WO2012115450A2 - 다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치 - Google Patents

다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2012115450A2
WO2012115450A2 PCT/KR2012/001356 KR2012001356W WO2012115450A2 WO 2012115450 A2 WO2012115450 A2 WO 2012115450A2 KR 2012001356 W KR2012001356 W KR 2012001356W WO 2012115450 A2 WO2012115450 A2 WO 2012115450A2
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
data channel
control channel
channel
transmitted
Prior art date
Application number
PCT/KR2012/001356
Other languages
English (en)
French (fr)
Other versions
WO2012115450A3 (ko
Inventor
김형태
서인권
박종현
최영섭
이승민
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/983,296 priority Critical patent/US9161346B2/en
Priority to KR1020137019737A priority patent/KR101967297B1/ko
Publication of WO2012115450A2 publication Critical patent/WO2012115450A2/ko
Publication of WO2012115450A3 publication Critical patent/WO2012115450A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/006Single carrier frequency division multiple access [SC FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a control channel transmission method and apparatus therefor in a multi-cell cooperative wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • the base station transmits downlink scheduling information for downlink (DL) data and informs the user equipment of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • HARQ Hybrid Automatic Repeat and reQuest
  • the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the user equipment of time / frequency domain, encoding, data size, HARQ related information, and the like.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • a method for transmitting a downlink signal includes: in a first subframe, a first transmitter transmits a control channel and a data channel, and one or more second transmitters transmit only a data channel. Transmitting; And in the second subframe, the first transmitter transmits only a data channel, and the one or more second transmitters transmit a control channel and a data channel, wherein the one or more second transmitters in the first subframe.
  • the transmitting data channel is decoded based on a control channel transmitted by the at least one second transmitting end in the second subframe.
  • the data channel transmitted by the one or more second transmitters in the first subframe includes a data channel for cooperative communication transmitted by the first transmitter and the one or more second transmitters to a specific terminal. do.
  • the at least one second transmitting end may further include transmitting a control channel for decoding the data channel for the cooperative communication.
  • the one or more second transmitters do not transmit a control channel in a control region, and in the second subframe, the first transmitter does not transmit a control channel in a control region.
  • the response signal for the data channel transmitted by the one or more second transmitters is a subframe after a preset time from the second subframe in which the one or more second transmitters transmits a control channel. Characterized in that received from.
  • the first transmitting end may further include transmitting a control channel and a data channel, and the at least one second transmitting end may transmit only the data channel, in this case, in the third subframe.
  • the data channel transmitted by the one or more second transmitters is also decoded based on a control channel transmitted by the one or more second transmitters in the second subframe.
  • the response signal for the data channel transmitted by the one or more second transmitters is in a subframe after a preset time from the second subframe in which the one or more second transmitters transmits a control channel. Characterized in that it is received.
  • a multi-cell cooperative wireless communication system a first transmitting end for transmitting a control channel and a data channel in the first subframe, and only the data channel in the second subframe; And at least one second transmitting end transmitting only a data channel in the first subframe and transmitting a control channel and a data channel in the second subframe, wherein the at least one second transmitting end is transmitted in the first subframe.
  • the data channel may be decoded based on a control channel transmitted by the one or more second transmitters in the second subframe.
  • the first transmitting end and the one or more second transmitting end have the same cell identifier.
  • a control channel can be transmitted more effectively in a multi-cell cooperative wireless communication system.
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIG. 7 is a diagram illustrating a configuration of a heterogeneous network to which CoMP technique can be applied.
  • FIG. 8 is a diagram illustrating an example in which a cell identifier is assigned to an RRH in a heterogeneous network.
  • FIG. 9 is a diagram illustrating an example in which a eNB and an RRH transmit data channels with a mark having the same cell identifier.
  • FIG. 10 is a diagram illustrating an example in which a macro eNB and an RRH transmit a control channel according to an embodiment of the present invention.
  • FIG. 11 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and is composed of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format. It is assumed that information about data transmitted using information (eg, transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes: ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel state, RI (Rank Indicator) for MIMO, Scheduling Request (SR), which is an uplink resource allocation request, etc. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • the LTE-A system which is a standard of the next generation mobile communication system, is expected to support a CoMP (Coordinated Multi Point) transmission method, which was not supported in the existing standard, to improve the data rate.
  • the CoMP transmission scheme refers to a transmission scheme in which two or more base stations or cells cooperate with each other to communicate with a terminal in order to improve communication performance between a terminal and a base station (cell or sector) in a shaded area.
  • CoMP transmission can be divided into CoMP-Joint Processing (CoMP-JP) and CoMP-Coordinated Scheduling / beamforming (CoMP-CS / CB) schemes through data sharing. .
  • CoMP-JP CoMP-Joint Processing
  • CoMP-CS / CB CoMP-Coordinated Scheduling / beamforming
  • the terminal may simultaneously receive data from each base station that performs the CoMP transmission scheme, and combine the received signals from each base station to improve reception performance.
  • Joint Transmission JT
  • one of the base stations performing the CoMP transmission scheme may also consider a method for transmitting data to the terminal at a specific time point (DPS; Dynamic Point Selection).
