WO2012117975A1 - 射出成形体およびその製造方法 - Google Patents

射出成形体およびその製造方法 Download PDF

Info

Publication number
WO2012117975A1
WO2012117975A1 PCT/JP2012/054629 JP2012054629W WO2012117975A1 WO 2012117975 A1 WO2012117975 A1 WO 2012117975A1 JP 2012054629 W JP2012054629 W JP 2012054629W WO 2012117975 A1 WO2012117975 A1 WO 2012117975A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fiber
thermoplastic resin
fibrous filler
molded
Prior art date
Application number
PCT/JP2012/054629
Other languages
English (en)
French (fr)
Inventor
山口晃司
舘山勝
清水信彦
今井宏典
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US14/001,887 priority Critical patent/US9296175B2/en
Priority to JP2012515837A priority patent/JP5768811B2/ja
Priority to KR1020137024304A priority patent/KR101927557B1/ko
Priority to EP12752535.0A priority patent/EP2682248B1/en
Priority to CN201280010724.3A priority patent/CN103384588B/zh
Publication of WO2012117975A1 publication Critical patent/WO2012117975A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/145Variation across the thickness of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/14Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles oriented
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel

Definitions

  • the present invention relates to an injection molded article comprising a fiber reinforced thermoplastic resin composition obtained by blending a thermoplastic resin and a fibrous filler, and a method for producing the same, and a weight average of the fibrous filler in the injection molded article
  • the present invention relates to an injection-molded article having a fiber length of 300 ⁇ m or more, little variation in strength and small warpage, and a method for producing the same.
  • an injection-molded body in which three layers of a skin layer, a core layer, and a skin layer are formed in the thickness direction by injection molding, and a skin layer in which fibrous fillers are randomly oriented and a fibrous filler is injected.
  • Thermoplastic resins are molded by various processing methods such as injection molding, blow molding, sheet molding, film molding, extrusion molding, press molding, etc. due to their excellent molding characteristics, and electrical / electronic equipment, OA equipment, automotive equipment, It is used to manufacture products for a wide range of uses such as sundries.
  • injection molding is a main processing method for thermoplastic resins because of high productivity and high shape flexibility.
  • thermoplastic resin when required to have particularly high strength, rigidity, and heat resistance, a method of modifying the material by adding a fibrous filler is generally employed.
  • a typical example of such a material is fiber reinforced thermoplastic resin pellets obtained by melt kneading together with thermoplastic resin and glass fiber or carbon fiber in an extruder when pelletizing thermoplastic resin. Is mentioned.
  • the fiber filler when injection molding is performed using the fiber reinforced thermoplastic resin pellets thus obtained, the fiber filler is oriented in the direction perpendicular to the resin flow during injection molding in the core layer, and the resin flow in the skin layer. Orientation in the direction causes anisotropy in strength and shrinkage. As a result, the obtained molded body had a drawback that warpage was increased.
  • Patent Documents 1 and 2 describe an injection press molding method, but do not describe a method for controlling the orientation of fibers in a molded product.
  • Patent Document 3 describes an effect of reducing warpage by giving a characteristic to a resin to be blended, but warpage caused by anisotropy of fiber orientation. It is not conscious of the control of.
  • Patent Document 4 describes a mold structure provided with a movable nest.
  • Patent Document 5 describes a molding apparatus having a discarded cavity (dummy cavity) structure as a mold for injection press molding, but does not describe any molding of fiber reinforced resin.
  • An object of the present invention is to solve the problems in the prior art as described above, and has an excellent strength and rigidity, and has an anisotropy in strength in a molded body and an injection molded body with very little warpage, and a method for producing the same Is to provide.
  • the injection molded product according to the present invention comprises a thermoplastic filler (a) and a fibrous filler (b) so that the weight average fiber length in the injection molded product is 300 ⁇ m or more.
  • An injection-molded body comprising a skin layer, a core layer, and a skin layer in this order in the thickness direction, the flow direction of the fiber-reinforced thermoplastic resin composition during injection molding
  • the thickness of the core layer in which the main orientation direction of the fibrous filler (b) is 40 degrees or less when the direction perpendicular to the thickness is 0 degrees is the thickness of the injection molded body (skin layer, core layer, skin layer)
  • the thickness of the entire injection-molded article having the above in this order) is 20% or less.
  • the thickness of the core layer is set to the thickness of the entire injection-molded article compared to the conventional molded article.
  • the influence due to the strength and shrinkage anisotropy caused by the different orientation directions of the fibrous filler of the core layer and the skin layer can be kept small. It is possible to keep the warpage of the molded body caused by the anisotropy extremely small.
  • the fibrous filler (b) is preferably blended so that the weight average fiber length in the injection molded article is 600 ⁇ m or more.
  • thermoplastic resin (a) for example, at least one selected from polypropylene, polyamide, polysulfene sulfide, polyimide, polyetherketone and polyetheretherketone can be used.
  • the fibrous filler (b) for example, at least one selected from carbon fiber, glass fiber and aramid fiber can be used.
  • the thickness of the entire injection-molded product is not particularly limited, but when the thickness of the injection-molded product is in the range of 0.5 mm to 10 mm, the warp reduction effect according to the present invention is remarkably exhibited.
  • orientation direction of the fibrous filler (b) in the skin layer is preferably as random as possible.
  • the first method according to the present invention is a fiber reinforcement obtained by blending a thermoplastic filler (a) with a fibrous filler (b) so that the weight average fiber length in an injection molded product is 300 ⁇ m or more.
  • the main cavity refers to a cavity formed in a shape equivalent to the product shape to be molded.
  • a fiber reinforced thermoplastic resin composition of 10% by volume or more of the main cavity capacity of the mold is removed from the flow end of the fiber reinforced thermoplastic resin composition outside the main cavity of the mold. (E.g., in a waste cavity different from the main cavity formed in a shape equivalent to the shape of the product to be molded).
  • the length of the said fibrous filler (b) can use the long fiber pellet which is the same length as a pellet, and injection press molding is performed using it. be able to.
  • the second method according to the present invention is a fiber reinforced thermoplastic obtained by blending a fibrous filler (b) with a thermoplastic resin (a) so that the weight average fiber length in an injection molded product is 300 ⁇ m or more.
  • the resin composition is injection-molded by injection press molding that starts tightening the mold after the start of injection, the difference (t1) between the time when the mold starts to be tightened (tps) and the time when the injection ends (t1) ends.
  • the injection molding is characterized in that the injection molding is performed under the condition that the ratio (t2 / t1) of the difference (t2) between the time (tif) to finish and the time (t2) to finish tightening the mold is 1.1 or more Is the method.
  • the fiber reinforced thermoplastic resin composition a long fiber pellet in which the fibrous filler (b) has the same length as the pellet can be used. Injection press molding can be performed.
  • the thickness of the core layer relative to the thickness of the injection molded body can be reduced, and the obtained injection molded body has a fibrous filler with respect to the flow of the resin. Since the core layer that is strongly oriented in the perpendicular direction becomes smaller, the influence of anisotropy between the core layer and the skin layer can be suppressed to a small extent, and the warpage caused by the anisotropy can be suppressed to a very small level. it can.
  • the injection molded product according to the present invention is a molded product that particularly requires low warpage characteristics, such as electrical and electronic equipment housings and chassis, gears, automobile parts hoods, door panels, roofs, back doors, door inners, It can be suitably used in a radiator core support. Among these, it can be suitably used for large parts having a large area.
  • a fiber reinforced thermoplastic resin composition obtained by blending (a) a thermoplastic resin and (b) a fibrous filler is injection-molded.
  • the weight in the injection-molded body The average fiber length is 300 ⁇ m or more.
  • An injection molded body made of such a fiber reinforced thermoplastic resin composition has fibers in a direction perpendicular to the flow of the thermoplastic resin composition (hereinafter, sometimes referred to as TD direction) when the molded body is manufactured.
  • the core layer in which the fibrous filler is oriented and the skin layer in which the fibrous filler is mainly oriented in the flow direction of the thermoplastic resin composition (hereinafter sometimes referred to as MD direction) are formed.
  • the core layer 2 has a structure in which the short fibers 4 are strongly oriented in the TD direction (direction perpendicular to the resin flow). Therefore, even if the core layer thickness is reduced, the anisotropy is not reduced, the warp reduction effect is limited, and the effect of the present invention cannot be expressed.
  • the fiber orientation of the core layer 2 remains in a direction perpendicular to the flow of the resin.
  • the orientation of the long fibers 5 tends to be disturbed.
  • the weight average fiber length of the fibrous filler in the injection-molded body becomes 300 ⁇ m or more, the orientation of the skin layer starts to be disturbed.
  • the warp of the injection-molded product can be greatly reduced by thinning the highly oriented core layer.
  • the weight average fiber length of the fibrous filler in the injection molded product is 600 ⁇ m or more, the orientation of the skin layer is further disturbed, the anisotropy of physical properties is reduced, and the warpage is greatly reduced, which is more preferable.
  • the thickness of the core layer in which the fibrous filler is oriented in the direction perpendicular to the flow of the thermoplastic resin composition is smaller than the thickness of the molded body. Therefore, the influence of the core layer is strong, and the strength of the molded body is different between the skin layer and the core layer, so that the injection molded body is warped.
  • the thickness of the core layer can be 20% or less with respect to the thickness of the molded body.
  • the influence of the core layer can be suppressed, the anisotropy of physical properties can be suppressed, and an injection-molded body with less warpage can be obtained.
  • the thickness of the core layer is 20% or less with respect to the thickness of the injection molded body.
  • a three-dimensional measurement X-ray analyzer (TDM1000IS type) manufactured by Yamato Material Co., Ltd. is used to obtain image data of the fibrous filler in the injection-molded product, and the obtained image data is used as a Ratoc system.
