices or atoms of the negative electrode active material, and when charging / discharging Li ions with a small ion radius. It has been found that (discharge) can be easily generated without failure, and generation of useless irreversible capacity due to residual Li ions accompanying discharge after charging can be reduced. The present invention has been made based on these findings.
すなわち本発明は、以下の発明を提供するものである。
(1)リチウムイオン二次電池用負極に用いられる活物質材料であって、シリコンを主成分とし、少なくとも元素Aを0.05質量%以上含む粒子からなり、シリコンの原子半径r0に対する前記元素Aの原子半径rAが、|(rA-r0)/r0|≦0.1の関係を満たすことを特徴とするリチウムイオン二次電池用負極活物質材料。
(2)前記元素Aが、P、Cr、Mn、Fe、Co、Ni、Cu、Asからなる群より選ばれた少なくとも1種の元素であることを特徴とする(1)に記載のリチウムイオン二次電池用負極活物質材料。
(3)さらに、酸素またはフッ素を含むことを特徴とする(1)に記載のリチウムイオン二次電池用負極活物質材料。
(4)前記粒子は、一次粒子の平均粒径が10nm~5μmであることを特徴とする(1)に記載のリチウムイオン二次電池用負極活物質材料。
(5)負極集電体の片面または両面に、(1)に記載の負極活物質材料を含む塗布液を塗布・乾燥してなる活物質層を有することを特徴とする非水電解質二次電池用負極。
(6)表面に突起部を有する負極集電体と、前記負極集電体の表面に成膜され、シリコンを主成分とし、少なくとも元素Aを0.05質量%以上含む薄膜状の負極活物質層とを有し、前記元素Aは、シリコンの原子半径r0に対する前記元素Aの原子半径rAが、|(rA-r0)/r0|≦0.1の関係を満たす元素であることを特徴とするリチウムイオン二次電池用負極。
(7)前記元素Aが、P、Cr、Mn、Fe、Co、Ni、Cu、Asからなる群より選ばれた少なくとも1種の元素であることを特徴とする(6)に記載のリチウムイオン二次電池用負極。
(8)前記負極活物質層が、さらに、酸素またはフッ素を含むことを特徴とする(6)に記載のリチウムイオン二次電池用負極。
(9)前記負極集電体が、銅箔であり、前記銅箔の、前記活物質層が設けられる表面に電解粗面化処理が施されて突起部が設けられ、表面粗さRzが1μm~6μmであることを特徴とする(5)または(6)に記載のリチウムイオン二次電池用負極。
(10)電解粗面化処理前の前記銅箔の、前記活物質層が設けられる表面の表面粗さRzが0.5μm~3μmであることを特徴とする(9)に記載のリチウムイオン二次電池用負極。
(11)リチウムイオンを吸蔵および放出可能な正極と、(5)または(6)に記載の負極と、前記正極と前記負極との間に配置されたセパレータとを有し、リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けていることを特徴とするリチウムイオン二次電池。 That is, the present invention provides the following inventions.
(1) An active material used for a negative electrode for a lithium ion secondary battery, which is composed of particles containing silicon as a main component and containing at least 0.05% by mass of element A, and the element with respect to the atomic radius r 0 of silicon A negative electrode active material for a lithium ion secondary battery, wherein the atomic radius r A of A satisfies a relationship of | (r A −r 0 ) / r 0 | ≦ 0.1.
(2) The lithium ion according to (1), wherein the element A is at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As Negative electrode active material for secondary batteries.
(3) The negative electrode active material for a lithium ion secondary battery according to (1), further comprising oxygen or fluorine.
(4) The negative electrode active material for a lithium ion secondary battery according to (1), wherein the particles have an average primary particle diameter of 10 nm to 5 μm.
(5) A nonaqueous electrolyte secondary battery comprising an active material layer formed by applying and drying a coating liquid containing the negative electrode active material described in (1) on one or both surfaces of a negative electrode current collector Negative electrode.
(6) A negative electrode current collector having protrusions on the surface, and a thin film negative electrode active material formed on the surface of the negative electrode current collector, containing silicon as a main component and containing at least 0.05% by mass of element A The element A is an element in which the atomic radius r A of the element A with respect to the atomic radius r 0 of silicon satisfies a relationship of | (r A −r 0 ) / r 0 | ≦ 0.1. There is a negative electrode for a lithium ion secondary battery.
(7) The lithium ion according to (6), wherein the element A is at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As Negative electrode for secondary battery.
(8) The negative electrode for a lithium ion secondary battery according to (6), wherein the negative electrode active material layer further contains oxygen or fluorine.
(9) The negative electrode current collector is a copper foil, and the surface of the copper foil on which the active material layer is provided is subjected to an electrolytic surface roughening treatment to provide a protrusion, and the surface roughness Rz is 1 μm. (6) The negative electrode for a lithium ion secondary battery according to (5) or (6), wherein
(10) The surface roughness Rz of the surface on which the active material layer is provided of the copper foil before the electrolytic surface-roughening treatment is 0.5 μm to 3 μm. Negative electrode for secondary battery.
(11) having a positive electrode capable of inserting and extracting lithium ions, a negative electrode according to (5) or (6), and a separator disposed between the positive electrode and the negative electrode, and having lithium ion conductivity A lithium ion secondary battery, wherein the positive electrode, the negative electrode, and the separator are provided in an electrolyte.
(1)リチウムイオン二次電池用負極に用いられる活物質材料であって、シリコンを主成分とし、少なくとも元素Aを0.05質量%以上含む粒子からなり、シリコンの原子半径r0に対する前記元素Aの原子半径rAが、|(rA-r0)/r0|≦0.1の関係を満たすことを特徴とするリチウムイオン二次電池用負極活物質材料。
(2)前記元素Aが、P、Cr、Mn、Fe、Co、Ni、Cu、Asからなる群より選ばれた少なくとも1種の元素であることを特徴とする(1)に記載のリチウムイオン二次電池用負極活物質材料。
(3)さらに、酸素またはフッ素を含むことを特徴とする(1)に記載のリチウムイオン二次電池用負極活物質材料。
(4)前記粒子は、一次粒子の平均粒径が10nm~5μmであることを特徴とする(1)に記載のリチウムイオン二次電池用負極活物質材料。
(5)負極集電体の片面または両面に、(1)に記載の負極活物質材料を含む塗布液を塗布・乾燥してなる活物質層を有することを特徴とする非水電解質二次電池用負極。
(6)表面に突起部を有する負極集電体と、前記負極集電体の表面に成膜され、シリコンを主成分とし、少なくとも元素Aを0.05質量%以上含む薄膜状の負極活物質層とを有し、前記元素Aは、シリコンの原子半径r0に対する前記元素Aの原子半径rAが、|(rA-r0)/r0|≦0.1の関係を満たす元素であることを特徴とするリチウムイオン二次電池用負極。
(7)前記元素Aが、P、Cr、Mn、Fe、Co、Ni、Cu、Asからなる群より選ばれた少なくとも1種の元素であることを特徴とする(6)に記載のリチウムイオン二次電池用負極。
(8)前記負極活物質層が、さらに、酸素またはフッ素を含むことを特徴とする(6)に記載のリチウムイオン二次電池用負極。
(9)前記負極集電体が、銅箔であり、前記銅箔の、前記活物質層が設けられる表面に電解粗面化処理が施されて突起部が設けられ、表面粗さRzが1μm~6μmであることを特徴とする(5)または(6)に記載のリチウムイオン二次電池用負極。
(10)電解粗面化処理前の前記銅箔の、前記活物質層が設けられる表面の表面粗さRzが0.5μm~3μmであることを特徴とする(9)に記載のリチウムイオン二次電池用負極。
(11)リチウムイオンを吸蔵および放出可能な正極と、(5)または(6)に記載の負極と、前記正極と前記負極との間に配置されたセパレータとを有し、リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けていることを特徴とするリチウムイオン二次電池。 That is, the present invention provides the following inventions.
(1) An active material used for a negative electrode for a lithium ion secondary battery, which is composed of particles containing silicon as a main component and containing at least 0.05% by mass of element A, and the element with respect to the atomic radius r 0 of silicon A negative electrode active material for a lithium ion secondary battery, wherein the atomic radius r A of A satisfies a relationship of | (r A −r 0 ) / r 0 | ≦ 0.1.
(2) The lithium ion according to (1), wherein the element A is at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As Negative electrode active material for secondary batteries.
(3) The negative electrode active material for a lithium ion secondary battery according to (1), further comprising oxygen or fluorine.
(4) The negative electrode active material for a lithium ion secondary battery according to (1), wherein the particles have an average primary particle diameter of 10 nm to 5 μm.
(5) A nonaqueous electrolyte secondary battery comprising an active material layer formed by applying and drying a coating liquid containing the negative electrode active material described in (1) on one or both surfaces of a negative electrode current collector Negative electrode.
(6) A negative electrode current collector having protrusions on the surface, and a thin film negative electrode active material formed on the surface of the negative electrode current collector, containing silicon as a main component and containing at least 0.05% by mass of element A The element A is an element in which the atomic radius r A of the element A with respect to the atomic radius r 0 of silicon satisfies a relationship of | (r A −r 0 ) / r 0 | ≦ 0.1. There is a negative electrode for a lithium ion secondary battery.
(7) The lithium ion according to (6), wherein the element A is at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As Negative electrode for secondary battery.
(8) The negative electrode for a lithium ion secondary battery according to (6), wherein the negative electrode active material layer further contains oxygen or fluorine.
(9) The negative electrode current collector is a copper foil, and the surface of the copper foil on which the active material layer is provided is subjected to an electrolytic surface roughening treatment to provide a protrusion, and the surface roughness Rz is 1 μm. (6) The negative electrode for a lithium ion secondary battery according to (5) or (6), wherein
(10) The surface roughness Rz of the surface on which the active material layer is provided of the copper foil before the electrolytic surface-roughening treatment is 0.5 μm to 3 μm. Negative electrode for secondary battery.
(11) having a positive electrode capable of inserting and extracting lithium ions, a negative electrode according to (5) or (6), and a separator disposed between the positive electrode and the negative electrode, and having lithium ion conductivity A lithium ion secondary battery, wherein the positive electrode, the negative electrode, and the separator are provided in an electrolyte.
本発明により、高容量で、高い充放電効率を有し、さらに、充放電を繰り返しても集電体から剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池を実現する負極活物質材料などを得ることができる。
According to the present invention, a negative electrode active material that realizes a lithium-ion secondary battery having high capacity, high charge / discharge efficiency, and excellent cycle characteristics without being peeled off or removed from the current collector even after repeated charge / discharge. Substance materials can be obtained.
以下、図面に基づいて、本発明の実施形態を詳細に説明する。
(1.第1の実施形態に係るリチウムイオン二次電池用負極)
まず、本発明の一実施形態に係るリチウムイオン二次電池用負極について、図1を参照して説明する。
本発明のリチウムイオン二次電池用負極1は、負極集電体9の片面または両面に、負極活物質材料3と導電材4と結着材6とを含むスラリー状の塗布液を塗布・乾燥してなる活物質層5を有している。そして本発明における負極活物質材料3は、特徴的な成分構成のSi系粒子からなることを特徴としている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1. Negative electrode for lithium ion secondary battery according to first embodiment)
First, a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIG.
In thenegative electrode 1 for a lithium ion secondary battery of the present invention, a slurry-like coating liquid containing the negative electrode active material 3, the conductive material 4, and the binder 6 is applied to one or both surfaces of the negative electrode current collector 9 and dried. The active material layer 5 is formed. The negative electrode active material 3 in the present invention is characterized by comprising Si-based particles having a characteristic component structure.
(1.第1の実施形態に係るリチウムイオン二次電池用負極)
まず、本発明の一実施形態に係るリチウムイオン二次電池用負極について、図1を参照して説明する。
本発明のリチウムイオン二次電池用負極1は、負極集電体9の片面または両面に、負極活物質材料3と導電材4と結着材6とを含むスラリー状の塗布液を塗布・乾燥してなる活物質層5を有している。そして本発明における負極活物質材料3は、特徴的な成分構成のSi系粒子からなることを特徴としている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1. Negative electrode for lithium ion secondary battery according to first embodiment)
First, a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIG.
In the
(1-1.負極活物質材料の構成)
そこで、本発明に係るリチウムイオン二次電池用負極活物質材料の実施形態について、以下に詳細に説明する。
本発明のリチウムイオン二次電池用負極活物質材料は、粒子状の形態を有し、この粒子は、シリコンを主成分とし、第2の元素として、少なくとも元素Aを含んでいる。シリコンは、リチウムを吸蔵しやすい元素であるため、粒子もリチウムの吸蔵能を有する。またシリコンは、リチウム吸蔵能を有する元素の中でも、比較的コストが低いという利点がある。 (1-1. Configuration of negative electrode active material)
Therefore, embodiments of the negative electrode active material for a lithium ion secondary battery according to the present invention will be described in detail below.
The negative electrode active material for a lithium ion secondary battery of the present invention has a particulate form, and the particles contain silicon as a main component and at least an element A as a second element. Since silicon is an element that easily stores lithium, the particles also have lithium storage capacity. In addition, silicon has an advantage that the cost is relatively low among elements having lithium storage ability.
そこで、本発明に係るリチウムイオン二次電池用負極活物質材料の実施形態について、以下に詳細に説明する。
本発明のリチウムイオン二次電池用負極活物質材料は、粒子状の形態を有し、この粒子は、シリコンを主成分とし、第2の元素として、少なくとも元素Aを含んでいる。シリコンは、リチウムを吸蔵しやすい元素であるため、粒子もリチウムの吸蔵能を有する。またシリコンは、リチウム吸蔵能を有する元素の中でも、比較的コストが低いという利点がある。 (1-1. Configuration of negative electrode active material)
Therefore, embodiments of the negative electrode active material for a lithium ion secondary battery according to the present invention will be described in detail below.
The negative electrode active material for a lithium ion secondary battery of the present invention has a particulate form, and the particles contain silicon as a main component and at least an element A as a second element. Since silicon is an element that easily stores lithium, the particles also have lithium storage capacity. In addition, silicon has an advantage that the cost is relatively low among elements having lithium storage ability.
元素Aは、原子半径rAがSiの原子半径r0(0.117nm)に近似した元素であり、|(rA-r0)/r0|≦0.1の関係を満たすものとする。元素Aの原子半径rAとSiの原子半径r0が上記の関係を満たし、元素AがSiと同程度の原子半径を有すると、この元素AはSi格子やSiを主体とする系において、Si格子のSi原子位置とほぼ同じ位置に置換する可能性が高く、またはSiと化合物を形成し易く、Si格子構造を安定させた状態で存在することができる。一方で、|(rA-r0)/r0|が0.1を超過する場合、Siの原子半径に比べて小さすぎるまたは大きすぎる原子半径を有する元素がSi格子やSiを主体とする系に含まれることとなる。大きすぎる元素は、Siの格子間位置に侵入したり、空格子点を生じさせたりして、Si格子に過大な歪をもたらし、また、小さすぎる元素も、過剰な固溶限となり多量の拡散合金化による過大な歪を与える。このような元素は、そのものが、Liイオンの電気化学的移動を阻害したり、充電時にSi格子に侵入して合金化したLiイオンを放電時に脱離させずにその後の充放電に寄与しない無駄な不可逆容量を発生させる可能性が生じたりするため、本発明の負極活物質材料としては好ましくない。
The element A is an element in which the atomic radius r A approximates the atomic radius r 0 (0.117 nm) of Si, and satisfies the relationship | (r A −r 0 ) / r 0 | ≦ 0.1. . Filled atomic radius r 0 of the atomic radius r A and Si element A the above relationship, the element A has a Si comparable atomic radius, the element A in a system composed mainly of Si lattice or Si, There is a high possibility of substitution to a position substantially the same as the Si atom position of the Si lattice, or it is easy to form a compound with Si, and the Si lattice structure can exist in a stable state. On the other hand, when | (r A −r 0 ) / r 0 | exceeds 0.1, an element having an atomic radius that is too small or too large compared to the atomic radius of Si is mainly composed of Si lattice or Si. It will be included in the system. Elements that are too large intrude into the interstitial position of Si and cause vacancies, causing excessive strain on the Si lattice. Elements that are too small also become excessive solid solubility limits and cause a large amount of diffusion. Giving excessive strain due to alloying. Such elements themselves do not contribute to the subsequent charge / discharge without inhibiting the electrochemical movement of Li ions or desorbing the alloyed Li ions entering the Si lattice during charging and desorbing during discharging. Therefore, there is a possibility of generating an irreversible capacity, which is not preferable as the negative electrode active material of the present invention.
元素Aは、下記表1に示したとおり、P、Cr、Mn、Fe、Co、Ni、Cu、Ga、Ge、As、Se、Brの群より1種以上を選択して用いることができる。これらの元素Aは、Liと化合しない元素であるか、または、Liと化合してもリチウム吸蔵量が少なく、シリコンと比較して大きな密度変化を生じない化合物を形成する元素であるため、充放電の際のシリコンの体積膨張収縮を抑制することができる。なお、元素Aはシリコンと化合物を形成してもよいし、Feを除き単体もしくは固溶体として存在してもよい。化合物を形成する場合は、結晶質であるか非晶質であるかは問わない。
As shown in Table 1 below, element A can be used by selecting one or more from the group of P, Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Se, and Br. These elements A are elements that do not combine with Li, or elements that form a compound that has a small amount of occlusion of lithium even when combined with Li and does not cause a large density change compared to silicon. Volume expansion and contraction of silicon during discharge can be suppressed. The element A may form a compound with silicon, or may exist as a simple substance or a solid solution except for Fe. When the compound is formed, it does not matter whether it is crystalline or amorphous.
さらに、元素Aとしては、P、Cr、Mn、Fe、Co、Ni、Cu、Asからなる群より選ばれた少なくとも1種の元素であることが好ましい。P、Cr、Mn、Fe、Co、Ni、Cu、Asは、比較的コストの低い経済的な元素であり、実用的である。さらに、PとAs以外の元素については、SiとSi2M型またはSiM2型の化合物を形成することができ、体積膨張収縮の抑制効果が高いためである。
Furthermore, the element A is preferably at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As. P, Cr, Mn, Fe, Co, Ni, Cu, and As are economical elements with relatively low costs and are practical. Furthermore, for elements other than P and As, Si and Si 2 M type or SiM 2 type compounds can be formed, and the effect of suppressing volume expansion and contraction is high.
以上の元素Aは、粒子中に0.05質量%以上含むようにする。元素Aを複数含む場合は、それらの元素の含有量の合計が0.05質量%以上となるようにする。含有量を0.05質量%以上とすることで、充放電時のシリコンの体積膨張収縮を効果的に抑制することができる。元素Aの含有量の上限については特に規定しないものの、シリコンのリチウム吸蔵能等を考慮して50質量%未満の範囲で任意に決定することができる。元素Aは、Siに比べて十分に少ない量であっても体積膨張収縮の抑制効果は得られるため、例えば、30質量%以下、さらには20質量%以下等とすることが例示される。
More than 0.05% by mass of the above element A is contained in the particles. When a plurality of elements A are included, the total content of these elements is set to 0.05% by mass or more. By making the content 0.05% by mass or more, volume expansion / contraction of silicon during charge / discharge can be effectively suppressed. Although the upper limit of the content of the element A is not particularly defined, it can be arbitrarily determined within a range of less than 50% by mass in consideration of the lithium storage capacity of silicon and the like. Even if the amount of the element A is sufficiently smaller than that of Si, the effect of suppressing the volume expansion and contraction can be obtained.
また、本発明に係る粒子は、さらに、第3の元素として、酸素またはフッ素を含んでもよい。酸素とフッ素は、原子半径は小さいものの、上記表1に示したように、イオン半径rA’がSiの原子半径r0(0.117nm)に匹敵する大きさであり、余計な歪を生じさせず、またLiイオンの侵入と脱離の障害となることなく、シリコンの体積変化を抑制し、充放電サイクル寿命をさらに向上させることができる。酸素とフッ素は、Liの一部と化合分散し、活物質を安定化させる効果をも有する。なお、AgとCdについては、イオン半径がSiの原子半径r0に匹敵する大きさであるものの、Siとイオン結合性化合物を形成しないので、本発明の負極活物質を構成する第3の元素としては好ましくない。
The particles according to the present invention may further contain oxygen or fluorine as the third element. Although oxygen and fluorine have small atomic radii, as shown in Table 1 above, the ionic radius r A ′ is comparable in size to the atomic radius r 0 (0.117 nm) of Si, causing extra strain. In addition, the change in the volume of silicon can be suppressed and the charge / discharge cycle life can be further improved without obstructing the penetration and desorption of Li ions. Oxygen and fluorine are combined and dispersed with a part of Li, and also have an effect of stabilizing the active material. As for Ag and Cd, although the ionic radius is comparable to the atomic radius r 0 of Si, it does not form an ion-binding compound with Si, so the third element constituting the negative electrode active material of the present invention It is not preferable.
なお、酸素およびフッ素は、粒子の全体に均一に含まれていてもよいし、例えばその表面部等の一部に含まれていてもよい。酸素およびフッ素の含有量については、充放電特性を高く維持するため、0.5質量%以上であることが好ましく、元素Aの含有量との合計を50質量%以下とするのが好ましい。
Note that oxygen and fluorine may be uniformly contained in the entire particle, or may be contained, for example, in part of the surface portion or the like. The oxygen and fluorine contents are preferably 0.5% by mass or more in order to maintain high charge / discharge characteristics, and the total with the element A content is preferably 50% by mass or less.
