JP2004186075A - Electrode for secondary battery and secondary battery using this - Google Patents

Electrode for secondary battery and secondary battery using this Download PDF

Info

Publication number
JP2004186075A
JP2004186075A JP2002353815A JP2002353815A JP2004186075A JP 2004186075 A JP2004186075 A JP 2004186075A JP 2002353815 A JP2002353815 A JP 2002353815A JP 2002353815 A JP2002353815 A JP 2002353815A JP 2004186075 A JP2004186075 A JP 2004186075A
Authority
JP
Japan
Prior art keywords
active material
electrode
secondary battery
lithium
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002353815A
Other languages
Japanese (ja)
Inventor
Tetsuharu Kadowaki
徹治 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Color Ltd
Original Assignee
Mikuni Color Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Color Ltd filed Critical Mikuni Color Ltd
Priority to JP2002353815A priority Critical patent/JP2004186075A/en
Publication of JP2004186075A publication Critical patent/JP2004186075A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for secondary battery in which dispersion of a lithium transition metal oxide and carbons are improved and the variation of quality of the battery is small, yield is good, and which has a high discharge capacity and small deterioration in cycle in particular, an electrode for secondary battery in which a high rate and a high charge and discharge capacity can be obtained. <P>SOLUTION: The electrode for secondary battery is composed of a carbon fiber coated active material in which the surface of the active material is coated by carbon fiber and a binder. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維を表面に被覆した活物質を用いた二次電池用電極及びこれを用いた二次電池に関する。
【0002】
【従来の技術】
携帯電話やノートパソコン等の普及に伴って、リチウム二次電池をはじめとする二次電池が注目されており、需要が高まっている。現在のリチウム二次電池では、電極面積を大きくすることにより電池反応の効率を上げる目的から、電極活物質とバインダ、導電材等を混合した塗料を帯状の金属箔上に塗布した正負両極が用いられ、これらがセパレータと共に巻き回された後、電池缶に収納されている。
【0003】
一般的には、正極用の塗料はリチウム遷移金属酸化物の正極活物質とバインダ、導電材等を攪拌機により混合しペースト化することにより作成する。導電材としては、カーボンブラック等の炭素質材料が用いられる。
【0004】
【発明が解決しようとする課題】
活物質単体では導電性に劣るため、導電材を添加して活物質間の電子伝導性を向上させる。しかし、電極を作製する際、導電材であるカーボンブラックやグラファイトは微粒体であり、均一な分散が難しく、これらを活物質である金属酸化物粉体と混合した際に導電材が凝集塊を形成してしまう。これに伴って、電極内において局所的に導電性に劣る部分が存在し、電子の移動が十分に行われないことから、活物質が有効に利用されず、結果的に放電容量が低い原因となると考えられる。
【0005】
また、このため電池の品質ばらつきの増大や歩留まりの低下を招いている。特に昨今は、バッテリーパックとして自動車やパソコンなどの用途に複数の電池を直列・並列につなげて使用しているため、品質管理要求レベルはますます高くなっている。
【0006】
近年自動車やパソコンでは、急速充電や急速放電など高レートでの電池性能のニーズは非常に高まってきている。しかし、一般に高レートで高い充放電容量を得るのは難しい。
【0007】
また、活物質の通電性の低下により、電解液の副反応が起こりやすく、サイクル劣化の原因ともなる。特にリチウムマンガン酸化物、リチウムニッケル酸化物、リチウム鉄酸化物酸化マンガンなどは安定性が低い。
このような問題に対し、例えば、特許文献1、特許文献2に記載のように活物質をカーボンブラックで被覆するという手段が提案されている。しかし、この処理では活物質とカーボンブラックの添着力が弱いため、被覆率が30%程度で容量が最大となっており、十分な電池性能が引き出せていない。また処理時間が数十分と非常に長く生産性が低い。
【0008】
【特許文献1】
特開平9−92265号公報
【特許文献2】
特開平11−154515号公報
【0009】
本発明は、活物質及び炭素の分散性を向上し、電池の品質ばらつきが小さく、歩留まりが良好で、高放電容量で、しかもサイクル劣化が小さい二次電池用の正極を提供することを目的とする。特に高レートで高い充放電容量を得ることを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するため本発明者らは鋭意検討を行った。その結果、活物質の表面を特定の状態としたものを用いることにより、補助導電材を要することなく非常に優れた電池特性を発揮できるという驚くべき知見、さらに活物質をこのような状態にするには、活物質と炭素繊維との粉体どうしの結合を利用して乾式混合により行うのが極めて有効であること、さらに特定の方法で乾式混合を行うことにより効率的に処理を行うことができると同時に得られる処理品の特性も優れたものとなること、を見出して本発明に到達した。
【0011】
すなわち、前記した従来技術では、活物質表面を炭素材料で被覆する割合が大きいと、かえって電池性能が低下するとの認識にある。このため、被覆は表面の30%程度とした場合が最も好ましく、最大でも80%にとどめるべきであるとしている。そして、電池性能を上げるためには補助導電剤を用いるべきであるとしている(特開平9−92,265号公報、2001−297,771号公報)。
【0012】
これに対し、本発明者らは、活物質、中でもリチウム遷移金属酸化物の表面を炭素繊維で覆った場合に電池特性が大幅に向上し、補助導電剤が不要となることを見出したのである。すなわち本発明は、
(1)活物質の表面を炭素繊維で被覆してなる炭素繊維被覆活物質と、結着剤とから成る二次電池用電極、
(2)活物質の表面を被覆する炭素材料が、乾式方法により被覆されたものである上記(1)記載の二次電池用電極、
(3)乾式方法が、高速気流中衝撃法である上記(2)記載の二次電池用電極、
(4)活物質がリチウムコバルト酸化物、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウム鉄酸化物酸化マンガンの少なくとも1種である上記(1)〜(3)のいずれかに記載の二次電池用電極、
(5)活物質100重量部に対して炭素繊維が0.5〜10重量部である上記(1)〜(4)の何れかに記載のリチウム二次電池用電極、
(6)上記(1)〜(5)の何れかに記載の炭素繊維被覆活物質、結着剤及び溶剤を混合し、集電体表面に塗布し、乾燥してなる二次電池用正極、
(7)上記(1)〜(6)の何れかに記載の電極を正極として有する二次電池、
に存する。【0013】