  • the main orientation direction is calculated from the orientation direction of each fiber, and the resin composition when producing a molded body
  • the portion where the main orientation direction is 40 degrees or less is defined as the core layer, and the thickness is determined.
  • the orientation direction of the fibrous filler in the skin layer was obtained by obtaining image data of the fibrous filler in the injection-molded body using a three-dimensional measurement X-ray analyzer (TDM1000IS type) manufactured by Yamato Material.
  • the main orientation direction is calculated from the orientation direction of each fiber, and the main orientation direction is calculated.
  • a state in which 40% or less of the entire fibers are distributed within ⁇ 10 ° is defined as a random orientation state.
  • the first method of injection press molding of the present invention is to fill a cavity with a fiber reinforced thermoplastic resin composition in a predetermined mold open state, form a skin layer, and then press (clamp) the core layer.
  • This is a method of controlling the thickness of the core layer by allowing the resin to flow out.
  • the molding machine used for injection press molding injection press molding
  • any existing machine capable of injection press can be used, and either a horizontal type or a vertical type can be used.
  • the timing to start pressing during injection press molding is important for controlling the thickness of the core layer. From the viewpoint of controlling the thickness of the core layer relative to the total thickness of the injection molded body, the main cavity of the mold before pressing It is important to start pressing after the resin filling of 80% or more of the capacity is completed. Furthermore, it is preferable to use an injection mold having a structure in which the core layer resin in which the fibrous filler is oriented in a direction perpendicular to the resin flow is discharged out of the main cavity in the pressing step.
  • the waste cavity is preferably 10% by volume or more of the main cavity capacity so that the resin of the core layer can be sufficiently discharged (extruded) in the pressing step.
  • FIG. 3 illustrates a basic mold structure.
  • the present mold comprises a movable mold (6), a fixed mold (7), an inlay-structure main cavity (8), a disposal cavity (9), a spring-type movable nest ( 10), a hot runner system (11), an ejector pin (12) as an ejector for removing the molded product from the cavity, and an ejector plate (13).
  • the molding process will be described.
  • the movable mold (6) is moved to start mold closing.
  • the injection is stopped at a predetermined mold opening amount.
  • the fiber reinforced thermoplastic resin (14) is filled into the cavity (8) through the hot runner system (11).
  • the press is started, a part of the filled fiber reinforced thermoplastic resin is discarded and extruded into the cavity (9), and after cooling and solidification, injection molding is performed using the ejector (12) and the ejector plate (13). Remove body (15).
  • the injection-molded article obtained by the first method of the present invention has a small physical property anisotropy, and therefore has a stable product strength and a very small warpage characteristic without a specific weak portion. .
  • the second method of injection press molding of the present invention is the same as the first method described above, in which a fiber reinforced thermoplastic resin composition is filled (injected) into a cavity in a predetermined mold open state to form a skin layer, This is a method of controlling the thickness of the core layer by causing the resin of the core layer to flow out (clamping).
  • the molding machine used for the injection press molding can be any existing machine capable of injection press, and can be either a horizontal type or a vertical type.
  • the timing of starting the press at the time of injection press molding is important for controlling the thickness of the core layer, and in the second method of the present invention, injection molding is performed by injection press molding in which the mold is started to be tightened after the start of injection.
  • the difference from the injection start time (tis) to the press start time (time to start tightening the mold) (tps) is t0, and the press start time (tps) )
  • the ratio (t2 / t1) between t1 and t2 is 1.
  • Injection and mold clamping (pressing) are performed at a timing of 1 or more. More preferably, t0 / t1 is made larger than 1.1. Moreover, the method (FIG. 14 mentioned later) of starting press (die clamping) after completion
  • finish of injection may be used.
  • FIG. 8 illustrates the basic mold structure.
  • the present mold includes a movable mold (21), a fixed mold (22), an inlay cavity (23), a hot runner system (24), and a molded product from the cavity. It consists of an ejector pin (25) as an ejector for taking out and an ejector plate (26).
  • the molding process in the second method will be described.
  • the movable mold (21) is moved to start the mold closing.
  • the cavity (23) is filled with a fiber reinforced thermoplastic resin composition (27).
  • mold clamping is started, the filled fiber-reinforced thermoplastic resin is flowed, and after cooling and solidifying, the injection molded body (28) is formed using the ejector (25) and the ejector plate (26). Take out.
  • the injection-molded article manufactured by the second method of the present invention also has a low product property anisotropy, and therefore has a specific product with low strength and stable product strength and extremely low warpage characteristics. Have.
  • the timing of the start and end of injection and mold clamping in the second method can be expressed as shown in FIG.
  • thermoplastic resin (a) used in the present invention is not particularly limited.
  • polyethylene, polypropylene resin, polystyrene resin, ABS resin, polyacetal resin, polycarbonate resin, nylon resin, PBT (polybutylene terephthalate) resin, PET ( Polyethylene terephthalate) resin, PPS (polyphenylene sulfide) resin, LCP (liquid crystal polyester) resin, PEEK (polyether ether ketone) resin, and the like can be usefully used, and two or more of these may be blended and used.
  • the fibrous filler (b) used in the present invention preferably has a diameter (fiber diameter) of 1 to 20 ⁇ m. If the fiber diameter is less than 1 ⁇ m, the dispersion becomes poor, and if it exceeds 20 ⁇ m, the foreign matter effect becomes strong and the strength decreases, which is not preferable. More preferably, a fiber diameter of 5 to 15 ⁇ m is desirable from the viewpoint of balance between dispersion and reinforcing effect. In the second method, those having a diameter (fiber diameter) of 1 to 30 ⁇ m are preferable. If the fiber diameter is less than 1 ⁇ m, the dispersion becomes poor, and if it exceeds 30 ⁇ m, the foreign matter effect becomes strong and the strength decreases, which is not preferable. More preferably, a fiber diameter of 3 to 15 ⁇ m is desirable from the viewpoint of balance between dispersion and reinforcing effect.
  • the fiber-reinforced thermoplastic resin composition is usually formed into pellets.
  • Pellet made of fiber reinforced thermoplastic resin composition, (1) Method of blending and extruding thermoplastic resin (a) and fibrous filler (b) (2) Impregnation by immersing continuous fibrous filler (b) in molten thermoplastic resin (a) (3) Method of covering and cutting the thermoplastic resin (a) around the continuous fibrous filler (b) (4) Thermoplastic resin around the continuous fibrous filler (b) It can be produced by a method of coating (a) and impregnating a resin with continuous fibers.
  • the continuous fibrous filler (b) is immersed and impregnated in the thermoplastic resin (a) and then drawn. Or a method of coating and cutting the thermoplastic resin (a) around the continuous fibrous filler (b), and a continuous coating of the thermoplastic resin (a) around the continuous fibrous filler (b). Pellets obtained by a method of impregnating a resin based on the prepared fibers or a method of covering and cutting the thermoplastic resin (a) after pre-impregnating the continuous fibrous filler (b) with a low-viscosity resin or the like are used. It is preferable.
  • fibrous filler (b) used in the present invention examples include carbon fiber, glass fiber, aramid fiber, wholly aromatic polyamide fiber, and metal fiber, and carbon fiber, glass fiber, and aramid fiber are preferable.
  • Examples of the carbon fiber used in the present invention include polyacrylonitrile (PAN), pitch, and cellulose. Among these, PAN-based carbon fibers that are excellent in strength and elastic modulus are preferable.
  • a carbon fiber having a tensile elongation at break of 1.0% or more is preferable.
  • the carbon fiber is easily broken in the production process and the injection molding process of the resin composition of the present invention, and the remaining fiber length in the carbon fiber molded body can be extended. Therefore, the mechanical properties are inferior.
  • the carbon fiber has a tensile elongation at break of 1.5% or more, more preferably 1.7% or more, and still more preferably 1.9%.
  • the above is desirable.
  • the tensile elongation at break of the PAN-based carbon fiber used in the present invention it is generally less than 5%.
  • Such PAN-based carbon fiber spinning methods include wet spinning and dry-wet spinning, and any spinning method can be selected according to required characteristics.
  • any commercially available glass fiber can be used.
  • E glass fiber is preferable from the viewpoint of cost and performance.
  • the fibrous filler (b) can be surface-treated to impart affinity with the thermoplastic resin (a).
  • silane coupling agents for example, silane coupling agents, borane coupling agents, titanate coupling agents and the like can be used.
  • silane couplings aminosilane coupling agents, epoxysilane coupling agents, or acrylic silane coupling agents. Agents can be used.
  • the fiber reinforced thermoplastic resin composition is preferably injection-molded as pellets, but the shape of the pellets is not particularly limited, and in the first method, the pellet length is usually 3 to 15 mm, for example. Range can be adopted. If the length of the pellet is too short, the remaining fiber length in the injection-molded product is shortened, and the orientation of the fibers in the flow direction of the resin in the skin layer becomes strong, causing anisotropy, and the strength and impact may be reduced. is there. If the pellet length is too long, it may cause a biting failure in the molding machine, so the pellet length is preferably 3 to 12 mm, more preferably 6 to 10 mm.
  • long fiber pellets having a length in the range of 3 to 30 mm can be used.
  • the pellet length is preferably 3 to 20 mm, more preferably 4 to 20 mm.
  • the fiber reinforced thermoplastic resin composition has various additives depending on the application, such as a dispersant, a lubricant, a plasticizer, an antioxidant, an antistatic agent, a light stabilizer, an ultraviolet absorber, a metal deactivator, a crystal, and the like.
  • additives such as a chemical accelerator, a foaming agent, a colorant, a crosslinking agent, and an antibacterial agent can be blended.
  • the content of the fibrous filler (b) used in the present invention is not particularly limited, but in the first method, for example, in the range of 5 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin (a). Is preferred. If it is less than 5 parts by weight, there is little influence on the strength even if the core layer is controlled, and if it exceeds 50 parts by weight, the decrease in moldability due to thickening is large and it is difficult to make the core layer thinner by injection press molding. More preferably, it is preferable from the viewpoint of the electrical conductivity, mechanical strength, and economical efficiency of the injection-molded article from which 10 to 40 parts by weight are obtained.