このような本発明に係る粒子は、一次粒子の平均粒径が10nm~5μmの大きさを有するものとすることができる。従来のシリコンを主体とする負極活物質材料は、平均粒径を小さくして体積膨張収縮の影響を抑制するものもあるが、本発明の負極活物質材料を構成する粒子は、1次粒子のナノメートルオーダーから2次粒子のマイクロメーターオーダーのものとして用いても、十分にその効果を発揮することができる。したがって、用途や多様な目的に応じて、適切な大きさの活物質材料とすることができる。例えば、平均粒径が10nmのナノスケールからサブミクロンオーダーの粒子で負極活物質材料を構成すれば、Liイオン導電性や電子伝導性のパスが短く、また集電性が良好かつ維持し易くて、サイクル特性も向上させることができる。また、例えば、ミクロンオーダーから5μmレベルの粒子で負極活物質材料を構成すれば、集電体表面への塗工性に優れたスラリー状の塗布液を調整することができ、厚膜化が容易で、高い実容量を確保することができる。また、本発明に係る粒子は、1次粒子を造粒処理した2次粒子として用いることもでき、この場合、負極電極を形成する際の負極活物質層の実用厚さを考慮すると、2次粒子の平均粒径は20μm以下とすることが好ましく、5μm以下程度とすることがより好ましい。また、粒子の取り扱いの観点から、平均粒径は10nm以上とすることが好ましい。
Such particles according to the present invention may have an average primary particle size of 10 nm to 5 μm. Some conventional negative electrode active material materials mainly composed of silicon suppress the influence of volume expansion and contraction by reducing the average particle diameter, but the particles constituting the negative electrode active material of the present invention are primary particles. Even if it is used from the nanometer order to the micrometer order of secondary particles, the effect can be sufficiently exhibited. Therefore, an active material having an appropriate size can be obtained according to the application and various purposes. For example, if the negative electrode active material is composed of nano-scale to sub-micron order particles having an average particle diameter of 10 nm, the Li ion conductivity and electron conductivity paths are short, and the current collecting property is good and easy to maintain. , Cycle characteristics can also be improved. In addition, for example, if the negative electrode active material is composed of particles of micron order to 5 μm level, a slurry-like coating liquid having excellent coating properties on the current collector surface can be prepared, and a thick film can be easily formed. Thus, a high actual capacity can be secured. The particles according to the present invention can also be used as secondary particles obtained by granulating primary particles. In this case, considering the practical thickness of the negative electrode active material layer when forming the negative electrode, the secondary particles The average particle size of the particles is preferably 20 μm or less, and more preferably about 5 μm or less. From the viewpoint of particle handling, the average particle size is preferably 10 nm or more.
なお、粒子の形状は特に限定されず、例えば、略球状体ないしは線状体等であってよい。微粒子は、通常凝集して存在しているので、粒子の平均粒径は、ここでは一次粒子の平均粒径を指す。粒径の計測は、電子顕微鏡(SEM)の画像情報と動的光散乱光度計(DLS)の体積基準メディアン径を併用することができる。平均粒径は、SEM画像によりあらかじめ粒子形状を確認し、画像解析(例えば、旭化成エンジニアリング製「A像くん」(登録商標))で粒径を求めたり、粒子を溶媒に分散してDLS(例えば、大塚電子製DLS-8000)により測定したりすることが可能である。微粒子が十分に分散しており、凝集していなければ、SEMとDLSでほぼ同じ測定結果が得られる。また、粒子の形状が、アセチレンブラックのような高度に発達したストラクチャー形状である場合にも、ここでは一次粒径で平均粒径を定義し、SEM写真の画像解析で平均粒径を求めることができる。
The shape of the particles is not particularly limited, and may be, for example, a substantially spherical body or a linear body. Since the fine particles are usually present in an aggregated state, the average particle size of the particles here refers to the average particle size of the primary particles. The particle size can be measured by using image information of an electron microscope (SEM) and a volume-based median diameter of a dynamic light scattering photometer (DLS). For the average particle size, confirm the particle shape in advance using an SEM image, obtain the particle size by image analysis (for example, “A Image-kun” (registered trademark) manufactured by Asahi Kasei Engineering), or disperse the particles in a solvent to obtain DLS (for example, , DLS-8000 manufactured by Otsuka Electronics Co., Ltd.). If the fine particles are sufficiently dispersed and not agglomerated, almost the same measurement results can be obtained with SEM and DLS. In addition, even when the shape of the particle is a highly developed structure such as acetylene black, the average particle size is defined by the primary particle size here, and the average particle size can be obtained by image analysis of the SEM photograph. it can.
また、二次粒子の平均粒径も、SEM写真の画像解析で平均粒径を求めることができる。
Also, the average particle size of secondary particles can be determined by image analysis of SEM photographs.
そして、本発明において、シリコンを主成分とするとは、粒子を構成する元素のうちシリコンの含有量が最も多いことを意味し、シリコンの含有量が、好ましくは50質量%以上、より好ましくは70質量%以上であることを示している。また、第2の元素、第3の元素とは、粒子を構成する元素のうち、シリコン以外で、特徴的な役割をもつ元素群について、第2の元素、第3の元素と呼ぶようにしており、両者の含有量とは関係がない。
In the present invention, “having silicon as a main component” means that the silicon content is the largest among the elements constituting the particles, and the silicon content is preferably 50% by mass or more, more preferably 70%. It shows that it is at least mass%. The second element and the third element are the elements constituting the particles other than silicon, and the element group having a characteristic role is referred to as the second element or the third element. And there is no relationship with the content of both.
なお、以上の本発明の負極活物質材料は、結晶構造が、結晶質、微結晶質、非晶質あるいはこれらが混在する状態のいずれであってもよい。これは、充電の際のLiイオンとの合金化により、いずれの結晶形態であっても非晶質化するためである。
Note that the negative electrode active material of the present invention described above may have a crystalline structure that is crystalline, microcrystalline, amorphous, or a mixture thereof. This is because any crystalline form becomes amorphous by alloying with Li ions during charging.
(1-2.負極活物質材料の製造)
本発明の負極活物質材料の製造方法については特に限定されず、例えば公知の各種の粒子(粉末)製造方法を利用して、上記のとおりの組成および平均粒径を有するものを製造することができる。 (1-2. Production of negative electrode active material)
The method for producing the negative electrode active material of the present invention is not particularly limited, and for example, by using various known particle (powder) production methods, those having the composition and average particle diameter as described above can be produced. it can.
本発明の負極活物質材料の製造方法については特に限定されず、例えば公知の各種の粒子(粉末)製造方法を利用して、上記のとおりの組成および平均粒径を有するものを製造することができる。 (1-2. Production of negative electrode active material)
The method for producing the negative electrode active material of the present invention is not particularly limited, and for example, by using various known particle (powder) production methods, those having the composition and average particle diameter as described above can be produced. it can.
負極活物質材料を構成するナノサイズ粒子の製造としては、代表的には、気相合成法を例示することができる。例えば、プラズマCVD合成法により、所望の組成となるよう配合した原料粉末をプラズマ化して1万K相当にまで加熱し、その後冷却することで、平均粒径が10nm程度~100nm程度のナノサイズ粒子からなる本発明の負極活物質材料を製造することができる。
A typical example of the production of the nano-sized particles constituting the negative electrode active material is a gas phase synthesis method. For example, a raw material powder blended to have a desired composition by plasma CVD synthesis is turned into plasma, heated to the equivalent of 10,000 K, and then cooled, so that nano-sized particles having an average particle size of about 10 nm to about 100 nm The negative electrode active material of this invention which consists of can be manufactured.
ここで、ナノサイズ粒子の製造に用いられる製造装置の一具体例を、図2に基づいて説明する。図2に示すナノサイズ粒子製造装置31において、反応チャンバー33の上部外壁には、プラズマ発生用の高周波コイル43が巻き付けてある。高周波コイル43には、高周波電源45より、数MHzの交流電圧が印加される。好ましい周波数は4MHzである。なお、高周波コイル43を巻きつける上部外壁は石英ガラスなどで構成された円筒形の2重管となっており、その隙間に冷却水を流してプラズマ47による石英ガラスの溶融を防止している。
Here, a specific example of a manufacturing apparatus used for manufacturing nano-sized particles will be described with reference to FIG. In the nanosize particle manufacturing apparatus 31 shown in FIG. 2, a high frequency coil 43 for generating plasma is wound around the upper outer wall of the reaction chamber 33. An AC voltage of several MHz is applied to the high frequency coil 43 from the high frequency power supply 45. A preferred frequency is 4 MHz. The upper outer wall around which the high-frequency coil 43 is wound is a cylindrical double tube made of quartz glass or the like, and cooling water is passed through the gap to prevent the quartz glass from melting by the plasma 47.
また、反応チャンバー33の上部には、原料粉末供給口35と共に、シースガス供給口39が設けてある。原料粉末フィーダーから供給される原料粉末37は、キャリアガス42(ヘリウム、アルゴンなどの希ガス)と共に原料粉末供給口35を通してプラズマ47中に供給される。また、シースガス41はシースガス供給口39を通して反応チャンバー33に供給される。なお、原料粉末供給口35は、必ずしも図2のようにプラズマ47の上部に設置する必要はなく、プラズマ47の横方向にノズルを設置することもできる。また、原料粉末供給口35を冷却水により水冷しても良い。なお、プラズマ47に供給するナノサイズ粒子の原料の性状は、粉末だけに限られず、原料粉末のスラリー状の塗布液やガス状の原料を供給しても良い。
In addition, a sheath gas supply port 39 is provided in the upper part of the reaction chamber 33 together with the raw material powder supply port 35. The raw material powder 37 supplied from the raw material powder feeder is supplied into the plasma 47 through the raw material powder supply port 35 together with the carrier gas 42 (rare gas such as helium and argon). The sheath gas 41 is supplied to the reaction chamber 33 through the sheath gas supply port 39. Note that the raw material powder supply port 35 is not necessarily installed above the plasma 47 as shown in FIG. 2, and a nozzle can be installed in the lateral direction of the plasma 47. The raw material powder supply port 35 may be water-cooled with cooling water. Note that the properties of the raw material of the nano-sized particles supplied to the plasma 47 are not limited to powder, and a slurry-like coating liquid of raw material powder or a gaseous raw material may be supplied.
反応チャンバー33は、プラズマ反応部の圧力の保持や、製造された微粉末の分散を抑制する役割を果たす。反応チャンバー33も、プラズマ47による損傷を防ぐため、水冷されている。また、反応チャンバー33の側部には、吸引管が接続してあり、その吸引管の途中には合成された微粉末を捕集するためのフィルター49が設置してある。反応チャンバー33とフィルター49を連結する吸引管も、冷却水により水冷されている。反応チャンバー33内の圧力は、フィルター49の下流側に設置されている真空ポンプ(VP)の吸引能力によって調整する。
The reaction chamber 33 plays a role of maintaining the pressure in the plasma reaction part and suppressing the dispersion of the produced fine powder. The reaction chamber 33 is also water-cooled to prevent damage due to the plasma 47. A suction tube is connected to the side of the reaction chamber 33, and a filter 49 for collecting the synthesized fine powder is installed in the middle of the suction tube. The suction pipe connecting the reaction chamber 33 and the filter 49 is also water-cooled with cooling water. The pressure in the reaction chamber 33 is adjusted by the suction capability of a vacuum pump (VP) installed on the downstream side of the filter 49.
ナノサイズ粒子の製造方法は、プラズマから気体、液体を経由して固体となり、ナノサイズ粒子を析出させるボトムアップの手法なので、液滴の段階で球形状となる。一方で、破砕法やメカノケミカル法のような、大きな粒子を小さくするトップダウンの手法では、粒子の形状はごつごつしたものとなり、形状が大きく異なったものとなる。
なお、原料粉末にSiと元素Aのそれぞれの粉末の混合粉末を用いることで、本発明に係る負極活物質材料を構成するナノサイズ粒子が得られる。元素Aが複数の場合は、複数種類の粉末の混合粉末を用いることができる。 The method for producing nano-sized particles is a bottom-up method in which the nano-sized particles are deposited from plasma into a solid via a gas and a liquid, and thus become spherical at the droplet stage. On the other hand, in the top-down method of reducing large particles, such as the crushing method and the mechanochemical method, the shape of the particles is rugged and the shape is greatly different.
In addition, the nanosized particle which comprises the negative electrode active material which concerns on this invention is obtained by using mixed powder of each powder of Si and the element A for raw material powder. When there are a plurality of elements A, a mixed powder of a plurality of types of powders can be used.
なお、原料粉末にSiと元素Aのそれぞれの粉末の混合粉末を用いることで、本発明に係る負極活物質材料を構成するナノサイズ粒子が得られる。元素Aが複数の場合は、複数種類の粉末の混合粉末を用いることができる。 The method for producing nano-sized particles is a bottom-up method in which the nano-sized particles are deposited from plasma into a solid via a gas and a liquid, and thus become spherical at the droplet stage. On the other hand, in the top-down method of reducing large particles, such as the crushing method and the mechanochemical method, the shape of the particles is rugged and the shape is greatly different.
In addition, the nanosized particle which comprises the negative electrode active material which concerns on this invention is obtained by using mixed powder of each powder of Si and the element A for raw material powder. When there are a plurality of elements A, a mixed powder of a plurality of types of powders can be used.
負極活物質材料を構成するミクロンサイズ粒子の製造としては、代表的には、アトマイズ法を例示することができ、例えば、ガスアトマイズ法により、所望の組成となるよう配合した合金溶湯を不活性ガス流中に供給して急冷させることで、サブミクロン~5μm程度のミクロンサイズ粒子からなる本発明の負極活物質材料を製造することができる。
A typical example of the production of micron-sized particles constituting the negative electrode active material is an atomizing method. For example, an alloy gas melted to have a desired composition by a gas atomizing method is used as an inert gas flow. The negative electrode active material of the present invention consisting of micron-sized particles of submicron to about 5 μm can be produced by supplying the liquid to the inside and quenching.
さらに、得られた負極活物質材料を酸素またはフッ素雰囲気に暴露させることで、Si系の活物質を酸化またはフッ素化させることができ、第3の元素としての酸素またはフッ素を含有した負極活物質材料を製造することができる。酸素を含有させる場合には、加温した大気雰囲気に暴露させてもよい。
Furthermore, by exposing the obtained negative electrode active material material to an oxygen or fluorine atmosphere, the Si-based active material can be oxidized or fluorinated, and the negative electrode active material containing oxygen or fluorine as the third element The material can be manufactured. When oxygen is contained, it may be exposed to a heated air atmosphere.
(1-3.負極活物質材料の効果)
本発明の負極活物質材料によれば、シリコンの他に、シリコンと同程度の大きさの原子半径を有する元素Aを少なくとも含む粒子からなり、元素AはSi格子またはSi原子間に大きすぎる歪を与えることなく、イオン半径の小さなLiイオンの充放電の際の、Si系活物質格子間への挿入(充電)と脱離(放電)を障害なく容易に生じさせることができ、充電後の放電に伴うLiイオン残留による無駄な不可逆容量の発生を減少させることができる。 (1-3. Effects of negative electrode active material)
According to the negative electrode active material of the present invention, in addition to silicon, the negative electrode active material material is composed of particles containing at least an element A having an atomic radius similar to that of silicon, and the element A is an excessively large strain between Si lattices or Si atoms. Without charge, insertion (charge) and desorption (discharge) between the Si-based active material lattices can be easily performed without any obstacles when charging and discharging Li ions having a small ion radius. Generation of useless irreversible capacity due to residual Li ions accompanying discharge can be reduced.
本発明の負極活物質材料によれば、シリコンの他に、シリコンと同程度の大きさの原子半径を有する元素Aを少なくとも含む粒子からなり、元素AはSi格子またはSi原子間に大きすぎる歪を与えることなく、イオン半径の小さなLiイオンの充放電の際の、Si系活物質格子間への挿入(充電)と脱離(放電)を障害なく容易に生じさせることができ、充電後の放電に伴うLiイオン残留による無駄な不可逆容量の発生を減少させることができる。 (1-3. Effects of negative electrode active material)
According to the negative electrode active material of the present invention, in addition to silicon, the negative electrode active material material is composed of particles containing at least an element A having an atomic radius similar to that of silicon, and the element A is an excessively large strain between Si lattices or Si atoms. Without charge, insertion (charge) and desorption (discharge) between the Si-based active material lattices can be easily performed without any obstacles when charging and discharging Li ions having a small ion radius. Generation of useless irreversible capacity due to residual Li ions accompanying discharge can be reduced.
また、シリコンはリチウムを吸蔵すると体積膨張するのに対し、元素Aはリチウムを吸蔵しないか、または吸蔵し難いため、膨張収縮による体積変化および歪が少なく、サイクル特性時の放電容量の低下が抑制された負極活物質材料が提供される。
さらに、Si原子半径に近いイオン半径を有する酸素またはフッ素を第3元素として含むことで、充放電サイクル特性と電池寿命がより改善された負極活物質材料が提供される。 In addition, silicon expands in volume when lithium is occluded, while element A does not occlude lithium or is difficult to occlude, so there is little volume change and distortion due to expansion and contraction, and the reduction in discharge capacity during cycle characteristics is suppressed. A negative electrode active material is provided.
Furthermore, by including oxygen or fluorine having an ionic radius close to the Si atomic radius as the third element, a negative electrode active material having further improved charge / discharge cycle characteristics and battery life is provided.
さらに、Si原子半径に近いイオン半径を有する酸素またはフッ素を第3元素として含むことで、充放電サイクル特性と電池寿命がより改善された負極活物質材料が提供される。 In addition, silicon expands in volume when lithium is occluded, while element A does not occlude lithium or is difficult to occlude, so there is little volume change and distortion due to expansion and contraction, and the reduction in discharge capacity during cycle characteristics is suppressed. A negative electrode active material is provided.
Furthermore, by including oxygen or fluorine having an ionic radius close to the Si atomic radius as the third element, a negative electrode active material having further improved charge / discharge cycle characteristics and battery life is provided.
この負極活物質材料は平均粒径を10nm~5μmの広い範囲で設定することができ、用途に応じた粒径を有する負極活物質材料を簡便に調整することができる。
This negative electrode active material can have an average particle size set in a wide range of 10 nm to 5 μm, and a negative electrode active material having a particle size according to the application can be easily adjusted.
(1-4.スラリー塗布による負極の作製)
本発明のリチウムイオン二次電池用負極は、上記の本発明の負極活物質材料、導電材および結着材を含むスラリー状の塗布液を、負極集電体の片面または両面に塗布・乾燥して作製することができる。例えば、上記の本発明の負極活物質材料、導電材、結着材、増粘材、溶媒等の塗布液原料をミキサーに投入し、混練してスラリー状の塗布液を形成し、これを集電体に塗布して負極活物質層を形成することで製造することができる。 (1-4. Production of negative electrode by slurry application)
The negative electrode for a lithium ion secondary battery of the present invention is obtained by applying and drying a slurry-like coating liquid containing the negative electrode active material of the present invention, a conductive material and a binder on one or both surfaces of a negative electrode current collector. Can be produced. For example, the negative electrode active material of the present invention, conductive material, binder, thickener, solvent, and other coating liquid materials are charged into a mixer and kneaded to form a slurry-like coating liquid. It can manufacture by apply | coating to an electric body and forming a negative electrode active material layer.
本発明のリチウムイオン二次電池用負極は、上記の本発明の負極活物質材料、導電材および結着材を含むスラリー状の塗布液を、負極集電体の片面または両面に塗布・乾燥して作製することができる。例えば、上記の本発明の負極活物質材料、導電材、結着材、増粘材、溶媒等の塗布液原料をミキサーに投入し、混練してスラリー状の塗布液を形成し、これを集電体に塗布して負極活物質層を形成することで製造することができる。 (1-4. Production of negative electrode by slurry application)
The negative electrode for a lithium ion secondary battery of the present invention is obtained by applying and drying a slurry-like coating liquid containing the negative electrode active material of the present invention, a conductive material and a binder on one or both surfaces of a negative electrode current collector. Can be produced. For example, the negative electrode active material of the present invention, conductive material, binder, thickener, solvent, and other coating liquid materials are charged into a mixer and kneaded to form a slurry-like coating liquid. It can manufacture by apply | coating to an electric body and forming a negative electrode active material layer.
塗布液の固形分配号は、上記の本発明の負極活物質材料25~90質量%、導電材0~70質量%、結着材1~30質量%、増粘材0~25質量%を目安に適宜調整することができる。
The solid distribution number of the coating liquid is 25 to 90% by mass of the negative electrode active material of the present invention, 0 to 70% by mass of the conductive material, 1 to 30% by mass of the binder, and 0 to 25% by mass of the thickener. Can be adjusted appropriately.
ミキサーは、例えば図3に示したような、スラリー状の塗布液の調製に用いられる一般的な混練機を用いることができ、ニーダー、撹拌機、分散機、混合機、ボールミルなどと呼ばれる塗布液を調製可能な装置を用いてもよい。また、水系の塗布液を調整するときは、結着材としてスチレン・ブタジエン・ラバー(SBR)等のラテックス(微粒子のゴム分散体)を使用することができ、増粘材としてはカルボキシメチルセルロース、メチルセルロース等の多糖類等を1種または2種以上の混合物として用いることが適している。また、有機系の塗布液を調製するときは、結着材としてポリフッ化ビニリデン(PVdF)等を使用することができ、溶媒としてN-メチル-2-ピロリドンを用いることができる。
As the mixer, for example, a general kneader used for preparing a slurry-like coating liquid as shown in FIG. 3 can be used, and a coating liquid called a kneader, a stirrer, a disperser, a mixer, a ball mill, or the like. You may use the apparatus which can prepare. When preparing an aqueous coating solution, latex (fine rubber dispersion) such as styrene butadiene rubber (SBR) can be used as a binder, and carboxymethyl cellulose and methyl cellulose as thickeners. It is suitable to use polysaccharides such as 1 type or a mixture of 2 types or more. When an organic coating solution is prepared, polyvinylidene fluoride (PVdF) or the like can be used as a binder, and N-methyl-2-pyrrolidone can be used as a solvent.