  • DPS Dynamic Point Selection
  • the UE may receive data through one base station, that is, a serving base station, through beamforming.
  • each base station may simultaneously receive a PUSCH signal from the terminal (Joint Reception; JR).
  • JR Joint Reception
  • cooperative scheduling / beamforming scheme CoMP-CS / CB
  • only one base station receives a PUSCH, where the decision to use the cooperative scheduling / beamforming scheme is determined by the cooperative cells (or base stations). Is determined.
  • the CoMP technique can be applied to heterogeneous networks as well as homogeneous networks composed only of macro eNBs.
  • FIG. 7 is a diagram illustrating a configuration of a heterogeneous network to which a CoMP technique may be applied.
  • FIG. 7 illustrates a network including a radio remote head (RRH) for transmitting and receiving a signal with a relatively low transmission power with a macro eNB.
  • RRH radio remote head
  • the pico eNB or radio remote head (RRH) located within the coverage of the macro eNB may be connected to the macro eNB and the optical cable.
  • This CoMP scenario is to cover the coverage hole of a specific area through the added RRHs compared to a system where only eNB exists and utilize multiple transmission points (TPs) including RRHs.
  • TPs transmission points
  • RRHs can be classified into two types, one of which is a case where each RRH has been given a cell-ID different from a macro eNB, and each of the RRHs can be regarded as another small cell. In another case, each of the RRHs operates with the same cell identifier as the macro eNB.
  • FIG. 8 is a diagram illustrating an example in which a cell identifier equal to or different from a macro eNB is allocated to an RRH in a heterogeneous network.
  • the macro eNB has cell coverage consisting of three sectors.
  • FIG. 8A illustrates an example in which the cell identifiers between sectors are differently allocated
  • FIG. 8B illustrates an example in which the same cell identifiers are allocated across all sectors.
  • a cell-specific RS which is generally a cell-specific reference signal
  • a cell-specific reference signal is generated based on a cell identifier
  • both nodes transmit the same cell-specific reference signal.
  • the PDCCH / PDSCH based on the CRS is simultaneously transmitted by two nodes, and the UE receiving the same receives the signals received from the two nodes as if they were a single signal.
  • the PDSCH may be independently transmitted to each UE receiving the corresponding RS from each node. That is, if two nodes are spaced apart from each other, resources may be reused to allow independent PDSCH transmission to each UE adjacent to the node.
  • resources may be reused to allow independent PDSCH transmission to each UE adjacent to the node.
  • a plurality of RRHs can reuse the resources (re-use) and transmit a PDSCH to a large number of UEs at the same time, it may be limited by the capacity of the PDCCH that the eNB can transmit.
  • FIG. 8A since a separate cell identifier is allocated to each sector, three data channels and three control channels can be distinguished by RS.
  • FIG. 8B since a separate cell identifier is allocated to each sector, only one control channel can be distinguished by the RS.
  • the PDSCH is transmitted based on the UE-specific reference signal, three data channels may be distinguished. This problem is because the PDCCH, that is, the control channel, is distinguished by the CRS, which is a cell-specific reference signal.
  • the present invention proposes a method in which the macro eNB and the RRH divide the time and transmit the PDCCH so that the RRH can transmit a control channel for an adjacent UE.
  • FIG 9 shows an example in which the eNB and the RRH transmit data channels with a mark having the same cell identifier.
  • the macro eNB and the RRH1 perform JP for UE0, and at the same time, the RRH1 performs independent downlink transmission for the UE1 adjacent to the RRH1.
  • the present invention proposes to transmit each PDCCH in different subframes so that the PDCCH (0) for UE0 and the PDCCH (1) for UE1 adjacent to RRH1 do not interfere with each other.
  • FIG. 10 illustrates an example in which a macro eNB and an RRH transmit a control channel according to an embodiment of the present invention.
  • RRH1 does not transmit PDCCH (1) for UE1 in the data region, and transmits PDSCH (1) for UE1 and / or PDSCH (0) for CoMP JP transmission. send.
  • the CRS may be transmitted or the signal itself may not be transmitted.
  • PDCCH (0) for UE0 may be transmitted for CoMP JP transmission.
  • the PDCCH 1 for the PDSCH 1 is not transmitted.
  • the macro eNB may transmit only the CRS to the control region or the signal itself for the control channel transmission of the RRH1 and the RRH2.
  • each of the RRHs in subframe # (n + 1) may transmit PDCCHs for neighboring UEs.
  • UE1 receiving an independent downlink signal from RRH1 receives PDCCH (1) for PDSCH (1) in subframe # (n) in subframe # (n + 1) to receive PDSCH (1).
  • Decoding can be performed.
  • UE1 stores the PDSCH (1) received in subframe # (n) in a buffer, and after receiving the PDCCH (1) in subframe # (n + 1), the PDSCH ( It is preferable to decode 1).
  • UE1 may also decode the PDSCH 1 received in subframe # (n + 2) using the PDCCH (1) received in subframe # (n + 1).