本発明によれば、活物質の表面に炭素繊維が固定されているため、活物質間の導電ネットワークが形成され、活物質への導電性が向上し、従来の方法で活物質と炭素質物質とを攪拌混合した場合に比べ、電池性能が格段に向上する。さらに、炭素繊維により複数の活物質粒子をつなぎ合わせることも可能で長い導電パスが形成される。また、特に高速気流中衝撃法を用いた製造方法によれば、従来に比べて活物質とカーボンブラックに大きな衝撃を加えて添着させるため、活物質からの抵抗の小さい導電パスを形成することができる。
【0014】
さらに、電気負荷の均一性が向上し、リチウムイオンの出入りもしやすく、インピーダンスが非常に低下する。このため、高レートでの電池容量が格段に向上し、サイクル特性も優れている。
【0015】
その上、炭素繊維被覆活物質は、補助導電剤が不要であり、樹脂液への分散が容易なため混合工程が簡便化できる。また、塗料状態での粘度が低下するため、活物質濃度を増加さることができ、電極密度を大きくできる。バインダー樹脂を従来よりも減らすことができ、電極密度を大きくすることが可能で、容量が向上する。さらに塗膜強度も向上する。
【0016】
【発明の実施の形態】
本発明で活物質として用いる化合物は、二次電池用の活物質として公知のものをいずれも用いることができるが、特にリチウム遷移金属酸化物、中でもリチウムコバルト酸化物、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウム鉄酸化物酸化マンガンのいずれかを用いることが望ましい。また、これら遷移金属の一部を他の遷移金属に置換したものを用いることもできる。又、これらを数種類併用することもできる。
【0017】
本発明において活物質の表面を被覆する炭素繊維は、導電性を有し、且つ活物質の表面を被覆できる程度の大きさの炭素材料であれば特に限定されず用いることができる。カーボンナノチューブ等も用いることができる。
【0018】
炭素繊維は活物質同士を電気的に接続する役目を果たす。これにより、大粒子径の活物質同士の接触が不十分であっても、炭素繊維により電気的な接触を補うことができる。ただし、炭素繊維を多量に入れすぎると、正極の密度が低下し、電極を形成することが難しくなるので、混合割合としては、活物質100重量部に対して0.5〜10重量部の範囲とするのが好適である。また、炭素繊維としては例えば黒鉛化した
繊維状の黒鉛を用いるのも好ましい。
【0019】
活物質であるリチウム遷移金属酸化物と炭素繊維の比率はいずれの比率でも処理は可能であるが、活物質100重量部に対して炭素繊維は0.5〜10重量部が好ましく、特に好ましくは2〜15重量部、さらに好ましくは4〜9重量部である。
【0020】
炭素繊維の比率が0.5重量部より小さいと導電性が低くなり電池特性が低下し、炭素繊維を10重量部より多量に入れた場合、活物質比率が低下し電池効率が低下する傾向にある。
【0021】
以上説明した炭素繊維にカーボンブラック、又はグラファイトを混合して用いることができる。特に、炭素繊維にさらに、カーボンブラック及び/又はグラファイトを配合して使用すれば、カーボンブラックは正極活物質を完全に被覆する役目を果たすため、通電性をさらに向上させることができる。この場合、カーボンブラック及び/又はグラファイトを配合する割合も特に限定されないが、上述した炭素繊維による活物質同士の接続効果を十分に発揮するには、炭素繊維100重量部に対し0.1〜1000重量部が好ましく、特に好ましくは2〜100重量部、さらに好ましくは5〜50重量部である。
【0022】
ここで用いられるカーボンブラックは特に制限されないが、導電性の高いものとして、例えばケッチエンブラック、アセチレンブラックが挙げられる。カーボンブラックの粒径、DBP吸油量も特に限定されないが、DBP吸油量が150〜600ml/100g、より好ましくは300〜600ml/100gであるカーボンブラックが好ましい。このようなカーボンブラックは、ストラクチャーが適度に発達しているためリチウムイオンが移動しやすい隙間を形成すると考えられる。カーボンブラックとして2000℃以上で黒鉛化処理を施した黒鉛化品も、導電性が高く好適に用いられる。
【0023】
以上述べたように、本発明に係る二次電池用電極においては、正極活物質の表面が炭素繊維で被覆されている。このため、単に活物質と炭素繊維をそれぞれ単独で混合した場合に比べ、正極の導電性及びリチウムイオン伝導性を大きく向上させることができる。これは電極のインピーダンスがかなり低下することで示される。
【0024】
リチウム遷移金属酸化物等の活物質の表面を炭素繊維で被覆する方法は、活物質と炭素材料とを乾式混合して炭素材料を活物質表面に固定させるのが極めて望ましい。この方法を実施するために、ハイブリダイゼーションシステム(奈良機械製作所製)、コスモス(川崎重工業製)、メカノフュージョンシステム(ホソカワミクロン製)、サーフュージングシステム(日本ニューマチック工業製)メカノミル・スピードニーダー・スピードミル・スピラコーター(岡田精工製)などのいずれの公知の乾式粉体混合機も用いることができる(粉体と工業,19,11,1989参照)。特に高気流中衝撃法であるハイブリダイゼーションシステム(奈良機械製作所製)を用いることが望ましい。
【0025】
ハイブリダイゼーションシステムは、高速回転するローター、ステーター及び循環回路で構成されたハイブリダイザーを主体とした衝撃式粉体混合機によるシステムであり、ハイブリダイザー内に投入された被処理物は分散されながら衝撃力を主体とした圧縮、摩擦、剪断力等の機械的作用をくりかえし受ける。このハイブリダイゼーションシステムによる方法は大きな衝撃を粒子に与える。これは特開平9−92265号公報記載のようなメカノ処理の圧縮せん断応力に比べ、衝撃力は大きなものであり局所的な温度も1000℃程度まで上昇し得るためメカノケミカル反応も生じ得、活物質への炭素繊維の結合をより強固なものにできる利点がある。また、ハイブリダイゼーションシステムによる大きな衝撃力を繰り返し受けることにより活物質の超微粉末が生成するため、この超微粉末が炭素材料に付着して電池性能に寄与し著しく向上させることも推測される。
【0026】
ハイブリダイゼーションシステムによる炭素繊維での活物質表面の被覆方法は特に制限されず、ハイブリダイゼーションシステムによる粉体処理の一般的な手法を用いて実施すればよい。具体的には、炭素繊維及び活物質を装置に仕込み、数分〜十分程度、周速数十〜数百m/s程度で処理を行うことにより、短時間でも容易にリチウム遷移金属酸化物上に炭素材料を固定化することができる。これは特開平9−92265号公報記載のようなメカノ処理による処理が長時間を要するのに比べて非常に短時間での処理が可能になっている。
【0027】
衝撃式粉体混合機で添着する際、活物質と炭素繊維のみでも十分コーティングできるが、別の炭素材料や樹脂や電解質を加えた複合添着膜をつくることもできる。カーボンブラック・炭素繊維・グラファイト・樹脂・電解質の複数層での被覆もできるし、カーボンブラック・炭素繊維・グラファイト・樹脂・電解質の均一混合層をつくることも可能であり、多種多様な組み合わせの被覆物がつくれる。樹脂としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリロニトリル、ポリメタクリル酸メチル等の高分子が挙げられる。
【0028】
また、電解質としては、例えばLiClO、LiAsF、LiPF、LiBF、LiB(C、LiCl、LiBr、LiI、LiCHSO、LiCFSO、LiN(CFSO、LiAlCl等が挙げられる。これにより、多様な正極活物質が設計でき、より高いリチウムイオン導電性や電解液に対するより強い耐性が得られ、電池特性が向上する。また、添着物質の活物質への結合力も上げることができる。
【0029】
(電極の製造)
以上説明した正極用材料である炭素繊維で被覆した活物質に、結着剤(バインダー樹脂)であるポリふっ化ビニリデン(PVDF)と混合する。
結着剤の配合量は、炭素繊維被覆活物質100重量部に対して0.1〜30重量部、好ましくは0.5〜10重量部、さらに好ましくは1〜5重量部である。本発明の炭素繊維被覆した活物質を用いることにより、結着剤を従来よりも減らすことができるため、上記の配合量で適切である。
【0030】
さらに、必要に応じて非水系の分散媒を添加する。ここで用いられる分散媒としてはN―メチル―2−ピロリドン(NMP)が代表的であり、最も好ましく用いられる。その他、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホアミド等の極性溶媒を用いてもよい。分散媒の添加量は、活物質と結着剤の合計100重量部に対し、通常20〜30重量部を添加する。
【0031】
以上説明した炭素繊維被覆活物質、結着剤及び必要に応じて分散媒を混合して結着剤を溶解させたペーストとする。ペーストの調製は、上記各成分を乳鉢、撹拌翼を有する撹拌機(例えばアンカー型、ディスクタービン型、プロペラ型、ディゾルバー型、ディスプロ型)を用いて混合溶解することにより行うことができる。
【0032】