導電材は、炭素、銅、スズ、亜鉛、ニッケル、銀からなる群より選ばれる少なくとも1種の導電性物質からなる粉末である。炭素、銅、スズ、亜鉛、ニッケル、銀の単体の粉末でもよいし、それぞれの合金の粉末でもよい。例えば、ファーネスブラックやアセチレンブラックなどの一般的なカーボンブラックを使用することができる。特に、本発明の負極活物質材料の表面にシリコンが露出している場合は導電性が低くなるため、カーボンナノホーンを導電材として加えることが好ましい。ここで、カーボンナノホーン(CNH)とは、グラフェンシートを円錐形に丸めた構造をしており、実際の形態は多数のCNHが頂点を外側に向けて、放射状のウニの様な形態の集合体として存在する。CNHのウニ様集合体の外径は50nm~250nm程度である。特に、平均粒径80nm程度のCNHを用いるのが好ましい。
The conductive material is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, and silver. A single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used. For example, general carbon black such as furnace black and acetylene black can be used. In particular, when silicon is exposed on the surface of the negative electrode active material of the present invention, the conductivity becomes low, so it is preferable to add carbon nanohorn as a conductive material. Here, the carbon nanohorn (CNH) has a structure in which a graphene sheet is rounded into a conical shape, and the actual form is an aggregate of a shape like a radial sea urchin with many CNHs facing the apex to the outside. Exists as. The outer diameter of the sea urchin-like aggregate of CNH is about 50 nm to 250 nm. In particular, it is preferable to use CNH having an average particle size of about 80 nm.
導電材の平均粒径も一次粒子の平均粒径を指す。アセチレンブラック(AB)のような高度にストラクチャー形状が発達している場合にも、ここでは一次粒径で平均粒径を定義し、SEM写真の画像解析で平均粒径を求めることができる。
The average particle size of the conductive material also refers to the average particle size of the primary particles. Even when the structure shape is highly developed such as acetylene black (AB), the average particle diameter can be defined by the primary particle diameter here, and the average particle diameter can be obtained by image analysis of the SEM photograph.
また、粒子状の導電材とワイヤー形状の導電材の両方を用いても良い。ワイヤー形状の導電材は導電性物質のワイヤーであり、粒子状の導電材に挙げられた導電性物質を用いることができる。ワイヤー形状の導電材は、カーボンファイバー、カーボンナノチューブ、銅ナノワイヤー、ニッケルナノワイヤーなどの外径が300nm以下の線状体を用いることができる。ワイヤー形状の導電材を用いることで、負極活物質や集電体などと電気的接続が保持しやすくなり集電性能が向上すると共に、ポーラス膜状の負極に繊維状物質が増え、負極にクラックが生じにくくなる。例えば粒子状の導電材としてABや銅粉末を用い、ワイヤー形状の導電材として気相成長炭素繊維(VGCF:Vapor Grown Carbon Fiber)を用いることが考えられる。なお、粒子状の導電材を加えずに、ワイヤー形状の導電材のみを用いても良い。
Further, both a particulate conductive material and a wire-shaped conductive material may be used. The wire-shaped conductive material is a wire made of a conductive material, and the conductive materials listed for the particulate conductive material can be used. As the wire-shaped conductive material, a linear body having an outer diameter of 300 nm or less, such as carbon fiber, carbon nanotube, copper nanowire, or nickel nanowire, can be used. By using a wire-shaped conductive material, it is easier to maintain electrical connection with the negative electrode active material, current collector, etc., improving current collection performance, increasing the fibrous material on the porous membrane-shaped negative electrode, and cracking the negative electrode Is less likely to occur. For example, it is conceivable to use AB or copper powder as the particulate conductive material, and to use vapor grown carbon fiber (VGCF: Vapor Carbon Carbon Fiber) as the wire-shaped conductive material. Note that only the wire-shaped conductive material may be used without adding the particulate conductive material.
ワイヤー形状の導電材の長さは、好ましくは0.1μm~2mmである。導電材の外径は、好ましくは4nm~1000nmであり、より好ましくは25nm~200nmである。導電材の長さが0.1μm以上であれば、導電材の生産性を上げるのには十分な長さであり、長さが2mm以下であれば、塗布液の塗布が容易である。また、導電材の外径が4nmより太い場合、合成が容易であり、外径が1000nmより細い場合、塗布液の混練が容易である。導電材の外径と長さの測定方法は、SEMによる画像解析により行うことができる。
The length of the wire-shaped conductive material is preferably 0.1 μm to 2 mm. The outer diameter of the conductive material is preferably 4 nm to 1000 nm, more preferably 25 nm to 200 nm. If the length of the conductive material is 0.1 μm or more, the length is sufficient to increase the productivity of the conductive material, and if the length is 2 mm or less, the coating liquid can be easily applied. Further, when the outer diameter of the conductive material is thicker than 4 nm, synthesis is easy, and when the outer diameter is thinner than 1000 nm, the coating liquid is easily kneaded. The measuring method of the outer diameter and length of the conductive material can be performed by image analysis by SEM.
結着材は、樹脂の結着材であり、ポリフッ化ビニリデン(PVdF)などのフッ素樹脂、スチレンブタジエンゴム(SBR)などのゴム系、さらには、ポリイミド(PI)やアクリルなどの有機材料を用いることができる。
The binder is a resin binder, and a fluorocarbon resin such as polyvinylidene fluoride (PVdF), a rubber system such as styrene butadiene rubber (SBR), or an organic material such as polyimide (PI) or acrylic is used. be able to.
塗布液の集電体への塗布は、例えば、コーターを用いて、集電体の片面に塗布液を塗布することができる。コーターとしては、塗布液を集電体に塗布可能な一般的な塗布装置を用いることができ、例えば、図4に示したようなロールコーターや、ドクターブレードによるコーター、コンマコーター、ダイコーターなどである。
Application of the coating liquid to the current collector can be performed by, for example, applying the coating liquid on one side of the current collector using a coater. As the coater, a general coating apparatus that can apply the coating liquid to the current collector can be used. For example, a roll coater as shown in FIG. 4, a coater using a doctor blade, a comma coater, a die coater, or the like. is there.
集電体は、リチウムと合金化しない材料で構成することができ、例えば、銅、ニッケル、ステンレスからなる群より選ばれる少なくとも1種の金属からなる箔を用いることができる。これらの金属は、単体で用いてもよいし、それぞれの合金であってもよい。厚さは、用途にもよるが4μm~35μm程度が好ましく、さらに6μm~20μm程度であることがより好ましい。箔の薄さ、強度、導電率等の観点から、銅箔を用いるのが好ましい。
The current collector can be composed of a material that is not alloyed with lithium. For example, a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel can be used. These metals may be used alone or in their respective alloys. The thickness is preferably about 4 μm to 35 μm, more preferably about 6 μm to 20 μm, depending on the application. From the viewpoint of the thinness, strength, conductivity, etc. of the foil, it is preferable to use a copper foil.
そして本発明において、負極集電体は、銅箔の表面に電解粗面化処理が施されて、突起部が設けられたものであることが好ましい。この突起部を有する集電体の表面粗さRzは、1μm~6μmであることが好ましい。負極活物質材料は、リチウムとの合金化によって膨張するため、集電体の表面形状を電解粗面化処理により表面粗さRzで1μm~6μmという適度な微細粗面形状にして比表面積を大きくし、単位面積当たりの活物質量が少なくなるように負極を形成すると、充放電により負極活物質材料に体積変化が生じる場合においても、突起部間の空隙により負極活物質材料の膨張収縮による応力を緩和することができ、サイクル特性を向上させることができる。また、表面積が増大されるため、集電体表面に形成される負極活物質層を、負極として必要な量だけ、密着性良く担持することができる。
In the present invention, the negative electrode current collector is preferably one in which the surface of the copper foil is subjected to an electrolytic surface roughening treatment and a protrusion is provided. The surface roughness Rz of the current collector having the protrusions is preferably 1 μm to 6 μm. Since the negative electrode active material material expands by alloying with lithium, the surface shape of the current collector is made into an appropriate fine rough surface shape with a surface roughness Rz of 1 μm to 6 μm by electrolytic surface roughening treatment, and the specific surface area is increased. However, when the negative electrode is formed so that the amount of the active material per unit area is reduced, the stress due to expansion and contraction of the negative electrode active material is caused by the gap between the protrusions even when the volume change occurs in the negative electrode active material due to charge and discharge. Can be relaxed, and the cycle characteristics can be improved. Further, since the surface area is increased, the negative electrode active material layer formed on the surface of the current collector can be supported by the necessary amount as the negative electrode with good adhesion.
電解粗面化処理による表面粗さRzが1μm未満であると、集電体の表面積は十分に大きくないため、担持できる負極活物質材料の量では容量不足になってしまい、また、単位面積当たりの充放電サイトが減少するためサイクル特性も低下するので、好ましくない。電解粗面化処理による表面粗さRzが6μmを越えると、集電体の厚さが大きくなりすぎて、負極活物質層の形成に悪影響が生じ、例えば、ジェリーロール型の円筒形や角型のリチウムイオン二次電池の負極用集電体として実用化することが困難となるため好ましくない。なお、本発明における表面粗さRzは、日本工業規格JIS B0601-1994の十点平均粗さで規定される。
When the surface roughness Rz obtained by the electrolytic surface roughening treatment is less than 1 μm, the surface area of the current collector is not sufficiently large, so that the amount of the negative electrode active material that can be supported becomes insufficient, and the unit area per unit area Since the charge / discharge sites of the battery are reduced, the cycle characteristics are also deteriorated. If the surface roughness Rz due to the electrolytic surface roughening treatment exceeds 6 μm, the thickness of the current collector becomes too large, which adversely affects the formation of the negative electrode active material layer. For example, a jelly roll type cylindrical shape or a square shape Since it becomes difficult to put it into practical use as a current collector for a negative electrode of a lithium ion secondary battery, it is not preferable. The surface roughness Rz in the present invention is defined by the ten-point average roughness of Japanese Industrial Standard JIS B0601-1994.
このような突起部は、金属箔表面に、湿式(電気めっき、無電界めっき、化学エッチングまたは電気化学的エッチング等)法、乾式(蒸着、化字イオン蒸着等)法、および塗装、研磨などの粗面化処理の手法を利用して形成することができる。そして、本発明においては、表面粗さRzが0.5μm~3μmの金属箔に、電解粗面化処理を施すことで形成することが望ましい態様として示される。
Such protrusions are formed on the metal foil surface by wet (electroplating, electroless plating, chemical etching, electrochemical etching, etc.) methods, dry methods (evaporation, chemical ion deposition, etc.), painting, polishing, etc. It can be formed using a roughening treatment technique. In the present invention, it is shown as a desirable mode that a metal foil having a surface roughness Rz of 0.5 μm to 3 μm is subjected to electrolytic surface roughening treatment.
粗面化処理を施す前の金属箔(いわゆる、未処理箔)には、電解法または圧延法により形成した両面光沢箔または両面平滑箔を用いることができる。表面粗さRzを0.5μm以上とするのは、両面光沢箔または両面平滑箔にとって現実的な小さな粗度であるからであり、3μmを超えると突起形成後の粗さのバラツキが大きくなってしまうために好ましくない。なお、未処理箔であっても表面粗さRzが1μm以上のものがあるが、箔の製造の際に形成される凹凸にはなだらかな凹凸も含まれ、活物質層との密着性を確実に向上させることができないため、未処理箔をそのまま用いることは好ましくない。粗面化処理により、形状が複雑な凹凸を形成することが重要である。そしてさらに、上記の範囲の表面粗さの金属箔に粗面化処理を施すことで、集電体に形成される突起部が同一面内、および表裏両面共に均一となり、負極活物質層とより一層良好な密着性を示し、負極活物質層が脱落し難く、負極の長寿命化と実容量の確保に寄与することができる。
As the metal foil before the roughening treatment (so-called untreated foil), a double-sided glossy foil or a double-sided smooth foil formed by an electrolytic method or a rolling method can be used. The reason why the surface roughness Rz is 0.5 μm or more is because it is a small realistic roughness for a double-sided glossy foil or a double-sided smooth foil. If the surface roughness Rz exceeds 3 μm, the variation in roughness after the formation of protrusions increases. This is not preferable. In addition, even if it is an untreated foil, there is a surface roughness Rz of 1 μm or more, but the unevenness formed during the manufacture of the foil also includes gentle unevenness, ensuring adhesion with the active material layer Therefore, it is not preferable to use the untreated foil as it is. It is important to form irregularities with complicated shapes by roughening treatment. Furthermore, by subjecting the metal foil having a surface roughness in the above range to a roughening treatment, the protrusions formed on the current collector become uniform on the same surface and on both the front and back surfaces. It exhibits better adhesion, and the negative electrode active material layer is less likely to fall off, which can contribute to extending the life of the negative electrode and securing the actual capacity.
電解粗面化処理は、未処理箔の表面に凹凸を有するめっき膜を形成することにより表面を粗面化するものであり、例えば、一般的に用いられているめっきによる粗面化方法を用いることができる。すなわち、いわゆる焼けめっきにより、硫酸銅水溶液を用いて電気めっきを行い、箔表面に粒粉状銅めっき層を形成した後、この粒粉状銅めっき層の上に、通常の被膜状めっき(カプセルめっき)を行い、粉粒の脱落を防止した突起部を形成することができる。この焼けめっきは、めっき層の均質な制御と再現性の確保が可能で、品質管理に優れるため好ましい。また、例えば、集電体の材質が銅の場合、電気めっきにより形状が複雑な突起部を形成することができるために好ましい。電解銅箔を用いることによりばらつきの少ない集電体を容易に形成することが可能である。
The electrolytic surface roughening treatment is to roughen the surface by forming a plating film having irregularities on the surface of the untreated foil. For example, a generally used roughening method by plating is used. be able to. That is, by electroplating using an aqueous copper sulfate solution by so-called burn plating to form a granular copper plating layer on the foil surface, a normal film-like plating (capsule) is formed on the granular copper plating layer. Protruding portions that prevent the particles from falling off can be formed. This burn plating is preferable because it allows uniform control and reproducibility of the plating layer and is excellent in quality control. In addition, for example, when the material of the current collector is copper, it is preferable because a protrusion having a complicated shape can be formed by electroplating. By using the electrolytic copper foil, it is possible to easily form a current collector with little variation.
また、突起部が形成された集電体には、ニッケルや亜鉛のめっき、クロメート処理、シランカップリング処理により、防錆層を形成することもできる。この防錆層により、例えば、製造から在庫期間での経時劣化や、負極活物質層の形成の際の高温雰囲気による劣化を防止または抑制することができる。また、集電体の成分と負極活物質の成分との過剰拡散を防止して、密着性を良好に保つことにも寄与する。実用的には、突起部が形成された集電体に対し、このような公知の硫酸塩水溶液等による電気めっきや、浸漬処理、置換めっき、または気相法による機能表面処理、防錆処理、密着向上処理のいずれか1種以上を行うことが好ましい。
Also, a rust-preventing layer can be formed on the current collector on which the protrusions are formed by nickel or zinc plating, chromate treatment, or silane coupling treatment. With this rust preventive layer, for example, it is possible to prevent or suppress deterioration over time from manufacture to stock and deterioration due to a high-temperature atmosphere during formation of the negative electrode active material layer. In addition, excessive diffusion between the current collector component and the negative electrode active material component is prevented, and this contributes to maintaining good adhesion. Practically, for the current collector on which the protrusions are formed, electroplating with such a known sulfate aqueous solution or the like, immersion treatment, displacement plating, functional surface treatment by vapor phase method, rust prevention treatment, It is preferable to perform any one or more of the adhesion improving treatments.
次いで、調整した塗布液を集電体に均一に塗布し、その後、50~150℃程度で乾燥し、厚みを調整するためロールプレスを通すなどして、リチウムイオン電池用負極を得ることができる。
Next, the prepared coating solution is uniformly applied to the current collector, then dried at about 50 to 150 ° C., and passed through a roll press to adjust the thickness, whereby a negative electrode for a lithium ion battery can be obtained. .
(1-5.リチウムイオン二次電池用負極の効果)
本発明によれば、本発明の負極活物質材料を用いているため、リチウムイオン吸蔵時の体積膨張が抑制され、負極活物質の微粉化や剥離、負極の亀裂の発生、負極活物質間の導電性の低下等の問題が解消された高容量で長寿命の負極が提供される。 (1-5. Effect of negative electrode for lithium ion secondary battery)
According to the present invention, since the negative electrode active material of the present invention is used, volume expansion during lithium ion occlusion is suppressed, pulverization and peeling of the negative electrode active material, generation of cracks in the negative electrode, and between the negative electrode active materials A negative electrode having a high capacity and a long life in which problems such as a decrease in conductivity are solved is provided.
本発明によれば、本発明の負極活物質材料を用いているため、リチウムイオン吸蔵時の体積膨張が抑制され、負極活物質の微粉化や剥離、負極の亀裂の発生、負極活物質間の導電性の低下等の問題が解消された高容量で長寿命の負極が提供される。 (1-5. Effect of negative electrode for lithium ion secondary battery)
According to the present invention, since the negative electrode active material of the present invention is used, volume expansion during lithium ion occlusion is suppressed, pulverization and peeling of the negative electrode active material, generation of cracks in the negative electrode, and between the negative electrode active materials A negative electrode having a high capacity and a long life in which problems such as a decrease in conductivity are solved is provided.
本発明によれば、集電体の表面が粗面化されているため、負極活物質層と集電体の間の結合力が高く、また負極活物質材料の膨張収縮による応力を緩和することができ、さらに電極のサイクル特性を向上させることができる。
According to the present invention, since the surface of the current collector is roughened, the bonding force between the negative electrode active material layer and the current collector is high, and the stress due to the expansion and contraction of the negative electrode active material is reduced. In addition, the cycle characteristics of the electrode can be improved.
(2.第2の実施形態に係るリチウムイオン二次電池用負極)
(2-1.リチウムイオン二次電池用負極の構成)
まず、本発明の一実施形態に係るリチウムイオン二次電池用負極を、図5を参照して説明する。本発明のリチウムイオン二次電池用負極61は、表面に突起部65を有する負極集電体67と、前記負極集電体67の表面に成膜される薄膜状の負極活物質層63とを有する。
本発明における負極活物質層63は、特徴的な成分構成のシリコン系薄膜からなり、また、この負極活物質層63に対しては、特異な形態を有する負極集電体67を使用するようにしている。 (2. Negative electrode for lithium ion secondary battery according to second embodiment)
(2-1. Configuration of negative electrode for lithium ion secondary battery)
First, a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIG. Anegative electrode 61 for a lithium ion secondary battery of the present invention comprises a negative electrode current collector 67 having a protrusion 65 on the surface, and a thin film negative electrode active material layer 63 formed on the surface of the negative electrode current collector 67. Have.
The negative electrodeactive material layer 63 in the present invention is made of a silicon-based thin film having a characteristic component structure, and a negative electrode current collector 67 having a specific form is used for the negative electrode active material layer 63. ing.
(2-1.リチウムイオン二次電池用負極の構成)
まず、本発明の一実施形態に係るリチウムイオン二次電池用負極を、図5を参照して説明する。本発明のリチウムイオン二次電池用負極61は、表面に突起部65を有する負極集電体67と、前記負極集電体67の表面に成膜される薄膜状の負極活物質層63とを有する。
本発明における負極活物質層63は、特徴的な成分構成のシリコン系薄膜からなり、また、この負極活物質層63に対しては、特異な形態を有する負極集電体67を使用するようにしている。 (2. Negative electrode for lithium ion secondary battery according to second embodiment)
(2-1. Configuration of negative electrode for lithium ion secondary battery)
First, a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIG. A
The negative electrode
(2-2.負極活物質層)
本発明の負極活物質層63は、負極集電体67の表面に一体的に成膜される薄膜であって、シリコンを主成分とし、第2の元素として、少なくとも元素Aを含んでいる。シリコンは、リチウムを吸蔵しやすい元素であるため、この負極活物質層も高いリチウム吸蔵能を有する。またシリコンは、リチウム吸蔵能を有する元素の中でも、比較的コストが低いという利点がある。 (2-2. Negative electrode active material layer)
The negative electrodeactive material layer 63 of the present invention is a thin film integrally formed on the surface of the negative electrode current collector 67 and contains silicon as a main component and at least an element A as a second element. Since silicon is an element that easily stores lithium, this negative electrode active material layer also has a high lithium storage capacity. In addition, silicon has an advantage that the cost is relatively low among elements having lithium storage ability.
本発明の負極活物質層63は、負極集電体67の表面に一体的に成膜される薄膜であって、シリコンを主成分とし、第2の元素として、少なくとも元素Aを含んでいる。シリコンは、リチウムを吸蔵しやすい元素であるため、この負極活物質層も高いリチウム吸蔵能を有する。またシリコンは、リチウム吸蔵能を有する元素の中でも、比較的コストが低いという利点がある。 (2-2. Negative electrode active material layer)
The negative electrode
元素Aは、負極活物質層中に0.05質量%以上含むようにする。元素Aを複数含む場合は、それらの元素の含有量の合計が0.05質量%以上となるようにする。含有量を0.05質量%以上とすることで、充放電時のシリコンの体積膨張収縮を効果的に抑制することができる。元素Aの含有量の上限については特に規定しないものの、シリコンのリチウム吸蔵能等を考慮して50質量%未満の範囲で任意に決定することができる。元素Aは、Siに比べて十分に少ない量であっても体積膨張収縮の抑制効果は得られるため、例えば、30質量%以下、さらには20質量%以下等とすることが例示される。
Element A is contained in an amount of 0.05% by mass or more in the negative electrode active material layer. When a plurality of elements A are included, the total content of these elements is set to 0.05% by mass or more. By making the content 0.05% by mass or more, volume expansion / contraction of silicon during charge / discharge can be effectively suppressed. Although the upper limit of the content of the element A is not particularly defined, it can be arbitrarily determined within a range of less than 50% by mass in consideration of the lithium storage capacity of silicon and the like. Even if the amount of the element A is sufficiently smaller than that of Si, the effect of suppressing the volume expansion and contraction can be obtained.