  • RRH1 and RRH2 may transmit PDCCH (1) and PDCCH (2) at the same time, because the cell coverage may not overlap by adjusting the separation distance between RRHs during cell construction.
  • PDCCH (1) and PDCCH (2) may be transmitted in the concept of resource reuse (Re-use) rather than resource sharing (Sharing).
  • the macro eNB may also transmit only PDSCH (0) in some subframes and transmit PDCCH (0) for decoding the PDSCH (0) in a subframe different from the subframe.
  • the PDDCH transmission between the macro eNB and the RRH may be preset based on the subframe index. For example, in the odd subframe, the macro eNB transmits the PDCCH, and in the even subframe, the RRH transmits the PDCCH. Can be implemented.
  • UEs receiving the UE-specific reference signal-based PDSCH from the RRH may feed back ACK / NACK of the PDSCH after 4 ms of the subframe in which the PDCCH is received.
  • UEs that receive a PDSCH in subframe # (n + 1) and a PDSCH in subframe # (n + 2) from RRH1 or RRH2 ACK / ACK for PDSCH in subframe # (n + 1)
  • ACK / NACK for the PDSCH is preferably transmitted together after 4ms of the subframe receiving the PDCCH.
  • FIG. 11 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1100 includes a processor 1110, a memory 1120, an RF module 1130, a display module 1140, and a user interface module 1150.
  • the communication device 1100 is illustrated for convenience of description and some modules may be omitted. In addition, the communication device 1100 may further include necessary modules. In addition, some modules in the communication device 1100 may be classified into more granular modules.
  • the processor 1110 is configured to perform an operation according to an embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1110 may refer to the contents described with reference to FIGS. 1 to 10.
  • the memory 1120 is connected to the processor 1110 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1130 is connected to the processor 1110 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1130 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 1140 is connected to the processor 1110 and displays various information.
  • the display module 1140 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1150 is connected to the processor 1110 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • control channel transmission method and apparatus for the same in the multi-cell cooperative wireless communication system as described above have been described with reference to the example applied to the 3GPP LTE system, but it is possible to apply to various wireless communication systems in addition to the 3GPP LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 다중 셀 협력 무선 통신 시스템에서 하향링크 신호를 송신하는 방법이 개시된다. 구체적으로, 제 1 서브프레임에서, 제 1 송신단이 제어 채널과 데이터 채널을 송신하고, 하나 이상의 제 2 송신단이 데이터 채널만을 송신하는 단계, 및 제 2 서브프레임에서, 상기 제 1 송신단이 데이터 채널만을 송신하고, 상기 하나 이상의 제 2 송신단이 제어 채널과 데이터 채널을 송신하는 단계를 포함하고, 상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은 상기 제 2 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 제어 채널에 기반하여 복호되는 것을 특징으로 한다.

Description

다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink; DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink; UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 다중 셀 협력 무선 통신 시스템에서 하향링크 신호를 송신하는 방법은, 제 1 서브프레임에서, 제 1 송신단이 제어 채널과 데이터 채널을 송신하고, 하나 이상의 제 2 송신단이 데이터 채널만을 송신하는 단계; 및 제 2 서브프레임에서, 상기 제 1 송신단이 데이터 채널만을 송신하고, 상기 하나 이상의 제 2 송신단이 제어 채널과 데이터 채널을 송신하는 단계를 포함하고, 상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은 상기 제 2 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 제어 채널에 기반하여 복호되는 것을 특징으로 한다.
여기서, 상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은, 상기 제 1 송신단과 상기 하나 이상의 제 2 송신단이 특정 단말로 송신하는 협력 통신을 위한 데이터 채널을 포함하는 것을 특징으로 한다. 이 경우, 상기 제 1 서브프레임에서, 상기 하나 이상의 제 2 송신단이, 상기 협력 통신을 위한 데이터 채널을 복호하기 위한 제어 채널을 송신하는 단계를 더 포함할 수 있다.
또한, 상기 제 1 서브프레임에서, 상기 하나 이상의 제 2 송신단은 제어 영역에 제어 채널을 송신하지 않고, 상기 제 2 서브프레임에서, 상기 제 1 송신단은 제어 영역에 제어 채널을 송신하지 않는 것이 바람직하다.
나아가, 상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신한 데이터 채널에 대한 응답 신호는, 상기 하나 이상의 제 2 송신단이 제어 채널을 송신한 상기 제 2 서브프레임으로부터 기 설정된 시간 이후의 서브프레임에서 수신되는 것을 특징으로 한다.
또한, 제 3 서브프레임에서, 상기 제 1 송신단이 제어 채널과 데이터 채널을 송신하고, 상기 하나 이상의 제 2 송신단이 데이터 채널만을 송신하는 단계를 더 포함할 수 있고, 이 경우 상기 제 3 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널 역시 상기 제 2 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 제어 채널에 기반하여 복호되는 것을 특징으로 한다.
마찬가지로, 상기 제 3 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신한 데이터 채널에 대한 응답 신호는 상기 하나 이상의 제 2 송신단이 제어 채널을 송신한 상기 제 2 서브프레임으로부터 기 설정된 시간 이후의 서브프레임에서 수신되는 것을 특징으로 한다.