  • the range of 3 to 50 parts by weight is preferable with respect to 100 parts by weight of the thermoplastic resin (a).
  • the amount is less than 3 parts by weight, there is little influence on the strength even if the core layer is controlled, and when it exceeds 50 parts by weight, the decrease in formability due to thickening is large and it is difficult to reduce the thickness of the core layer by injection press molding. From the viewpoint of mechanical strength, economy and conductivity of the injection molded product, 5 to 40 parts by weight is more preferable.
  • a test piece was cut out in the shape of a strip 15 mm wide and 80 mm long from the center of an 80 mm ⁇ 80 mm ⁇ 2 mmt test piece 31 shown in FIG. 15 obtained by injection press molding (J110AD manufactured by Nippon Steel).
  • J110AD manufactured by Nippon Steel
  • a bending test was carried out in accordance with ISO178 in a 5566 type test manufactured by KK to obtain a flexural modulus (GPa).
  • the main orientation direction is calculated from the orientation direction of each fiber.
  • the portion where the main orientation direction was 40 degrees or less was defined as the core layer.
  • the 80 mm ⁇ 80 mm ⁇ 2 mmt test piece prepared by the above method was cut into 20 mm ⁇ 20 mm and subjected to ashing treatment at 500 ° C. for 2 hours, and the carbon fiber in the molded product was taken out.
  • the taken-out carbon fiber was put into a beaker together with 3 liters of water, and the carbon fiber was uniformly dispersed in water using an ultrasonic cleaner.
  • 1 cc of an aqueous solution in which carbon fibers were uniformly dispersed was sucked with a syringe having a tip of 8 ⁇ , sampled on a petri dish having a 10 ⁇ 10 mm depression, and dried.
  • Warpage amount 70.7-X
  • Example 1 First, a continuous PAN-based carbon fiber bundle as the fibrous filler (b) was heated, and the melted resin was measured and applied with a gear pump. Next, the resin was impregnated into the carbon fiber bundle in an atmosphere heated to a temperature higher than the melting temperature to obtain a composite of the continuous carbon fiber bundle and the resin (impregnation step).
  • thermoplastic resin (a) is put into a hopper of an extruder and extruded into a coating die in a melt-kneaded state, and at the same time, the coated composite is continuously fed into the coating die. Then, the resin composition comprising the thermoplastic resin (a) is coated on the composite, and the discharge amount of the extruder and the supply amount of the composite are adjusted to obtain a continuous fiber reinforced resin strand having a carbon fiber content of 20 wt%. (Coating process).
  • the continuous fiber reinforced resin group strand was cooled and solidified, and cut into a 6.0 mm length using a cutter to obtain a core-sheath type long fiber pellet.
  • Examples 2 to 5 and Comparative Examples 1 to 3 Molding was performed under the same conditions as in Example 1 except that the long fiber pellets obtained in Example 1 were used and the molding conditions shown in Table 1 were used. The evaluation results of the molded product are shown in Table 1. These examples were superior in mechanical properties and warpage to Comparative Examples 1 to 3. Moreover, the fiber orientation measurement result of the injection molded body of Comparative Example 1 is shown in FIG.
  • Example 6 Example 2 was the same as Example 2 except that the carbon fiber content of the continuous fiber reinforced resin group strand was 30 wt%. As shown in Table 1, the evaluation results of this molded product were excellent in mechanical properties and warpage.
  • thermoplastic resin (a) is put into a main hopper of a twin-screw extruder (TEX30 ⁇ manufactured by JSW), and the chopped strand of the fibrous filler (b) is 20 wt to the thermoplastic resin (a) 100 from the side of the extruder. % Was supplied, melted and kneaded at 260 ° C., then extruded into a gut shape, cooled and solidified, and cut into 3.0 mm lengths using a cutter to obtain short fiber pellets. The results of the injection-molded body using this pellet are shown in Table 1, and have low mechanical properties and high anisotropy. Moreover, the amount of warpage was large. Moreover, the fiber orientation measurement result of the injection-molded body of Comparative Example 4 is shown in FIG.
  • Examples 7 to 9 and Comparative Examples 5 and 6 Long fiber pellets were obtained in the same manner as in Example 1 except that the thermoplastic resin (a) was polypropylene. This long fiber pellet was molded under the conditions shown in Table 2 to obtain a molded body. The results of the molded product are shown in Table 2. In these examples, the mechanical properties and the warpage amount were superior to those of Comparative Examples 5 and 6.
  • Example 10 to 12 and Comparative Examples 7 and 8 Long fiber pellets were obtained in the same manner as in Example 1 except that the thermoplastic resin (a) was changed to PPS resin. This long fiber pellet was molded under the conditions shown in Table 2 to obtain a molded body. The results of this molded product are shown in Table 2. In these examples, the mechanical properties and the warpage amount were superior to those of Comparative Examples 7 and 8.
  • Examples 13 to 15 and Comparative Examples 9 and 10 A long fiber pellet was obtained in the same manner as in Example 1 except that the fibrous filler (b) was glass fiber and the glass fiber content was 30 wt%. This long fiber pellet was molded under the conditions shown in Table 3 to obtain a molded body. The results of the molded product are shown in Table 3. In these examples, the mechanical properties and the warpage amount were superior to those of Comparative Examples 9 and 10.
  • thermoplastic resins (a) used in the above examples and comparative examples are as follows. Nylon 6 resin: “Amilan” CM1001 manufactured by Toray Industries, Inc. Polypropylene resin: “Prime Polypro” J137 manufactured by Prime Polymer Co., Ltd. PPS resin: “Torelina” M2888 manufactured by Toray Industries, Inc.
  • the fibrous filler (b) is as follows.
  • Carbon fiber “Torayca” T700S (diameter 7 ⁇ , PAN-based carbon fiber) manufactured by Toray Industries, Inc.
  • Glass fiber Nittobo RS240QR483 (diameter 17 ⁇ , E glass)
  • Example 16 First, a continuous PAN-based carbon fiber bundle as the fibrous filler (b) was heated, and the melted resin was measured and applied with a gear pump. Next, the resin was impregnated into the carbon fiber bundle in an atmosphere heated to a temperature higher than the melting temperature to obtain a composite of the continuous carbon fiber bundle and the resin (impregnation step).
  • thermoplastic resin (a) is put into a hopper of an extruder and extruded into a coating die in a melt-kneaded state, and at the same time, the coated composite is continuously fed into the coating die.
  • the resin composition comprising the thermoplastic resin (a) is coated on the composite, and the discharge amount of the extruder and the supply amount of the composite are adjusted so that the carbon fiber content is the sum of the thermoplastic resin (a).
  • a continuous fiber reinforced resin strand of 20% by weight was obtained (coating step).
  • the continuous fiber reinforced resin group strand was cooled and solidified, and cut into a 6.0 mm length using a cutter to obtain a core-sheath type long fiber pellet.
  • Table 4 shows the molding conditions for injection press molding using this pellet and the evaluation results of the obtained injection-molded body. As can be seen from Table 4, those obtained under the molding conditions of the present invention were excellent in mechanical properties and warpage.
  • the fiber orientation measurement result of the injection-molded body of Example 16 is shown in FIG.
  • Example 10 was the same as Example 1 except that the long fiber pellets obtained in Example 16 were used and the molding conditions shown in Table 4 were adopted. Table 4 shows the evaluation results of the obtained injection-molded body. These examples were excellent in mechanical properties and warpage as compared with Comparative Examples 11-13. In addition, as a result of measuring the orientation of the fibers of the injection-molded body of Comparative Example 11, a result equivalent to that shown in FIG. 19 was obtained.
  • Example 21 The carbon fiber content of the continuous fiber reinforced resin group strand was the same as that of Example 2 except that the total amount with the thermoplastic resin (a) was 30% by weight. As shown in Table 4, the evaluation result of the obtained injection-molded product was excellent in mechanical properties and warpage.
  • thermoplastic resin (a) is put into the main hopper of a twin screw extruder (TEX30 ⁇ manufactured by JSW), and the chopped strands of the fibrous filler (b) are added to the thermoplastic resin (a) from the side of the extruder.
  • An amount of 20% by weight was supplied, melted and kneaded at 260 ° C., then extruded into a gut shape, cooled and solidified, and cut into 3.0 mm lengths using a cutter to obtain short fiber pellets.
  • the evaluation results of the injection molded article using the obtained short fiber pellets are shown in Table 4. The mechanical properties are low and the anisotropy is high. Moreover, the amount of warpage was large.
  • the same result as that shown in FIG. 20 was obtained.
  • Examples 22 to 24 and Comparative Examples 15 and 16 Long fiber pellets were obtained in the same manner as in Example 16 except that the thermoplastic resin (a) was polypropylene. Using the obtained long fiber pellets, injection press molding was performed under the molding conditions shown in Table 5 to obtain an injection molded body. The evaluation results of the obtained injection-molded products are shown in Table 5. Examples 22 to 24 were superior in mechanical properties and warpage to Comparative Examples 15 and 16.
  • Examples 25 to 27 and Comparative Examples 17 and 18 Long fiber pellets were obtained in the same manner as in Example 1 except that the thermoplastic resin (a) was changed to PPS resin. Using the obtained long fiber pellets, injection press molding was performed under the molding conditions shown in Table 5 to obtain an injection molded body. The evaluation results of the obtained injection-molded products are shown in Table 5. Examples 25 to 27 were superior in mechanical properties and warpage to Comparative Examples 17 and 18.
  • Examples 28 to 30 and Comparative Examples 19 and 20 Long fiber pellets were obtained in the same manner as in Example 1 except that the fibrous filler (b) was glass fiber and the glass fiber content was 30% by weight based on the total of the thermoplastic resin (a). Using the obtained long fiber pellets, injection press molding was performed under the molding conditions shown in Table 6 to obtain an injection molded body. The results of the obtained injection-molded products are shown in Table 6. Examples 28 to 30 were excellent in mechanical characteristics and warpage amount as compared with Comparative Examples 19 and 20.
  • thermoplastic resins (a) used in the examples and comparative examples in the second method are as follows. Nylon 6 resin: “Amilan” CM1001 manufactured by Toray Industries, Inc. Polypropylene resin: “Prime Polypro” J137 manufactured by Prime Polymer Co., Ltd. PPS resin: “Torelina” M2888 manufactured by Toray Industries, Inc.
  • the fibrous filler (b) is as follows.
  • Carbon fiber “Torayca” T700S (diameter 7 ⁇ , PAN-based carbon fiber) manufactured by Toray Industries, Inc.
  • Glass fiber Nittobo RS240QR483 (diameter 17 ⁇ , E glass)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 熱可塑性樹脂に射出成形体中での重量平均繊維長が300μm以上となるように繊維状充填材を配合してなる繊維強化熱可塑性樹脂組成物からなり、厚み方向にスキン層、コア層、スキン層をこの順に有する射出成形体であって、射出成形時の樹脂組成物の流れ方向と直角の方向を0度とした場合に繊維状充填材の主配向方向が40度以下となるコア層の厚みが、射出成形体の厚みに対して20%以下であることを特徴とする射出成形体、およびその製造方法。成形品中の強度の異方性が少なく、反りの極めて少ない成形品を得ることができる。