また、本発明に係る負極活物質層は、さらに、第3の元素として、酸素またはフッ素を含んでもよい。酸素とフッ素は、原子半径は小さいものの、上記表1に示したように、イオン半径rA’がSiの原子半径r0(0.117nm)に匹敵する大きさであり、余計な歪を生じさせず、またLiイオンの侵入と脱離の障害となることなく、シリコンの体積変化を抑制し、充放電サイクル寿命をさらに向上させることができる。酸素とフッ素は、Liの一部と化合分散し、活物質を安定化させる効果をも有する。なお、AgとCdについては、イオン半径がSiの原子半径r0に匹敵する大きさであるものの、イオン結合性化合物は形成し難いので、本発明に係る負極活物質層を構成する第3の元素としては好ましくない。
The negative electrode active material layer according to the present invention may further contain oxygen or fluorine as the third element. Although oxygen and fluorine have small atomic radii, as shown in Table 1 above, the ionic radius r A ′ is comparable in size to the atomic radius r 0 (0.117 nm) of Si, causing extra strain. In addition, the change in the volume of silicon can be suppressed and the charge / discharge cycle life can be further improved without obstructing the penetration and desorption of Li ions. Oxygen and fluorine are combined and dispersed with a part of Li, and also have an effect of stabilizing the active material. As for Ag and Cd, although the ion radius is comparable to the atomic radius r 0 of Si, it is difficult to form an ion-binding compound, so that the third active material layer constituting the negative electrode active material layer according to the present invention is formed. It is not preferable as an element.
なお、酸素およびフッ素は、活物質層の全体に均一に含まれていてもよいし、例えばその表面部等の一部に含まれていてもよい。酸素およびフッ素の含有量については、充放電特性を高く維持するため、0.5質量%以上であることが好ましく、元素Aの含有量との合計を50質量%以下とするのが好ましい。
Note that oxygen and fluorine may be uniformly contained in the entire active material layer, or may be contained, for example, in part of the surface portion or the like. The oxygen and fluorine contents are preferably 0.5% by mass or more in order to maintain high charge / discharge characteristics, and the total with the element A content is preferably 50% by mass or less.
このような本発明に係る負極活物質層は、実用的には、少なくとも1μm以上の厚みが必要であり、電子機器等の高エネルギー密度用途には、1μm~6μm程度の厚みを有していることが望ましい。
Such a negative electrode active material layer according to the present invention is practically required to have a thickness of at least 1 μm or more, and has a thickness of about 1 μm to 6 μm for high energy density applications such as electronic equipment. It is desirable.
なお、本発明において、シリコンを主成分とするとは、活物質層を構成する元素のうちシリコンの含有量が最も多いことを意味し、シリコンの含有量が、好ましくは50質量%以上、より好ましくは70質量%以上であることを示している。また、第2の元素、第3の元素とは、粒子を構成する元素のうち、シリコン以外で、特徴的な役割をもつ元素群について、第2の元素、第3の元素と呼ぶようにしており、両者の含有量とは関係がない。
In the present invention, silicon as a main component means that the silicon content is the largest among the elements constituting the active material layer, and the silicon content is preferably 50% by mass or more, more preferably. Indicates 70% by mass or more. The second element and the third element are the elements constituting the particles other than silicon, and the element group having a characteristic role is referred to as the second element or the third element. And there is no relationship with the content of both.
以上の本発明の負極活物質層は、結晶構造が、結晶質、微結晶質、非晶質あるいはこれらが混在する状態のいずれであってもよい。これは、充電の際のLiイオンとの合金化により、いずれの結晶形態であっても非晶質化するためである。
The above-described negative electrode active material layer of the present invention may have a crystalline structure that is crystalline, microcrystalline, amorphous, or a state in which these are mixed. This is because any crystalline form becomes amorphous by alloying with Li ions during charging.
また、本発明に係る負極活物質層の製膜の方法については特に限定されず、例えば公知の各種の製膜方法を利用して、上記のとおりの組成および厚みを有する薄膜を形成することができる。具体的には、例えば、スパッタリング法、蒸着法、CVD法などを例示することができ、これらの手法によると、均一な薄膜の形成が容易である。
In addition, the method for forming the negative electrode active material layer according to the present invention is not particularly limited, and for example, by using various known film forming methods, a thin film having the composition and thickness as described above can be formed. it can. Specifically, for example, a sputtering method, a vapor deposition method, a CVD method, and the like can be exemplified. According to these methods, it is easy to form a uniform thin film.
(2-3.負極集電体)
本発明に係る負極集電体は、リチウムと合金化しない材料で構成することができ、例えば、銅、ニッケル、ステンレスからなる群より選ばれる少なくとも1種の金属からなる箔を用いることができる。これらの金属は、単体で用いてもよいし、それぞれの合金であってもよい。箔の薄さ、強度、導電率等の観点から、銅箔を用いるのが好ましい。集電体は、用途によるが突起部を除いた厚さが4μm~35μm程度であるのが好ましく、さらに6μm~20μm程度であることがより好ましい。 (2-3. Negative electrode current collector)
The negative electrode current collector according to the present invention can be made of a material that is not alloyed with lithium. For example, a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel can be used. These metals may be used alone or in their respective alloys. From the viewpoint of the thinness, strength, conductivity, etc. of the foil, it is preferable to use copper foil. Depending on the application, the current collector preferably has a thickness of about 4 μm to 35 μm, more preferably about 6 μm to 20 μm, excluding the protrusions.
本発明に係る負極集電体は、リチウムと合金化しない材料で構成することができ、例えば、銅、ニッケル、ステンレスからなる群より選ばれる少なくとも1種の金属からなる箔を用いることができる。これらの金属は、単体で用いてもよいし、それぞれの合金であってもよい。箔の薄さ、強度、導電率等の観点から、銅箔を用いるのが好ましい。集電体は、用途によるが突起部を除いた厚さが4μm~35μm程度であるのが好ましく、さらに6μm~20μm程度であることがより好ましい。 (2-3. Negative electrode current collector)
The negative electrode current collector according to the present invention can be made of a material that is not alloyed with lithium. For example, a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel can be used. These metals may be used alone or in their respective alloys. From the viewpoint of the thinness, strength, conductivity, etc. of the foil, it is preferable to use copper foil. Depending on the application, the current collector preferably has a thickness of about 4 μm to 35 μm, more preferably about 6 μm to 20 μm, excluding the protrusions.
そして本発明における負極集電体は、突起部を有している。この突起部は、銅箔の表面に電解粗面化処理が施されて設けられたものであることが好ましく、表面粗さRzは1μm~6μmであるのが望ましい。というのは、負極活物質材料は、リチウムとの合金化によって膨張するため、集電体の表面形状を表面粗さRzで1μm~6μmという適度な微細粗面形状にして比表面積を大きくし、単位面積当たりの負極活物質量が少なくなるように負極を形成することで、充放電により負極活物質層に体積変化が生じる場合においても、突起部間の空隙により負極活物質層の膨張収縮による応力を緩和することができ、サイクル特性を向上させることができるからである。また、表面積が増大されるため、集電体表面に形成される負極活物質層を、負極として必要な量だけ、密着性良く担持することができる。
The negative electrode current collector in the present invention has a protrusion. This protrusion is preferably provided by subjecting the surface of the copper foil to an electrolytic surface roughening treatment, and the surface roughness Rz is preferably 1 μm to 6 μm. This is because the negative electrode active material material expands by alloying with lithium, so that the surface shape of the current collector is an appropriate fine rough surface shape with a surface roughness Rz of 1 μm to 6 μm to increase the specific surface area, By forming the negative electrode so that the amount of the negative electrode active material per unit area is reduced, even when volume change occurs in the negative electrode active material layer due to charge / discharge, the negative electrode active material layer is expanded and contracted by the gap between the protrusions. This is because stress can be relaxed and cycle characteristics can be improved. Further, since the surface area is increased, the negative electrode active material layer formed on the surface of the current collector can be supported by the necessary amount as the negative electrode with good adhesion.
突起部による表面粗さRzが1μm未満であると、集電体上に薄膜として直接形成される負極活物質層を、剥離なく担持しておくことが困難となる。そしてまた、たとえ上記の本発明に係る負極活物質層を用いても、集電体の表面積が十分に大きくないため、担持できる負極活物質量では容量不足になってしまい、また、単位面積当たりの充放電サイトが減少するためサイクル特性も低下してしまうために好ましくない。表面粗さRzが6μmを越えると、集電体のマイクロメータ測定厚さが大きくなりすぎて、負極活物質層の形成に悪影響が生じ、例えば、ジェリーロール型の円筒形や角型のリチウムイオン二次電池の負極用集電体として実用化することが困難となるため好ましくない。なお、本発明における表面粗さRzは、日本工業規格JIS B0601-1994の十点平均粗さで規定される。
When the surface roughness Rz due to the protrusion is less than 1 μm, it is difficult to carry the negative electrode active material layer directly formed as a thin film on the current collector without peeling. Further, even if the negative electrode active material layer according to the present invention is used, the surface area of the current collector is not sufficiently large, so that the amount of the negative electrode active material that can be supported becomes insufficient, and the unit area is Since the charge / discharge sites of the battery are reduced, the cycle characteristics are also deteriorated. When the surface roughness Rz exceeds 6 μm, the thickness measured by the micrometer of the current collector becomes too large, which adversely affects the formation of the negative electrode active material layer. For example, a jelly-roll cylindrical or square lithium ion Since it becomes difficult to put it into practical use as a current collector for a negative electrode of a secondary battery, it is not preferable. The surface roughness Rz in the present invention is defined by the ten-point average roughness of Japanese Industrial Standard JIS B0601-1994.
このような突起部は、金属箔の平滑な表面に、湿式(電気めっき、無電界めっき、化学エッチングまたは電気化学的エッチング等)法、乾式(蒸着、化字イオン蒸着等)法、および塗装、研磨などの粗面化処理の手法を利用して形成することができる。そして、本発明においては、表面粗さRzが0.5μm~3μmの銅箔に、電解粗面化処理を施すことで形成することが望ましい態様として示される。
Such protrusions are applied to the smooth surface of the metal foil by a wet (electroplating, electroless plating, chemical etching or electrochemical etching) method, a dry (evaporation, chemical ion deposition, etc.) method, and coating, It can be formed using a surface roughening technique such as polishing. In the present invention, it is shown as a desirable mode that a copper foil having a surface roughness Rz of 0.5 μm to 3 μm is subjected to an electrolytic surface roughening treatment.
粗面化処理を施す前の金属箔(いわゆる、未処理箔)には、電解法または圧延法により形成の両面光沢箔または両面平滑箔を用いることができる。表面粗さRzを0.5μm以上とするのは、両面光沢箔または両面平滑箔にとって現実的な小さな粗度であるからであり、3μmを超えると突起形成後の粗さのバラツキが大きくなってしまうために好ましくない。なお、未処理箔であっても表面粗さRzが1μm以上のものがあるが、箔の製造の際に形成される凹凸にはなだらかな凹凸も含まれ、活物質層との密着性を確実に向上させることができないため、未処理箔をそのまま用いることは好ましくない。粗面化処理により、形状が複雑な凹凸を形成することが重要である。そしてさらに、上記の表面粗さの両面平滑箔に粗面化処理を施すことで、集電体に形成される突起部が同一面内、および表裏両面共に均一となり、負極活物質層とより一層良好な密着性を示し、負極活物質層が脱落し難く、負極の長寿命化と実容量の確保に寄与することができる。
As the metal foil before the roughening treatment (so-called untreated foil), a double-sided glossy foil or a double-sided smooth foil formed by an electrolytic method or a rolling method can be used. The reason why the surface roughness Rz is 0.5 μm or more is because it is a small realistic roughness for a double-sided glossy foil or a double-sided smooth foil. If the surface roughness Rz exceeds 3 μm, the variation in roughness after the formation of protrusions increases. This is not preferable. In addition, even if it is an untreated foil, there is a surface roughness Rz of 1 μm or more, but the unevenness formed during the manufacture of the foil also includes gentle unevenness, ensuring adhesion with the active material layer Therefore, it is not preferable to use the untreated foil as it is. It is important to form irregularities with complicated shapes by roughening treatment. Further, by subjecting the double-sided smooth foil having the above surface roughness to a roughening treatment, the protrusions formed on the current collector become uniform on the same surface and on both the front and back surfaces, and further with the negative electrode active material layer. Good adhesion is exhibited, and the negative electrode active material layer is less likely to fall off, which can contribute to extending the life of the negative electrode and securing the actual capacity.
電解粗面化処理は、未処理箔の表面に凹凸を有するめっき膜を形成することにより表面を粗面化するものであり、例えば、一般的に用いられているめっきによる粗面化方法を用いることができる。すなわち、いわゆる焼けめっきにより、硫酸銅水溶液を用いて電気めっきを行い、箔表面に粒粉状銅めっき層を形成した後、この粒粉状銅めっき層の上に、通常の被膜状のめっき(カプセルめっき)を行い、突起部を形成することができる。この焼けめっきは、めっき層の均質な制御と再現性の確保が可能で、品質管理に優れるため好ましい。また、例えば、集電体の材質が銅の場合、電気めっきにより形状が複雑な突起部を形成することができるために好ましい。電解銅箔を用いることによりばらつきの少ない集電体突起を容易に形成することが可能である。
The electrolytic surface roughening treatment is to roughen the surface by forming a plating film having irregularities on the surface of the untreated foil. For example, a generally used roughening method by plating is used. be able to. That is, by electroplating using an aqueous copper sulfate solution by so-called burn plating and forming a granular copper plating layer on the surface of the foil, an ordinary film-like plating ( The projection can be formed by performing capsule plating. This burn plating is preferable because it allows uniform control and reproducibility of the plating layer and is excellent in quality control. In addition, for example, when the material of the current collector is copper, it is preferable because a protrusion having a complicated shape can be formed by electroplating. By using the electrolytic copper foil, it is possible to easily form current collector projections with little variation.
また、突起部が形成された集電体には、ニッケルや亜鉛のめっき、クロメート処理、シランカップリング処理により、防錆層を形成することもできる。この防錆層により、例えば、製造から在庫期間での経時劣化や、負極活物質層の形成の際の高温雰囲気による劣化を防止または抑制することができる。また、集電体の成分と負極活物質の成分との過剰拡散を防止して、密着性を良好に保つことにも寄与する。実用的には、突起部が形成された集電体に対し、このような公知の硫酸塩水溶液等による電気めっきや、浸漬処理、置換めっき、または気相法による機能表面処理、防錆処理、密着向上処理のいずれか1種以上を行うことが好ましい。
Also, a rust-preventing layer can be formed on the current collector on which the protrusions are formed by nickel or zinc plating, chromate treatment, or silane coupling treatment. With this rust preventive layer, for example, it is possible to prevent or suppress deterioration over time from manufacture to stock and deterioration due to a high-temperature atmosphere during formation of the negative electrode active material layer. In addition, excessive diffusion between the current collector component and the negative electrode active material component is prevented, and this contributes to maintaining good adhesion. Practically, for the current collector on which the protrusions are formed, electroplating with such a known sulfate aqueous solution or the like, immersion treatment, displacement plating, functional surface treatment by vapor phase method, rust prevention treatment, It is preferable to perform any one or more of the adhesion improving treatments.
(2-4.リチウムイオン二次電池用負極の効果)
本発明のリチウムイオン二次電池用負極によれば、負極活物質層が、シリコンの他に、シリコンと同程度の大きさの原子半径を有する元素Aを少なくとも含むため、元素AはSi格子またはSi原子間に大きすぎる歪を与えることなく、イオン半径の小さなLiイオンの充放電の際の、シリコン系活物質格子間への挿入(充電)と脱離(放電)を障害無く容易に生じさせることができ、充電後の放電に伴うLiイオン残留による無駄な不可逆容量の発生を減少させることができる。 (2-4. Effect of negative electrode for lithium ion secondary battery)
According to the negative electrode for a lithium ion secondary battery of the present invention, the negative electrode active material layer includes at least an element A having an atomic radius of the same size as that of silicon in addition to silicon. Insertion (charging) and desorption (discharging) between silicon-based active material lattices can be easily generated without any problems when charging / discharging Li ions with a small ion radius without giving too much strain between Si atoms. It is possible to reduce generation of useless irreversible capacity due to residual Li ions accompanying discharge after charging.
本発明のリチウムイオン二次電池用負極によれば、負極活物質層が、シリコンの他に、シリコンと同程度の大きさの原子半径を有する元素Aを少なくとも含むため、元素AはSi格子またはSi原子間に大きすぎる歪を与えることなく、イオン半径の小さなLiイオンの充放電の際の、シリコン系活物質格子間への挿入(充電)と脱離(放電)を障害無く容易に生じさせることができ、充電後の放電に伴うLiイオン残留による無駄な不可逆容量の発生を減少させることができる。 (2-4. Effect of negative electrode for lithium ion secondary battery)
According to the negative electrode for a lithium ion secondary battery of the present invention, the negative electrode active material layer includes at least an element A having an atomic radius of the same size as that of silicon in addition to silicon. Insertion (charging) and desorption (discharging) between silicon-based active material lattices can be easily generated without any problems when charging / discharging Li ions with a small ion radius without giving too much strain between Si atoms. It is possible to reduce generation of useless irreversible capacity due to residual Li ions accompanying discharge after charging.
また、シリコンはリチウムを吸蔵すると体積膨張するのに対し、元素Aはリチウムを吸蔵しないか、または吸蔵し難いため、膨張収縮による体積変化および歪が少なく、サイクル特性時の放電容量の低下が抑制されたリチウムイオン二次電池用負極が提供される。
さらに、Si原子半径に近いイオン半径を有する酸素またはフッ素を第3の元素として含むことで、充放電サイクル特性と電池寿命がより改善されたリチウムイオン二次電池用負極が提供される。 In addition, silicon expands in volume when lithium is occluded, while element A does not occlude lithium or is difficult to occlude, so there is little volume change and distortion due to expansion and contraction, and the reduction in discharge capacity during cycle characteristics is suppressed. Provided is a negative electrode for a lithium ion secondary battery.
Furthermore, by including oxygen or fluorine having an ionic radius close to the Si atomic radius as the third element, a negative electrode for a lithium ion secondary battery with improved charge / discharge cycle characteristics and battery life is provided.
さらに、Si原子半径に近いイオン半径を有する酸素またはフッ素を第3の元素として含むことで、充放電サイクル特性と電池寿命がより改善されたリチウムイオン二次電池用負極が提供される。 In addition, silicon expands in volume when lithium is occluded, while element A does not occlude lithium or is difficult to occlude, so there is little volume change and distortion due to expansion and contraction, and the reduction in discharge capacity during cycle characteristics is suppressed. Provided is a negative electrode for a lithium ion secondary battery.
Furthermore, by including oxygen or fluorine having an ionic radius close to the Si atomic radius as the third element, a negative electrode for a lithium ion secondary battery with improved charge / discharge cycle characteristics and battery life is provided.
また、負極集電体が所定の表面粗さであるため、上記のとおりの負極活物質層の効果が十分に発揮されるリチウムイオン二次電池用負極が提供される。
Moreover, since the negative electrode current collector has a predetermined surface roughness, a negative electrode for a lithium ion secondary battery is provided in which the effect of the negative electrode active material layer as described above is sufficiently exhibited.
(3.リチウムイオン二次電池の構成)
本発明の一実施形態に係るリチウムイオン二次電池を、図6を参照して説明する。本発明のリチウムイオン二次電池11は、リチウムイオンを吸蔵および放出可能な正極13と、上記の本発明に係るリチウムイオン二次電池用負極1と、正極13と負極1との間に配置されたセパレータ15とを有し、リチウムイオン伝導性を有する電解質17中に、正極13と負極1とセパレータ15とが設けられている。 (3. Configuration of lithium ion secondary battery)
A lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIG. The lithium ionsecondary battery 11 of the present invention is disposed between the positive electrode 13 capable of inserting and extracting lithium ions, the negative electrode 1 for a lithium ion secondary battery according to the present invention, and the positive electrode 13 and the negative electrode 1. The positive electrode 13, the negative electrode 1, and the separator 15 are provided in an electrolyte 17 having lithium ion conductivity.
本発明の一実施形態に係るリチウムイオン二次電池を、図6を参照して説明する。本発明のリチウムイオン二次電池11は、リチウムイオンを吸蔵および放出可能な正極13と、上記の本発明に係るリチウムイオン二次電池用負極1と、正極13と負極1との間に配置されたセパレータ15とを有し、リチウムイオン伝導性を有する電解質17中に、正極13と負極1とセパレータ15とが設けられている。 (3. Configuration of lithium ion secondary battery)
A lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIG. The lithium ion
(4.正極)
正極は、正極活物質の組成物をアルミ箔などの金属集電体上に直接塗布・乾燥し、作製することができる。正極活物質の組成物は、正極活物質、導電助剤、結着剤および溶媒を混合して調製することができる。 (4. Positive electrode)
The positive electrode can be produced by directly applying and drying a composition of the positive electrode active material on a metal current collector such as an aluminum foil. The composition of the positive electrode active material can be prepared by mixing a positive electrode active material, a conductive additive, a binder, and a solvent.
正極は、正極活物質の組成物をアルミ箔などの金属集電体上に直接塗布・乾燥し、作製することができる。正極活物質の組成物は、正極活物質、導電助剤、結着剤および溶媒を混合して調製することができる。 (4. Positive electrode)
The positive electrode can be produced by directly applying and drying a composition of the positive electrode active material on a metal current collector such as an aluminum foil. The composition of the positive electrode active material can be prepared by mixing a positive electrode active material, a conductive additive, a binder, and a solvent.
(4-1.正極活物質)
前記正極活物質としては、一般的に使われるものであればいずれも使用可能であり、例えばLiCoO2、LiMn2O4、LiMnO2、LiNiO2、LiCo1/3Ni1/3Mn1/3O2、LiFePO4などの化合物である。 (4-1. Positive electrode active material)
Any positive electrode active material can be used as long as it is generally used. For example, LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3. Compounds such as O 2 and LiFePO 4 .