한편, 본 발명의 다른 양상인 다중 셀 협력 무선 통신 시스템은, 제 1 서브프레임에서 제어 채널과 데이터 채널을 송신하고, 제 2 서브프레임에서 데이터 채널만을 송신하는 제 1 송신단; 및 상기 제 1 서브프레임에서 데이터 채널만을 송신하고, 상기 제 2 서브프레임에서 제어 채널과 데이터 채널을 송신하는 하나 이상의 제 2 송신단을 포함하고, 상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은 상기 제 2 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 제어 채널에 기반하여 복호되는 것을 특징으로 한다.
상기 실시예에서, 상기 제 1 송신단 및 상기 하나 이상의 제 2 송신단은 동일한 셀 식별자를 갖는 것을 특징으로 한다.
본 발명의 실시예에 따르면 다중 셀 협력 무선 통신 시스템에서 제어 채널을 보다 효과적으로 전송할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 사용되는 하향 링크 무선 프레임의 구조를 예시하는 도면.
도 6은 LTE 시스템에서 사용되는 상향 링크 서브프레임의 구조를 도시하는 도면.
도 7은 CoMP 기법이 적용될 수 있는 이종 네트워크의 구성을 예시하는 도면.
도 8은 이종 네트워크에서 RRH에 셀 식별자가 할당된 예를 도시하는 도면.
도 9는 동일한 셀 식별자를 갖는 마크로 eNB 및 RRH가 데이터 채널을 송신하는 예를 도시하는 도면.
도 10은 본 발명의 실시예에 따라 마크로 eNB 및 RRH가 제어 채널을 송신하는 예를 도시하는 도면.
도 11은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다.제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향 링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향 링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향 링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향 링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향 링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향 링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향 링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향 링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
한편, 차세대 이동통신 시스템의 표준인 LTE-A 시스템에서는 데이터 전송률 향상을 위해 기존 표준에서는 지원되지 않았던 CoMP(Coordinated Multi Point) 전송 방식을 지원할 것으로 예상된다. 여기서, CoMP 전송 방식은 음영 지역에 있는 단말 및 기지국(셀 또는 섹터) 간의 통신성능을 향상시키기 위해 2개 이상의 기지국 혹은 셀이 서로 협력하여 단말과 통신하기 위한 전송 방식을 말한다.
CoMP 전송 방식은 데이터 공유를 통한 협력적 MIMO 형태의 조인트 프로세싱(CoMP-Joint Processing, CoMP-JP) 및 협력 스케줄링/빔포밍(CoMP-Coordinated Scheduling/beamforming, CoMP-CS/CB) 방식으로 구분할 수 있다.
하향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 단말은 CoMP전송 방식을 수행하는 각 기지국으로부터 데이터를 순간적으로 동시에 수신할 수 있으며, 각 기지국으로부터의 수신한 신호를 결합하여 수신 성능을 향상시킬 수 있다 (Joint Transmission; JT). 또한, CoMP전송 방식을 수행하는 기지국들 중 하나가 특정 시점에 상기 단말로 데이터를 전송하는 방법도 고려할 수 있다 (DPS; Dynamic Point Selection). 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS/CB)에서, 단말은 빔포밍을 통해 데이터를 순간적으로 하나의 기지국, 즉 서빙 기지국을 통해서 수신할 수 있다.
상향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 각 기지국은 단말로부터 PUSCH 신호를 동시에 수신할 수 있다 (Joint Reception; JR). 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS/CB)에서, 하나의 기지국만이 PUSCH를 수신하는데 이때 협력 스케줄링/빔포밍 방식을 사용하기로 하는 결정은 협력 셀(혹은 기지국)들에 의해 결정된다.
한편, CoMP 기법은 마크로 eNB로만 구성된 동종 네트워크뿐만 아니라, 이종 네트워크 간에도 적용될 수 있다.
도 7은 CoMP 기법이 적용될 수 있는 이종 네트워크의 구성을 예시하는 도면이다. 특히, 도 7에서 마크로 eNB과 상대적으로 적은 전송 전력으로 신호를 송수신하는 RRH(radio remote head)등으로 구성된 네트워크를 도시하고 있다. 여기서 마크로 eNB의 커버리지 내에 위치한 피코 eNB 또는 RRH(radio remote head)는 마크로 eNB과 광 케이블 등으로 연결될 수 있다.
도 7을 참조하면, RRH의 송신 전력은 마크로 eNB의 송신 전력에 비해 상대적으로 낮기 때문에, 각 RRH의 커버리지는 마크로 eNB의 커버리지에 비하여 상대적으로 작다는 것을 알 수 있다.
이와 같은 CoMP 시나리오에서 추구하고자 하는 바는 기존의 마크로 eNB만 존재하는 시스템 대비 추가된 RRH들을 통해 특정 지역의 커버리지 홀(coverage hole)을 커버하거나, RRH를 포함하는 다수의 전송 포인트(TP)들을 활용하여 서로 간의 협조적인 전송을 통해 전체적인 시스템 쓰루풋(throughput)이 증대되는 이득을 기대할 수 있다.