Description

射出成形体およびその製造方法
 本発明は、熱可塑性樹脂と繊維状充填材を配合してなる繊維強化熱可塑性樹脂組成物からなる射出成形体とその製造方法に関するものであり、射出成形体中の繊維状充填材の重量平均繊維長が300μm以上であり、強度バラツキが少なく反りの小さい射出成形体およびその製造方法に関するものである。
 更に詳しくは、射出成形により厚み方向にスキン層、コア層、スキン層の3層が形成された射出成形体であって、繊維状充填剤がランダム配向したスキン層と、繊維状充填材が射出成形時の流れ方向と直角の方向に配向したコア層を有し、コア層の厚みを小さくすることで、射出成形体全体として高強度化され、かつ反りが少なくされた射出成形体およびその製造方法に関するものである。
 熱可塑性樹脂は優れた成形加工特性から種々の加工法、例えば射出成形、ブロー成形、シート成形、フイルム成形、押出成形、プレス成形などにより成形され、電気・電子機器、OA機器、自動車用機器、雑貨など広範囲な用途の製品の製造に使用されている。中でも、射出成形は、高い生産性、高い形状自由度から、熱可塑性樹脂のメイン加工方法となっている。
 また、熱可塑性樹脂において特に高い強度、剛性、耐熱性を求められる場合には、繊維状充填剤を添加して素材を改質する手法が一般的に採られている。そのような素材の代表的な例としては、熱可塑性樹脂をペレット化する際に押出機で熱可塑性樹脂とガラス繊維や炭素繊維と一緒に溶融混錬して得られた繊維強化熱可塑性樹脂ペレットが挙げられる。しかし、このようにして得られた繊維強化熱可塑性樹脂ペレットを用いて射出成形すると、繊維充填材がコア層では射出成形時の樹脂の流れと直角の方向に配向し、スキン層では樹脂の流れ方向に配向するので、強度と収縮に異方性が生じる。その結果、得られる成形体については、反りが大きくなると言う欠点を有していた。
 このような欠点を解消する手法として、成形体中の残存繊維長を長尺化し強度と反り低減を目的とした長繊維ペレットの開発が行なわれている。しかし長繊維ペレットを使用しても、通常の射出成形を行なうと、スキン層とコア層で繊維の配向方向が異なるため、十分な効果が得られない状況にある。
 反りを防止する成形方法として、特許文献1、2には、射出プレス成形法が記載されているが、成形品中の繊維の配向をコントロールする手法については記載がない。また、成形体中の反りの低減方法として、特許文献3には、配合する樹脂に特徴を持たせることで反りを低減させる効果を記載しているが、繊維配向の異方性に起因した反りのコントロールを意識したものでない。また、成形体中の繊維の配向を乱す手法として、特許文献4には、可動入れ子を備えた金型構造が記載されている。本金型では、キャビティ面を回転させ成形体に成形する材料にせん断を与えて繊維の配向を乱す手法であるが、配向を乱す量が少なく、且つ成形体形状には制限がある。さらに、特許文献5には、射出プレス成形用の金型で、捨てキャビティ(ダミーキャビティ)構造を有する成形装置が記載されているが、繊維強化樹脂の成形については何ら記載されていない。
特開2000-61969号公報 特開2006-272849号公報 特開2003-171564号公報 特開2002-166452号公報 特開2002-96356号公報
 本発明の課題は、上記のような従来技術における問題点を解決し、強度、剛性に優れるとともに、成形体中の強度に異方性が少なく、反りの極めて少ない射出成形体、およびその製造方法を提供することにある。
 上記課題を解決するために、本発明に係る射出成形体は、熱可塑性樹脂(a)に射出成形体中での重量平均繊維長が300μm以上となるように繊維状充填材(b)を配合してなる繊維強化熱可塑性樹脂組成物からなり、厚み方向にスキン層、コア層、スキン層をこの順に有する射出成形体であって、射出成形時の前記繊維強化熱可塑性樹脂組成物の流れ方向と直角の方向を0度とした場合に前記繊維状充填材(b)の主配向方向が40度以下となる前記コア層の厚みが、射出成形体の厚み(スキン層、コア層、スキン層をこの順に有する射出成形体全体の厚み)に対して20%以下であることを特徴とするものからなる。
 このような本発明に係る射出成形体においては、スキン層、コア層、スキン層をこの順に有する射出成形体において、コア層の厚みを、従来の成形体に比べ、射出成形体全体の厚みに対して20%以下と小さく抑えたので、コア層とスキン層の繊維状充填材の配向方向が互いに異なることに起因する強度と収縮の異方性による影響を小さく抑えることができるようになり、その異方性により生じる成形体の反りを極めて小さく抑えることが可能になる。
 上記本発明に係る射出成形体においては、上記繊維状充填材(b)は、射出成形体中での重量平均繊維長が600μm以上となるように配合されていることが好ましい。
 また、上記熱可塑性樹脂(a)としては、例えば、ポリプロピレン、ポリアミド、ポリスルフェンサルファイド、ポリイミド、ポリエーテルケトンおよびポリエーテルエーテルケトンから選ばれる少なくとも1種を使用できる。
 また、上記繊維状充填材(b)としては、例えば、炭素繊維、ガラス繊維およびアラミド繊維から選ばれる少なくとも1種を使用できる。
 また、射出成形体全体の厚みとしては、特に限定されないが、射出成形体の厚みが0.5mm~10mmの範囲にあると、本発明による反りの低減効果が顕著に現れる。
 また、上記スキン層における繊維状充填材(b)の配向方向は可能な限りランダムであることが好ましい。
 このような本発明に係る射出成形体は、次のような第1又は第2の方法によって製造できる。先ず、本発明に係る第1の方法は、熱可塑性樹脂(a)に射出成形体中での重量平均繊維長が300μm以上となるように繊維状充填材(b)を配合してなる繊維強化熱可塑性樹脂組成物をインジェクションプレス成形により射出成形する方法であって、金型のメインキャビティ容量の80容量%以上を前記繊維強化熱可塑性樹脂組成物で充填した後にプレスを行うことを特徴とする射出成形体の製造方法である。ここでメインキャビティとは、成形すべき製品形状と同等の形状に形成されたキャビティのことをいう。
 この第1の方法においては、プレス工程において、繊維強化熱可塑性樹脂組成物の流動末端部から金型のメインキャビティ容量の10容量%以上の繊維強化熱可塑性樹脂組成物を金型のメインキャビティ外に(例えば、成形すべき製品形状と同等の形状に形成されたメインキャビティとは異なる捨てキャビティ内に)押し出すようにすることができる。
 また、上記繊維強化熱可塑性樹脂組成物としては、上記繊維状充填材(b)の長さがペレットと同じ長さである長繊維ペレットを用いることができ、それを用いてインジェクションプレス成形を行うことができる。
 本発明に係る第2の方法は、熱可塑性樹脂(a)に射出成形体中での重量平均繊維長が300μm以上となるように繊維状充填材(b)を配合してなる繊維強化熱可塑性樹脂組成物を、射出開始後に金型を締め始めるインジェクションプレス成形により射出成形する際に、金型を締め始める時間(tps)と射出が終了する時間(tif)の差(t1)と射出が終了する時間(tif)と金型を締め終わる時間(tpf)の差(t2)との比率(t2/t1)が1.1以上となる条件で射出成形することを特徴とする射出成形体の製造方法である。
 この第2の方法においても、上記繊維強化熱可塑性樹脂組成物として、上記繊維状充填材(b)の長さがペレットと同じ長さである長繊維ペレットを用いることができ、それを用いてインジェクションプレス成形を行うことができる。
 本発明に係る射出成形体およびその製造方法によれば、射出成形体の厚みに対するコア層の厚みを小さくすることができ、得られた射出成形体は、繊維状充填材が樹脂の流れに対し直角方向に強く配向しているコア層が小さくなることから、コア層とスキン層との間の異方性による影響を少なく抑えることができ、異方性に起因する反りを極めて小さく抑えることができる。したがって、本発明に係る射出成形体は、特に低反り特性が要求される成形体、例えば、電気、電子機器のハウジングやシャーシ、ギア、自動車部品のフード、ドアパネル、ルーフ、バックドア、ドアインナー、ラジエータコアサポートなどにおいて好適に使用できる。中でも、大面積の大型部品に好適に使用できる。
短繊維強化樹脂組成物からなる射出成形体の繊維の配向状態を示した模式図である。 長繊維強化樹脂組成物からなる射出成形体の繊維の配向状態を示した模式図である。 本発明の第1の方法におけるインジェクションプレス成形に用いる金型構造の一例を示す概略構成図であり、実施例において物性評価に用いた金型の概略構成図である。 本発明の第1の方法のインジェクションプレス成形工程における、射出成形前の金型が開いた状態を示す概略構成図である。 本発明の第1の方法のインジェクションプレス成形工程における、型締を行い、所定の型開き量を保持した状態を示す概略構成図である。 本発明の第1の方法のインジェクションプレス成形工程における、所定の型開き量を保持した状態での射出、充填の実施を示す概略構成図である。 本発明の第1の方法のインジェクションプレス成形工程における、プレスを実施し、余分な樹脂組成物を捨てキャビティに押し出した状態を示す概略構成図である。 本発明の第2の方法におけるインジェクションプレス成形に用いる金型構造の一例を示す概略構成図であり、実施例において物性評価に用いた金型の概略構成図である。 本発明の第2の方法のインジェクションプレス成形工程における、射出成形前の金型が開いた状態を示す概略構成図である。 本発明の第2の方法のインジェクションプレス成形工程における、型締を行い、所定の型開き量を保持し、射出を開始した状態を示す概略構成図である。 本発明の第2の方法のインジェクションプレス成形工程における、所定の型開き量を保持した状態で射出、充填の実施、プレスの開始を示す概略構成図である。 本発明の第2の方法のインジェクションプレス成形工程における、所定の型開き量を保持した状態で射出、充填の実施、プレスの終了を示す概略構成図である。 本発明の第2の方法のインジェクションプレス成形工程における、金型締め開始後に射出を終了するタイミングを表した図である。 本発明の第2の方法のインジェクションプレス成形工程における、射出終了後に、金型締めを開始するタイミングを表した図である。 本発明における特性を評価するための射出成形体の形状を示す図である。 反り量を評価するための成形体成形用の金型の構造を示す概略構成図である。 反り量を評価するための成形体の概略斜視図である。 実施例1の射出成形体の繊維の配向計測結果を示す図である。 比較例1の射出成形体の繊維の配向計測結果を示す図である。 比較例4の射出成形体の繊維の配向計測結果を示す図である。 実施例16の射出成形体の繊維の配向計測結果を示す図である。
 以下、本発明について、実施の形態を詳細に説明する。
 本発明においては、(a)熱可塑性樹脂と(b)繊維状充填材を配合してなる繊維強化熱可塑性樹脂組成物を射出成形するが、射出成形した成形体において、射出成形体中の重量平均繊維長は300μm以上である。このような繊維強化熱可塑性樹脂組成物からなる射出成形体は、成形体を製造する際に、熱可塑性樹脂組成物の流れに対し直角の方向(以降、TD方向ということもある。)に繊維状充填材が配向するコア層と、熱可塑性樹脂組成物の流れ方向(以降、MD方向ということもある。)に繊維状充填材が主に配向するスキン層が形成される。
 本発明における射出成形体中の重量平均繊維長は、射出成形体を500℃で2時間灰化処理して、成形体中の繊維状充填材を取り出し、取り出した繊維状充填材を水に入れ、超音波洗浄機を用いて均一分散させ、1ccを10×10mmの窪みを持つシャーレにサンプリングした後乾燥させ、シャーレ中の繊維状充填材の写真を撮り、約1000本の長さを計測して下の式により算出した値である。
  重量平均繊維長=Σ(Mi×Ni)/Σ(Mi×Ni)
           Mi:繊維長(mm)
           Ni:個数
 射出成形体中の繊維状充填材が300μm未満の一般的に短繊維ペレットと言われる樹脂組成物を用いた場合、例えば図1に示すように、スキン層1では短繊維3がMD方向(樹脂の流れ方向)に強配向し、コア層2では短繊維4がTD方向(樹脂の流れに対し直角の方向)に強配向した構造となる。そのためコア層厚みを薄くしても異方性は小さくならず、反り低減効果は限定的となり、本発明による効果を発現することができない。