前記正極活物質としては、一般的に使われるものであればいずれも使用可能であり、例えばLiCoO2、LiMn2O4、LiMnO2、LiNiO2、LiCo1/3Ni1/3Mn1/3O2、LiFePO4などの化合物である。 (4-1. Positive electrode active material)
Any positive electrode active material can be used as long as it is generally used. For example, LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3. Compounds such as O 2 and LiFePO 4 .
(4-2.導電助剤)
導電助剤は、炭素、銅、スズ、亜鉛、ニッケル、銀からなる群より選ばれた少なくとも1種の導電性物質からなる粉末である。炭素、銅、スズ、亜鉛、ニッケル、銀の単体の粉末でもよいし、それぞれの合金の粉末でもよい。例えば、ファーネスブラックやアセチレンブラックなどの一般的なカーボンブラックを使用できる。また、カーボンナノホーンを導電助剤として加えることが好ましい。ここで、カーボンナノホーン(CNH)とは、グラフェンシートを円錐形に丸めた構造をしており、実際の形態は多数のCNHが頂点を外側に向けて、放射状のウニの様な形態の集合体として存在する。CNHのウニ様集合体の外径は50nm~250nm程度である。特に、平均粒径80nm程度のCNHが好ましい。 (4-2. Conductive aid)
The conductive additive is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, and silver. A single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used. For example, general carbon black such as furnace black and acetylene black can be used. Moreover, it is preferable to add carbon nanohorn as a conductive support agent. Here, the carbon nanohorn (CNH) has a structure in which a graphene sheet is rounded into a conical shape, and the actual form is an aggregate of a shape like a radial sea urchin with many CNHs facing the apex to the outside. Exists as. The outer diameter of the sea urchin-like aggregate of CNH is about 50 nm to 250 nm. In particular, CNH having an average particle size of about 80 nm is preferable.
導電助剤は、炭素、銅、スズ、亜鉛、ニッケル、銀からなる群より選ばれた少なくとも1種の導電性物質からなる粉末である。炭素、銅、スズ、亜鉛、ニッケル、銀の単体の粉末でもよいし、それぞれの合金の粉末でもよい。例えば、ファーネスブラックやアセチレンブラックなどの一般的なカーボンブラックを使用できる。また、カーボンナノホーンを導電助剤として加えることが好ましい。ここで、カーボンナノホーン(CNH)とは、グラフェンシートを円錐形に丸めた構造をしており、実際の形態は多数のCNHが頂点を外側に向けて、放射状のウニの様な形態の集合体として存在する。CNHのウニ様集合体の外径は50nm~250nm程度である。特に、平均粒径80nm程度のCNHが好ましい。 (4-2. Conductive aid)
The conductive additive is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, and silver. A single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used. For example, general carbon black such as furnace black and acetylene black can be used. Moreover, it is preferable to add carbon nanohorn as a conductive support agent. Here, the carbon nanohorn (CNH) has a structure in which a graphene sheet is rounded into a conical shape, and the actual form is an aggregate of a shape like a radial sea urchin with many CNHs facing the apex to the outside. Exists as. The outer diameter of the sea urchin-like aggregate of CNH is about 50 nm to 250 nm. In particular, CNH having an average particle size of about 80 nm is preferable.
導電助剤の平均粒径は一次粒子の平均粒径を指す。アセチレンブラック(AB)のような高度にストラクチャー形状が発達している場合にも、ここでは一次粒径で平均粒径を定義する。粒径の計測は、電子顕微鏡(SEM)の画像情報と動的光散乱光度計(DLS)の体積基準メディアン径を併用することができる。平均粒径は、SEM画像によりあらかじめ粒子形状を確認し、画像解析(例えば、旭化成エンジニアリング製「A像くん」(登録商標))で粒径を求めたり、粒子を溶媒に分散してDLS(例えば、大塚電子製DLS-8000)により測定したりすることが可能である。微粒子が十分に分散しており、凝集していなければ、SEMとDLSでほぼ同じ測定結果が得られる。
The average particle size of the conductive aid refers to the average particle size of the primary particles. Even when the structure shape is highly developed such as acetylene black (AB), the average particle size is defined by the primary particle size here. The particle size can be measured by using image information of an electron microscope (SEM) and a volume-based median diameter of a dynamic light scattering photometer (DLS). For the average particle size, confirm the particle shape in advance using an SEM image, obtain the particle size by image analysis (for example, “A Image-kun” (registered trademark) manufactured by Asahi Kasei Engineering), or disperse the particles in a solvent to obtain DLS (for example, , DLS-8000 manufactured by Otsuka Electronics Co., Ltd.). If the fine particles are sufficiently dispersed and not agglomerated, almost the same measurement results can be obtained with SEM and DLS.
また、粒子状の導電助剤とワイヤー形状の導電助剤の両方を用いても良い。ワイヤー形状の導電助剤は導電性物質のワイヤーであり、粒子状の導電助剤に挙げられた導電性物質を用いることができる。ワイヤー形状の導電助剤は、カーボンファイバー、カーボンナノチューブ、銅ナノワイヤー、ニッケルナノワイヤーなどの外径が300nm以下の線状体を用いることができる。ワイヤー形状の導電助剤を用いることで、負極活物質や集電体などと電気的接続が保持しやすくなり集電性能が向上すると共に、ポーラス膜状の負極に繊維状物質が増え、負極にクラックが生じにくくなる。例えば粒子状の導電助剤としてABや銅粉末を用い、ワイヤー形状の導電助剤として気相成長炭素繊維(VGCF:Vapor Grown Carbon Fiber)を用いることが考えられる。なお、粒子状の導電助剤を加えずに、ワイヤー形状の導電助剤のみを用いても良い。
Also, both a particulate conductive aid and a wire-shaped conductive aid may be used. The wire-shaped conductive aid is a wire made of a conductive material, and the conductive materials listed in the particulate conductive aid can be used. As the wire-shaped conductive assistant, a linear body having an outer diameter of 300 nm or less, such as carbon fiber, carbon nanotube, copper nanowire, or nickel nanowire, can be used. By using a wire-shaped conductive aid, electrical connection with the negative electrode active material or current collector is easily maintained and current collection performance is improved, and fibrous material is increased in the porous membrane-shaped negative electrode. Cracks are less likely to occur. For example, it is conceivable to use AB or copper powder as the particulate conductive aid, and to use vapor grown carbon fiber (VGCF) as the wire-shaped conductive aid. In addition, you may use only a wire-shaped conductive support agent, without adding a particulate-form conductive support agent.
ワイヤー形状の導電助剤の長さは、好ましくは0.1μm~2mmである。導電助剤の外径は、好ましくは4nm~1000nmであり、より好ましくは25nm~200nmである。導電助剤の長さが0.1μm以上であれば、導電助剤の生産性を上げるのには十分な長さであり、長さが2mm以下であれば、スラリーの塗布が容易である。また、導電助剤の外径が4nmより太い場合、合成が容易であり、外径が1000nmより細い場合、スラリーの混練が容易である。導電物質の外径と長さの測定方法は、SEMによる画像解析により行うことができる。
The length of the wire-shaped conductive assistant is preferably 0.1 μm to 2 mm. The outer diameter of the conductive aid is preferably 4 nm to 1000 nm, more preferably 25 nm to 200 nm. If the length of the conductive auxiliary agent is 0.1 μm or more, the length is sufficient to increase the productivity of the conductive auxiliary agent, and if the length is 2 mm or less, application of the slurry is easy. Further, when the outer diameter of the conductive auxiliary agent is larger than 4 nm, the synthesis is easy, and when the outer diameter is thinner than 1000 nm, the slurry is easily kneaded. The measuring method of the outer diameter and length of the conductive material can be performed by image analysis using SEM.
(4-3.結着剤)
結着剤は、樹脂の結着剤であり、ポリフッ化ビニリデン(PVdF)などのフッ素樹脂、スチレンブタジエンゴム(SBR)などのゴム系、さらには、ポリイミド(PI)や水溶性アクリル系バインダーなどの有機材料を用いることができる。 (4-3. Binder)
The binder is a resin binder, such as a fluororesin such as polyvinylidene fluoride (PVdF), a rubber system such as styrene butadiene rubber (SBR), and a polyimide (PI) or a water-soluble acrylic binder. Organic materials can be used.
結着剤は、樹脂の結着剤であり、ポリフッ化ビニリデン(PVdF)などのフッ素樹脂、スチレンブタジエンゴム(SBR)などのゴム系、さらには、ポリイミド(PI)や水溶性アクリル系バインダーなどの有機材料を用いることができる。 (4-3. Binder)
The binder is a resin binder, such as a fluororesin such as polyvinylidene fluoride (PVdF), a rubber system such as styrene butadiene rubber (SBR), and a polyimide (PI) or a water-soluble acrylic binder. Organic materials can be used.
(4-4.溶媒)
溶媒としては、N-メチル-2-ピロリドン(NMP)、水などを使用する。このとき、正極活物質、導電助剤、結着剤および溶媒の含量は、リチウムイオン二次電池で通常的に使用するレベルで適宜調整できる。 (4-4. Solvent)
As the solvent, N-methyl-2-pyrrolidone (NMP), water or the like is used. At this time, the contents of the positive electrode active material, the conductive additive, the binder, and the solvent can be appropriately adjusted at a level usually used in a lithium ion secondary battery.
溶媒としては、N-メチル-2-ピロリドン(NMP)、水などを使用する。このとき、正極活物質、導電助剤、結着剤および溶媒の含量は、リチウムイオン二次電池で通常的に使用するレベルで適宜調整できる。 (4-4. Solvent)
As the solvent, N-methyl-2-pyrrolidone (NMP), water or the like is used. At this time, the contents of the positive electrode active material, the conductive additive, the binder, and the solvent can be appropriately adjusted at a level usually used in a lithium ion secondary battery.
(4-5.正極の作製)
以上のように調整した正極活物質の組成物を、例えば、コーターを用いて、集電体の片面に均一に塗布する。コーターは、組成物を集電体に塗布可能な一般的な塗工装置を用いることができ、例えばロールコーターやドクターブレードによるコーター、コンマコーター、ダイコーターである。 (4-5. Production of positive electrode)
The composition of the positive electrode active material adjusted as described above is uniformly applied to one surface of the current collector using, for example, a coater. As the coater, a general coating apparatus capable of applying the composition to the current collector can be used. For example, a coater using a roll coater or a doctor blade, a comma coater, or a die coater.
以上のように調整した正極活物質の組成物を、例えば、コーターを用いて、集電体の片面に均一に塗布する。コーターは、組成物を集電体に塗布可能な一般的な塗工装置を用いることができ、例えばロールコーターやドクターブレードによるコーター、コンマコーター、ダイコーターである。 (4-5. Production of positive electrode)
The composition of the positive electrode active material adjusted as described above is uniformly applied to one surface of the current collector using, for example, a coater. As the coater, a general coating apparatus capable of applying the composition to the current collector can be used. For example, a coater using a roll coater or a doctor blade, a comma coater, or a die coater.
集電体は、銅、ニッケル、ステンレスからなる群より選ばれた少なくとも1種の金属からなる箔である。それぞれを単独で用いてもよいし、それぞれの合金でもよい。厚さは、用途にもよるが4μm~35μmが好ましく、さらに6μm~20μmがより好ましい。
正極活物質の組成物を塗布した後、50~150℃程度で乾燥し、厚みを調整するため、ロールプレスを通して、正極を得る。 The current collector is a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel. Each may be used alone or may be an alloy of each. The thickness is preferably 4 μm to 35 μm, more preferably 6 μm to 20 μm, although depending on the application.
After the composition of the positive electrode active material is applied, it is dried at about 50 to 150 ° C., and the positive electrode is obtained through a roll press in order to adjust the thickness.
正極活物質の組成物を塗布した後、50~150℃程度で乾燥し、厚みを調整するため、ロールプレスを通して、正極を得る。 The current collector is a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel. Each may be used alone or may be an alloy of each. The thickness is preferably 4 μm to 35 μm, more preferably 6 μm to 20 μm, although depending on the application.
After the composition of the positive electrode active material is applied, it is dried at about 50 to 150 ° C., and the positive electrode is obtained through a roll press in order to adjust the thickness.
(5.セパレータ)
セパレータとしては、正極と負極の電子伝導を絶縁する機能を有し、リチウムイオン二次電池で通常的に使われるものであればいずれも使用可能である。例えば、微多孔性のポリオレフィンフィルムを使用できる。 (5. Separator)
Any separator can be used as long as it has a function of insulating electronic conduction between the positive electrode and the negative electrode and is usually used in a lithium ion secondary battery. For example, a microporous polyolefin film can be used.
セパレータとしては、正極と負極の電子伝導を絶縁する機能を有し、リチウムイオン二次電池で通常的に使われるものであればいずれも使用可能である。例えば、微多孔性のポリオレフィンフィルムを使用できる。 (5. Separator)
Any separator can be used as long as it has a function of insulating electronic conduction between the positive electrode and the negative electrode and is usually used in a lithium ion secondary battery. For example, a microporous polyolefin film can be used.
(6.電解質)
電解質としては、リチウムイオン伝導性を有する各種の電解液および電解質を使用することができる。例えば、有機電解液(非水系電解液)、無機固体電解質、高分子固体電解質等が使用できる。 (6. Electrolyte)
Various electrolytes and electrolytes having lithium ion conductivity can be used as the electrolyte. For example, an organic electrolytic solution (non-aqueous electrolytic solution), an inorganic solid electrolyte, a polymer solid electrolyte, or the like can be used.
電解質としては、リチウムイオン伝導性を有する各種の電解液および電解質を使用することができる。例えば、有機電解液(非水系電解液)、無機固体電解質、高分子固体電解質等が使用できる。 (6. Electrolyte)
Various electrolytes and electrolytes having lithium ion conductivity can be used as the electrolyte. For example, an organic electrolytic solution (non-aqueous electrolytic solution), an inorganic solid electrolyte, a polymer solid electrolyte, or the like can be used.
有機電解液の溶媒の具体例として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等のカーボネート;ジエチルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル;ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ―ブチロラクトン、ジオキソラン、4-メチルジオキソラン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、ジメチルクロロベンゼン、ニトロベンゼン等の非プロトン性溶媒、あるいはこれらの溶媒のうちの2種以上を混合した混合溶媒が挙げられる。
Specific examples of the organic electrolyte solvent include carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate; diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di Ethers such as butyl ether and diethylene glycol dimethyl ether; aprotic such as benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylchlorobenzene, nitrobenzene Solvent, or two of these solvents Mixed solvent of the above can be cited.
有機電解液の電解質には、LiPF6、LiClO4、LiBF4、LiAlO4、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO3、LiC4F9SO3、LiN(CF3SO2)2等のリチウム塩からなる電解質の1種または2種以上を混合させたものを用いることができる。
The electrolyte of the organic electrolyte includes LiPF 6 , LiClO 4 , LiBF 4 , LiAlO 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) A mixture of one or more electrolytes made of a lithium salt such as 2 can be used.
有機電解液には、添加剤として、負極活物質の表面に有効な固体電解質界面被膜を形成できる化合物を添加することが望ましい。例えば、分子内に不飽和結合を有し、充電時に還元重合できる物質、例えばビニレンカーボネート(VC)などを添加する。
It is desirable to add a compound capable of forming an effective solid electrolyte interface coating on the surface of the negative electrode active material as an additive to the organic electrolyte. For example, a substance having an unsaturated bond in the molecule and capable of reductive polymerization during charging, such as vinylene carbonate (VC), is added.
また、上記の有機電解液に代えて固体状のリチウムイオン伝導体を用いることができる。例えばポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレンイミン等からなるポリマーに前記リチウム塩を混合した固体高分子電解質や、高分子材料に電解液を含浸させゲル状に加工した高分子ゲル電解質を用いることができる。
Also, a solid lithium ion conductor can be used in place of the organic electrolyte. For example, a solid polymer electrolyte in which the lithium salt is mixed with a polymer made of polyethylene oxide, polypropylene oxide, polyethyleneimine, or the like, or a polymer gel electrolyte in which a polymer material is impregnated with an electrolytic solution and processed into a gel shape can be used.
さらに、リチウム窒化物、リチウムハロゲン化物、リチウム酸素酸塩、Li4SiO4、Li4SiO4-LiI-LiOH、Li3PO4-Li4SiO4、Li2SiS3、Li3PO4-Li2S-SiS2、硫化リン化合物などの無機材料を無機固体電解質として用いてもよい。
Further, lithium nitride, lithium halide, lithium oxyacid salt, Li 4 SiO 4 , Li 4 SiO 4 —LiI—LiOH, Li 3 PO 4 —Li 4 SiO 4 , Li 2 SiS 3 , Li 3 PO 4 —Li An inorganic material such as 2 S—SiS 2 or a phosphorus sulfide compound may be used as the inorganic solid electrolyte.
(7.リチウムイオン二次電池の組立て)
本発明のリチウムイオン二次電池は、前述したような正極と本発明のリチウムイオン電池用負極との間にセパレータを配置して、電池素子を形成している。このような電池素子を巻回、または積層して円筒形や角形の電池ケースに入れた後、電解質を注入して、リチウムイオン二次電池とする。 (7. Assembly of lithium ion secondary battery)
In the lithium ion secondary battery of the present invention, a battery element is formed by arranging a separator between the positive electrode as described above and the negative electrode for a lithium ion battery of the present invention. After winding or stacking such battery elements into a cylindrical or rectangular battery case, an electrolyte is injected to obtain a lithium ion secondary battery.
本発明のリチウムイオン二次電池は、前述したような正極と本発明のリチウムイオン電池用負極との間にセパレータを配置して、電池素子を形成している。このような電池素子を巻回、または積層して円筒形や角形の電池ケースに入れた後、電解質を注入して、リチウムイオン二次電池とする。 (7. Assembly of lithium ion secondary battery)
In the lithium ion secondary battery of the present invention, a battery element is formed by arranging a separator between the positive electrode as described above and the negative electrode for a lithium ion battery of the present invention. After winding or stacking such battery elements into a cylindrical or rectangular battery case, an electrolyte is injected to obtain a lithium ion secondary battery.
具体的には、図2に示したように、本発明のリチウムイオン二次電池11は、正極13、負極1を、セパレータ15を介して、セパレータ-負極-セパレータ-正極の順に積層配置し、正極13が内側になるように巻回して極板群を構成し、これを電池缶19内に挿入する。そして正極13は正極リード23を介して正極端子25に、負極1は負極リード21を介して電池缶19にそれぞれ接続し、リチウムイオン二次電池11内部で生じた化学エネルギーを電気エネルギーとして外部に取り出し得るようにする。次いで、電池缶19内に電解質17を極板群を覆うように充填した後、電池缶19の上端(開口部)に、円形蓋板とその上部の正極端子25からなり、その内部に安全弁機構を内蔵した封口体27を、環状の絶縁ガスケットを介して取り付けることで製造することができる。
Specifically, as shown in FIG. 2, in the lithium ion secondary battery 11 of the present invention, the positive electrode 13 and the negative electrode 1 are laminated in the order of separator-negative electrode-separator-positive electrode via the separator 15, The electrode plate group is formed by winding the positive electrode 13 so as to be on the inner side, and this is inserted into the battery can 19. The positive electrode 13 is connected to the positive electrode terminal 25 via the positive electrode lead 23, and the negative electrode 1 is connected to the battery can 19 via the negative electrode lead 21, and chemical energy generated inside the lithium ion secondary battery 11 is externally output as electric energy. It can be taken out. Next, the battery can 19 is filled with the electrolyte 17 so as to cover the electrode plate group, and then the upper end (opening) of the battery can 19 is composed of a circular lid plate and a positive electrode terminal 25 on the upper portion thereof, and a safety valve mechanism is provided therein. Can be manufactured by attaching a sealing body 27 containing a ring through an annular insulating gasket.
(8.本発明に係るリチウムイオン二次電池の効果)
本発明に係るリチウムイオン二次電池は、炭素よりも単位体積あたりの容量の高いSiと、Siと同程度の大きさの原子半径を有する第2の元素を含む粒子からなり、不可逆容量の発生を減少する負極活物質材料を用いているため、従来のリチウムイオン二次電池よりも容量が大きく、かつ、粒子が体積膨張収縮し難く微粉化しにくいためにサイクル特性が良い。 (8. Effect of the lithium ion secondary battery according to the present invention)
The lithium ion secondary battery according to the present invention is composed of particles containing Si having a higher capacity per unit volume than carbon and a second element having an atomic radius similar to that of Si, and generating irreversible capacity. Since the negative electrode active material is used to decrease the capacity, the capacity is larger than that of a conventional lithium ion secondary battery, and the particles are difficult to expand and contract and are not easily pulverized, so that the cycle characteristics are good.
本発明に係るリチウムイオン二次電池は、炭素よりも単位体積あたりの容量の高いSiと、Siと同程度の大きさの原子半径を有する第2の元素を含む粒子からなり、不可逆容量の発生を減少する負極活物質材料を用いているため、従来のリチウムイオン二次電池よりも容量が大きく、かつ、粒子が体積膨張収縮し難く微粉化しにくいためにサイクル特性が良い。 (8. Effect of the lithium ion secondary battery according to the present invention)
The lithium ion secondary battery according to the present invention is composed of particles containing Si having a higher capacity per unit volume than carbon and a second element having an atomic radius similar to that of Si, and generating irreversible capacity. Since the negative electrode active material is used to decrease the capacity, the capacity is larger than that of a conventional lithium ion secondary battery, and the particles are difficult to expand and contract and are not easily pulverized, so that the cycle characteristics are good.