こうして得られたペーストを銅箔、リチウム箔、ステンレス板等の集電体表面に塗布し、乾燥することによりリチウム二次電池用電極を製造することができる。また、以上説明した炭素繊維被覆活物質、結着剤及び必要に応じて分散媒の混合物に圧力をかけてペレット化して、二次電池用電極を製造することもできる。
【0033】
得られた電極は、例えばアプリケーターロール等のローラコーティング、スクリーンコーティング、ドクターブレード法、スピンコーティング、バーコーダー等の手段を用いて均一な厚みに調整し、所定の形状に加工して用いることができる。
【0034】
以上説明した炭素繊維被覆活物質を用いて電極を形成することにより、補助導電剤が不要であり、このため樹脂液への分散が容易なため混合工程が大幅に簡便化できる上、分散状態が均一且つ安定性に優れたものとすることができる。また、結着剤を従来よりも減らすことができるため、電池容量が向上する。さらに塗膜強度も向上する。
【0035】
また、本発明の二次電池用電極は以下に述べるように様々の組成の電池に使用できる。
【0036】
電池化する際の負極活物質としては、リチウムイオン2次電池の負極活物質として公知の何れの材料も使用でき、例えば、天然黒鉛、コークスやガラス状炭素等の炭素材料、ケイ素、金属リチウム、及びアルミニウム等の金属リチウムと合金を形成可能な金属等を挙げることができる。
【0037】
本発明のリチウム二次電池用電極を電池化する際の非水電解質は、有機溶媒にリチウム化合物を溶解させた非水電解液、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させた高分子固体電解質を用いることができる。非水電解液は、有機溶媒と電解質とを適宜組み合わせて調整されるが、これら有機溶媒や電解質はこの種の電池に用いられるものであればいずれも使用可能である。
【0038】
有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタンメチルフォルメイト、ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソフラン、4−メチル−1,3−ジオキソフラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロペオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、1,2−ジクロロエタン、4−メチル−2−ペンタノン、1,4−ジオキサン、アニソール、ジグライム、ジメチルホルムアミド、ジメチルスルホキシド等である。これらの溶媒を2種以上併用することもできる。
【0039】
また、本発明のリチウム二次電池用電極を電池化する際の電解質としては、例えばLiClO、LiAsF、LiPF、LiBF、LiB(C、LiCl、LiBr、LiI、LiCHSO、LiCFSO、LiN(CFSO、LiAlCl等が挙げられる。これらを単独でも、2種以上を併用することもできる。
【0040】
本発明のリチウム二次電池用電極はリチウムゲルポリマー電池へ適用できる。電池化する際の高分子固体電解質としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリロニトリル、ポリメタクリル酸メチル等の高分子に上記非水電解液を保持させ上記高分子を可塑化したものが挙げられる。
【0041】
本発明のリチウム二次電池用電極は全固体型リチウムゲルポリマー電池へも適用できる。電池化する際の高分子固体電解質としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリロニトリル、ポリメタクリル酸メチル等の高分子に上記非水電解質を保持させたものが挙げられる。
【0042】
【実施例】
(実施例1)
以下、実施例により具体的に説明する。活物質としてはコバルト酸リチウムである「セルシードC−5」(日本化学工業社製)を用いた。炭素繊維としてはVGCF(黒鉛化品、繊維長10〜20μm、繊維径0.15μm、アスペクト比10〜500、昭和電工(株)製)を用いた。
【0043】
〔炭素繊維被覆コバルト酸リチウムの製造〕
上記コバルト酸リチウムと炭素繊維を98対2の重量比で、ハイブリダイザー(奈良機械製作所製)にて、高速気流中で衝撃を加え処理した。処理条件は、周速100m/s、処理時間3分で行った。得られたものを電子顕微鏡観察したところ、カーボンブラックが活物質表面を完全に被覆した生成物が得られたことを確認できた。
【0044】
〔電池の作製及び性能評価〕
この、炭素繊維で被覆されたコバルト酸リチウムを用いて、下記の方法でリチウム二次電池を作製して、その交流インピーダンス、各放電電流レートにおける放電容量、サイクル特性を評価した。
【0045】
正極の作製には、上記の炭素繊維で被覆されたコバルト酸リチウムを97重量部、バインダーとしてポリふっ化ビニリデン(KFポリマー1100、呉羽化学工業(株))を3重量部、また分散媒であるn−メチル−2−ピロリドンを、スラリー全体の固形分を60〜80重量部となるように加え、ホモジナイザーにより攪拌・混合し、正極ペーストとした。その正極ペーストをアルミ箔に、ドクターブレードにより塗布し、真空乾燥したものを正極とした。
【0046】
上記正極を直径12mmの円形に切り取り、負極として金属リチウム箔(厚さ0.2mm、旭東金属工業)、セパレーターとしてガラス繊維濾紙(GA−100、アドバンテック)を用い、正極と負極には、それぞれニッケルリード線を取り付けた。両外側から2枚のポリプロピレン板で挟み込み固定した後、これをアルゴンガス雰囲気のグローブボックス中で、電解液の入ったガラスセルに浸し、栓をしたものを評価セルとした。なお、支持塩1M−LiClOを添加したプロピレンカーボネートを電解液として用いた。
【0047】
電池性能はサイクル特性、ハイレート特性、インピーダンスにより評価し、サイクル特性およびハイレート特性については充放電試験装置(SM−8、北斗電工(株))を用いて、また交流インピーダンスについてはポテンショガルバノスタット2000(東方技研)、周波数応答分析機s−5720c(NFElectronic Indusuruments)をパーソナルコンピューターにつなぎ、ケミカルインピーダンス測定プログラム(NFElectronic Indusuruments)を用いて測定した。
【0048】
充放電測定条件は、充電は、充電レート0.1Cで、定電流−定電圧充電(CCCV−4.3V)を行い、放電は、放電レート0.5〜2.0Cで、3.1Vカットで行った。また交流インピーダンス測定条件は、充電状態で周波数範囲100kHz〜1mHz、印可電圧±5mVで行った。
【0049】
(比較例1)
炭素被覆コバルト酸リチウムの代わりに、炭素被覆処理を行っていないリチウムコバルト酸化物である「セルシードC−5」(日本化学工業社製)92重量部、カーボンブラックとして「ケッチエンブラックECP」(ケッチエンブラックインターナショナル(株)製)5重量部を用いた以外は、実施例1の〔電池の作製及び性能評価〕と同様にして電池を作製し、評価を行った。
【0050】
表−1に実施例1及び比較例1で得られた電池の交流インピーダンス、ハイレート特性、サイクル特性の結果を示す。
【0051】
【表1】

Figure 2004186075
【0052】
表−1中、交流インピーダンスは半円の実軸との交点の値を示す。サイクル特性は、1サイクル目の活物質当たりの放電容量を100とした場合の、20サイクル後の放電容量の維持率(百分率)を示す。また放電容量は、各放電電流レートでの活物質当たりの放電容量(mAh/g)の実測値を示す。
なお、インピーダンスに関しては、値が小さい方が性能が良く、またサイクル特性および放電容量に関しては、値が大きい方が性能が良い。
【0053】
【発明の効果】
本発明では、新規な炭素繊維被覆活物質を開発することができた。これを用いた2次電池は、従来の方法で活物質と炭素質物質とを攪拌混合した場合に比べ、高レートでの容量が格段に向上する。またサイクル特性が良好でインピーダンスも小さい。補助導電剤が不要でハンドリングがよくなるので、混合工程が簡便化できる。塗膜中での各材料の分布の均一性が向上し、電池性能のロットばらつきを低減し一定した品質の電極及び電池を作製することも容易となる。
さらに、塗料状態での粘度を低下させることもできるため、活物質濃度を増加させることもでき、電極密度の増加につながる。また、従来導電材粉末との結着にも一部使用されていたバインダー樹脂(結着剤)が不要になるため、バインダー樹脂量を低減することもでき、放電電流レートが高い条件で従来より優れた放電容量を示すことができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a secondary battery electrode using an active material whose surface is coated with carbon fibers, and a secondary battery using the same.
