WO2012114873A1 - 掘削機械の表示システム及びその制御方法 - Google Patents

掘削機械の表示システム及びその制御方法 Download PDF

Info

Publication number
WO2012114873A1
WO2012114873A1 PCT/JP2012/052834 JP2012052834W WO2012114873A1 WO 2012114873 A1 WO2012114873 A1 WO 2012114873A1 JP 2012052834 W JP2012052834 W JP 2012052834W WO 2012114873 A1 WO2012114873 A1 WO 2012114873A1
Authority
WO
WIPO (PCT)
Prior art keywords
boundary line
display
excavating machine
target surface
current position
Prior art date
Application number
PCT/JP2012/052834
Other languages
English (en)
French (fr)
Inventor
亮 深野
安曇 野村
栗原 隆
藤田 悦夫
正生 安東
敏裕 小出
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to KR1020157004498A priority Critical patent/KR20150036733A/ko
Priority to DE112012000119.2T priority patent/DE112012000119B4/de
Priority to KR1020137004690A priority patent/KR101654113B1/ko
Priority to CN201280002692.2A priority patent/CN103080433B/zh
Priority to US13/819,260 priority patent/US9435106B2/en
Publication of WO2012114873A1 publication Critical patent/WO2012114873A1/ja
Priority to US15/237,264 priority patent/US10267020B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present invention relates to an excavating machine display system and a control method thereof.
  • a display system that displays a guidance screen showing the positional relationship between a drilling machine such as a hydraulic excavator and a target surface is known.
  • the target plane is a plane selected as a work target from a plurality of design planes constituting the design terrain.
  • the display system disclosed in Patent Document 1 calculates the relative positional relationship between a bucket and a target surface from detection data such as the position and posture of the bucket of a hydraulic excavator and the position and gradient of the target surface.
  • a display system displays the schematic diagram of the bucket and target surface in a side view on a monitor. At this time, the display system changes the display scale of the image according to the distance between the target surface and the tip of the bucket. It is also disclosed that the above-mentioned image may be displayed on a monitor with the scale of the hydraulic excavator and the working machine and the target surface fixed to a scale that is included in the same screen.
  • An object of the present invention is to provide a display system for an excavating machine and a control method for the excavating machine that can easily grasp the positional relationship between a display target surface displayed on a guidance screen and the excavating machine.
  • the display system for an excavating machine is a system that displays a guidance screen.
  • the guidance screen shows a current position of the excavating machine and a cross section in a side view of a display target surface that shows a part of the target topography to be excavated.
  • the display system for an excavating machine includes a storage unit, a position detection unit, a calculation unit, and a display unit.
  • the storage unit stores terrain data indicating the position of the display target surface.
  • the position detection unit detects the current position of the excavating machine.
  • the calculation unit sets a predetermined display range to be displayed as a guidance screen for the terrain data.
  • the calculation unit calculates the position of the upper boundary line and the position of the lower boundary line based on the terrain data and the current position of the excavating machine.
  • the upper boundary line indicates the height position of the upper end of the cross section of the display target surface.
  • the lower boundary line indicates the height position of the lower end of the cross section of the display target surface.
  • the computing unit sets a predetermined reference point of the display range to a predetermined position between the upper boundary line and the lower boundary line when the current position of the excavating machine is positioned between the upper boundary line and the lower boundary line.
  • the calculation unit sets the reference point above a predetermined position when the current position of the excavating machine is located above the upper boundary line.
  • the calculation unit sets the reference point below the predetermined position when the current position of the excavating machine is located below the lower boundary line.
  • the display unit displays a guidance screen that shows a cross section of the display target surface included in the display range in a side view and the current position of the excavating machine.
  • the display system for an excavating machine is the display system for an excavating machine according to the first aspect, wherein the computing unit is configured to position the current position of the excavating machine above the upper boundary line.
  • the reference point of the display range is set to a position obtained by adding a distance between the current position of the excavating machine and the upper boundary line upward from a predetermined position.
  • the calculation unit adds the distance between the current position of the excavating machine and the lower boundary line from the predetermined position to the reference point of the display range. Set to the specified position.
  • the excavating machine according to the third aspect of the present invention includes the excavating machine display system according to the first or second aspect.
  • the control method for the display system of the excavating machine is a control method for the display system that displays the guidance screen.
  • the guidance screen shows a current position of the excavating machine and a cross section in a side view of a display target surface that shows a part of the target topography to be excavated.