한편, 도 7에서 RRH들은 두 가지로 분류될 수 있으며, 하나는 각 RRH들이 모두 마크로 eNB과 다른 셀 식별자(cell-ID)를 부여받은 경우로서 각 RRH들을 또 다른 소형 셀로 간주할 수 있는 경우이고, 또 하나는 각 RRH들이 모두 마크로 eNB와 동일한 셀 식별자를 가지고 동작하는 경우이다.
도 8은 이종 네트워크에서 RRH에 마크로 eNB과 동일하거나 다른 셀 식별자가 할당된 예를 도시하는 도면이다. 특히, 마크로 eNB은 3개의 섹터로 구성된 셀 커버리지를 갖는 것으로 가정한다.
우선 도 8의 (a)와 (b) 모두 동일한 섹터 내에 위치한 RRH 간에는 동일한 셀 식별자가 할당된 것을 알 수 있다. 그러나, 도 8의 (a)에서는 섹터 간 셀 식별자가 다르게 할당된 예를 도시하며, 도 8의 (b)에서는 모든 섹터에 걸쳐 동일한 셀 식별자가 할당된 예를 도시한다.
한편, 일반적으로 셀 특정 참조 신호인 CRS (cell-specific RS)는 셀 식별자를 기반으로 생성되기 때문에, RRH와 마크로 eNB가 동일한 셀 식별자를 가질 경우, 두 노드는 동일한 셀 특정 참조 신호를 전송하게 된다. 따라서, CRS를 기반으로 하는 PDCCH/PDSCH는 두 노드에서 동시에 전송이 되며, 이를 수신하는 UE는 상기 두 노드로부터 수신한 신호를 마치 하나의 신호처럼 수신하게 된다.
반면 DM-RS, CSI-RS와 같이 단말 특정 참조 신호를 기반으로 하는 PDSCH의 경우, 각 노드로부터 해당 RS를 수신하는 각 UE에게 독립적으로 전송될 수 있다. 즉, 두 노드가 공간적으로 이격되어 있다면, 자원을 재사용(re-use)하여 각 노드가 자신에게 인접한 각 UE에게 독립적인 PDSCH 전송을 할 수 있다. 이때 다수의 RRH가 자원을 재사용(re-use)하여 동시에 많은 수의 UE에게 PDSCH를 전송할 수 있지만, eNB가 전송할 수 있는 PDCCH의 용량(capacity)에 의해 제한을 받을 수 있다.
예를 들어, 상기 도 8의 (a)에서는 각 섹터 별로 별개의 셀 식별자가 할당되게 되므로 3개의 데이터 채널과 3개의 제어 채널이 RS에 의하여 구분될 수 있다. 그러나, 상기 도 8의 (b)에서는 각 섹터 별로 별개의 셀 식별자가 할당되게 되므로 1개의 제어 채널만이 RS에 의하여 구분될 수 있다. 물론, 도 8의 (b)에서도 단말 특정 참조 신호에 기반한 PDSCH가 전송되므로, 3개의 데이터 채널이 구분될 수 있다. 이러한 문제는 PDCCH, 즉 제어 채널이 셀 특정 참조 신호인 CRS에 의하여 구분되기 때문이다.
본 발명은 상기 문제를 해결하기 위해, RRH가 인접한 UE를 위한 제어 채널을 전송할 수 있도록, 마크로 eNB와 RRH 가 시간을 나누어 PDCCH를 전송하는 방법을 제안한다.
도 9는 동일한 셀 식별자를 갖는 마크로 eNB 및 RRH가 데이터 채널을 송신하는 예를 도시한다.
도 9를 참조하면, 마크로 eNB와 RRH1가 UE0를 위해 JP를 수행하고, 동일한 시점에 RRH1이 RRH1에 인접한 UE1을 위해 독립적인 하향링크 전송을 수행한다고 가정한다.
이 경우, 본 발명에서는 UE0를 위한 PDCCH(0)와 RRH1에 인접한 UE1을 위한 PDCCH(1)이 서로 간섭을 일으키지 않도록, 각 PDCCH를 서로 다른 서브프레임에서 전송하는 것을 제안한다.
도 10은 본 발명의 실시예에 따라 마크로 eNB 및 RRH가 제어 채널을 송신하는 예를 도시한다.
도 10을 참조하면, 서브프레임 #(n)에서 RRH1은 데이터 영역에서 UE1을 위한 PDCCH(1)은 전송하지 않고, UE1을 위한 PDSCH(1) 및/또는 CoMP JP전송을 위한 PDSCH(0)를 전송한다. 그러나, 제어 영역에서는 CRS만을 송신하거나 신호 자체를 송신하지 않을 수 있다. 또는 제어 영역에서 CoMP JP전송을 위하여 UE0를 위한 PDCCH(0)를 전송할 수 있다. 중요한 점은, PDSCH(1)를 위한 PDCCH(1)이 전송되지 않는다는 점이다.