[0002]
[Prior art]
With the widespread use of mobile phones and notebook computers, secondary batteries such as lithium secondary batteries have attracted attention and demand has been increasing. Current lithium secondary batteries use positive and negative electrodes that are coated with a mixture of an electrode active material, a binder, and a conductive material on a strip of metal foil in order to increase the efficiency of the battery reaction by increasing the electrode area. After these are wound together with the separator, they are housed in a battery can.
[0003]
Generally, a paint for a positive electrode is prepared by mixing a positive electrode active material of a lithium transition metal oxide, a binder, a conductive material, and the like with a stirrer and forming a paste. As the conductive material, a carbonaceous material such as carbon black is used.
[0004]
[Problems to be solved by the invention]
Since the active material alone has poor conductivity, a conductive material is added to improve the electron conductivity between the active materials. However, when producing an electrode, the conductive materials carbon black and graphite are fine particles and are difficult to disperse uniformly, and when these are mixed with the metal oxide powder as the active material, the conductive material forms aggregates. Will form. Along with this, there is a locally inferior conductivity portion in the electrode, and electrons are not sufficiently transferred, so that the active material is not effectively used and as a result, the discharge capacity is low. It is considered to be.
[0005]
In addition, this leads to an increase in battery quality variation and a decrease in yield. In particular, recently, a plurality of batteries are connected in series / parallel for use in automobiles and personal computers as battery packs, so that the level of quality control requirements is increasing.
[0006]
In recent years, in automobiles and personal computers, the need for battery performance at high rates, such as rapid charging and rapid discharging, has been greatly increased. However, it is generally difficult to obtain a high charge / discharge capacity at a high rate.
[0007]
In addition, a decrease in the conductivity of the active material easily causes a side reaction of the electrolytic solution, which causes cycle deterioration. In particular, lithium manganese oxide, lithium nickel oxide, lithium manganese oxide, and the like have low stability.
In order to solve such a problem, for example, means for coating an active material with carbon black has been proposed as described in Patent Documents 1 and 2. However, in this treatment, since the adhesion between the active material and the carbon black is weak, the capacity is maximum at a coverage of about 30%, and sufficient battery performance cannot be obtained. In addition, the processing time is extremely long with several tens of minutes, and the productivity is low.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-92265 [Patent Document 2]
JP-A-11-154515
An object of the present invention is to provide a positive electrode for a secondary battery that improves dispersibility of an active material and carbon, has small variation in quality of a battery, has a good yield, has a high discharge capacity, and has a small cycle deterioration. I do. In particular, an object is to obtain a high charge / discharge capacity at a high rate.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object. As a result, the surprising finding that, by using an active material having a specific surface state, it is possible to exhibit extremely excellent battery characteristics without the need for an auxiliary conductive material, and further to bring the active material into such a state It is extremely effective to perform dry mixing using the binding between powders of the active material and carbon fiber, and it is also possible to perform processing efficiently by performing dry mixing in a specific method. The present inventors have found that the properties of the processed product obtained at the same time can be excellent, and arrived at the present invention.
[0011]
That is, in the above-described prior art, it is recognized that if the ratio of coating the surface of the active material with the carbon material is large, the battery performance is rather deteriorated. For this reason, it is most preferable that the coating cover about 30% of the surface, and it should be limited to 80% at the maximum. It is stated that an auxiliary conductive agent should be used in order to improve battery performance (Japanese Patent Application Laid-Open Nos. 9-92,265 and 2001-297,771).
[0012]
In contrast, the present inventors have found that when the surface of the active material, especially the lithium transition metal oxide, is covered with carbon fibers, the battery characteristics are significantly improved, and the auxiliary conductive agent is not required. . That is, the present invention
(1) a secondary battery electrode comprising: a carbon fiber-coated active material obtained by coating the surface of an active material with carbon fibers; and a binder.
(2) The electrode for a secondary battery according to the above (1), wherein the carbon material coating the surface of the active material is coated by a dry method.
(3) The electrode for a secondary battery according to the above (2), wherein the dry method is a high-speed airflow impact method,
(4) The secondary battery according to any one of (1) to (3), wherein the active material is at least one of lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide, and lithium iron oxide manganese oxide. Electrodes,
(5) The electrode for a lithium secondary battery according to any one of (1) to (4), wherein the carbon fiber is 0.5 to 10 parts by weight with respect to 100 parts by weight of the active material.
(6) A positive electrode for a secondary battery obtained by mixing the carbon fiber-coated active material according to any one of the above (1) to (5), a binder, and a solvent, applying the mixture on the surface of a current collector, and drying.
(7) A secondary battery having the electrode according to any one of (1) to (6) as a positive electrode,
Exists. [0013]
According to the present invention, since the carbon fibers are fixed on the surface of the active material, a conductive network between the active materials is formed, the conductivity to the active material is improved, and the active material and the carbonaceous material are formed by a conventional method. And the battery performance is remarkably improved as compared with the case of mixing and stirring. Furthermore, a plurality of active material particles can be joined by carbon fibers, and a long conductive path is formed. In addition, according to the manufacturing method using the high-speed airflow impact method, a conductive path having low resistance from the active material can be formed because the active material and the carbon black are applied with a large impact compared to the conventional method. it can.