  • This control method includes the following steps. In the first step, the current position of the excavating machine is detected. In the second step, a predetermined display range to be displayed as a guidance screen is set for the terrain data indicating the position of the display target surface. In the third step, the position of the upper boundary line and the position of the lower boundary line are calculated based on the topographic data and the current position of the excavating machine.
  • the upper boundary line indicates the height position of the upper end of the cross section in the side view of the display target surface.
  • the lower boundary line indicates the height position of the lower end of the cross section in the side view of the display target surface.
  • the reference point of the display range of the guidance screen is the upper boundary line. It is fixed at a predetermined position between the lower boundary line. For this reason, even if the excavating machine moves upward or downward between the upper boundary line and the lower boundary line, the excavation machine moves upward or downward without moving the cross section of the display target surface on the guide screen. Is displayed. Then, when the excavator moves above the upper boundary line, the reference point of the display range is changed to a position above the predetermined position.
  • the cross section of the display target surface is moved downward on the guidance screen, and the display range is displayed so as to move upward along the excavating machine. Further, when the excavating machine moves below the lower boundary line, the reference point of the display range is changed to a position below the predetermined position. Thereby, the cross section of the display target surface is moved upward on the guidance screen, and the display range is displayed so as to move downward along the excavating machine. Thereby, it is suppressed that a target surface and an excavation machine are displayed too small. For this reason, the operator can easily grasp the positional relationship between the target surface and the excavating machine.
  • the reference point of the display range is changed to a position above the predetermined position in accordance with the distance the current position of the excavating machine is away from the upper boundary line. Is done. Further, the reference point of the display range is changed to a position below the predetermined position in accordance with the distance that the current position of the excavating machine is spaced downward from the lower boundary line. Thereby, the guidance screen can be smoothly scrolled.
  • the reference point of the display range of the guide screen is the upper boundary line and the lower boundary line. Is fixed at a predetermined position. For this reason, even if the excavating machine moves upward or downward between the upper boundary line and the lower boundary line, the excavation machine moves upward or downward without moving the cross section of the display target surface on the guide screen. Is displayed. Then, when the excavator moves above the upper boundary line, the reference point of the display range is changed to a position above the predetermined position.
  • the cross section of the display target surface is moved downward on the guidance screen, and the display range is displayed so as to move upward along the excavating machine. Further, when the excavating machine moves below the lower boundary line, the reference point of the display range is changed to a position below the predetermined position. Thereby, the cross section of the display target surface is moved upward on the guidance screen, and the display range is displayed so as to move downward along the excavating machine. Thereby, it is suppressed that a target surface and an excavation machine are displayed too small. For this reason, the operator can easily grasp the positional relationship between the target surface and the excavating machine.
  • the reference point of the display range of the guidance screen is the upper part. It is fixed at a predetermined position between the boundary line and the lower boundary line. For this reason, even if the excavating machine moves upward or downward between the upper boundary line and the lower boundary line, the excavation machine moves upward or downward without moving the cross section of the display target surface on the guide screen. Is displayed. Then, when the excavator moves above the upper boundary line, the reference point of the display range is changed to a position above the predetermined position.
  • the cross section of the display target surface is moved downward on the guidance screen, and the display range is displayed so as to move upward along the excavating machine. Further, when the excavating machine moves below the lower boundary line, the reference point of the display range is changed to a position below the predetermined position. Thereby, the cross section of the display target surface is moved upward on the guidance screen, and the display range is displayed so as to move downward along the excavating machine. Thereby, it is suppressed that a target surface and an excavation machine are displayed too small. For this reason, the operator can easily grasp the positional relationship between the target surface and the excavating machine.
  • the perspective view of a hydraulic excavator The figure which shows the structure of a hydraulic excavator typically.
  • the block diagram which shows the structure of the control system with which a hydraulic excavator is provided.
  • the flowchart which shows the process of display range optimization control.
  • the flowchart which shows the process of display range optimization control.
  • surface which shows the magnitude
  • the figure which shows the example of a display range. The figure which shows an example of the position of a starting point and an end point.
  • crude excavation mode The figure which shows the setting method of the reference point of the display range in the guidance screen of driving
  • crude excavation mode The figure which shows the setting method of the reference point of the display range in the guidance screen of driving
  • crude excavation mode The figure which shows the change of the image in the guidance screen of driving
  • FIG. 1 is a perspective view of a hydraulic excavator 100 as an example of an excavating machine on which a display system is mounted.