 射出成形体中の繊維状充填材が長くなると(つまり、長繊維になると)、例えば図2に示すように、コア層2の繊維の配向は樹脂の流れに直角方向のままであるが、スキン層1では長繊維5の配向は乱れる傾向にある。特に射出成形体中の繊維状充填材の重量平均繊維長が300μm以上になるとスキン層の配向が乱れ始める。さらに、配向の強いコア層を薄くすることで射出成形体の反りを大きく低下させることができる。更に射出成形体中の繊維状充填材の重量平均繊維長が600μm以上ではスキン層の配向がさらに乱れ、物性の異方性が少なくなり反りが大幅に低減するので、より好ましい。
 射出成形体中の繊維状充填材の重量平均繊維長を長くする方法としては、繊維状充填材の長さがペレットと同じ長さである長繊維ペレットを用いて射出成形することが好ましい。しかし、長繊維ペレットを用いても通常の方法で射出成形を行うと、熱可塑性樹脂組成物の流れに対し直角方向に繊維状充填材が配向するコア層の厚みは成形体の厚さに対して約30~50%となるため、コア層の影響が強く成形体の強度がスキン層とコア層とで異なるため、射出成形体に反りが発生する。本発明に係る射出成形体では、後述のような第1の方法あるいは第2の方法を採用することで、コア層の厚みを成形体の厚みに対して20%以下とすることができるので、コア層の影響を抑え、物性の異方性を抑えることができ、反りの少ない射出成形体を得ることができる。
 本発明においては、コア層の厚みを射出成形体の厚みに対し20%以下とする。ここで、コア層の厚みは、ヤマトマテリアル社製3次元計測X線解析装置(TDM1000IS型)を用い、射出成形体中の繊維状充填材の画像データを得、得られた画像データをラトックシステムエンジニアリング社製の3次元画像処理ソフトTRIシリーズで繊維状充填材と熱可塑性樹脂とを2値化した後、各繊維の配向方向から主配向方向を算出し、成形体を製造する際の樹脂組成物の流れ方向を90度、樹脂組成物の流れ方向と直角の方向を0度とした場合に、主配向方向が40度以下となる部分をコア層とし、その厚みを決定する。さらに、スキン層の繊維状充填材の配向方向は、ヤマトマテリアル社製3次元計測X線解析装置(TDM1000IS型)を用い、射出成形体中の繊維状充填材の画像データを得、得られた画像データをラトックシステムエンジニアリング社製の3次元画像処理ソフトTRIシリーズで繊維状充填材と熱可塑性樹脂とを2値化した後、各繊維の配向方向から主配向方向を算出し、主配向方向の±10°以内に全体の繊維40%以下が分布する状態を、ランダムな配向状態とする。
 次に、上記のような本発明に係る射出成形体を製造するための、本発明のインジェクションプレス成形方法(第1の方法および第2の方法)について説明する。
 先ず、本発明のインジェクションプレス成形の第1の方法は、所定の型開き状態で繊維強化熱可塑性樹脂組成物をキャビティ内に充填しスキン層を形成した後、プレス(型締め)してコア層の樹脂を流出させることによりコア層の厚みをコントールする方法である。インジェクションプレス成形(射出プレス成形)に用いる成形機は既存の射出プレス可能な機械であればいずれでも使用可能であり、横型あるは縦型いずれでも使用可能である。
 射出プレス成形する際のプレスを開始するタイミングはコア層の厚みをコントロールする上で重要であり、射出成形体全体の厚みに対するコア層の厚みをコントロールする観点から、プレス前の金型のメインキャビティ容量の80%以上の樹脂充填が完了した後にプレスを開始することが重要である。更に、樹脂の流れに対し直角方向に繊維状充填材が配向するコア層の樹脂がプレス工程においてメインキャビティ外に排出される捨てキャビティを有する構造の射出成形金型を用いることが好ましい。この捨てキャビティは、プレス工程においてコア層の樹脂を十分に排出できるように(押し出すことができるように)、メインキャビティ容量の10容量%以上とすることが好ましい。
 このような本発明の射出成形の第1の方法に用いる好適な金型構造と射出成形工程を図3~7を用いて説明する。図3は基本的な金型構造を例示している。本金型は、図3に示すように、可動側の金型(6)と固定側の金型(7)、インロー構造のメインキャビティ(8)と捨てキャビティ(9)、バネ式可動入れ子(10)、ホットランナーシステム(11)、成形品をキャビティから取り外すためのエジェクターとしての突き出しピン(12)とエジェクタープレート(13)からなる。
 次に成形の工程を説明する。図4に示すように、金型を開いた状態から、可動側金型(6)を動かし型閉じを開始する。次に図5に示すように、所定の型開き量で停止し射出を開始する。次に図6に示すように、ホットランナーシステム(11)を通してキャビティ(8)に繊維強化熱可塑性樹脂(14)を充填する。その後図7に示すように、プレスを開始し、充填した繊維強化熱可塑性樹脂の一部を捨てキャビティ(9)に押出し、冷却固化後にエジェクター(12)とエジェクタープレート(13)を用いて射出成形体(15)を取り出す。
 このような本発明の第1の方法で得られた射出成形体は、物性の異方性が小さいため、特異的に強度の弱い部分が存在せず安定した製品強度と極めて小さい反り特性を有する。
 次に、本発明のインジェクションプレス成形の第2の方法について説明する。
 本発明のインジェクションプレス成形の第2の方法は、上記第1の方法同様、所定の型開き状態で繊維強化熱可塑性樹脂組成物をキャビティ内に充填(射出)しスキン層を形成したあと、プレス(型締め)してコア層の樹脂を流出させることによりコア層の厚みをコントロールする方法である。インジェクションプレス成形に用いる成形機は既存のインジェクションプレス可能な機械であればいずれでも使用可能であり、横型あるいは縦型のいずれでも使用可能である。
 インジェクションプレス成形する際のプレスを開始するタイミングはコア層の厚みをコントロールする上で重要であり、本発明の第2の方法では、射出開始後に金型を締め始めるインジェクションプレス成形により射出成形する。このとき、射出成形体全体のコア層の厚みをコントロールする観点から射出開始時間(tis)からプレス開始時間(金型を締め始める時間)(tps)までの差をt0とし、プレス開始時間(tps)から射出終了時間(tif)までの差をt1とし、射出終了時間(tif)からプレス終了時間(tpf)までの差をt2とすると、t1とt2との比率(t2/t1)が1.1以上となるようなタイミングで、射出と金型締め(プレス)を行う。さらに好ましくは、t0/t1を1.1より大きくすることである。また、射出終了後にプレス(金型締め)を開始する方法(後述の図14)でもよい。
 本発明の射出成形の第2の方法に用いる好適な金型構造と射出成形工程を図8~図12を用いて説明する。図8は基本的な金型の構造を例示している。本金型は、図8に示すように、可動側の金型(21)と固定側の金型(22)、インロー構造のキャビティ(23)、ホットランナーシステム(24)、成形品をキャビティから取り出すためのエジェクターとしての突き出しピン(25)とエジェクタープレート(26)からなる。
 次に上記第2の方法における成形の工程を説明する。図9に示すように、の金型を開いた状態から、可動側金型(21)を動かし型閉じを開始する。次に図10に示すように、所定の型開き量で停止しホットランナーシステム(24)を通して射出を開始する。次に図11に示すように、キャビティ(23)に繊維強化熱可塑性樹脂組成物(27)を充填する。その後、図12に示すように、金型締めを開始し、充填した繊維強化熱可塑性樹脂を流動させ、冷却固化後にエジェクター(25)とエジェクタープレート(26)を用いて射出成形体(28)を取り出す。
 このように本発明の第2の方法で製造された射出成形体もまた、物性の異方性が小さいため、特異的に強度の低い部分が存在せず安定した製品強度と極めて小さい反り特性を有する。
 上記第2の方法における射出と金型締めの開始および終了のタイミングは、図13または図14のように表すことができる。
 本発明で用いる熱可塑性樹脂(a)としては、特に制限はないが、例えばポリエチレン、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ナイロン樹脂、PBT(ポリブチレンテレフタレート)樹脂、PET(ポリエチレンテレフタレート)樹脂、PPS(ポリフェニレンサルファイド)樹脂、LCP(液晶ポリエステル)樹脂、PEEK(ポリエーテルエーテルケトン)樹脂などを有用に用いることができ、更にこれらを2種類以上ブレンドし使用してもよい。
 また、本発明で用いる繊維状充填材(b)としては、第1の方法では、直径(繊維径)が1~20μmのものが好ましい。繊維径が1μm未満では分散が悪くなり、20μmを超えると異物効果が強くなって強度が低下するので好ましくない。更に好ましくは5~15μmの繊維径が分散と補強効果のバランスの観点から望ましい。また、第2の方法では、直径(繊維径)が1~30μmのものが好ましい。繊維径が1μm未満では分散が悪くなり、30μmを超えると異物効果が強くなって強度が低下するので好ましくない。更に好ましくは3~15μmの繊維径が分散と補強効果のバランスの観点から望ましい。
 また本発明では、通常、繊維強化熱可塑性樹脂組成物をペレットにして成形する。繊維強化熱可塑性樹脂組成物からなるペレットは、
(1)熱可塑性樹脂(a)と繊維状充填材(b)をブレンドし溶融押出する方法
(2)溶融した熱可塑性樹脂(a)中に連続した繊維状充填材(b)を浸漬させ含浸させた後引き抜く方法
(3)連続した繊維状充填材(b)の周りに熱可塑性樹脂(a)を被覆しカットする方法
(4)連続した繊維状充填材(b)の周りに熱可塑性樹脂(a)を被覆し連続した繊維を拠り樹脂を含浸させる方法
などにより製造することができる。
 とくに射出成形体中の繊維状充填材の重量平均繊維長を300μm以上とするためには、熱可塑性樹脂(a)中に連続した繊維状充填材(b)を浸漬させ含浸させた後引き抜く方法や、連続した繊維状充填材(b)の周りに熱可塑性樹脂(a)を被覆しカットする方法や、連続した繊維状充填材(b)の周りに熱可塑性樹脂(a)を被覆し連続した繊維を拠り樹脂を含浸させる方法や、連続した繊維状充填材(b)に低粘度樹脂などを予備含浸させたのちに熱可塑性樹脂(a)を被覆しカットする方法により得られるペレットを用いることが好ましい。
 本発明に用いられる繊維状充填材(b)としては炭素繊維、ガラス繊維、アラミド繊維、全芳香族ポリアミド繊維、金属繊維などが挙げられるが、炭素繊維、ガラス繊維、アラミド繊維が好ましい。
 本発明において使用する炭素繊維としては、例えばポリアクリロニトリル(PAN)系、ピッチ系、セルロース系などが挙げられる。これらの中でも、強度や弾性率などに優れるPAN系炭素繊維が好ましい。
 本発明において使用するPAN系炭素繊維としては、引張破断伸びが1.0%以上の炭素繊維が好ましい。引張破断伸びが1.0%未満である場合、本発明の樹脂組成物の製造工程や射出成形工程で炭素繊維の破断が生じやすく、炭素繊維の成形体中の残存繊維長を伸ばすことができず、機械特性に劣るものとなる。
 また、とくに前述した従来技術の問題点をより確実に解決するためには、上記炭素繊維の引張破断伸びは1.5%以上、より好ましくは1.7%以上、更に好ましくは1.9%以上であることが望ましい。本発明に用いるPAN系炭素繊維の引張破断伸びに上限は無いが、一般的には5%未満である。
 かかるPAN系炭素繊維の紡糸方法としては、湿式紡糸、乾湿式紡糸などが挙げられ、要求特性により任意の紡糸方法を選択できる。
 本発明において用いるガラス繊維としては、一般的に市販されているガラス繊維では何れも使用可能であるが、例えばEガラスの繊維がコストと性能の観点から好ましい。
 繊維状充填材(b)には表面処理し熱可塑性樹脂(a)との親和性を付与することも可能である。例えばシラン系カップリング剤、ボラン系カップリング剤、チタネート系カップリング剤などが使用可能で、上記シラン系カップリングとしてはアミノシラン系カップリング剤、エポキシシラン系カップリング剤、またはアクリルシラン系カップリング剤などが使用できる。
 本発明では、好ましくは、繊維強化熱可塑性樹脂組成物をペレットとして射出成形するが、ペレットの形状は特に制限はなく、第1の方法においては、ペレットの長さとして、例えば通常3~15mmの範囲を採用できる。ペレットの長さが短かすぎると、射出成形体中の残存繊維長が短くなりスキン層の樹脂の流れ方向への繊維の配向が強くなり異方性が生じるとともに強度、衝撃が低下する恐れがある。またペレット長が長すぎると成形機での噛み込み不良を生じる場合があるためペレット長は3~12mmが好ましく、6~10mmが更に好ましい。また、第2の方法においては、例えば3~30mmの範囲の長さの長繊維ペレットを使用できる。上記同様、ペレットの長さが短すぎると、射出成形体中の残存繊維長が短くなりスキン層の樹脂の流れ方向への繊維配向が強くなり異方性が生じるとともに強度、耐衝撃性が低下する恐れがある。またペレット長が長すぎると成形機での噛み込み不良を生じる場合があるため、ペレット長は3~20mmが好ましく、4~20mmがさらに好ましい。