[0014]
Further, the uniformity of the electric load is improved, lithium ions can easily enter and exit, and the impedance is greatly reduced. Therefore, the battery capacity at a high rate is significantly improved, and the cycle characteristics are also excellent.
[0015]
In addition, the carbon fiber-coated active material does not require an auxiliary conductive agent, and can be easily dispersed in a resin solution, so that the mixing step can be simplified. Further, since the viscosity in the paint state is reduced, the concentration of the active material can be increased, and the electrode density can be increased. The amount of binder resin can be reduced as compared with the conventional case, the electrode density can be increased, and the capacity can be improved. Further, the strength of the coating film is improved.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As the compound used as the active material in the present invention, any of those known as an active material for a secondary battery can be used. In particular, lithium transition metal oxides, especially lithium cobalt oxide, lithium manganese oxide, lithium nickel It is desirable to use either oxide or lithium iron oxide manganese oxide. In addition, those in which part of these transition metals is replaced with another transition metal can also be used. These can be used in combination of several types.
[0017]
In the present invention, the carbon fiber that covers the surface of the active material can be used without particular limitation as long as it is a carbon material having conductivity and a size that can cover the surface of the active material. Carbon nanotubes and the like can also be used.
[0018]
Carbon fibers serve to electrically connect active materials. Thereby, even if the contact between the active materials having a large particle diameter is insufficient, the electrical contact can be supplemented by the carbon fiber. However, if too much carbon fiber is added, the density of the positive electrode decreases and it becomes difficult to form an electrode. Therefore, the mixing ratio is in the range of 0.5 to 10 parts by weight with respect to 100 parts by weight of the active material. It is preferred that It is also preferable to use, for example, graphitized fibrous graphite as the carbon fiber.
[0019]
The ratio of the lithium transition metal oxide as the active material and the carbon fiber can be treated at any ratio, but the carbon fiber is preferably 0.5 to 10 parts by weight, and particularly preferably 100 parts by weight of the active material. It is 2 to 15 parts by weight, more preferably 4 to 9 parts by weight.
[0020]
If the carbon fiber ratio is less than 0.5 parts by weight, the conductivity is reduced and the battery characteristics are reduced. If the carbon fiber is added in an amount larger than 10 parts by weight, the active material ratio is reduced and the battery efficiency tends to be reduced. is there.
[0021]
The carbon fibers described above can be used by mixing carbon black or graphite. In particular, when carbon black and / or graphite is further blended and used in the carbon fiber, the carbon black plays a role of completely covering the positive electrode active material, so that the electric conductivity can be further improved. In this case, the mixing ratio of carbon black and / or graphite is not particularly limited. However, in order to sufficiently exert the connection effect between the active materials by the carbon fibers described above, 0.1 to 1000 parts by weight based on 100 parts by weight of the carbon fibers. The amount is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight.
[0022]
The carbon black used here is not particularly limited, but examples of high conductivity include ketchen black and acetylene black. The particle size of the carbon black and the DBP oil absorption are not particularly limited, but carbon black having a DBP oil absorption of 150 to 600 ml / 100 g, more preferably 300 to 600 ml / 100 g, is preferred. Such carbon black is considered to form a gap in which lithium ions can easily move because the structure is appropriately developed. Graphitized products which have been subjected to a graphitization treatment at 2000 ° C. or higher as carbon black are also preferably used because of their high conductivity.
[0023]
As described above, in the electrode for a secondary battery according to the present invention, the surface of the positive electrode active material is coated with carbon fibers. For this reason, the conductivity of the positive electrode and the lithium ion conductivity can be greatly improved as compared with the case where the active material and the carbon fiber are simply mixed alone. This is indicated by a significant drop in electrode impedance.
[0024]
In a method of coating the surface of an active material such as a lithium transition metal oxide with carbon fibers, it is extremely desirable to dry-mix the active material and the carbon material to fix the carbon material on the active material surface. To implement this method, a hybridization system (manufactured by Nara Kikai Seisakusho), a cosmos (manufactured by Kawasaki Heavy Industries), a mechanofusion system (manufactured by Hosokawa Micron), a surf fusing system (manufactured by Nippon Pneumatic), a mechano mill, a speed kneader, and a speed mill Any known dry powder mixer such as Spira Coater (manufactured by Okada Seiko) can be used (see Powder and Industry, 19, 11, 1989). In particular, it is desirable to use a hybridization system (manufactured by Nara Machinery Co., Ltd.), which is a high airflow impact method.
[0025]
The hybridization system is a system using an impact-type powder mixer mainly composed of a hybridizer composed of a rotor, a stator, and a circulation circuit that rotate at a high speed. It repeatedly receives mechanical actions such as compression, friction, and shearing force mainly by force. This hybridization system method gives a large impact to the particles. This is because compared with the compressive shear stress of the mechano treatment described in JP-A-9-92265, the impact force is large, and the local temperature can rise to about 1000 ° C., so that a mechanochemical reaction can also occur, and There is an advantage that the bonding of the carbon fiber to the substance can be made stronger. In addition, since an ultrafine powder of the active material is generated by repeatedly receiving a large impact force by the hybridization system, it is presumed that the ultrafine powder adheres to the carbon material and contributes to the battery performance to significantly improve the performance.
[0026]
The method of coating the surface of the active material with the carbon fibers by the hybridization system is not particularly limited, and may be carried out using a general method of powder treatment by the hybridization system. Specifically, a carbon fiber and an active material are charged into an apparatus, and a treatment is performed at a peripheral speed of about several tens to several hundreds m / s for a few minutes to a sufficient degree, so that a lithium transition metal oxide can be easily formed in a short time. The carbon material can be immobilized on the substrate. This makes it possible to perform the processing in a very short time as compared with the case where the processing by the mechano processing as described in JP-A-9-92265 requires a long time.
[0027]
When applying with an impact-type powder mixer, the active material and carbon fiber alone can be sufficiently coated, but a composite impregnated film to which another carbon material, resin or electrolyte is added can also be formed. It is possible to coat with multiple layers of carbon black, carbon fiber, graphite, resin and electrolyte, and it is also possible to create a uniform mixed layer of carbon black, carbon fiber, graphite, resin and electrolyte, and to cover a wide variety of combinations I can make things. Examples of the resin include polymers such as polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, polyethylene oxide, polypropylene oxide, polyacrylonitrile, and polymethyl methacrylate.
[0028]
Examples of the electrolyte include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiI, LiCH 3 SO 3 , LiCF 3 SO 3 , and LiN (CF 3 SO 2). ) 2 , LiAlCl 4 and the like. Thereby, various positive electrode active materials can be designed, higher lithium ion conductivity and stronger resistance to an electrolyte can be obtained, and battery characteristics can be improved. Further, the bonding force of the attached substance to the active material can be increased.
[0029]
(Production of electrodes)
The active material covered with the carbon fiber as the positive electrode material described above is mixed with polyvinylidene fluoride (PVDF) as a binder (binder resin).
The compounding amount of the binder is 0.1 to 30 parts by weight, preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight based on 100 parts by weight of the carbon fiber-coated active material. By using the carbon fiber-coated active material of the present invention, the amount of the binder can be reduced as compared with the conventional one, and thus the above-mentioned amount is appropriate.