다음으로, 서브프레임 #(n+1)에서 마크로 eNB는 RRH1 및 RRH2의 제어 채널 전송을 위해 제어 영역을 CRS만을 송신하거나 신호 자체를 송신하지 않을 수 있다. 또한, 서브프레임 #(n+1)에서 각 RRH들은 인접한 UE들을 위한 PDCCH들을 전송할 수 있다. 구체적으로, RRH1로부터 독립적인 하향링크 신호를 수신하는 UE1은, 서브프레임 #(n)의 PDSCH(1)에 대한 PDCCH(1)을 서브프레임 #(n+1)에서 수신하여 PDSCH(1)의 복호를 수행할 수 있다. 이 경우, UE1은 서브프레임 #(n)에서 수신하는 PDSCH(1)를 버퍼에 저장하였다가, 상기 PDCCH(1)을 서브프레임 #(n+1)에서 수신한 이후, 상기 버퍼에 저장된 PDSCH(1)를 복호하는 것이 바람직하다.
또한 UE1은 서브프레임 #(n+1)에서 수신한 PDCCH(1)을 이용하여 서브프레임 #(n+2)에서 수신된 PDSCH(1)의 복호를 수행할 수도 있다.
서브프레임 #(n+1)에서 RRH1 및 RRH2는 동시에 PDCCH(1) 및 PDCCH(2)를 송신할 수 있으며, 이는 셀 구축 시 RRH 간 이격 거리를 조절하여 셀 커버리지가 겹치지 않을 수 있기 때문이다. 이 경우, PDCCH(1) 및 PDCCH(2)는 자원 공유(Sharing)가 아닌 자원 재사용(Re-use) 개념으로 전송될 수 있다.
마찬가지 방법으로 마크로 eNB 또한 일부 서브프레임에서는 PDSCH(0)만을 송신하고, 상기 서브프레임과 다른 서브프레임에서 해당 PDSCH(0)를 복호하기 위한 PDCCH(0)을 송신할 수 있다.
이와 같이 마크로 eNB와 RRH 간의 PDDCH 전송은 서브프레임 인덱스를 기준으로 미리 설정될 수 있으며, 예를 들어 홀수 번째 서브프레임에서는 마크로 eNB가 PDCCH를 송신하고, 짝수 번째 서브프레임에서는 RRH 가 PDCCH를 송신하는 것으로 구현할 수 있다.
한편, RRH로부터 단말 특정 참조 신호 기반 PDSCH를 수신한 UE들은 PDCCH를 수신한 서브프레임의 4ms이후에 해당 PDSCH의 ACK/NACK을 피드백할 수 있다. 만약, 도 10에서 RRH1 또는 RRH2로부터 서브프레임 #(n+1)의 PDSCH 및 서브프레임 #(n+2)에서 PDSCH를 수신한 단말들은, 서브프레임 #(n+1)의 PDSCH에 대한 ACK/NACK과 서브프레임 #(n+2)에서 PDSCH에 대한 ACK/NACK을 PDCCH를 수신한 서브프레임의 4ms이후에 함께 전송하는 것이 바람직하다.
도 11은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 11을 참조하면, 통신 장치(1100)는 프로세서(1110), 메모리(1120), RF 모듈(1130), 디스플레이 모듈(1140) 및 사용자 인터페이스 모듈(1150)을 포함한다.
통신 장치(1100)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1100)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1100)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1110)는 도면을 참조하여 예시한 본 발명의 실시 예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1110)의 자세한 동작은 도 1 내지 도 10에 기재된 내용을 참조할 수 있다.
메모리(1120)는 프로세서(1110)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1130)은 프로세서(1110)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1130)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1140)은 프로세서(1110)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1140)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1150)은 프로세서(1110)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (16)

  1. 다중 셀 협력 무선 통신 시스템에서 하향링크 신호를 송신하는 방법에 있어서,
    제 1 서브프레임에서, 제 1 송신단이 제어 채널과 데이터 채널을 송신하고, 하나 이상의 제 2 송신단이 데이터 채널만을 송신하는 단계; 및
    제 2 서브프레임에서, 상기 제 1 송신단이 데이터 채널만을 송신하고, 상기 하나 이상의 제 2 송신단이 제어 채널과 데이터 채널을 송신하는 단계를 포함하고,
    상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은 상기 제 2 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 제어 채널에 기반하여 복호되는 것을 특징으로 하는,
    하향링크 신호 송신 방법.
  2. 제 1 항에 있어서,
    상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은,
    상기 제 1 송신단과 상기 하나 이상의 제 2 송신단이 특정 단말로 송신하는 협력 통신을 위한 데이터 채널을 포함하는 것을 특징으로 하는,
    하향링크 신호 송신 방법.
  3. 제 2 항에 있어서,
    상기 제 1 서브프레임에서, 상기 하나 이상의 제 2 송신단이, 상기 협력 통신을 위한 데이터 채널을 복호하기 위한 제어 채널을 송신하는 단계를 더 포함하는 것을 특징으로 하는,
    하향링크 신호 송신 방법.