また、負極活物質層と集電体の間の結合力が高く、また負極活物質材料の膨張収縮による応力の緩和が可能な本発明のリチウムイオン二次電池用負極を用いているため、サイクル特性に優れ、経済的なリチウムイオン二次電池が提供される。
In addition, since the negative electrode for a lithium ion secondary battery of the present invention has a high bonding force between the negative electrode active material layer and the current collector and can relieve stress due to expansion and contraction of the negative electrode active material, the cycle An economical lithium ion secondary battery having excellent characteristics is provided.
以下、本発明について実施例および比較例を用いて具体的に説明する。
Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
[実施例1:負極活物質材料を塗布して負極を作製する]
(集電体の作製)
厚さ10μmの電解銅箔(古河電工製 NC-WS箔、表面粗さRz1.5μm)に、電解めっきを施して突起部のある集電体を作製した。めっき条件は以下のとおりである。 [Example 1: A negative electrode active material is applied to produce a negative electrode]
(Preparation of current collector)
Electrolytic plating was performed on a 10 μm thick electrolytic copper foil (Furukawa Electric NC-WS foil, surface roughness Rz 1.5 μm) to produce a current collector with protrusions. The plating conditions are as follows.
(集電体の作製)
厚さ10μmの電解銅箔(古河電工製 NC-WS箔、表面粗さRz1.5μm)に、電解めっきを施して突起部のある集電体を作製した。めっき条件は以下のとおりである。 [Example 1: A negative electrode active material is applied to produce a negative electrode]
(Preparation of current collector)
Electrolytic plating was performed on a 10 μm thick electrolytic copper foil (Furukawa Electric NC-WS foil, surface roughness Rz 1.5 μm) to produce a current collector with protrusions. The plating conditions are as follows.
(a)粗面化処理の焼けめっき:銅30g/dm3、硫酸150g/dm3を主成分とする電解液中で、加温することなく、電流密度10~20A/dm2の範囲において、電解時間と共に適宜選択し、あらかじめ決定した所定の表面形状を得る条件によりカソード電解を行った。
(b)粗面化処理の平滑状銅めっき(カプセルめっき):銅70g/dm3、硫酸100g/dm3を主成分とし液温40℃に保った電解液中で、電流密度5~10A/dm2の範囲において、あらかじめ(a)の条件と共に決定した所定の表面形状を得る電解時間と共に適宜選択した条件によりカソード電解を行った。 (A) Bake plating for roughening treatment: In an electrolytic solution mainly composed of copper 30 g / dm 3 and sulfuric acid 150 g / dm 3 without heating, in a current density range of 10 to 20 A / dm 2 , Cathodic electrolysis was carried out under conditions for obtaining a predetermined surface shape that was appropriately selected along with the electrolysis time and was determined in advance.
(B) a smooth-walled copper plating roughening treatment (capsules Plating): Copper 70 g / dm 3, in an electrolytic solution was maintained at a liquid temperature of 40 ° C. as a main component of sulfuric acid 100 g / dm 3, a current density of 5 ~ 10A / In the range of dm 2 , cathode electrolysis was performed under conditions appropriately selected together with electrolysis time for obtaining a predetermined surface shape determined in advance together with the conditions of (a).
(b)粗面化処理の平滑状銅めっき(カプセルめっき):銅70g/dm3、硫酸100g/dm3を主成分とし液温40℃に保った電解液中で、電流密度5~10A/dm2の範囲において、あらかじめ(a)の条件と共に決定した所定の表面形状を得る電解時間と共に適宜選択した条件によりカソード電解を行った。 (A) Bake plating for roughening treatment: In an electrolytic solution mainly composed of copper 30 g / dm 3 and sulfuric acid 150 g / dm 3 without heating, in a current density range of 10 to 20 A / dm 2 , Cathodic electrolysis was carried out under conditions for obtaining a predetermined surface shape that was appropriately selected along with the electrolysis time and was determined in advance.
(B) a smooth-walled copper plating roughening treatment (capsules Plating): Copper 70 g / dm 3, in an electrolytic solution was maintained at a liquid temperature of 40 ° C. as a main component of sulfuric acid 100 g / dm 3, a current density of 5 ~ 10A / In the range of dm 2 , cathode electrolysis was performed under conditions appropriately selected together with electrolysis time for obtaining a predetermined surface shape determined in advance together with the conditions of (a).
さらに、この銅箔にニッケルおよび亜鉛による無機被膜を形成し、クロメート処理を公知の水溶液を用いたカソード電解により行ってナノメートル程度の厚さの被膜を形成したのち、(メタ)アクリロキシ系シランカップリング水溶液に浸漬して各防錆処理層を形成して、集電体とした。
Furthermore, after forming an inorganic film of nickel and zinc on this copper foil and performing chromate treatment by cathode electrolysis using a known aqueous solution to form a film with a thickness of about nanometer, (meth) acryloxy-based silane cup Each rust-proofing layer was formed by dipping in an aqueous ring solution to obtain a current collector.
(負極活物質材料の作製1)
負極活物質材料として、Si、Si-B、Si-P、Si-Fe、Si-Ni系のナノサイズ粒子を、図2のプラズマCVD装置を用いて作製した。原料には、Si粉末と、原子半径が0.09nmのB粉末、同0.11nmのP粉末、同0.12nmのFe粉末、同0.12nmのNi粉末を用い、適宜粉末を配合した。これらの混合粉末を乾燥させて、反応チャンバー内に発生させたArガスのプラズマ中にキャリアガスで連続的に供給することにより、ナノサイズ粒子を製造した。 (Preparation of negative electrode active material 1)
As the negative electrode active material, nano-sized particles of Si, Si—B, Si—P, Si—Fe, and Si—Ni were produced using the plasma CVD apparatus of FIG. As raw materials, Si powder, B powder with an atomic radius of 0.09 nm, P powder with 0.11 nm, Fe powder with 0.12 nm, and Ni powder with 0.12 nm were mixed as appropriate. These mixed powders were dried, and nanosized particles were produced by continuously supplying them with a carrier gas into the Ar gas plasma generated in the reaction chamber.
負極活物質材料として、Si、Si-B、Si-P、Si-Fe、Si-Ni系のナノサイズ粒子を、図2のプラズマCVD装置を用いて作製した。原料には、Si粉末と、原子半径が0.09nmのB粉末、同0.11nmのP粉末、同0.12nmのFe粉末、同0.12nmのNi粉末を用い、適宜粉末を配合した。これらの混合粉末を乾燥させて、反応チャンバー内に発生させたArガスのプラズマ中にキャリアガスで連続的に供給することにより、ナノサイズ粒子を製造した。 (Preparation of negative electrode active material 1)
As the negative electrode active material, nano-sized particles of Si, Si—B, Si—P, Si—Fe, and Si—Ni were produced using the plasma CVD apparatus of FIG. As raw materials, Si powder, B powder with an atomic radius of 0.09 nm, P powder with 0.11 nm, Fe powder with 0.12 nm, and Ni powder with 0.12 nm were mixed as appropriate. These mixed powders were dried, and nanosized particles were produced by continuously supplying them with a carrier gas into the Ar gas plasma generated in the reaction chamber.
詳細には、反応チャンバー内を真空ポンプで排気した後、Arガスを導入して大気圧とした。この排気とArガス導入を3回繰り返して、反応容器内の残留空気を排気した。その後、反応容器内にプラズマガスとしてArガスを13L/minの流量で導入し、高周波コイルに交流電圧をかけて、高周波電磁場(周波数4MHz)により高周波プラズマを発生させた。この時のプレート電力は、20kWとした。原料粉末を供給するキャリアガスは、1.0L/minの流速のArガスを用いた。
得られた微粉末は、作製後12時間、粉塵爆発防止のための微酸化処理を施した後、フィルターで回収した。 Specifically, after the reaction chamber was evacuated with a vacuum pump, Ar gas was introduced to atmospheric pressure. This exhaustion and Ar gas introduction were repeated three times to exhaust the residual air in the reaction vessel. Thereafter, Ar gas was introduced into the reaction vessel as a plasma gas at a flow rate of 13 L / min, an AC voltage was applied to the high frequency coil, and high frequency plasma was generated by a high frequency electromagnetic field (frequency 4 MHz). The plate power at this time was 20 kW. Ar gas having a flow rate of 1.0 L / min was used as a carrier gas for supplying the raw material powder.
The obtained fine powder was subjected to a fine oxidation treatment for preventing dust explosion for 12 hours after production, and then collected with a filter.
得られた微粉末は、作製後12時間、粉塵爆発防止のための微酸化処理を施した後、フィルターで回収した。 Specifically, after the reaction chamber was evacuated with a vacuum pump, Ar gas was introduced to atmospheric pressure. This exhaustion and Ar gas introduction were repeated three times to exhaust the residual air in the reaction vessel. Thereafter, Ar gas was introduced into the reaction vessel as a plasma gas at a flow rate of 13 L / min, an AC voltage was applied to the high frequency coil, and high frequency plasma was generated by a high frequency electromagnetic field (
The obtained fine powder was subjected to a fine oxidation treatment for preventing dust explosion for 12 hours after production, and then collected with a filter.
(負極活物質材料の作製2)
また、負極活物質材料として、Si-B、Si-P系の所定の組成の合金溶湯を準備し、公知の窒素ガスによるアトマイズ法で微粉末化して、Si-P、Si-B系のマイクロメートルサイズの活物質粒子を得た。 (Preparation of negative electrode active material 2)
In addition, as a negative electrode active material, a molten alloy of a predetermined composition of Si—B or Si—P is prepared, and finely powdered by a known nitrogen gas atomizing method, and then a Si—P or Si—B based microparticle is prepared. Metric-size active material particles were obtained.
また、負極活物質材料として、Si-B、Si-P系の所定の組成の合金溶湯を準備し、公知の窒素ガスによるアトマイズ法で微粉末化して、Si-P、Si-B系のマイクロメートルサイズの活物質粒子を得た。 (Preparation of negative electrode active material 2)
In addition, as a negative electrode active material, a molten alloy of a predetermined composition of Si—B or Si—P is prepared, and finely powdered by a known nitrogen gas atomizing method, and then a Si—P or Si—B based microparticle is prepared. Metric-size active material particles were obtained.
(負極活物質材料の作製3)
得られた負極活物質材料に対し、180℃に加熱した恒温槽にて大気酸化処理を施し、酸素を含有させた。 (Preparation of negative electrode active material 3)
The obtained negative electrode active material was subjected to atmospheric oxidation treatment in a thermostatic chamber heated to 180 ° C. to contain oxygen.
得られた負極活物質材料に対し、180℃に加熱した恒温槽にて大気酸化処理を施し、酸素を含有させた。 (Preparation of negative electrode active material 3)
The obtained negative electrode active material was subjected to atmospheric oxidation treatment in a thermostatic chamber heated to 180 ° C. to contain oxygen.
(負極活物質組成の分析)
負極活物質材料の2~3成分について、成分定量化のために材料を溶解した水溶液によるICP(高周波誘導結合プラズマ発光分光)分析を行った。その結果を、表2に、材料全体の質量を100とした場合の副成分の質量の割合を副成分濃度(mass%)として示した。 (Analysis of negative electrode active material composition)
For 2-3 components of the negative electrode active material, ICP (High Frequency Inductively Coupled Plasma Emission Spectroscopy) analysis was performed with an aqueous solution in which the material was dissolved for component quantification. The results are shown in Table 2 as the subcomponent concentration (mass%) in terms of the mass ratio of subcomponents when the total mass of the material is 100.
負極活物質材料の2~3成分について、成分定量化のために材料を溶解した水溶液によるICP(高周波誘導結合プラズマ発光分光)分析を行った。その結果を、表2に、材料全体の質量を100とした場合の副成分の質量の割合を副成分濃度(mass%)として示した。 (Analysis of negative electrode active material composition)
For 2-3 components of the negative electrode active material, ICP (High Frequency Inductively Coupled Plasma Emission Spectroscopy) analysis was performed with an aqueous solution in which the material was dissolved for component quantification. The results are shown in Table 2 as the subcomponent concentration (mass%) in terms of the mass ratio of subcomponents when the total mass of the material is 100.
(負極の作製)
上記のとおり準備した負極活物質材料に対し、導電材として10質量%のカーボンブラックを混合し、内部を窒素置換したボールミルを用いて混合した。この混合粉末と結着材としてのポリイミドを質量比95:5の割合で混合したのち、NMP(N-メチル-2-ピロリドン)を溶媒として加えて十分混練し、負極塗布液を得た。 (Preparation of negative electrode)
The negative electrode active material prepared as described above was mixed using a ball mill in which 10% by mass of carbon black was mixed as a conductive material and the inside was replaced with nitrogen. The mixed powder and polyimide as a binder were mixed at a mass ratio of 95: 5, and then NMP (N-methyl-2-pyrrolidone) was added as a solvent and sufficiently kneaded to obtain a negative electrode coating solution.
上記のとおり準備した負極活物質材料に対し、導電材として10質量%のカーボンブラックを混合し、内部を窒素置換したボールミルを用いて混合した。この混合粉末と結着材としてのポリイミドを質量比95:5の割合で混合したのち、NMP(N-メチル-2-ピロリドン)を溶媒として加えて十分混練し、負極塗布液を得た。 (Preparation of negative electrode)
The negative electrode active material prepared as described above was mixed using a ball mill in which 10% by mass of carbon black was mixed as a conductive material and the inside was replaced with nitrogen. The mixed powder and polyimide as a binder were mixed at a mass ratio of 95: 5, and then NMP (N-methyl-2-pyrrolidone) was added as a solvent and sufficiently kneaded to obtain a negative electrode coating solution.
この負極塗布液を、集電体に15μmの厚さに塗布し、300℃で10分間焼成した。その後、ロールプレスで2g/cm3の密度になるように圧延加工し、2cm2の円盤状に打ち抜いて負極とした。
This negative electrode coating solution was applied to a current collector to a thickness of 15 μm and baked at 300 ° C. for 10 minutes. Then, it was rolled to a density of 2 g / cm 3 with a roll press and punched into a 2 cm 2 disk shape to obtain a negative electrode.
[実施例1-1、1-2]
前記のプラズマ法により合成したP濃度の異なる2種類のナノサイズSi-P粒子を活物質材料として用いた負極を試験極として電気化学特性の評価に使用した。 [Examples 1-1, 1-2]
A negative electrode using two kinds of nano-sized Si—P particles with different P concentrations synthesized by the plasma method as an active material was used as a test electrode for evaluation of electrochemical characteristics.
前記のプラズマ法により合成したP濃度の異なる2種類のナノサイズSi-P粒子を活物質材料として用いた負極を試験極として電気化学特性の評価に使用した。 [Examples 1-1, 1-2]
A negative electrode using two kinds of nano-sized Si—P particles with different P concentrations synthesized by the plasma method as an active material was used as a test electrode for evaluation of electrochemical characteristics.
[実施例1-3、1-4]
実施例1のナノサイズSi-P粒子を酸化処理して、酸素を導入したSi-P-O粒子を活物質材料とした負極を試験極として電気化学特性を評価した。 [Examples 1-3, 1-4]
The nano-sized Si—P particles of Example 1 were oxidized, and the electrochemical characteristics were evaluated using a negative electrode using Si—P—O particles into which oxygen was introduced as an active material.
実施例1のナノサイズSi-P粒子を酸化処理して、酸素を導入したSi-P-O粒子を活物質材料とした負極を試験極として電気化学特性を評価した。 [Examples 1-3, 1-4]
The nano-sized Si—P particles of Example 1 were oxidized, and the electrochemical characteristics were evaluated using a negative electrode using Si—P—O particles into which oxygen was introduced as an active material.
[実施例1-5]
前記のアトマイズ法により合成したミクロンサイズSi-P粒子に酸化処理を施して、酸素を導入したSi-P-O粒子を活物質材料として用いた負極を試験極とし、電気化学特性を評価した。 [Example 1-5]
The micron-sized Si—P particles synthesized by the atomization method were oxidized, and the negative electrode using the Si—P—O particles introduced with oxygen as the active material was used as a test electrode, and the electrochemical characteristics were evaluated.
前記のアトマイズ法により合成したミクロンサイズSi-P粒子に酸化処理を施して、酸素を導入したSi-P-O粒子を活物質材料として用いた負極を試験極とし、電気化学特性を評価した。 [Example 1-5]
The micron-sized Si—P particles synthesized by the atomization method were oxidized, and the negative electrode using the Si—P—O particles introduced with oxygen as the active material was used as a test electrode, and the electrochemical characteristics were evaluated.
[実施例1-6]
前記のプラズマ法により合成したナノサイズSi-Fe粒子を活物質材料として用いた負極を試験極として電気化学特性を評価した。
[実施例1-7]
前記のプラズマ法により合成したナノサイズSi-Ni粒子を活物質材料として用いた負極を試験極として電気化学特性を評価した。 [Example 1-6]
The electrochemical characteristics were evaluated using a negative electrode using nano-sized Si—Fe particles synthesized by the plasma method as an active material as a test electrode.
[Example 1-7]
The electrochemical characteristics were evaluated using a negative electrode using nano-sized Si—Ni particles synthesized by the plasma method as an active material as a test electrode.
前記のプラズマ法により合成したナノサイズSi-Fe粒子を活物質材料として用いた負極を試験極として電気化学特性を評価した。
[実施例1-7]
前記のプラズマ法により合成したナノサイズSi-Ni粒子を活物質材料として用いた負極を試験極として電気化学特性を評価した。 [Example 1-6]
The electrochemical characteristics were evaluated using a negative electrode using nano-sized Si—Fe particles synthesized by the plasma method as an active material as a test electrode.
[Example 1-7]
The electrochemical characteristics were evaluated using a negative electrode using nano-sized Si—Ni particles synthesized by the plasma method as an active material as a test electrode.
[実施例1-8、1-9]
実施例4~5のSi-FeおよびSi-Ni粒子を酸化処理したSi-Fe-O粒子とSi-Ni-O粒子をそれぞれ活物質材料として用いた負極を試験極として電気化学特性を評価した。 [Examples 1-8, 1-9]
Electrochemical characteristics were evaluated using a negative electrode using Si—Fe—O particles and Si—Ni—O particles obtained by oxidizing the Si—Fe and Si—Ni particles of Examples 4 to 5 as active material materials, respectively, as test electrodes. .
実施例4~5のSi-FeおよびSi-Ni粒子を酸化処理したSi-Fe-O粒子とSi-Ni-O粒子をそれぞれ活物質材料として用いた負極を試験極として電気化学特性を評価した。 [Examples 1-8, 1-9]
Electrochemical characteristics were evaluated using a negative electrode using Si—Fe—O particles and Si—Ni—O particles obtained by oxidizing the Si—Fe and Si—Ni particles of Examples 4 to 5 as active material materials, respectively, as test electrodes. .
[比較例1-1~1-3]
比較例として、ナノサイズSi単体粒子、ナノサイズSi-B粒子、およびミクロンサイズSi-B粒子を活物質材料として用いた負極をそれぞれ試験極として電気化学特性の評価に使用した。 [Comparative Examples 1-1 to 1-3]
As a comparative example, a negative electrode using nano-sized Si simple particles, nano-sized Si—B particles, and micron-sized Si—B particles as active material materials was used for evaluation of electrochemical characteristics as test electrodes.
比較例として、ナノサイズSi単体粒子、ナノサイズSi-B粒子、およびミクロンサイズSi-B粒子を活物質材料として用いた負極をそれぞれ試験極として電気化学特性の評価に使用した。 [Comparative Examples 1-1 to 1-3]
As a comparative example, a negative electrode using nano-sized Si simple particles, nano-sized Si—B particles, and micron-sized Si—B particles as active material materials was used for evaluation of electrochemical characteristics as test electrodes.
(シリコン電極の電気化学特性評価セルの作製)
作用極として上記シリコン薄膜板、対極と参照極としてリチウム金属、電解液として1molのLiPF6を溶解したエチレンカーボネート+ジエチルカーボネート(体積比で1:1)の混合溶媒を使用して、ビーカーセルを作製した。 (Production of cell for evaluating electrochemical characteristics of silicon electrodes)
Using the silicon thin film plate as a working electrode, lithium metal as a counter electrode and a reference electrode, and a mixed solvent of ethylene carbonate + diethyl carbonate (1: 1 by volume) in which 1 mol of LiPF 6 is dissolved as an electrolyte, Produced.
作用極として上記シリコン薄膜板、対極と参照極としてリチウム金属、電解液として1molのLiPF6を溶解したエチレンカーボネート+ジエチルカーボネート(体積比で1:1)の混合溶媒を使用して、ビーカーセルを作製した。 (Production of cell for evaluating electrochemical characteristics of silicon electrodes)
Using the silicon thin film plate as a working electrode, lithium metal as a counter electrode and a reference electrode, and a mixed solvent of ethylene carbonate + diethyl carbonate (1: 1 by volume) in which 1 mol of LiPF 6 is dissolved as an electrolyte, Produced.
(シリコン電極の電気化学特性評価セルの作製)
得られた負極を、直径20mmの円盤状に加工し、電気化学特性評価における作用極とした。また、対極と参照極としてリチウム金属、電解液として1molのLiPF6を溶解したエチレンカーボネート+ジエチルカーボネート(体積比で1:1)の混合溶媒を用い、作用極と共にこれらをビーカーに入れて、電気化学特性評価セルを作製した。 (Production of cell for evaluating electrochemical characteristics of silicon electrodes)
The obtained negative electrode was processed into a disk shape having a diameter of 20 mm, and used as a working electrode in electrochemical property evaluation. In addition, using a mixed solvent of ethylene carbonate + diethyl carbonate (1: 1 by volume) in which lithium metal is dissolved as a counter electrode and a reference electrode and 1 mol of LiPF 6 is used as an electrolyte, these are put in a beaker together with a working electrode, A chemical characterization cell was fabricated.