  • the excavator 100 includes a vehicle main body 1 and a work implement 2.
  • the vehicle main body 1 includes an upper swing body 3, a cab 4, and a traveling device 5.
  • the upper swing body 3 accommodates devices such as an engine and a hydraulic pump (not shown).
  • the cab 4 is placed at the front of the upper swing body 3.
  • a display input device 38 and an operation device 25 described later are arranged in the cab 4 (see FIG. 3).
  • the traveling device 5 has crawler belts 5a and 5b, and the excavator 100 travels as the crawler belts 5a and 5b rotate.
  • the work machine 2 is attached to the front portion of the vehicle body 1 and includes a boom 6, an arm 7, a bucket 8, a boom cylinder 10, an arm cylinder 11, and a bucket cylinder 12.
  • a base end portion of the boom 6 is swingably attached to a front portion of the vehicle main body 1 via a boom pin 13.
  • a base end portion of the arm 7 is swingably attached to a tip end portion of the boom 6 via an arm pin 14.
  • a bucket 8 is swingably attached to the tip of the arm 7 via a bucket pin 15.
  • FIG. 2 is a diagram schematically showing the configuration of the excavator 100.
  • FIG. 2A is a side view of the excavator 100
  • FIG. 2B is a rear view of the excavator 100.
  • the length of the boom 6, that is, the length from the boom pin 13 to the arm pin 14
  • the length of the arm 7, that is, the length from the arm pin 14 to the bucket pin 15
  • the length of the bucket 8, that is, the length from the bucket pin 15 to the tip of the tooth of the bucket 8 is L3.
  • the boom cylinder 10 drives the boom 6.
  • the arm cylinder 11 drives the arm 7.
  • the bucket cylinder 12 drives the bucket 8.
  • a proportional control valve 37 is disposed between a hydraulic cylinder such as the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 and a hydraulic pump (not shown) (see FIG. 3).
  • the proportional control valve 37 is controlled by the work machine controller 26 described later, whereby the flow rate of the hydraulic oil supplied to the hydraulic cylinder 10-12 is controlled. As a result, the operation of the hydraulic cylinder 10-12 is controlled.
  • the boom 6, the arm 7 and the bucket 8 are provided with first to third stroke sensors 16-18, respectively.
  • the first stroke sensor 16 detects the stroke length of the boom cylinder 10.
  • a display controller 39 determines an inclination angle ⁇ 1 of the boom 6 with respect to a Za axis (see FIG. 6) of a vehicle body coordinate system, which will be described later, from the stroke length of the boom cylinder 10 detected by the first stroke sensor 16. Is calculated.
  • the second stroke sensor 17 detects the stroke length of the arm cylinder 11.
  • the display controller 39 calculates the inclination angle ⁇ 2 of the arm 7 with respect to the boom 6 from the stroke length of the arm cylinder 11 detected by the second stroke sensor 17.
  • the third stroke sensor 18 detects the stroke length of the bucket cylinder 12.
  • the display controller 39 calculates the inclination angle ⁇ 3 of the bucket 8 with respect to the arm 7 from the stroke length of the bucket cylinder 12 detected by the third stroke sensor 18.
  • the vehicle body 1 is provided with a position detector 19.
  • the position detector 19 detects the current position of the excavator 100.
  • the position detection unit 19 includes two antennas 21 and 22 (hereinafter referred to as “GNSS antennas 21 and 22”) for RTK-GNSS (Real Time Kinematic-Global Navigation Satellite Systems, GNSS is a global navigation satellite system). ), A three-dimensional position sensor 23, and an inclination angle sensor 24.
  • the GNSS antennas 21 and 22 are spaced apart from each other by a certain distance along the Ya axis (see FIG. 6) of a vehicle body coordinate system Xa-Ya-Za described later.
  • a signal corresponding to the GNSS radio wave received by the GNSS antennas 21 and 22 is input to the three-dimensional position sensor 23.
  • the three-dimensional position sensor 23 detects the positions of the installation positions P1, P2 of the GNSS antennas 21, 22. As shown in FIG. 2B, the inclination angle sensor 24 detects an inclination angle ⁇ 4 (hereinafter referred to as “roll angle ⁇ 4”) in the vehicle width direction of the vehicle body 1 with respect to the gravity direction (vertical line).
  • FIG. 3 is a block diagram showing a configuration of a control system provided in the hydraulic excavator 100.