[0030]
Further, a non-aqueous dispersion medium is added as required. As the dispersion medium used here, N-methyl-2-pyrrolidone (NMP) is typical, and most preferably used. In addition, a polar solvent such as dimethylformamide, dimethylacetamide, and dimethylsulfamide may be used. The addition amount of the dispersion medium is usually 20 to 30 parts by weight based on 100 parts by weight of the total of the active material and the binder.
[0031]
The carbon fiber-coated active material described above, the binder and, if necessary, the dispersion medium are mixed to form a paste in which the binder is dissolved. The paste can be prepared by mixing and dissolving the above components using a mortar and a stirrer having a stirring blade (for example, an anchor type, a disk turbine type, a propeller type, a dissolver type, a dispro type).
[0032]
An electrode for a lithium secondary battery can be manufactured by applying the paste thus obtained to the surface of a current collector such as a copper foil, a lithium foil, or a stainless steel plate, and drying. In addition, the mixture of the carbon fiber-coated active material, the binder, and the dispersion medium, if necessary, may be pressure-pelletized to produce a secondary battery electrode.
[0033]
The obtained electrode is adjusted to a uniform thickness using a means such as roller coating such as an applicator roll, screen coating, a doctor blade method, spin coating, and a bar coder, and can be used after being processed into a predetermined shape. .
[0034]
By forming an electrode using the above-described carbon fiber-coated active material, an auxiliary conductive agent is not required, and therefore the mixing step can be greatly simplified because the dispersion in the resin liquid is easy. It can be uniform and excellent in stability. Further, since the amount of the binder can be reduced as compared with the related art, the battery capacity is improved. Further, the strength of the coating film is improved.
[0035]
Further, the electrode for a secondary battery of the present invention can be used for batteries having various compositions as described below.
[0036]
As the negative electrode active material when forming a battery, any material known as a negative electrode active material of a lithium ion secondary battery can be used, for example, natural graphite, carbon materials such as coke and glassy carbon, silicon, metal lithium, And a metal capable of forming an alloy with metallic lithium such as aluminum.
[0037]
The non-aqueous electrolyte when the lithium secondary battery electrode of the present invention is made into a battery is a non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a solid solution or a lithium compound in a polymer. A polymer solid electrolyte holding an organic solvent can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery.
[0038]
As the organic solvent, for example, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane methylformate, butyrolactone, tetrahydrofuran, 2-methyl Tetrahydrofuran, 1,3-dioxofuran, 4-methyl-1,3-dioxofuran, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propeonitrile, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, 4-methyl- 2-pentanone, 1,4-dioxane, anisole, diglyme, dimethylformamide, dimethylsulfoxide and the like. Two or more of these solvents can be used in combination.
[0039]
Examples of the electrolyte for converting the electrode for a lithium secondary battery of the present invention into a battery include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiI, and LiCH. 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiAlCl 4 and the like. These may be used alone or in combination of two or more.
[0040]
The electrode for a lithium secondary battery of the present invention can be applied to a lithium gel polymer battery. Examples of the polymer solid electrolyte used in the battery include, for example, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polymethyl methacrylate, etc. One obtained by plasticizing the above-mentioned polymer while holding an electrolytic solution is exemplified.
[0041]
The electrode for a lithium secondary battery of the present invention can also be applied to an all-solid-state lithium gel polymer battery. Examples of the polymer solid electrolyte used in the battery include, for example, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polymethyl methacrylate, etc. One holding an electrolyte is mentioned.
[0042]
【Example】
(Example 1)
Hereinafter, specific examples will be described. As an active material, "Cell Seed C-5" (manufactured by Nippon Chemical Industry Co., Ltd.), which is lithium cobalt oxide, was used. As the carbon fiber, VGCF (graphitized product, fiber length 10 to 20 μm, fiber diameter 0.15 μm, aspect ratio 10 to 500, manufactured by Showa Denko KK) was used.
[0043]
[Production of carbon fiber coated lithium cobaltate]
The lithium cobaltate and the carbon fiber were treated by applying a shock in a high-speed airflow with a hybridizer (manufactured by Nara Machinery Co., Ltd.) at a weight ratio of 98: 2. The processing conditions were a peripheral speed of 100 m / s and a processing time of 3 minutes. Observation of the obtained product by an electron microscope confirmed that a product in which carbon black completely covered the active material surface was obtained.
[0044]
(Production and performance evaluation of battery)
Using this lithium cobaltate coated with carbon fibers, a lithium secondary battery was produced by the following method, and its AC impedance, discharge capacity at each discharge current rate, and cycle characteristics were evaluated.
[0045]
For the preparation of the positive electrode, 97 parts by weight of the lithium cobalt oxide coated with the carbon fiber described above, 3 parts by weight of polyvinylidene fluoride (KF polymer 1100, Kureha Chemical Industry Co., Ltd.) as a binder, and a dispersion medium were used. n-Methyl-2-pyrrolidone was added so that the solid content of the entire slurry was 60 to 80 parts by weight, and the mixture was stirred and mixed with a homogenizer to obtain a positive electrode paste. The positive electrode paste was applied to an aluminum foil with a doctor blade, and dried under vacuum to obtain a positive electrode.
[0046]
The positive electrode was cut into a circular shape with a diameter of 12 mm. Metallic lithium foil (0.2 mm thick, Asahi Metal Industry) was used as the negative electrode, and glass fiber filter paper (GA-100, Advantech) was used as the separator. The lead wire was attached. After sandwiching and fixing between two polypropylene plates from both outer sides, this was immersed in a glass cell containing an electrolytic solution in a glove box in an argon gas atmosphere, and the stopper was used as an evaluation cell. In addition, propylene carbonate to which 1M-LiClO 4 of a supporting salt was added was used as an electrolytic solution.
[0047]
The battery performance was evaluated based on cycle characteristics, high-rate characteristics, and impedance. The cycle characteristics and high-rate characteristics were measured using a charge / discharge test device (SM-8, Hokuto Denko Co., Ltd.). (Toho Giken), a frequency response analyzer s-5720c (NFE Electronic Instruments) was connected to a personal computer, and measurement was carried out using a chemical impedance measurement program (N Flectron Instruments).
[0048]
The charge / discharge measurement conditions are as follows: charge is constant current-constant voltage charge (CCV-4.3 V) at a charge rate of 0.1 C, and discharge is 3.1 V cut at a discharge rate of 0.5 to 2.0 C. I went in. The AC impedance was measured in a charged state at a frequency range of 100 kHz to 1 mHz and an applied voltage of ± 5 mV.
[0049]
(Comparative Example 1)
Instead of carbon-coated lithium cobalt oxide, 92 parts by weight of “Cellseed C-5” (manufactured by Nippon Chemical Industry Co., Ltd.), which is a lithium cobalt oxide not subjected to carbon coating, and “Ketchenblack ECP” (Ketch A battery was prepared and evaluated in the same manner as in [Production of battery and evaluation of performance] in Example 1 except that 5 parts by weight of Enblack International Co., Ltd. was used.