 また、繊維強化熱可塑性樹脂組成物には、用途に応じ各種添加剤、例えば分散剤、滑剤、可塑剤、酸化防止剤、帯電防止剤、光安定剤、紫外線吸収剤、金属不活性剤、結晶化促進剤、発泡剤、着色剤、架橋剤、抗菌剤、など公知の添加剤を配合することができる。
 本発明に用いる繊維状充填材(b)の含有量は特に制限はないが、第1の方法では、例えば、熱可塑性樹脂(a)100重量部に対し、5重量部~50重量部の範囲が好適である。5重量部未満ではコア層をコントロールしても強度への影響が少なく、50重量部超では増粘による成形性の低下が大きく射出プレス成形によるコア層の薄肉化が困難となる。更に好ましくは10重量部~40重量部が得られる射出成形体の導電性、機械的強度、経済性の観点から好ましい。また、第2の方法では、例えば、熱可塑性樹脂(a)100重量部に対し、3重量部~50重量部の範囲が好適である。上記同様、3重量部未満ではコア層をコントロールしても強度への影響が少なく、50重量部超では増粘による成形性の低下が大きくインジェクションプレス成形によるコア層の薄肉化が困難となる。射出成形体の機械的強度、経済性、導電性の観点から5重量部~40重量部がさらに好ましい。
 以下に実施例を挙げて本発明を更に具体的に説明する。材料特性評価については下記の方法に従って行った。
[曲げ弾性率]
 射出プレス成形(日本製鋼所社製J110AD)により得られた図15に示す80mm×80mm×2mmtの試験片31の中央部から、幅15mm、長さ80mmの短冊状にテストピースを切り出し、インストロン社製5566型試験にてISO178に準拠して曲げ試験を実施し、曲げ弾性率(GPa)を得た。
[コア層厚みの測定]
 前記方法にて作成した80mm×80mm×2mmt試験片の中央部から5mm角に切り出し、ヤマトマテリアル社製3次元計測X線解析装置(TDM1000IS型)を用い射出成形品中の繊維状充填材の画像データを得た。
 得られた画像データをラトックシステムエンジニアリング社製の3次元画像処理ソフトTRIシリーズで繊維状充填材と熱可塑性樹脂と2値化した後、各繊維の配向方向から主配向方向を算出する。
 樹脂の流れ方向を90度、樹脂の流れ方向と直角の方向を0度とした場合に主配向方向が40度以下の部分をコア層とした。
[繊維長分布]
 前記方法にて作成した80mm×80mm×2mmt試験片から20mm×20mmに切り出し、500℃で2時間灰化処理して、成形品中の炭素異繊維を取り出した。取り出した炭素繊維を3リッターの水とともにビーカーに入れ、超音波洗浄機を用い炭素繊維を水に均一分散させた。先端8Φのスポイトで炭素繊維が均一分散した水溶液を1cc吸い取り、10×10mmの窪みを持つシャーレにサンプリンリングした後乾燥させた。シャーレ中の炭素繊維の写真を撮り、約1000本の長さを計測して平均繊維長を算出した。計算式は下記の通りである。
  重量平均繊維長=Σ(Mi×Ni)/Σ(Mi×Ni)
           Mi:繊維長(mm)
           Ni:個数
[反り量]
 図16に示す、可動側金型32、固定側金型33、メインキャビティ34、捨てキャビティ35を有するL字金型を用い日本製鋼所社製J110ADで図17に示す形状の成形体36を成形し、成形すべき規定寸法70.7mmと成形体36の図17に示す寸法X(mm)を測定し、下記式により反り量(mm)を算出した。
      反り量(mm)=70.7-X
 まず、本発明の第1の方法の実施例について、以下に説明する。
[実施例1]
 まず繊維状充填材(b)である連続したPAN系炭素繊維束を加熱し、溶融させた樹脂をギアポンプにて計量、塗布した。次いで、溶融温度より高い温度に加熱した雰囲気中で樹脂を炭素繊維束中に含浸させ、連続した炭素繊維束と樹脂との複合体を得た(含浸工程)。
 次に熱可塑性樹脂(a)を押出機のホッパーに投入し、溶融混錬した状態で被覆ダイに押出すと同時に、前記の被覆した複合体を前記被覆ダイ中に連続して供給することにより、熱可塑性樹脂(a)からなる樹脂組成物を前記の複合体に被覆し、押出機の吐出量と複合体の供給量を調整し炭素繊維含有量が20wt%の連続繊維強化樹脂ストランドを得た(コーティング工程)。
 その後、前記連続繊維強化樹脂組ストランドを冷却・固化させ、カッターを用いて6.0mm長に切断して芯鞘型の長繊維ペレットを得た。
 本ペレットを用いて射出プレス成形した成形体の評価結果は表1に示す通り、機械特性と反り量に優れるものであった。また、この実施例1の射出成形体の繊維の配向計測結果を図18に示す。
[実施例2~5および比較例1~3]
 実施例1で得られた長繊維ペレットを用い表1に示す成形条件とした以外は実施例1と同等の条件で成形を行った。本成形体の評価結果を表1に示す。これら実施例は比較例1~3に比べ機械特性と反り量に優れるものであった。また、比較例1の射出成形体の繊維の配向計測結果を図19に示す。
[実施例6]
 前記連続繊維強化樹脂組ストランドの炭素繊維含有量を30wt%とした以外は実施例2と同等とした。本成形体の評価結果は表1に示す通り、機械特性と反り量に優れるものであった。
[比較例4]
 熱可塑性樹脂(a)を2軸押出機(JSW社製TEX30α)の主ホッパーに投入し、繊維状充填材(b)のチョップドストランドを押出機のサイドから熱可塑性樹脂(a)100に対し20wt%となる量を供給し、260℃で溶融混錬した後ガット状に押出し、冷却・固化させ、カッターを用いて3.0mm長に切断して短繊維ペレットを得た。本ペレットを用いた射出成形体の結果を表1に示すが、機械特性が低く且つ異方性が高い。また反り量が大きいものであった。また、この比較例4の射出成形体の繊維の配向計測結果を図20に示す。
[実施例7~9および比較例5、6]
 熱可塑性樹脂(a)をポリプロピレンとした以外は実施例1と同様にして長繊維ペレットを得た。この長繊維ペレットを用い表2に示す条件で成形し成形体を得た。本成形体の結果を表2に示すが、これら実施例では比較例5、6に比べ機械特性と反り量に優れるものであった。 
[実施例10~12および比較例7、8]
 熱可塑性樹脂(a)をPPS樹脂とした以外は実施例1と同様にして長繊維ペレットを得た。この長繊維ペレットを用い表2に示す条件で成形し成形体を得た。本成形体の結果を表2に示すが、これら実施例では比較例7、8に比べ機械特性と反り量に優れるものであった。 
[実施例13~15および比較例9、10]
 繊維状充填材(b)をガラス繊維とし、ガラス繊維の含有量を30wt%とした以外は実施例1と同様にして長繊維ペレットを得た。この長繊維ペレットを用い表3に示す条件で成形し成形体を得た。本成形体の結果を表3に示すが、これら実施例では比較例9、10に比べ機械特性と反り量に優れるものであった。 
 上記実施例および比較例に用いた熱可塑性樹脂(a)は以下の通りである。
ナイロン6樹脂:東レ社製“アミラン”CM1001
ポリプロピレン樹脂:プライムポリマー社製“プライムポリプロ”J137
PPS樹脂:東レ社製“トレリナ”M2888
 同様に、繊維状充填材(b)は以下の通りである。
炭素繊維 :東レ社製“トレカ”T700S(直径7μ、PAN系炭素繊維)。
ガラス繊維:日東紡者製 RS240QR483(直径17μ、Eガラス)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 次に、本発明の第2の方法の実施例について、以下に説明する。
[実施例16]
 まず繊維状充填材(b)である連続したPAN系炭素繊維束を加熱し、溶融させた樹脂をギアポンプにて計量、塗布した。次いで、溶融温度より高い温度に加熱した雰囲気中で樹脂を炭素繊維束中に含浸させ、連続した炭素繊維束と樹脂との複合体を得た(含浸工程)。
 次に熱可塑性樹脂(a)を押出機のホッパーに投入し、溶融混錬した状態で被覆ダイに押出すと同時に、前記の被覆した複合体を前記被覆ダイ中に連続して供給することにより、熱可塑性樹脂(a)からなる樹脂組成物を前記の複合体に被覆し、押出機の吐出量と複合体の供給量を調整し炭素繊維含有量が熱可塑性樹脂(a)との合計に対し20重量%の連続繊維強化樹脂ストランドを得た(コーティング工程)。
 その後、前記連続繊維強化樹脂組ストランドを冷却・固化させ、カッターを用いて6.0mm長に切断して芯鞘型の長繊維ペレットを得た。
 本ペレットを用いてインジェクションプレス成形する際の成形条件と、得られた射出成形体の評価結果を表4に示す。表4からわかるように、本発明の成形条件で得られたものは、機械特性と反り量に優れるものであった。この実施例16の射出成形体の繊維の配向計測結果を図21に示す。
[実施例17~20および比較例11~13]
 実施例16で得られた長繊維ペレットを用い表4に示す成形条件とした以外は実施例1と同等とした。得られた射出成形体の評価結果を表4に示す。これら本実施例は比較例11~13に比べ機械特性と反り量に優れるものであった。なお、この比較例11の射出成形体の繊維の配向を計測した結果、前述の図19に示したのと同等の結果が得られた。
[実施例21]
 前記連続繊維強化樹脂組ストランドの炭素繊維含有量を熱可塑性樹脂(a)との合計に対し30重量%とした以外は実施例2と同等とした。得られた射出成形体の評価結果は表4に示す通り、機械特性と反り量に優れるものであった。
[比較例14]
 熱可塑性樹脂(a)を2軸押出機(JSW社製TEX30α)の主ホッパーに投入し、繊維状充填材(b)のチョップドストランドを押出機のサイドから熱可塑性樹脂(a)との合計に対し20重量%となる量を供給し、260℃で溶融混錬した後ガット状に押出し、冷却・固化させ、カッターを用いて3.0mm長に切断して短繊維ペレットを得た。得られた短繊維ペレットを用いた射出成形体の評価結果を表4に示すが、機械特性が低く且つ異方性が高い。また反り量が大きいものであった。なお、この比較例14の射出成形体の繊維の配向を計測した結果、前述の図20に示したのと同等の結果が得られた。
[実施例22~24および比較例15、16]
 熱可塑性樹脂(a)をポリプロピレンとした以外は実施例16と同様にして長繊維ペレットを得た。得られた長繊維ペレットを用い表5に示す成形条件でインジェクションプレス成形を行い射出成形体を得た。得られた射出成形体の評価結果を表5に示すが、実施例22~24は比較例15、16に比べ機械特性と反り量に優れるものであった。 
[実施例25~27および比較例17、18]
 熱可塑性樹脂(a)をPPS樹脂とした以外は実施例1と同様にして長繊維ペレットを得た。得られた長繊維ペレットを用い表5に示す成形条件でインジェクションプレス成形を行い射出成形体を得た。得られた射出成形体の評価結果を表5に示すが、実施例25~27は比較例17、18に比べ機械特性と反り量に優れるものであった。 
[実施例28~30および比較例19、20]
 繊維状充填材(b)をガラス繊維とし、ガラス繊維の含有量を熱可塑性樹脂(a)との合計に対し30重量%とした以外は実施例1と同様にして長繊維ペレットを得た。得られた長繊維ペレットを用い表6に示す成形条件でインジェクションプレス成形を行い射出成形体を得た。得られた射出成形体の結果を表6に示すが、実施例28~30は比較例19、20に比べ機械特性と反り量に優れるものであった。 
 上記第2の方法における実施例および比較例に用いた熱可塑性樹脂(a)は以下の通りである。
ナイロン6樹脂:東レ社製“アミラン”CM1001
ポリプロピレン樹脂:プライムポリマー社製“プライムポリプロ”J137
PPS樹脂:東レ社製“トレリナ”M2888
 同様に、繊維状充填材(b)は以下の通りである。
炭素繊維 :東レ社製“トレカ”T700S(直径7μ、PAN系炭素繊維)。
ガラス繊維:日東紡者製 RS240QR483(直径17μ、Eガラス)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
1 スキン層
2 コア層
3 樹脂の流れ方向に配向した短繊維
4 樹脂の流れに対し直角方向に配向した短繊維
5 スキン層の配向が乱れた長繊維
6、21 可動側の金型
7、22 固定側の金型
8 メインキャビティ
9 捨てキャビティ
10 スプリング式可動ゲート
11、24 ホットランナーシステム
12、25 エジェクターとしての突き出しピン
13、26 エジェクタープレート
14、27 キャビティに充填した繊維強化熱可塑性樹脂
15、28 射出成形体
23 キャビティ
31 試験片
32 可動側金型
33 固定側金型
34 メインキャビティ
35 捨てキャビティ
36 成形体