  • the excavator 100 includes an operation device 25, a work machine controller 26, a work machine control device 27, and a display system 28.
  • the operating device 25 includes a work implement operation member 31, a work implement operation detection unit 32, a travel operation member 33, and a travel operation detection unit 34.
  • the work machine operation member 31 is a member for the operator to operate the work machine 2 and is, for example, an operation lever.
  • the work machine operation detection unit 32 detects the operation content of the work machine operation member 31 and sends it to the work machine controller 26 as a detection signal.
  • the traveling operation member 33 is a member for the operator to operate traveling of the excavator 100, and is, for example, an operation lever.
  • the traveling operation detection unit 34 detects the operation content of the traveling operation member 33 and sends it to the work machine controller 26 as a detection signal.
  • the work machine controller 26 includes a storage unit 35 such as a RAM and a ROM, and a calculation unit 36 such as a CPU.
  • the work machine controller 26 mainly controls the work machine 2.
  • the work machine controller 26 generates a control signal for operating the work machine 2 in accordance with the operation of the work machine operation member 31, and outputs the control signal to the work machine control device 27.
  • the work machine control device 27 has a proportional control valve 37, and the proportional control valve 37 is controlled based on a control signal from the work machine controller 26.
  • the hydraulic oil having a flow rate corresponding to the control signal from the work machine controller 26 flows out of the proportional control valve 37 and is supplied to the hydraulic cylinder 10-12.
  • the hydraulic cylinder 10-12 is driven according to the hydraulic oil supplied from the proportional control valve 37. Thereby, the work machine 2 operates.
  • the display system 28 is a system for displaying a guidance screen indicating the relationship between the target surface in the work area and the current position of the excavator 100.
  • the display system 28 includes a display input device 38 and a display controller 39 in addition to the first to third stroke sensors 16-18, the three-dimensional position sensor 23, and the tilt angle sensor 24 described above.
  • the display input device 38 includes a touch panel type input unit 41 and a display unit 42 such as an LCD.
  • the display input device 38 displays a guidance screen. Various keys are displayed on the guidance screen. The operator can execute various functions of the display system 28 by touching various keys on the guidance screen. The guidance screen will be described in detail later.
  • the display controller 39 executes various functions of the display system 28.
  • the display controller 39 and the work machine controller 26 can communicate with each other by wireless or wired communication means.
  • the display controller 39 includes a storage unit 43 such as a RAM and a ROM, and a calculation unit 44 such as a CPU.
  • the storage unit 43 includes a work machine data storage unit 47 that stores work machine data, and a terrain data storage unit 46 that stores design terrain data.
  • the work machine data includes the above-described length L1 of the boom 6, the length L2 of the arm 7, and the length L3 of the bucket 8.
  • the work implement data includes the minimum value and the maximum value of the inclination angle ⁇ 1 of the boom 6, the inclination angle ⁇ 2 of the arm 7, and the inclination angle ⁇ 3 of the bucket 8.
  • design terrain data indicating the shape and position of the three-dimensional designed terrain in the work area is created and stored in advance.
  • the display controller 39 displays a guidance screen on the display input device 38 based on data such as the design terrain data and detection results from the various sensors described above.
  • the design landform is composed of a plurality of design surfaces 74 each represented by a triangular polygon. In FIG. 4, only one of the plurality of design surfaces is denoted by reference numeral 74, and the other design surfaces are omitted. The operator selects one or more of these design surfaces 74 as the target surface 70.
  • the display controller 39 causes the display input device 38 to display a guidance screen indicating the positional relationship between the current position of the excavator 100 and the target surface 70.
  • the guide screen includes a travel mode guide screen (hereinafter referred to as “travel mode screen 52”) shown in FIG. 5 and an excavation mode guide screens 53 and 54 shown in FIGS.
  • the travel mode screen 52 is a screen showing the positional relationship between the current position of the excavator 100 and the target surface 70 in order to guide the hydraulic excavator 100 to the vicinity of the target surface 70.
  • the guidance screens 53 and 54 in the excavation mode indicate the current position of the excavator 100 and the target surface 70 in order to guide the work machine 2 of the excavator 100 so that the ground to be excavated has the same shape as the target surface 70. Is a screen showing the positional relationship.
  • the excavation mode guide screens 53 and 54 show the positional relationship between the target surface 70 and the work implement 2 in more detail than the travel mode screen 52.