[0050]
Table 1 shows the results of the AC impedance, high rate characteristics, and cycle characteristics of the batteries obtained in Example 1 and Comparative Example 1.
[0051]
[Table 1]
Figure 2004186075
[0052]
In Table 1, the AC impedance indicates the value of the intersection of the semicircle with the real axis. The cycle characteristics indicate the maintenance rate (percentage) of the discharge capacity after 20 cycles, where the discharge capacity per active material in the first cycle is 100. The discharge capacity indicates an actually measured value of the discharge capacity (mAh / g) per active material at each discharge current rate.
The smaller the value of the impedance, the better the performance, and the larger the value of the cycle characteristic and the discharge capacity, the better the performance.
[0053]
【The invention's effect】
In the present invention, a new carbon fiber-coated active material has been developed. In a secondary battery using this, the capacity at a high rate is remarkably improved as compared with the case where an active material and a carbonaceous material are mixed by a conventional method. Also, the cycle characteristics are good and the impedance is small. Since the auxiliary conductive agent is not required and the handling is improved, the mixing step can be simplified. The uniformity of the distribution of each material in the coating film is improved, the lot variation in battery performance is reduced, and it becomes easy to produce electrodes and batteries of constant quality.
Furthermore, since the viscosity in the paint state can be reduced, the concentration of the active material can be increased, which leads to an increase in the electrode density. In addition, since a binder resin (binder), which has been partially used in the past for binding with the conductive material powder, is not required, the amount of the binder resin can be reduced, and the discharge current rate is higher than in the conventional condition. Excellent discharge capacity can be exhibited.

Claims (7)

活物質の表面を炭素繊維で被覆してなる炭素繊維被覆活物質と、結着剤とから成る二次電池用電極。An electrode for a secondary battery comprising a carbon fiber-coated active material obtained by coating the surface of an active material with carbon fibers, and a binder. 活物質の表面を被覆する炭素材料が、乾式方法により被覆されたものである請求項1記載の二次電池用電極。The electrode for a secondary battery according to claim 1, wherein the carbon material coating the surface of the active material is coated by a dry method. 乾式方法が、高速気流中衝撃法である請求項2記載の二次電池用電極。3. The electrode for a secondary battery according to claim 2, wherein the dry method is a high-speed airflow impact method. 活物質がリチウムコバルト酸化物、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウム鉄酸化物酸化マンガンの少なくとも1種である請求項1〜3のいずれかに記載の二次電池用電極。4. The electrode for a secondary battery according to claim 1, wherein the active material is at least one of lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide, and lithium iron oxide manganese oxide. 活物質100重量部に対して炭素繊維が0.5〜10重量部である請求項1〜4の何れかに記載のリチウム二次電池用電極。The electrode for a lithium secondary battery according to any one of claims 1 to 4, wherein the carbon fiber is 0.5 to 10 parts by weight based on 100 parts by weight of the active material. 請求項1〜5の何れかに記載の炭素繊維被覆活物質、結着剤及び溶剤を混合し、集電体表面に塗布し、乾燥してなる二次電池用正極。A positive electrode for a secondary battery, comprising: mixing the carbon fiber-coated active material according to claim 1, a binder, and a solvent, applying the mixture to a surface of a current collector, and drying the mixture. 請求項1〜6の何れかに記載の電極を正極として有する二次電池。A secondary battery having the electrode according to claim 1 as a positive electrode.
JP2002353815A 2002-12-05 2002-12-05 Electrode for secondary battery and secondary battery using this Pending JP2004186075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353815A JP2004186075A (en) 2002-12-05 2002-12-05 Electrode for secondary battery and secondary battery using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353815A JP2004186075A (en) 2002-12-05 2002-12-05 Electrode for secondary battery and secondary battery using this

Publications (1)

Publication Number Publication Date
JP2004186075A true JP2004186075A (en) 2004-07-02

Family

ID=32755013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353815A Pending JP2004186075A (en) 2002-12-05 2002-12-05 Electrode for secondary battery and secondary battery using this

Country Status (1)

Country Link
JP (1) JP2004186075A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019148A1 (en) * 2004-08-16 2006-02-23 Showa Denko K.K. Positive electrode for a lithium battery and lithium battery employing the same
JP2006164859A (en) * 2004-12-10 2006-06-22 Shin Kobe Electric Mach Co Ltd Positive electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2007048692A (en) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd Lithium secondary battery cathode material, cathode plate for lithium secondary battery, and lithium secondary battery using this
WO2008081944A1 (en) 2006-12-28 2008-07-10 Gs Yuasa Corporation Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
JP2008277128A (en) * 2007-04-27 2008-11-13 Toyota Motor Corp Electrode for secondary battery, its manufacturing method, and secondary battery
JP2009193744A (en) * 2008-02-13 2009-08-27 Sony Corp Positive electrode and nonaqueous electrolyte battery
WO2009105863A1 (en) 2008-02-28 2009-09-03 Hydro-Quebec Composite electrode material
KR101155919B1 (en) 2010-08-06 2012-06-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2012086976A2 (en) * 2010-12-22 2012-06-28 Hanwha Chemical Corporation A composite comprising an electrode-active transition metal compound and a fibrous carbon material, and a method for preparing the same
JP2013065482A (en) * 2011-09-20 2013-04-11 Hitachi Ltd Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module
JP2013127872A (en) * 2011-12-16 2013-06-27 Samsung Sdi Co Ltd Positive electrode for secondary battery, and secondary battery
US8647777B2 (en) 2005-10-14 2014-02-11 Gs Yuasa International Ltd. Mixed material of lithium iron phosphate and carbon, electrode containing same, battery comprising such electrode, method for producing such mixed material, and method for producing battery
WO2015083262A1 (en) * 2013-12-05 2015-06-11 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
US9136563B2 (en) 2010-02-09 2015-09-15 Bae Systems Plc Rechargeable batteries
US9240596B2 (en) 2008-07-28 2016-01-19 Hydro-Quebec Composite electrode material
JP2017054712A (en) * 2015-09-10 2017-03-16 三洋化成工業株式会社 Lithium ion battery
US11380885B2 (en) 2019-09-13 2022-07-05 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US11462730B2 (en) 2019-09-13 2022-10-04 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
JP7457228B1 (en) 2023-06-30 2024-03-28 artience株式会社 Method for manufacturing composite for secondary battery electrode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040912A (en) * 1996-07-23 1998-02-13 Alps Electric Co Ltd Battery
JPH11329438A (en) * 1998-05-08 1999-11-30 Nec Corp Electrode for battery and secondary battery by using it
JPH11345607A (en) * 1998-06-03 1999-12-14 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2000133245A (en) * 1998-10-29 2000-05-12 Sanyo Electric Co Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this as positive electrode
JP2000208147A (en) * 1999-01-11 2000-07-28 Toyota Motor Corp Lithium ion secondary battery
JP2001068096A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
JP2001222994A (en) * 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery
JP2002231222A (en) * 2001-01-31 2002-08-16 Sanyo Electric Co Ltd Lithium secondary battery positive electrode, its manufacturing method, and lithium secondary battery using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040912A (en) * 1996-07-23 1998-02-13 Alps Electric Co Ltd Battery