得られた負極を、直径20mmの円盤状に加工し、電気化学特性評価における作用極とした。また、対極と参照極としてリチウム金属、電解液として1molのLiPF6を溶解したエチレンカーボネート+ジエチルカーボネート(体積比で1:1)の混合溶媒を用い、作用極と共にこれらをビーカーに入れて、電気化学特性評価セルを作製した。 (Production of cell for evaluating electrochemical characteristics of silicon electrodes)
The obtained negative electrode was processed into a disk shape having a diameter of 20 mm, and used as a working electrode in electrochemical property evaluation. In addition, using a mixed solvent of ethylene carbonate + diethyl carbonate (1: 1 by volume) in which lithium metal is dissolved as a counter electrode and a reference electrode and 1 mol of LiPF 6 is used as an electrolyte, these are put in a beaker together with a working electrode, A chemical characterization cell was fabricated.
(シリコン電極の電気化学特性の評価)
次に電気化学特性評価セルを用いて、充放電性能を評価するための試験を行った。作用極の電位を卑な方向(還元側)に走査する過程を充電と称し、作用極の電位を貴な方向(酸化側)に走査する過程を放電と称するものとする。 (Evaluation of electrochemical characteristics of silicon electrode)
Next, a test for evaluating charge / discharge performance was performed using an electrochemical property evaluation cell. The process of scanning the potential of the working electrode in the base direction (reduction side) is called charging, and the process of scanning the potential of the working electrode in the noble direction (oxidation side) is called discharging.
次に電気化学特性評価セルを用いて、充放電性能を評価するための試験を行った。作用極の電位を卑な方向(還元側)に走査する過程を充電と称し、作用極の電位を貴な方向(酸化側)に走査する過程を放電と称するものとする。 (Evaluation of electrochemical characteristics of silicon electrode)
Next, a test for evaluating charge / discharge performance was performed using an electrochemical property evaluation cell. The process of scanning the potential of the working electrode in the base direction (reduction side) is called charging, and the process of scanning the potential of the working electrode in the noble direction (oxidation side) is called discharging.
まず、初回充放電は0.1CAで、充電は0.02Vまで(定電位で0.05CAに到達するまで)、放電は1.5Vまで行なった。2サイクル目以降の充放電は、充電は0.2CAで0.02V(定電位で0.05CAに到達するまで)、放電は0.2CAで1.5Vまで行なった。評価温度は25℃とした。このような条件で評価し、初回充放電の放電容量サイクルと50サイクル目の放電容量から容量維持率を求めた。なお、容量維持率の定義は次のようにした。
First, the initial charge / discharge was performed at 0.1 CA, the charge was performed up to 0.02 V (until 0.05 CA was reached at a constant potential), and the discharge was performed up to 1.5 V. In the second and subsequent cycles, charging was performed at 0.2 CA at 0.02 V (until reaching 0.05 CA at a constant potential), and discharging was performed at 0.2 CA up to 1.5 V. The evaluation temperature was 25 ° C. Evaluation was made under such conditions, and the capacity retention rate was determined from the discharge capacity cycle of the first charge / discharge and the discharge capacity at the 50th cycle. The definition of the capacity maintenance rate is as follows.
容量維持率=(50サイクル目の放電容量/初回サイクルの放電容量)×100
表2に、試験極とした負極の仕様と、試験評価結果の容量維持率を示した。表に示す容量は、シリコンの質量当たりの容量である。 Capacity retention ratio = (discharge capacity at the 50th cycle / discharge capacity at the first cycle) × 100
Table 2 shows the specifications of the negative electrode used as the test electrode and the capacity retention rate of the test evaluation result. The capacity shown in the table is the capacity per mass of silicon.
表2に、試験極とした負極の仕様と、試験評価結果の容量維持率を示した。表に示す容量は、シリコンの質量当たりの容量である。 Capacity retention ratio = (discharge capacity at the 50th cycle / discharge capacity at the first cycle) × 100
Table 2 shows the specifications of the negative electrode used as the test electrode and the capacity retention rate of the test evaluation result. The capacity shown in the table is the capacity per mass of silicon.
以上の結果から、比較例1-1のSiのみからなる活物質材料に比べて、実施例1-1~1-9の原子半径がSiの原子半径(0.117nm)に近似し、|(rA-r0)/r0|≦0.1の関係を満たす第2元素(P,Fe,Ni)を含有する活物質材料を用いた負極は、充放電サイクル後の容量維持率が約2倍以上高められることが分かった。集電体が、表面に適切な形態の突起部を有し、活物質との密着性が良好になり、充放電サイクル寿命に寄与していることが判断できる。
From the above results, the atomic radii of Examples 1-1 to 1-9 approximate to the atomic radius of Si (0.117 nm) as compared to the active material made of only Si of Comparative Example 1-1. The negative electrode using the active material containing the second element (P, Fe, Ni) satisfying the relationship of r A −r 0 ) / r 0 | ≦ 0.1 has a capacity retention ratio of about It has been found that it can be increased more than twice. It can be determined that the current collector has a protrusion having an appropriate shape on the surface, has good adhesion to the active material, and contributes to the charge / discharge cycle life.
また、実施例1-3,1-4,1-5,1-8,1-9の結果から、活物質材料は酸素分子を含む方がより望ましいことが確認された。なお、この場合、酸素原子の導入による活物質材料の平均粒径の増大は、容量維持率に大きな影響を与えない。
Also, from the results of Examples 1-3, 1-4, 1-5, 1-8, 1-9, it was confirmed that the active material material preferably contains oxygen molecules. In this case, an increase in the average particle diameter of the active material material due to the introduction of oxygen atoms does not greatly affect the capacity retention rate.
一方、比較例1-2~1-3の原子半径が|(rA-r0)/r0|≦0.1の関係を満たさない元素(B)を導入した場合は、負極の容量維持率が大きく低下してしまうことが確認された。
On the other hand, when the element (B) in which the atomic radius of Comparative Examples 1-2 to 1-3 does not satisfy the relationship of | (r A −r 0 ) / r 0 | ≦ 0.1 is introduced, the capacity of the negative electrode is maintained. It was confirmed that the rate was greatly reduced.
本実施例では、負極活物質材料における第2の元素としてP、Fe、Niを、さらに第3の元素として酸素を用いる場合を示したが、本発明の負極活物質材料はこれに限るものではない。第2の元素としては、少なくとも原子半径が|(rA-r0)/r0|≦0.1の関係を満たす元素であればよく、P、Fe、Niの他に、例えば、Cr、CoやCu等を使用したり、第3の元素としてフッ素を使用しても、同様の結果が得られることが推測される。
In this embodiment, the case where P, Fe, Ni is used as the second element in the negative electrode active material and oxygen is used as the third element is shown. However, the negative electrode active material of the present invention is not limited to this. Absent. The second element only needs to be an element satisfying the relationship of at least an atomic radius of | (r A −r 0 ) / r 0 | ≦ 0.1. In addition to P, Fe, Ni, for example, Cr, It is presumed that the same result can be obtained even when Co, Cu, or the like is used or fluorine is used as the third element.
本実施例では、集電体の粗面化の手法として焼けめっきおよびカプセルめっきを施すようにしたが、本発明の集電体の突起の形成手法はこれに限るものではない。集電体の表面に所定の表面粗さとなる突起部を有する安定な被膜を形成できる手法であれば、本実施例と同じ傾向の結果が得られることが推測される。
In the present embodiment, as a method of roughening the current collector, baking plating and capsule plating are performed, but the method of forming the protrusions of the current collector of the present invention is not limited to this. If the technique can form a stable film having a protrusion having a predetermined surface roughness on the surface of the current collector, it is presumed that the same tendency result as in this example can be obtained.
[実施例2:集電体に成膜して負極を作製する]
(リチウムイオン二次電池用負極の作製1)
実施例1と同様の方法で得られた集電体の表面に、Si、Si-P、Si-As、Si-B、Si-N系の組成の負極活物質層を形成し、リチウムイオン二次電池用負極を作製した。詳細には、負極活物質層の形成には、触媒化学気相成長(Cat-CVD)装置を用い、以下の条件にて製膜した。まず、Si薄膜の製膜には、原料ガスとしてモノシランガスを用い、流量を20sccmとし、集電体温度250℃、タングステン線触媒体温度1800℃を基本条件として、製膜厚さに応じて適宜製膜時間を調製した。 [Example 2: A negative electrode is produced by forming a film on a current collector]
(Preparation of negative electrode for lithium ion secondary battery 1)
A negative electrode active material layer having a composition of Si, Si—P, Si—As, Si—B, and Si—N is formed on the surface of the current collector obtained in the same manner as in Example 1, A negative electrode for a secondary battery was produced. Specifically, the negative electrode active material layer was formed using a catalytic chemical vapor deposition (Cat-CVD) apparatus under the following conditions. First, for the formation of a Si thin film, monosilane gas is used as a source gas, the flow rate is 20 sccm, the current collector temperature is 250 ° C., the tungsten wire catalyst body temperature is 1800 ° C., and the basic conditions are appropriately formed according to the film thickness. The membrane time was adjusted.
(リチウムイオン二次電池用負極の作製1)
実施例1と同様の方法で得られた集電体の表面に、Si、Si-P、Si-As、Si-B、Si-N系の組成の負極活物質層を形成し、リチウムイオン二次電池用負極を作製した。詳細には、負極活物質層の形成には、触媒化学気相成長(Cat-CVD)装置を用い、以下の条件にて製膜した。まず、Si薄膜の製膜には、原料ガスとしてモノシランガスを用い、流量を20sccmとし、集電体温度250℃、タングステン線触媒体温度1800℃を基本条件として、製膜厚さに応じて適宜製膜時間を調製した。 [Example 2: A negative electrode is produced by forming a film on a current collector]
(Preparation of negative electrode for lithium ion secondary battery 1)
A negative electrode active material layer having a composition of Si, Si—P, Si—As, Si—B, and Si—N is formed on the surface of the current collector obtained in the same manner as in Example 1, A negative electrode for a secondary battery was produced. Specifically, the negative electrode active material layer was formed using a catalytic chemical vapor deposition (Cat-CVD) apparatus under the following conditions. First, for the formation of a Si thin film, monosilane gas is used as a source gas, the flow rate is 20 sccm, the current collector temperature is 250 ° C., the tungsten wire catalyst body temperature is 1800 ° C., and the basic conditions are appropriately formed according to the film thickness. The membrane time was adjusted.
また、第2の元素としてPを含有させる場合には、原料ガスとして、モノシランガスに加え、フォスフィンガスを10sccmまたは1sccmと流量を変えて供給した。同様に、第2の元素としてAsを含有させる場合には、原料ガスとして、モノシランガスに加え、アルシンガス10sccmを、Bを含有させる場合には、ジボランガス10sccmを、Nを含有させる場合には、アンモニアガス100sccmを供給した。
Further, when P was contained as the second element, phosphine gas was supplied at a flow rate of 10 sccm or 1 sccm in addition to monosilane gas as a source gas. Similarly, in the case where As is contained as the second element, in addition to the monosilane gas, 10 sccm of arsine gas is used as the source gas, in the case of containing B, 10 sccm of diborane gas, and in the case of containing N, ammonia gas. 100 sccm was supplied.
(リチウムイオン二次電池用負極の作製2)
得られた集電体の表面に、第3の元素として酸素を加える場合には、酸素を含有するSiの反応性スパッタリングにより、Si-P-Oの組成の負極活物質層を形成し、リチウムイオン二次電池用負極を作製した。具体的には、酸素含有量の異なるSiとPの基板をスパッタリングして所望の割合の活物質を形成した。 (Preparation of negative electrode for lithium ion secondary battery 2)
When oxygen is added as a third element to the surface of the obtained current collector, a negative electrode active material layer having a composition of Si—PO is formed by reactive sputtering of Si containing oxygen, and lithium A negative electrode for an ion secondary battery was produced. Specifically, Si and P substrates having different oxygen contents were sputtered to form a desired ratio of active materials.
得られた集電体の表面に、第3の元素として酸素を加える場合には、酸素を含有するSiの反応性スパッタリングにより、Si-P-Oの組成の負極活物質層を形成し、リチウムイオン二次電池用負極を作製した。具体的には、酸素含有量の異なるSiとPの基板をスパッタリングして所望の割合の活物質を形成した。 (Preparation of negative electrode for lithium ion secondary battery 2)
When oxygen is added as a third element to the surface of the obtained current collector, a negative electrode active material layer having a composition of Si—PO is formed by reactive sputtering of Si containing oxygen, and lithium A negative electrode for an ion secondary battery was produced. Specifically, Si and P substrates having different oxygen contents were sputtered to form a desired ratio of active materials.
(リチウムイオン二次電池用負極の作製3)
上記のCat-CVD装置を用いて得られた負極に対し、180℃に加熱した恒温槽にて大気酸化処理を施して、酸素を含有させた。 (Preparation of negative electrode for lithium ion secondary battery 3)
The negative electrode obtained using the above Cat-CVD apparatus was subjected to atmospheric oxidation treatment in a thermostatic chamber heated to 180 ° C. to contain oxygen.
上記のCat-CVD装置を用いて得られた負極に対し、180℃に加熱した恒温槽にて大気酸化処理を施して、酸素を含有させた。 (Preparation of negative electrode for lithium ion secondary battery 3)
The negative electrode obtained using the above Cat-CVD apparatus was subjected to atmospheric oxidation treatment in a thermostatic chamber heated to 180 ° C. to contain oxygen.
[実施例2-1~2-3]
突起部を設けた集電体に、Cat-CVD法によりP含有量と厚みとを変えて、3通りの負極活物質層を形成して負極とした。
[実施例2-4]
突起部を設けた集電体に、Cat-CVD法によりSiとPを含有する負極活物質層を形成し、さらに恒温槽による酸化を施して、SiとPとOを含有する負極とした。
[実施例2-5]
実施例2-3の負極に恒温槽による酸化を施して、SiとPとOを含有する負極活物質層を形成して負極とした。
[実施例2-6]
突起部を設けた集電体に、反応性スパッタリングによりSiとPとOを含有する負極活物質層を形成して負極とした。
[実施例2-7]
突起部を設けた集電体に、Cat-CVD法によりSiとAsを含有する負極活物質層を形成して負極とした。
[実施例2-8]
実施例2-7の負極に恒温槽による酸化を施して、SiとAsとOを含有する負極活物質層を形成して負極とした。
[実施例2-9]
実施例2-1と異なる、平滑な表面の銅箔に、粗面化処理をし、突起部を有するものの表面粗さが小さい銅箔に、Cat-CVD法によりSiとPを含む負極活物質層を形成して負極とした。 [Examples 2-1 to 2-3]
Three negative electrode active material layers were formed on the current collector provided with the protrusions by changing the P content and thickness by the Cat-CVD method to obtain a negative electrode.
[Example 2-4]
A negative electrode active material layer containing Si and P was formed on the current collector provided with the protrusions by a Cat-CVD method, and further oxidized by a thermostatic bath to obtain a negative electrode containing Si, P, and O.
[Example 2-5]
The negative electrode of Example 2-3 was oxidized in a thermostatic bath to form a negative electrode active material layer containing Si, P, and O to obtain a negative electrode.
[Example 2-6]
A negative electrode active material layer containing Si, P, and O was formed on the current collector provided with the protrusions by reactive sputtering to obtain a negative electrode.
[Example 2-7]
A negative electrode active material layer containing Si and As was formed on the current collector provided with the protrusions by a Cat-CVD method to form a negative electrode.
[Example 2-8]
The negative electrode of Example 2-7 was oxidized in a thermostatic bath to form a negative electrode active material layer containing Si, As, and O to obtain a negative electrode.
[Example 2-9]
A negative electrode active material containing Si and P by a Cat-CVD method, which is different from Example 2-1, in which a copper foil having a smooth surface is subjected to a roughening treatment and has a protrusion but a small surface roughness. A layer was formed as a negative electrode.
突起部を設けた集電体に、Cat-CVD法によりP含有量と厚みとを変えて、3通りの負極活物質層を形成して負極とした。
[実施例2-4]
突起部を設けた集電体に、Cat-CVD法によりSiとPを含有する負極活物質層を形成し、さらに恒温槽による酸化を施して、SiとPとOを含有する負極とした。
[実施例2-5]
実施例2-3の負極に恒温槽による酸化を施して、SiとPとOを含有する負極活物質層を形成して負極とした。
[実施例2-6]
突起部を設けた集電体に、反応性スパッタリングによりSiとPとOを含有する負極活物質層を形成して負極とした。
[実施例2-7]
突起部を設けた集電体に、Cat-CVD法によりSiとAsを含有する負極活物質層を形成して負極とした。
[実施例2-8]
実施例2-7の負極に恒温槽による酸化を施して、SiとAsとOを含有する負極活物質層を形成して負極とした。
[実施例2-9]
実施例2-1と異なる、平滑な表面の銅箔に、粗面化処理をし、突起部を有するものの表面粗さが小さい銅箔に、Cat-CVD法によりSiとPを含む負極活物質層を形成して負極とした。 [Examples 2-1 to 2-3]
Three negative electrode active material layers were formed on the current collector provided with the protrusions by changing the P content and thickness by the Cat-CVD method to obtain a negative electrode.
[Example 2-4]
A negative electrode active material layer containing Si and P was formed on the current collector provided with the protrusions by a Cat-CVD method, and further oxidized by a thermostatic bath to obtain a negative electrode containing Si, P, and O.
[Example 2-5]
The negative electrode of Example 2-3 was oxidized in a thermostatic bath to form a negative electrode active material layer containing Si, P, and O to obtain a negative electrode.
[Example 2-6]
A negative electrode active material layer containing Si, P, and O was formed on the current collector provided with the protrusions by reactive sputtering to obtain a negative electrode.
[Example 2-7]
A negative electrode active material layer containing Si and As was formed on the current collector provided with the protrusions by a Cat-CVD method to form a negative electrode.
[Example 2-8]
The negative electrode of Example 2-7 was oxidized in a thermostatic bath to form a negative electrode active material layer containing Si, As, and O to obtain a negative electrode.
[Example 2-9]
A negative electrode active material containing Si and P by a Cat-CVD method, which is different from Example 2-1, in which a copper foil having a smooth surface is subjected to a roughening treatment and has a protrusion but a small surface roughness. A layer was formed as a negative electrode.
[比較例2-1]
突起部を設けた銅箔に、Cat-CVD法によりSi単体からなる負極活物質層を形成して負極とした。
[比較例2-2]
突起部を設けた銅箔に、Cat-CVD法によりSiとBを含む負極活物質層を形成して負極とした。
[比較例2-3]
突起部を設けた銅箔に、Cat-CVD法によりSiとNを含む負極活物質層を形成して負極とした。
[比較例2-4]
突起部を設けない両面平滑銅箔(Rz1.5μmのWS箔、未処理箔)に、Cat-CVD法によりSiとPを含む負極活物質層を形成して負極とした。 [Comparative Example 2-1]
A negative electrode active material layer made of a simple substance of Si was formed on a copper foil provided with protrusions by a Cat-CVD method to obtain a negative electrode.
[Comparative Example 2-2]
A negative electrode active material layer containing Si and B was formed by a Cat-CVD method on the copper foil provided with the protrusions to obtain a negative electrode.
[Comparative Example 2-3]
A negative electrode active material layer containing Si and N was formed on a copper foil provided with a protrusion by a Cat-CVD method to form a negative electrode.
[Comparative Example 2-4]
A negative electrode active material layer containing Si and P was formed by a Cat-CVD method on a double-sided smooth copper foil (Rz 1.5 μm WS foil, untreated foil) not provided with a protrusion, thereby forming a negative electrode.
突起部を設けた銅箔に、Cat-CVD法によりSi単体からなる負極活物質層を形成して負極とした。
[比較例2-2]
突起部を設けた銅箔に、Cat-CVD法によりSiとBを含む負極活物質層を形成して負極とした。
[比較例2-3]
突起部を設けた銅箔に、Cat-CVD法によりSiとNを含む負極活物質層を形成して負極とした。
[比較例2-4]
突起部を設けない両面平滑銅箔(Rz1.5μmのWS箔、未処理箔)に、Cat-CVD法によりSiとPを含む負極活物質層を形成して負極とした。 [Comparative Example 2-1]
A negative electrode active material layer made of a simple substance of Si was formed on a copper foil provided with protrusions by a Cat-CVD method to obtain a negative electrode.
[Comparative Example 2-2]
A negative electrode active material layer containing Si and B was formed by a Cat-CVD method on the copper foil provided with the protrusions to obtain a negative electrode.
[Comparative Example 2-3]
A negative electrode active material layer containing Si and N was formed on a copper foil provided with a protrusion by a Cat-CVD method to form a negative electrode.
[Comparative Example 2-4]
A negative electrode active material layer containing Si and P was formed by a Cat-CVD method on a double-sided smooth copper foil (Rz 1.5 μm WS foil, untreated foil) not provided with a protrusion, thereby forming a negative electrode.
(負極活物質層組成の分析)
作製した負極の負極活物質層の断面に対してX線マイクロアナライザ(EPMA)を用いて分析し、2~3成分についてZAF補正法による定量化を行った。その結果を、副成分濃度として、表2に示した。なお、副成分濃度は、層を構成する成分全体の質量を100とした時の副成分の割合(mass%)を示している。 (Analysis of anode active material layer composition)
The cross section of the negative electrode active material layer of the produced negative electrode was analyzed using an X-ray microanalyzer (EPMA), and the two to three components were quantified by the ZAF correction method. The results are shown in Table 2 as subcomponent concentrations. The subcomponent concentration represents the ratio (mass%) of the subcomponent when the mass of all the components constituting the layer is 100.
作製した負極の負極活物質層の断面に対してX線マイクロアナライザ(EPMA)を用いて分析し、2~3成分についてZAF補正法による定量化を行った。その結果を、副成分濃度として、表2に示した。なお、副成分濃度は、層を構成する成分全体の質量を100とした時の副成分の割合(mass%)を示している。 (Analysis of anode active material layer composition)
The cross section of the negative electrode active material layer of the produced negative electrode was analyzed using an X-ray microanalyzer (EPMA), and the two to three components were quantified by the ZAF correction method. The results are shown in Table 2 as subcomponent concentrations. The subcomponent concentration represents the ratio (mass%) of the subcomponent when the mass of all the components constituting the layer is 100.