  4. 제 1 항에 있어서,
    상기 제 1 서브프레임에서, 상기 하나 이상의 제 2 송신단은 제어 영역에 제어 채널을 송신하지 않고,
    상기 제 2 서브프레임에서, 상기 제 1 송신단은 제어 영역에 제어 채널을 송신하지 않는 것을 특징으로 하는,
    하향링크 신호 송신 방법.
  5. 제 1 항에 있어서,
    상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신한 데이터 채널에 대한 응답 신호는,
    상기 하나 이상의 제 2 송신단이 제어 채널을 송신한 상기 제 2 서브프레임으로부터 기 설정된 시간 이후의 서브프레임에서 수신되는 것을 특징으로 하는,
    하향링크 신호 송신 방법.
  6. 제 1 항에 있어서,
    제 3 서브프레임에서, 상기 제 1 송신단이 제어 채널과 데이터 채널을 송신하고, 상기 하나 이상의 제 2 송신단이 데이터 채널만을 송신하는 단계를 더 포함하고,
    상기 제 3 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은 상기 제 2 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 제어 채널에 기반하여 복호되는 것을 특징으로 하는,
    하향링크 신호 송신 방법.
  7. 제 6 항에 있어서,
    상기 제 3 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신한 데이터 채널에 대한 응답 신호는,
    상기 하나 이상의 제 2 송신단이 제어 채널을 송신한 상기 제 2 서브프레임으로부터 기 설정된 시간 이후의 서브프레임에서 수신되는 것을 특징으로 하는,
    하향링크 신호 송신 방법.
  8. 제 1 항에 있어서,
    상기 제 1 송신단 및 상기 하나 이상의 제 2 송신단은,
    동일한 셀 식별자를 갖는 것을 특징으로 하는,
    하향링크 신호 송신 방법.
  9. 다중 셀 협력 무선 통신 시스템으로서,
    제 1 서브프레임에서 제어 채널과 데이터 채널을 송신하고, 제 2 서브프레임에서 데이터 채널만을 송신하는 제 1 송신단; 및
    상기 제 1 서브프레임에서 데이터 채널만을 송신하고, 상기 제 2 서브프레임에서 제어 채널과 데이터 채널을 송신하는 하나 이상의 제 2 송신단을 포함하고,
    상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은 상기 제 2 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 제어 채널에 기반하여 복호되는 것을 특징으로 하는,
    다중 셀 협력 무선 통신 시스템.
  10. 제 9 항에 있어서,
    상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은,
    상기 제 1 송신단과 상기 하나 이상의 제 2 송신단이 특정 단말로 송신하는 협력 통신을 위한 데이터 채널을 포함하는 것을 특징으로 하는,
    다중 셀 협력 무선 통신 시스템.
  11. 제 10 항에 있어서,
    상기 제 1 서브프레임에서, 상기 하나 이상의 제 2 송신단은 상기 협력 통신을 위한 데이터 채널을 복호하기 위한 제어 채널을 송신하는 것을 특징으로 하는,
    다중 셀 협력 무선 통신 시스템.
  12. 제 9 항에 있어서,
    상기 제 1 서브프레임에서, 상기 하나 이상의 제 2 송신단은 제어 영역에 제어 채널을 송신하지 않고,
    상기 제 2 서브프레임에서, 상기 제 1 송신단은 제어 영역에 제어 채널을 송신하지 않는 것을 특징으로 하는,
    다중 셀 협력 무선 통신 시스템.
  13. 제 9 항에 있어서,
    상기 제 1 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신한 데이터 채널에 대한 응답 신호는,
    상기 하나 이상의 제 2 송신단이 제어 채널을 송신한 상기 제 2 서브프레임으로부터 기 설정된 시간 이후의 서브프레임에서 수신되는 것을 특징으로 하는,
    다중 셀 협력 무선 통신 시스템.
  14. 제 9 항에 있어서,
    제 3 서브프레임에서, 상기 제 1 송신단이 제어 채널과 데이터 채널을 송신하고, 상기 하나 이상의 제 2 송신단이 데이터 채널만을 송신하고,
    상기 제 3 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 데이터 채널은 상기 제 2 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신하는 제어 채널에 기반하여 복호되는 것을 특징으로 하는,
    다중 셀 협력 무선 통신 시스템.
  15. 제 14 항에 있어서,
    상기 제 3 서브프레임에서 상기 하나 이상의 제 2 송신단이 송신한 데이터 채널에 대한 응답 신호는,
    상기 하나 이상의 제 2 송신단이 제어 채널을 송신한 상기 제 2 서브프레임으로부터 기 설정된 시간 이후의 서브프레임에서 수신되는 것을 특징으로 하는,
    다중 셀 협력 무선 통신 시스템.
  16. 제 9 항에 있어서,
    상기 제 1 송신단 및 상기 하나 이상의 제 2 송신단은,
    동일한 셀 식별자를 갖는 것을 특징으로 하는,
    다중 셀 협력 무선 통신 시스템.