JPH11329438A (en) * 1998-05-08 1999-11-30 Nec Corp Electrode for battery and secondary battery by using it
JPH11345607A (en) * 1998-06-03 1999-12-14 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2000133245A (en) * 1998-10-29 2000-05-12 Sanyo Electric Co Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this as positive electrode
JP2000208147A (en) * 1999-01-11 2000-07-28 Toyota Motor Corp Lithium ion secondary battery
JP2001068096A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
JP2001222994A (en) * 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery
JP2002231222A (en) * 2001-01-31 2002-08-16 Sanyo Electric Co Ltd Lithium secondary battery positive electrode, its manufacturing method, and lithium secondary battery using the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019148A1 (en) * 2004-08-16 2006-02-23 Showa Denko K.K. Positive electrode for a lithium battery and lithium battery employing the same
US20070202410A1 (en) * 2004-08-16 2007-08-30 Showa Denko K.K. Positive Electrode For A Lithium Battery And Lithium Battery Employing The Same
US9531008B2 (en) 2004-08-16 2016-12-27 Showa Denko K.K. Positive electrode for a lithium battery and lithium battery employing the same
JP2006164859A (en) * 2004-12-10 2006-06-22 Shin Kobe Electric Mach Co Ltd Positive electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2007048692A (en) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd Lithium secondary battery cathode material, cathode plate for lithium secondary battery, and lithium secondary battery using this
US8647777B2 (en) 2005-10-14 2014-02-11 Gs Yuasa International Ltd. Mixed material of lithium iron phosphate and carbon, electrode containing same, battery comprising such electrode, method for producing such mixed material, and method for producing battery
WO2008081944A1 (en) 2006-12-28 2008-07-10 Gs Yuasa Corporation Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
US8771877B2 (en) 2006-12-28 2014-07-08 Gs Yuasa International Ltd. Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for producing the same
JP2008277128A (en) * 2007-04-27 2008-11-13 Toyota Motor Corp Electrode for secondary battery, its manufacturing method, and secondary battery
US9537150B2 (en) 2007-04-27 2017-01-03 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery and production process for the same and secondary battery
EP2144315A1 (en) * 2007-04-27 2010-01-13 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery, its manufacturing method, and secondary battery
EP2144315A4 (en) * 2007-04-27 2014-06-04 Toyota Motor Co Ltd Electrode for secondary battery, its manufacturing method, and secondary battery
JP2009193744A (en) * 2008-02-13 2009-08-27 Sony Corp Positive electrode and nonaqueous electrolyte battery
KR20100128314A (en) * 2008-02-28 2010-12-07 하이드로-퀘벡 Composite electrode material
WO2009105863A1 (en) 2008-02-28 2009-09-03 Hydro-Quebec Composite electrode material
US9905839B2 (en) 2008-02-28 2018-02-27 Hydro-Quebec Composite electrode material
JP2016225305A (en) * 2008-02-28 2016-12-28 ハイドロ−ケベック Composite electrode material
CN101990719A (en) * 2008-02-28 2011-03-23 魁北克水电公司 Composite electrode material
KR101594533B1 (en) * 2008-02-28 2016-02-16 하이드로-퀘벡 Composite electrode material
US8652361B2 (en) 2008-02-28 2014-02-18 Hydro-Quebec Composite electrode material
JP2011513900A (en) * 2008-02-28 2011-04-28 ハイドロ−ケベック Composite electrode material
US9240596B2 (en) 2008-07-28 2016-01-19 Hydro-Quebec Composite electrode material
US9136563B2 (en) 2010-02-09 2015-09-15 Bae Systems Plc Rechargeable batteries
KR101155919B1 (en) 2010-08-06 2012-06-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2012086976A3 (en) * 2010-12-22 2012-09-07 Hanwha Chemical Corporation A composite comprising an electrode-active transition metal compound and a fibrous carbon material, and a method for preparing the same
CN102823038A (en) * 2010-12-22 2012-12-12 韩华石油化学株式会社 A composite comprising an electrode-active transition metal compound and a fibrous carbon material, and a method for preparing the same
WO2012086976A2 (en) * 2010-12-22 2012-06-28 Hanwha Chemical Corporation A composite comprising an electrode-active transition metal compound and a fibrous carbon material, and a method for preparing the same
JP2013065482A (en) * 2011-09-20 2013-04-11 Hitachi Ltd Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module
JP2013127872A (en) * 2011-12-16 2013-06-27 Samsung Sdi Co Ltd Positive electrode for secondary battery, and secondary battery
JP6051318B2 (en) * 2013-12-05 2016-12-27 株式会社日立製作所 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
WO2015083262A1 (en) * 2013-12-05 2015-06-11 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2017054712A (en) * 2015-09-10 2017-03-16 三洋化成工業株式会社 Lithium ion battery
WO2017043174A1 (en) * 2015-09-10 2017-03-16 日産自動車株式会社 Lithium-ion cell
US11380885B2 (en) 2019-09-13 2022-07-05 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US11462730B2 (en) 2019-09-13 2022-10-04 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
JP7457228B1 (en) 2023-06-30 2024-03-28 artience株式会社 Method for manufacturing composite for secondary battery electrode

Similar Documents

Publication Publication Date Title
EP3361530B1 (en) Positive electrode for lithium ion secondary battery, graphene/positive electrode active material composite particles, and manufacturing methods for same, and positive electrode paste for lithium ion secondary battery
US9905839B2 (en) Composite electrode material
JP4031009B2 (en) Positive electrode for lithium battery and lithium battery using the same
JP5684226B2 (en) Fluorinated binder composites and carbon nanotubes for lithium battery positive electrodes
US9812712B2 (en) Highly dispersible graphene composition, preparation method thereof, and electrode for lithium ion secondary battery containing highly dispersible graphene composition
US20050153205A1 (en) Carbon-covered lithium transition metal oxide, secondary cell positive electrode material and secondary cell
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
US10270102B2 (en) Electrode for electrochemical device with low resistance, method for manufacturing the same, and electrochemical device comprising the electrode
JP5471591B2 (en) Conductive composition for electrode
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2003308845A (en) Electrode for lithium secondary battery and lithium secondary battery using it
WO2006033475A1 (en) Battery positive electrode material containing sulfur and/or sulfur compound having s-s bond, and process for producing the same
JP2009016265A (en) Electrode for lithium battery, manufacturing method of electrode for lithium battery, lithium battery, and manufacturing method for lithium battery
WO2012117991A1 (en) Negative electrode active material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell
WO2013094100A1 (en) Positive electrode for secondary batteries, and secondary battery using same
JP2003012311A (en) Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
WO2016181890A1 (en) Electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
JP3593776B2 (en) Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery
JP4938182B2 (en) Non-aqueous secondary battery
JP6760097B2 (en) Positive electrode for lithium secondary battery and its manufacturing method
JP2011014262A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
CN113632261A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP4261936A1 (en) Negative electrode, and secondary battery comprising same
JP2003059491A (en) Lithium transition metal oxide covered with carbon, positive electrode material for secondary battery, and secondary battery
EP4020632A1 (en) Anode active material, preparation method therefor, and anode and secondary battery which comprise same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421