  • the excavation mode guide screens 53 and 54 include a rough excavation mode guide screen 53 shown in FIG. 7 (hereinafter referred to as “rough excavation screen 53”) and a fine excavation mode guide screen 54 shown in FIG. Called a fine excavation screen 54 ").
  • FIG. 5 shows a travel mode screen 52.
  • the traveling mode screen 52 includes a top view 52 a showing the design landform of the work area and the current position of the excavator 100, and a side view 52 b showing the target surface 70, the excavator 100, and the workable range 76 of the work implement 2. Including.
  • the driving mode screen 52 displays a plurality of operation keys.
  • the operation keys include a screen switching key 65.
  • the screen switching key 65 is a key for executing switching between the traveling mode screen 52 and the excavation mode guide screens 53 and 54. For example, once the screen switching key 65 is pressed, a pop-up screen for selecting the traveling mode screen 52, the rough excavation screen 53, and the fine excavation screen 54 is displayed. In a normal display state in which the pop-up screen is not displayed, an icon corresponding to the currently displayed guidance screen among the travel mode screen 52, the rough excavation screen 53, and the delicate excavation screen 54 is used as the screen switching key 65. It is displayed on the guidance screen. For example, in FIG. 5, since the travel mode screen 52 is displayed, an icon indicating the travel mode screen 52 is displayed as the screen switching key 65. As shown in FIG. 7, when the rough excavation screen 53 is displayed, an icon indicating the rough excavation screen 53 is displayed as a screen switching key 65.
  • the top view 52 a of the traveling mode screen 52 shows the design landform of the work area and the current position of the excavator 100.
  • the top view 52a represents the design terrain as viewed from above with a plurality of triangular polygons. Specifically, the top view 52a represents the design terrain using the horizontal plane of the global coordinate system as a projection plane. Further, the target surface 70 is displayed in a color different from other design surfaces. In FIG. 5, the current position of the excavator 100 is indicated by the icon 61 of the excavator as viewed from above, but may be indicated by other symbols. Further, the top view 52 a includes information for guiding the excavator 100 to the target surface 70. Specifically, the direction indicator 71 is displayed. The direction indicator 71 is an icon indicating the direction of the target surface 70 relative to the excavator 100. Therefore, the operator can easily move the excavator 100 to the vicinity of the target surface 70 by using the traveling mode screen 52.
  • the top view 52a of the traveling mode screen 52 further includes information indicating the target work position and information for causing the excavator 100 to face the target surface 70 directly.
  • the target work position is an optimal position for the excavator 100 to excavate the target surface 70, and is calculated from the position of the target surface 70 and a workable range 76 described later.
  • the target work position is indicated by a straight line 72 in the top view 52a.
  • Information for causing the excavator 100 to face the target surface 70 is displayed as a facing compass 73.
  • the facing compass 73 is an icon indicating a facing direction with respect to the target surface 70 and a direction in which the excavator 100 should be turned. The operator can confirm the degree of confrontation with respect to the target surface 70 with the confrontation compass 73.
  • the side view 52b of the traveling mode screen 52 includes information indicating the design surface line 91, the target surface line 92, the icon 75 of the excavator 100 in a side view, the workable range 76 of the work implement 2, and the target work position.
  • a design surface line 91 indicates a cross section of the design surface 74 other than the target surface 70.
  • a target plane line 92 indicates a cross section of the target plane 70.
  • the design surface line 91 and the target surface line 92 are obtained by calculating an intersection line 80 between the plane 77 passing through the current position of the tip P3 of the bucket 8 and the design landform.
  • the target surface line 92 is displayed in a color different from the design surface line 91.
  • the target surface line 92 and the design surface line 91 are expressed by changing the line type.
  • the workable range 76 indicates a range around the vehicle body 1 that the work implement 2 can actually reach.
  • the workable range 76 is calculated from work implement data stored in the storage unit 43.
  • the target work position shown in the side view 52b corresponds to the target work position shown in the top view 52a described above, and is indicated by a triangular icon 81.
  • a target point on the excavator 100 is indicated by a triangular icon 82. The operator moves the excavator 100 so that the target point icon 82 matches the target work position icon 81.
  • the travel mode screen 52 includes information indicating the target work position and information for causing the excavator 100 to face the target surface 70. For this reason, the operator can place the excavator 100 in the optimal position and direction for performing the work with respect to the target surface 70 on the travel mode screen 52. Therefore, the traveling mode screen 52 is used for positioning the excavator 100.
  • the target plane line 92 is calculated from the current position of the tip of the bucket 8.