Claims (11)

  1.  熱可塑性樹脂(a)に射出成形体中での重量平均繊維長が300μm以上となるように繊維状充填材(b)を配合してなる繊維強化熱可塑性樹脂組成物からなり、厚み方向にスキン層、コア層、スキン層をこの順に有する射出成形体であって、射出成形時の前記繊維強化熱可塑性樹脂組成物の流れ方向と直角の方向を0度とした場合に前記繊維状充填材(b)の主配向方向が40度以下となる前記コア層の厚みが、射出成形体の厚みに対して20%以下であることを特徴とする射出成形体。
  2.  前記繊維状充填材(b)は、射出成形体中での重量平均繊維長が600μm以上となるように配合されている、請求項1に記載の射出成形体。
  3.  前記熱可塑性樹脂(a)がポリプロピレン、ポリアミド、ポリスルフェンサルファイド、ポリイミド、ポリエーテルケトンおよびポリエーテルエーテルケトンから選ばれる少なくとも1種である、請求項1または2に記載の射出成形体。
  4.  前記繊維状充填材(b)が炭素繊維、ガラス繊維およびアラミド繊維から選ばれる少なくとも1種である、請求項1~3のいずれかに記載の射出成形体。
  5.  射出成形体の厚みが0.5mm~10mmの範囲にある、請求項1~4のいずれかに記載の射出成形体。
  6.  前記スキン層における前記繊維状充填材(b)の配向方向がランダムである、請求項1~5のいずれかに記載の射出成形体。
  7.  熱可塑性樹脂(a)に射出成形体中での重量平均繊維長が300μm以上となるように繊維状充填材(b)を配合してなる繊維強化熱可塑性樹脂組成物をインジェクションプレス成形により射出成形する方法であって、金型のメインキャビティ容量の80容量%以上を前記繊維強化熱可塑性樹脂組成物で充填した後にプレスを行うことを特徴とする、射出成形体の製造方法。
  8.  プレス工程において、前記繊維強化熱可塑性樹脂組成物の流動末端部から金型のメインキャビティ容量の10容量%以上の繊維強化熱可塑性樹脂組成物を金型のメインキャビティ外に押し出す、請求項7に記載の射出成形体の製造方法。
  9.  前記繊維強化熱可塑性樹脂組成物として、前記繊維状充填材(b)の長さがペレットと同じ長さである長繊維ペレットを用いてインジェクションプレス成形を行う、請求項7または8に記載の射出成形体の製造方法。
  10.  熱可塑性樹脂(a)に射出成形体中での重量平均繊維長が300μm以上となるように繊維状充填材(b)を配合してなる繊維強化熱可塑性樹脂組成物を、射出開始後に金型を締め始めるインジェクションプレス成形により射出成形する際に、金型を締め始める時間(tps)と射出が終了する時間(tif)の差(t1)と射出が終了する時間(tif)と金型を締め終わる時間(tpf)の差(t2)との比率(t2/t1)が1.1以上となる条件で射出成形することを特徴とする、射出成形体の製造方法。
  11.  前記繊維強化熱可塑性樹脂組成物として、前記繊維状充填材(b)の長さがペレットと同じ長さである長繊維ペレットを用いてインジェクションプレス成形を行う、請求項10に記載の射出成形体の製造方法。
PCT/JP2012/054629 2011-02-28 2012-02-24 射出成形体およびその製造方法 WO2012117975A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/001,887 US9296175B2 (en) 2011-02-28 2012-02-24 Injection molded body and method for producing same
JP2012515837A JP5768811B2 (ja) 2011-02-28 2012-02-24 射出成形体の製造方法
KR1020137024304A KR101927557B1 (ko) 2011-02-28 2012-02-24 사출 성형체의 제조 방법
EP12752535.0A EP2682248B1 (en) 2011-02-28 2012-02-24 Injection formed body and fabrication method for same
CN201280010724.3A CN103384588B (zh) 2011-02-28 2012-02-24 注射成型体及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-041545 2011-02-28
JP2011041545 2011-02-28
JP2011-078006 2011-03-31
JP2011078006 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012117975A1 true WO2012117975A1 (ja) 2012-09-07