(シリコン電極の電気化学特性の評価)
実施例1と同様の方法で、50サイクル目容量維持率を測定した。 (Evaluation of electrochemical characteristics of silicon electrode)
In the same manner as in Example 1, the capacity retention rate at the 50th cycle was measured.
実施例1と同様の方法で、50サイクル目容量維持率を測定した。 (Evaluation of electrochemical characteristics of silicon electrode)
In the same manner as in Example 1, the capacity retention rate at the 50th cycle was measured.
(シリコン重量計測)
作製した負極について、負極全体の重量から集電体(突起部含む)の重量の差をとってシリコンの重量とし、その結果を表3に示した。 (Silicon weight measurement)
For the prepared negative electrode, the weight of the current collector (including the protrusions) was taken from the total weight of the negative electrode to obtain the weight of silicon, and the results are shown in Table 3.
作製した負極について、負極全体の重量から集電体(突起部含む)の重量の差をとってシリコンの重量とし、その結果を表3に示した。 (Silicon weight measurement)
For the prepared negative electrode, the weight of the current collector (including the protrusions) was taken from the total weight of the negative electrode to obtain the weight of silicon, and the results are shown in Table 3.
以上の結果から、比較例2-1のSiのみからなる活物質層をもつ負極に比べて、実施例2-1~2-8の原子半径がSiの原子半径(0.117nm)に近似し、|(rA-r0)/r0|≦0.1の関係を満たす第2元素(P,As)を含有する活物質層を用いた負極は、充放電50サイクル後の容量維持率が大幅に改善されることが分かった。
From the above results, the atomic radii of Examples 2-1 to 2-8 approximated the atomic radius of Si (0.117 nm) as compared with the negative electrode having an active material layer composed only of Si of Comparative Example 2-1. , | (R A −r 0 ) / r 0 | ≦ 0.1, the negative electrode using the active material layer containing the second element (P, As) satisfies the capacity retention rate after 50 cycles of charge and discharge Was found to be significantly improved.
そして、実施例2-2と実施例2-9の比較から、本発明に係る負極活物質層は、表面粗さRzが十分に大きい集電体との組み合わせにより、著しく放電容量および容量維持率が向上され、より一層充放電サイクル特性が向上されることが確認できた。なお、実施例2-9の負極は、比較例2-1に比べて膜厚およびシリコン質量が約半分に少ないにもかかわらず、比較例2-1の負極に遜色のない放電容量および容量維持率を有している。
Further, from comparison between Example 2-2 and Example 2-9, the negative electrode active material layer according to the present invention has a remarkable discharge capacity and capacity retention ratio in combination with a current collector having a sufficiently large surface roughness Rz. It was confirmed that the charge / discharge cycle characteristics were further improved. The negative electrode of Example 2-9 had a discharge capacity and capacity maintenance comparable to the negative electrode of Comparative Example 2-1, although the film thickness and silicon mass were about half that of Comparative Example 2-1. Have a rate.
さらに、実施例2-4~2-6,2-8の結果から、活物質層は酸素を含む方が容量維持率がさらに高く、より望ましいことが確認された。実施例2-5の結果から、酸素の含有量は0.7質量%でも十分な効果が発揮されることが確認された。
Furthermore, from the results of Examples 2-4 to 2-6 and 2-8, it was confirmed that the active material layer contains oxygen and has a higher capacity retention rate and is more desirable. From the results of Example 2-5, it was confirmed that a sufficient effect was exhibited even when the oxygen content was 0.7 mass%.
一方、比較例2-2~2-3から、原子半径が|(rA-r0)/r0|≦0.1の関係を満たさない元素(B、N)を導入した場合は、負極の容量維持率が大きく低下してしまうことが確認された。
On the other hand, when an element (B, N) whose atomic radius does not satisfy the relationship of | (r A −r 0 ) / r 0 | ≦ 0.1 is introduced from Comparative Examples 2-2 to 2-3, the negative electrode It was confirmed that the capacity maintenance rate of the battery greatly decreased.
また、比較例2-4の結果から、集電体の表面に突起部が形成されていないと、集電体に負極活物質層を担持させることができないことが分かった。
Further, from the results of Comparative Example 2-4, it was found that the negative electrode active material layer could not be supported on the current collector unless the protrusions were formed on the surface of the current collector.
本実施例では、負極活物質層を構成する第2の元素としてP、Asを、さらに第3の元素として酸素を用いる場合を示したが、本発明の負極はこれに限るものではない。第2の元素としては、少なくとも原子半径が|(rA-r0)/r0|≦0.1の関係を満たす元素であればよく、P、Asの他に、例えば、Fe、Ni、Cr、CoやCu等を使用したり、第3の元素としてフッ素を使用したりしても、同様の結果が得られることが推測される。
In this embodiment, the case where P and As are used as the second element constituting the negative electrode active material layer and oxygen is used as the third element is shown, but the negative electrode of the present invention is not limited to this. The second element only needs to be an element satisfying the relationship of at least an atomic radius of | (r A −r 0 ) / r 0 | ≦ 0.1. In addition to P and As, for example, Fe, Ni, It is presumed that the same result can be obtained even when Cr, Co, Cu or the like is used or fluorine is used as the third element.
本実施例では、集電体の粗面化の手法として焼けめっきおよびカプセルめっきを施すようにしたが、本発明の集電体の突起の形成手法はこれに限るものではない。集電体の表面に所定の表面粗さとなる突起部を有する安定な被膜を形成できる手法であれば、本実施例と同じ傾向の結果が得られることが推測される。
In the present embodiment, as a method of roughening the current collector, baking plating and capsule plating are performed, but the method of forming the protrusions of the current collector of the present invention is not limited to this. If the technique can form a stable film having a protrusion having a predetermined surface roughness on the surface of the current collector, it is presumed that the same tendency result as in this example can be obtained.
以上、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
The preferred embodiment of the present invention has been described above, but the present invention is not limited to such an example. It is obvious that a person skilled in the art can come up with various changes or modifications within the scope of the technical idea disclosed in the present application, and it is understood that these also belong to the technical scope of the present invention. Is done.
1………負極
3………活物質材料
4………導電材
5………活物質層
6………結着材
7………突起部
9………集電体
11………リチウムイオン二次電池
13………正極
15……セパレータ
17……電解質
19………電池缶
21………正極リード
23………負極リード
25………正極端子
27………封口体
31………ナノサイズ粒子製造装置
33………反応チャンバー
35………原料粉末供給口
37………原料粉末
39………シースガス供給口
41………シースガス
42………キャリアガス
43………高周波コイル
45………高周波電源
47………プラズマ
49………フィルター
53………ミキサー
55………塗布液
57………塗布液原料
59………コーター
61………負極
63………負極活物質層
65………突起部
67………負極集電体
DESCRIPTION OFSYMBOLS 1 ......... Negative electrode 3 ......... Active material 4 ......... Conductive material 5 ......... Active material layer 6 ......... Binder 7 ......... Protrusion 9 ......... Current collector 11 ......... Lithium Ion secondary battery 13 ......... Positive electrode 15 ... Separator 17 ... Electrolyte 19 ......... Battery can 21 ......... Positive lead 23 ......... Negative lead 25 ......... Positive terminal 27 ......... Sealing body 31 ... ... Nano-sized particle production equipment 33 ......... Reaction chamber 35 ......... Raw powder supply port 37 ......... Raw powder 39 ...... Sheath gas supply port 41 ...... Sheath gas 42 ......... Carrier gas 43 ......... High frequency coil 45 ......... High frequency power supply 47 ......... Plasma 49 ......... Filter 53 ......... Mixer 55 ......... Coating liquid 57 ......... Coating liquid raw material 59 ......... Coater 61 ......... Negative electrode 63 ......... Negative electrode active Material layer 65 ……… Protrusions 67 ……… Negative electrode current collector
3………活物質材料
4………導電材
5………活物質層
6………結着材
7………突起部
9………集電体
11………リチウムイオン二次電池
13………正極
15……セパレータ
17……電解質
19………電池缶
21………正極リード
23………負極リード
25………正極端子
27………封口体
31………ナノサイズ粒子製造装置
33………反応チャンバー
35………原料粉末供給口
37………原料粉末
39………シースガス供給口
41………シースガス
42………キャリアガス
43………高周波コイル
45………高周波電源
47………プラズマ
49………フィルター
53………ミキサー
55………塗布液
57………塗布液原料
59………コーター
61………負極
63………負極活物質層
65………突起部
67………負極集電体
DESCRIPTION OF
Claims (11)
- リチウムイオン二次電池用負極に用いられる活物質材料であって、
シリコンを主成分とし、少なくとも元素Aを0.05質量%以上含む粒子からなり、
シリコンの原子半径r0に対する前記元素Aの原子半径rAが、|(rA-r0)/r0|≦0.1の関係を満たす
ことを特徴とするリチウムイオン二次電池用負極活物質材料。 An active material used for a negative electrode for a lithium ion secondary battery,
Consists of particles containing silicon as a main component and containing at least 0.05% by mass of element A,
The negative electrode active for a lithium ion secondary battery, wherein the atomic radius r A of the element A with respect to the atomic radius r 0 of silicon satisfies a relationship of | (r A −r 0 ) / r 0 | ≦ 0.1 Material material. - 前記元素Aが、P、Cr、Mn、Fe、Co、Ni、Cu、Asからなる群より選ばれた少なくとも1種の元素であることを特徴とする請求項1記載のリチウムイオン二次電池用負極活物質材料。 2. The lithium ion secondary battery according to claim 1, wherein the element A is at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As. Negative electrode active material.
- さらに、酸素またはフッ素を含むことを特徴とする請求項1に記載のリチウムイオン二次電池用負極活物質材料。 Furthermore, oxygen or fluorine is contained, The negative electrode active material for lithium ion secondary batteries of Claim 1 characterized by the above-mentioned.
- 前記粒子は、一次粒子の平均粒径が10nm~5μmであることを特徴とする請求項1に記載のリチウムイオン二次電池用負極活物質材料。 2. The negative electrode active material for a lithium ion secondary battery according to claim 1, wherein the particles have an average primary particle diameter of 10 nm to 5 μm.
- 負極集電体の片面または両面に、請求項1に記載の負極活物質材料を含む塗布液を塗布・乾燥してなる活物質層を有することを特徴とする非水電解質二次電池用負極。 A negative electrode for a non-aqueous electrolyte secondary battery, comprising an active material layer formed by applying and drying a coating liquid containing the negative electrode active material according to claim 1 on one side or both sides of a negative electrode current collector.
- 表面に突起部を有する負極集電体と、前記負極集電体の表面に成膜され、シリコンを主成分とし、少なくとも元素Aを0.05質量%以上含む薄膜状の負極活物質層とを有し、
前記元素Aは、シリコンの原子半径r0に対する前記元素Aの原子半径rAが、|(rA-r0)/r0|≦0.1の関係を満たす元素
であることを特徴とするリチウムイオン二次電池用負極。 A negative electrode current collector having protrusions on the surface; and a thin film negative electrode active material layer formed on the surface of the negative electrode current collector, containing silicon as a main component and containing at least 0.05% by mass of element A Have
The element A is an element in which the atomic radius r A of the element A with respect to the atomic radius r 0 of silicon satisfies a relationship of | (r A −r 0 ) / r 0 | ≦ 0.1. Negative electrode for lithium ion secondary battery. - 前記元素Aが、P、Cr、Mn、Fe、Co、Ni、Cu、Asからなる群より選ばれた少なくとも1種の元素であることを特徴とする請求項6記載のリチウムイオン二次電池用負極。 The lithium ion secondary battery according to claim 6, wherein the element A is at least one element selected from the group consisting of P, Cr, Mn, Fe, Co, Ni, Cu, and As. Negative electrode.
- 前記負極活物質層が、さらに、酸素またはフッ素を含むことを特徴とする請求項6に記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to claim 6, wherein the negative electrode active material layer further contains oxygen or fluorine.
- 前記負極集電体が、銅箔であり、
前記銅箔の、前記活物質層が設けられる表面に電解粗面化処理が施されて突起部が設けられ、表面粗さRzが1μm~6μmであることを特徴とする請求項5または6に記載のリチウムイオン二次電池用負極。 The negative electrode current collector is a copper foil;
The surface of the copper foil on which the active material layer is provided is subjected to electrolytic surface roughening to provide a protrusion, and the surface roughness Rz is 1 μm to 6 μm. The negative electrode for lithium ion secondary batteries as described. - 電解粗面化処理前の前記銅箔の、前記活物質層が設けられる表面の表面粗さRzが0.5μm~3μmであることを特徴とする請求項9に記載のリチウムイオン二次電池用負極。 10. The lithium ion secondary battery according to claim 9, wherein the surface roughness Rz of the surface on which the active material layer is provided of the copper foil before the electrolytic surface roughening treatment is 0.5 μm to 3 μm. Negative electrode.
- リチウムイオンを吸蔵および放出可能な正極と、請求項5または6に記載の負極と、前記正極と前記負極との間に配置されたセパレータとを有し、リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けていることを特徴とするリチウムイオン二次電池。 In an electrolyte having lithium ion conductivity, comprising: a positive electrode capable of inserting and extracting lithium ions; a negative electrode according to claim 5; and a separator disposed between the positive electrode and the negative electrode. A lithium ion secondary battery comprising the positive electrode, the negative electrode, and the separator.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137015163A KR20130119447A (en) | 2011-02-28 | 2012-02-27 | Negative electrode active material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell |
CN201280006558XA CN103370817A (en) | 2011-02-28 | 2012-02-27 | Negative electrode active material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-041271 | 2011-02-28 | ||
JP2011-041379 | 2011-02-28 | ||
JP2011041271A JP2012178299A (en) | 2011-02-28 | 2011-02-28 | Anode active material for lithium ion secondary battery, anode using the same, and lithium ion secondary battery |
JP2011041379A JP2012178309A (en) | 2011-02-28 | 2011-02-28 | Lithium ion secondary battery anode and lithium ion secondary battery using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012117991A1 true WO2012117991A1 (en) | 2012-09-07 |
Family
ID=46757925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054710 WO2012117991A1 (en) | 2011-02-28 | 2012-02-27 | Negative electrode active material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20130119447A (en) |
CN (1) | CN103370817A (en) |
TW (1) | TW201236249A (en) |
WO (1) | WO2012117991A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104885269A (en) * | 2013-06-19 | 2015-09-02 | 株式会社Lg化学 | Anode active material for lithium secondary battery, lithium secondary battery including same, and method for manufacturing anode active material |
CN107195857A (en) * | 2016-03-15 | 2017-09-22 | 通用汽车环球科技运作有限责任公司 | Primer-surface for high performance silicon base electrode |
EP3389120A4 (en) * | 2016-07-18 | 2019-07-17 | LG Chem, Ltd. | Method for manufacturing electrode and current collector for electrochemical device |
CN110521046A (en) * | 2017-06-09 | 2019-11-29 | 日本电气硝子株式会社 | Total solids sodium ion secondary battery |
US11296315B2 (en) * | 2018-07-13 | 2022-04-05 | Toyota Jidosha Kabushiki Kaisha | Battery |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2840630T3 (en) * | 2012-11-30 | 2020-11-16 | Lg Chem, Ltd. | Anode active material for lithium secondary battery and lithium secondary battery including same |
KR101699246B1 (en) * | 2013-12-25 | 2017-01-24 | 가부시키가이샤 도요다 지도숏키 | Negative electrode active material, method for producing same and electricity storage device |
CN106104873A (en) * | 2014-03-19 | 2016-11-09 | 凸版印刷株式会社 | Electrode for nonaqueous electrolyte secondary battery |
CN104134780A (en) * | 2014-07-18 | 2014-11-05 | 奇瑞汽车股份有限公司 | Lithium ion battery pole piece and preparation method thereof |
CN107623121B (en) * | 2017-10-18 | 2019-12-27 | 山东大学 | Metal-coated porous silicon composite electrode material and preparation method thereof |
JP6998335B2 (en) * | 2019-03-05 | 2022-02-10 | 株式会社豊田中央研究所 | Negative electrode active material and power storage device |
JP6999619B2 (en) * | 2019-08-27 | 2022-02-10 | 株式会社豊田自動織機 | Negative electrode active material containing silicon clathrate II |
CN111682200B (en) * | 2020-07-14 | 2021-10-22 | 万华化学集团股份有限公司 | Positive electrode material for lithium ion battery and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011802A (en) * | 2003-05-22 | 2005-01-13 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and its manufacturing method |
JP2009535776A (en) * | 2006-05-23 | 2009-10-01 | ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション | Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same |
JP2009252579A (en) * | 2008-04-08 | 2009-10-29 | Sony Corp | Negative electrode, secondary battery, and method of manufacturing them |
JP2010118330A (en) * | 2008-10-15 | 2010-05-27 | Furukawa Electric Co Ltd:The | Anode material for lithium secondary battery, anode for lithium secondary battery, lithium secondary battery using the anode material and anode, and method for manufacturing anode material for lithium secondary battery and for anode for lithium secondary battery |
JP2011034836A (en) * | 2009-08-03 | 2011-02-17 | Furukawa Electric Co Ltd:The | Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4655976B2 (en) * | 2006-03-20 | 2011-03-23 | ソニー株式会社 | Negative electrode and battery |
KR101522963B1 (en) * | 2007-11-12 | 2015-05-26 | 산요덴키가부시키가이샤 | Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silicon particles for active material for negative electrode material for rechargeable battery with nonaqueous electrolyte |
-
2012
- 2012-02-27 KR KR1020137015163A patent/KR20130119447A/en not_active Application Discontinuation
- 2012-02-27 CN CN201280006558XA patent/CN103370817A/en active Pending
- 2012-02-27 WO PCT/JP2012/054710 patent/WO2012117991A1/en active Application Filing
- 2012-02-29 TW TW101106572A patent/TW201236249A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011802A (en) * | 2003-05-22 | 2005-01-13 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and its manufacturing method |
JP2009535776A (en) * | 2006-05-23 | 2009-10-01 | ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション | Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same |
JP2009252579A (en) * | 2008-04-08 | 2009-10-29 | Sony Corp | Negative electrode, secondary battery, and method of manufacturing them |
JP2010118330A (en) * | 2008-10-15 | 2010-05-27 | Furukawa Electric Co Ltd:The | Anode material for lithium secondary battery, anode for lithium secondary battery, lithium secondary battery using the anode material and anode, and method for manufacturing anode material for lithium secondary battery and for anode for lithium secondary battery |
JP2011034836A (en) * | 2009-08-03 | 2011-02-17 | Furukawa Electric Co Ltd:The | Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104885269A (en) * | 2013-06-19 | 2015-09-02 | 株式会社Lg化学 | Anode active material for lithium secondary battery, lithium secondary battery including same, and method for manufacturing anode active material |
CN107195857A (en) * | 2016-03-15 | 2017-09-22 | 通用汽车环球科技运作有限责任公司 | Primer-surface for high performance silicon base electrode |
EP3389120A4 (en) * | 2016-07-18 | 2019-07-17 | LG Chem, Ltd. | Method for manufacturing electrode and current collector for electrochemical device |
US10910629B2 (en) | 2016-07-18 | 2021-02-02 | Lg Chem, Ltd. | Method for manufacturing electrode and current collector for electrochemical device |
CN110521046A (en) * | 2017-06-09 | 2019-11-29 | 日本电气硝子株式会社 | Total solids sodium ion secondary battery |
US11296315B2 (en) * | 2018-07-13 | 2022-04-05 | Toyota Jidosha Kabushiki Kaisha | Battery |
Also Published As
Publication number | Publication date |
---|---|
KR20130119447A (en) | 2013-10-31 |
TW201236249A (en) | 2012-09-01 |
CN103370817A (en) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012117991A1 (en) | Negative electrode active material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell | |
JP5416128B2 (en) | Non-aqueous secondary battery | |
JP5219339B2 (en) | Lithium secondary battery | |
JP4868786B2 (en) | Lithium secondary battery | |
JP4945906B2 (en) | Secondary battery negative electrode and secondary battery using the same | |
WO2016121320A1 (en) | Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP5985137B2 (en) | Manufacturing method of non-aqueous secondary battery | |
WO2011067982A1 (en) | Active material particles and use of same | |
JP5448555B2 (en) | Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery | |
JP6048407B2 (en) | Negative electrode active material and method for producing the same | |
WO2013038672A1 (en) | Nonaqueous electrolyte secondary cell | |
WO2012000854A1 (en) | Negative electrode material for lithium-ion batteries | |
JP5520782B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2012102354A (en) | Nano-size particle, negative electrode material for lithium ion secondary battery including the nano-size particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing the nano-size particle | |
JP2004186075A (en) | Electrode for secondary battery and secondary battery using this | |
JP6760097B2 (en) | Positive electrode for lithium secondary battery and its manufacturing method | |
JP5656570B2 (en) | Method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode material for lithium ion secondary battery | |
JP2012101958A (en) | Nanoscale particle, negative electrode material for lithium ion secondary battery containing the same, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing the nanoscale particle | |
JP2012178309A (en) | Lithium ion secondary battery anode and lithium ion secondary battery using the same | |
JP2012164641A (en) | Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery comprising the negative electrode active material, and method for manufacturing negative electrode active material for lithium ion secondary battery | |
JP2012164640A (en) | Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery comprising the negative electrode active material, and method for manufacturing negative electrode active material for lithium ion secondary battery | |
JP2012209129A (en) | Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using negative electrode active material, and method for manufacturing negative electrode active material | |
JP2012178299A (en) | Anode active material for lithium ion secondary battery, anode using the same, and lithium ion secondary battery | |
JP2014197497A (en) | Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP4883894B2 (en) | Negative electrode for lithium secondary battery and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12753029 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137015163 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12753029 Country of ref document: EP Kind code of ref document: A1 |