PCT/KR2012/001356 2011-02-23 2012-02-22 다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치 WO2012115450A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/983,296 US9161346B2 (en) 2011-02-23 2012-02-22 Method for transmitting control channel in multicell cooperative wireless communication system and device therefor
KR1020137019737A KR101967297B1 (ko) 2011-02-23 2012-02-22 다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161445541P 2011-02-23 2011-02-23
US61/445,541 2011-02-23

Publications (2)

Publication Number Publication Date
WO2012115450A2 true WO2012115450A2 (ko) 2012-08-30
WO2012115450A3 WO2012115450A3 (ko) 2012-11-01

Family

ID=46721337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001356 WO2012115450A2 (ko) 2011-02-23 2012-02-22 다중 셀 협력 무선 통신 시스템에서 제어 채널 전송 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US9161346B2 (ko)
KR (1) KR101967297B1 (ko)
WO (1) WO2012115450A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9356765B2 (en) * 2011-08-24 2016-05-31 Industrial Technology Research Institute Communication method for aggregation of heterogeneous component carriers and communication device and wireless communication station using the same
GB2502274B (en) 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
GB2502275B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
US9661612B2 (en) * 2012-06-29 2017-05-23 Samsung Electronics Co., Ltd. Methods and apparatus for uplink control channel multiplexing in beamformed cellular systems
KR20140046518A (ko) * 2012-10-04 2014-04-21 삼성전자주식회사 통신 시스템에서 스케줄 관리 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100189038A1 (en) * 2009-01-23 2010-07-29 Runhua Chen Circuit and method for mapping data symbols and reference signals for coordinated multi-point systems
WO2011013990A2 (en) * 2009-07-28 2011-02-03 Lg Electronics Inc. Method and apparatus for transmitting reference signal for reducing inter-cell interference in multiple input multiple output communication system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227449A1 (en) * 2007-03-15 2008-09-18 Qualcomm Incorporated Pich-hs timing and operation
US8675537B2 (en) * 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
WO2010018909A1 (en) * 2008-08-12 2010-02-18 Lg Electronics Inc. Method of transmitting data in multi-cell cooperative wireless communication system
KR101459155B1 (ko) * 2008-09-30 2014-11-10 엘지전자 주식회사 협력 무선통신 시스템을 위한 기준신호의 전송방법 및 무선자원의 할당방법
JP5319838B2 (ja) * 2009-04-21 2013-10-16 アルカテル−ルーセント 無線リレーの方法およびデバイス
KR101549024B1 (ko) * 2009-04-22 2015-09-01 엘지전자 주식회사 무선 통신 시스템에서 다중 셀 협력 통신을 위한 프리코딩 코드북을 이용하여 피드백 정보 및 데이터를 전송하는 방법
US9184899B2 (en) * 2009-10-14 2015-11-10 Qualcomm Incorporated Downlink association set for uplink ACK/NACK in time division duplex system
US8503322B2 (en) * 2011-02-21 2013-08-06 Motorola Mobility Llc IQ imbalance image compensation in multi-carrier wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100189038A1 (en) * 2009-01-23 2010-07-29 Runhua Chen Circuit and method for mapping data symbols and reference signals for coordinated multi-point systems
WO2011013990A2 (en) * 2009-07-28 2011-02-03 Lg Electronics Inc. Method and apparatus for transmitting reference signal for reducing inter-cell interference in multiple input multiple output communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
'Impact of CRS interference' 3GPP TSG RAN WG1 MEETING #63, R1-106144 19 November 2010, *

Also Published As

Publication number Publication date
US20130315186A1 (en) 2013-11-28
WO2012115450A3 (ko) 2012-11-01
KR101967297B1 (ko) 2019-04-09
KR20140005935A (ko) 2014-01-15
US9161346B2 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2018174671A1 (ko) 다중 반송파 통신 시스템에서 단말 간 직접 통신을 위한 반송파 선택 방법 및 이를 위한 장치
WO2017171390A1 (ko) 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치
WO2017179784A1 (ko) 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2017155324A1 (ko) 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2012150773A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2010117225A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치
WO2012148076A1 (en) Method for transmitting and receiving downlink control information in a wireless communication system and apparatus for the same
WO2010117239A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2010126259A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2018135867A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 이를 위한 장치
WO2012150772A2 (ko) 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2012150793A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2013024997A2 (ko) 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치
WO2012115427A2 (ko) 다중 셀 협력 무선 통신 시스템에서 제어 채널 송수신 방법 및 이를 위한 장치
WO2013137582A1 (ko) 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
WO2018186671A1 (ko) 차세대 통신 시스템에서 방송 데이터를 위한 dm-rs 송신 방법 및 이를 위한 장치
WO2012141490A2 (ko) 무선 통신 시스템에서 셀 간 간섭을 완화하기 위한 신호 송수신 방법 및 이를 위한 장치
WO2012144763A2 (ko) 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치
WO2017176088A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 설정 방법 및 이를 위한 장치
WO2013141508A1 (ko) 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치
WO2013095041A1 (ko) 무선 통신 시스템에서 무선 자원 동적 변경에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2013019088A2 (ko) 무선 통신 시스템에서 mtc 단말의 검색 영역 설정 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749661

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20137019737

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749661

Country of ref document: EP

Kind code of ref document: A2