Family

ID=46757912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054629 WO2012117975A1 (ja) 2011-02-28 2012-02-24 射出成形体およびその製造方法

Country Status (6)

Country Link
US (1) US9296175B2 (ja)
EP (1) EP2682248B1 (ja)
JP (1) JP5768811B2 (ja)
KR (1) KR101927557B1 (ja)
CN (1) CN103384588B (ja)
WO (1) WO2012117975A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044935A1 (ja) * 2019-09-04 2021-03-11 東レ株式会社 樹脂組成物および成形品

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6254853B2 (ja) * 2014-01-22 2017-12-27 株式会社エンプラス 2色成形方法及び2色成形体
US9849347B2 (en) * 2015-05-28 2017-12-26 Karsten Manufacturing Corporation Golf club head with polymeric hosel
GB2544717B (en) * 2015-09-25 2019-04-10 Gr8 Eng Ltd Injection Molding Method
CN108431098B (zh) * 2015-12-25 2021-09-07 东丽株式会社 结构体
JP6826466B2 (ja) * 2017-03-07 2021-02-03 大同メタル工業株式会社 摺動部材
JP6990977B2 (ja) * 2017-03-07 2022-01-12 大同メタル工業株式会社 摺動部材
CN110785454B (zh) * 2017-08-08 2022-08-02 东丽株式会社 纤维增强热塑性树脂成型品及纤维增强热塑性树脂成型材料
JP7136733B2 (ja) * 2019-03-28 2022-09-13 大同メタル工業株式会社 摺動部材
JP6796165B1 (ja) * 2019-07-09 2020-12-02 ポリプラスチックス株式会社 成形体、複合成形体および複合成形体の製造方法
JP7344093B2 (ja) * 2019-11-07 2023-09-13 大同メタル工業株式会社 摺動部材

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376614A (ja) * 1989-08-21 1991-04-02 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形品の製造方法
JPH06322144A (ja) * 1993-05-13 1994-11-22 Kobe Steel Ltd 薄肉高剛性炭素繊維強化合成樹脂射出圧縮成形品
JPH06328535A (ja) * 1993-05-18 1994-11-29 Kobe Steel Ltd 射出圧縮成形方法及び射出圧縮成形用金型
JP2000061969A (ja) 1998-08-21 2000-02-29 Komatsu Ltd 塑性流動体を利用した積層成形方法およびその金型構造体
JP2002096356A (ja) 2000-09-22 2002-04-02 Honda Motor Co Ltd 射出圧縮成形型
JP2002127215A (ja) * 2000-10-24 2002-05-08 Toray Ind Inc 熱可塑性樹脂の射出成形方法および成形品
JP2002166452A (ja) 2000-11-30 2002-06-11 Ricoh Co Ltd 精密成形品の成形用装置及び成形方法
JP2003171564A (ja) 2001-12-07 2003-06-20 Teijin Chem Ltd 射出圧縮成形品
JP2006272849A (ja) 2005-03-30 2006-10-12 Asahi Kasei Chemicals Corp 射出圧縮成形法
JP2006327051A (ja) * 2005-05-26 2006-12-07 Toyota Motor Corp 射出成形品の成形方法及び射出成形機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2039160C (en) 1989-08-21 2001-04-24 Takahisa Hara Method for producing molded article of fiber-reinforced thermoplastic resin
EP0423676A3 (en) * 1989-10-16 1992-01-08 Sumitomo Chemical Company, Limited Method for producing molded article of fiber-reinforced thermoplastic resin
EP1661685A1 (en) * 2003-09-03 2006-05-31 Sumitomo Heavy Industries, Ltd. Molding method, molding die, molded product, and molding machine
EP2047983B1 (en) * 2006-07-28 2016-09-14 Toray Industries, Inc. Molded article and method for producing the same
KR101665737B1 (ko) * 2008-12-25 2016-10-12 도레이 카부시키가이샤 성형재료 및 수지 부착 강화 섬유 다발

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376614A (ja) * 1989-08-21 1991-04-02 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形品の製造方法
JPH06322144A (ja) * 1993-05-13 1994-11-22 Kobe Steel Ltd 薄肉高剛性炭素繊維強化合成樹脂射出圧縮成形品
JPH06328535A (ja) * 1993-05-18 1994-11-29 Kobe Steel Ltd 射出圧縮成形方法及び射出圧縮成形用金型
JP2000061969A (ja) 1998-08-21 2000-02-29 Komatsu Ltd 塑性流動体を利用した積層成形方法およびその金型構造体
JP2002096356A (ja) 2000-09-22 2002-04-02 Honda Motor Co Ltd 射出圧縮成形型
JP2002127215A (ja) * 2000-10-24 2002-05-08 Toray Ind Inc 熱可塑性樹脂の射出成形方法および成形品
JP2002166452A (ja) 2000-11-30 2002-06-11 Ricoh Co Ltd 精密成形品の成形用装置及び成形方法
JP2003171564A (ja) 2001-12-07 2003-06-20 Teijin Chem Ltd 射出圧縮成形品
JP2006272849A (ja) 2005-03-30 2006-10-12 Asahi Kasei Chemicals Corp 射出圧縮成形法
JP2006327051A (ja) * 2005-05-26 2006-12-07 Toyota Motor Corp 射出成形品の成形方法及び射出成形機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044935A1 (ja) * 2019-09-04 2021-03-11 東レ株式会社 樹脂組成物および成形品

Also Published As

Publication number Publication date
KR20140006952A (ko) 2014-01-16
EP2682248A4 (en) 2016-09-21
US20130337253A1 (en) 2013-12-19
JP5768811B2 (ja) 2015-08-26
US9296175B2 (en) 2016-03-29
CN103384588A (zh) 2013-11-06
KR101927557B1 (ko) 2018-12-10
EP2682248B1 (en) 2018-05-30
JPWO2012117975A1 (ja) 2014-07-07
EP2682248A1 (en) 2014-01-08
CN103384588B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5768811B2 (ja) 射出成形体の製造方法
CN107118437B (zh) 低收缩、低翘曲的长玻纤增强聚丙烯复合材料及其制备方法和应用
EP1990369B1 (en) Glass-fiber-reinforced thermoplastic resin composition and molded article thereof
KR101397687B1 (ko) 고강성 전자파 차폐 복합재
KR101526742B1 (ko) 성형성이 우수한 탄소섬유 보강 폴리프로필렌 수지 조성물
JP2000037723A (ja) 外観に優れた繊維強化熱可塑性樹脂成形品
CH708727B1 (de) Kohlenstofffaser-verstärkte Kunststoff-Formmassen.
KR101602814B1 (ko) 고인장강도용 유리 섬유 강화 폴리아마이드66 수지 조성물 및 이의 제조방법
WO2021153366A1 (ja) 炭素繊維とガラス繊維を含むコールドプレス成形体、およびその製造方法
JP5972721B2 (ja) 熱可塑性樹脂組成物
JPH0365311A (ja) 炭素繊維チョップ
EP3533834B1 (en) Peek resin composition molded article
KR101660242B1 (ko) 내충격성 및 외관이 향상된 열가소성 수지조성물
CN113853285A (zh) 粒料的制造方法
JP2564559B2 (ja) 芳香族ポリスルホン樹脂組成物
JP7553262B2 (ja) 棒状成形品
JPH1119961A (ja) 繊維強化熱可塑性樹脂軽量成形品の製造法
KR102672945B1 (ko) 장섬유 강화 복합재료 및 이로부터 형성된 성형품
JP2005298664A (ja) 樹脂製自動車外装部品
JP2004323559A (ja) 射出成形用樹脂組成物及び樹脂成形品
JP2005255733A (ja) 自動車アンダーフード構造部成形品
CN116587462A (zh) 一种低翘曲材料制备方法及低翘曲材料
CN114507400A (zh) 一种改性玻纤增强聚丙烯组合物及其制备方法
KR20140126575A (ko) 사출성형용 수지 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012515837

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004741

Country of ref document: TH

Ref document number: 14001887

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137024304

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012752535

Country of ref document: EP