  • the display controller 39 is based on detection results from the three-dimensional position sensor 23, the first to third stroke sensors 16-18, the tilt angle sensor 24, etc., and the tip of the bucket 8 in the global coordinate system ⁇ X, Y, Z ⁇ .
  • the current position of is calculated. Specifically, the current position of the tip of the bucket 8 is obtained as follows.
  • FIG. 6A is a side view of the excavator 100.
  • FIG. 6B is a rear view of the excavator 100.
  • the front-rear direction of the excavator 100 that is, the Ya-axis direction of the vehicle body coordinate system is inclined with respect to the Y-axis direction of the global coordinate system.
  • the coordinates of the boom pin 13 in the vehicle main body coordinate system are (0, Lb1, -Lb2), and are stored in advance in the storage unit 43 of the display controller 39.
  • the three-dimensional position sensor 23 detects the installation positions P1 and P2 of the GNSS antennas 21 and 22.
  • a unit vector in the Ya-axis direction is calculated from the detected coordinate positions P1 and P2 by the following equation (1).
  • Ya (P1-P2) /
  • Z ′, Ya 0
  • Z ′ (1-c) Z + cYa (3)
  • c is a constant. From the expressions (2) and (3), Z ′ is expressed as the following expression (4).
  • the current inclination angles ⁇ 1, ⁇ 2, and ⁇ 3 of the boom 6, the arm 7, and the bucket 8 are calculated from the detection results of the first to third stroke sensors 16-18.
  • the coordinates (xat, yat, zat) of the tip P3 of the bucket 8 in the vehicle body coordinate system are based on the inclination angles ⁇ 1, ⁇ 2, ⁇ 3 and the lengths L1, L2, L3 of the boom 6, arm 7, and bucket 8. These are calculated by the following equations (7) to (9).
  • the display controller 39 calculates the three-dimensional design landform and the bucket 8 based on the current position of the tip of the bucket 8 calculated as described above and the design landform data stored in the storage unit 43. An intersection line 80 with the Ya-Za plane 77 passing through the tip P3 is calculated. And the display controller 39 displays the part which passes along the target surface 70 among this intersection on the guidance screen as the target surface line 92 mentioned above.
  • FIG. 7 shows a rough excavation screen 53.
  • a screen switching key 65 similar to the traveling mode screen 52 described above is displayed.
  • the rough excavation screen 53 includes a top view 53 a showing the design landform of the work area and the current position of the excavator 100, and a side view 53 b showing the target surface 70 and the excavator 100.
  • the top view 53a of the rough excavation screen 53 represents the design terrain using the turning plane of the excavator 100 as a projection plane. Therefore, the top view 53a is a view as seen from directly above the excavator 100, and the design surface is inclined when the excavator 100 is inclined.
  • the side view 53b of the rough excavation screen 53 includes information indicating the design plane line 91, the target plane line 92, the icon 75 of the excavator 100 in a side view, and the positional relationship between the bucket 8 and the target plane 70.
  • Information indicating the positional relationship between the bucket 8 and the target surface 70 includes numerical information 83 and graphic information 84.
  • the numerical information 83 is a numerical value indicating the shortest distance between the tip of the bucket 8 and the target surface line 92.
  • the graphic information 84 is information that graphically shows the shortest distance between the tip of the bucket 8 and the target surface line 92.
  • the graphic information 84 includes an index bar 84a and an index mark 84b indicating a position in the index bar 84a where the distance between the tip of the bucket 8 and the target surface line 92 corresponds to zero.
  • Each index bar 84a is lit according to the shortest distance between the tip of the bucket 8 and the target surface line 92. Note that the display on / off of the graphic information 84 may be changed by an operator's operation.
  • the rough excavation screen 53 displays in detail the relative positional relationship between the target surface line 92 and the excavator 100 and the numerical value indicating the shortest distance between the tip of the bucket 8 and the target surface line 92.
  • the operator can easily excavate the current terrain into the three-dimensional design terrain by moving the tip of the bucket 8 along the line indicating the target surface line 92.
  • FIG. 8 shows a delicate excavation screen 54.
  • the delicate excavation screen 54 shows the positional relationship between the target surface 70 and the excavator 100 in more detail than the rough excavation screen 53.
  • a screen switching key 65 similar to the traveling mode screen 52 described above is displayed.
  • an icon indicating the delicate excavation screen 54 is displayed as a screen switching key 65.
  • the delicate excavation screen 54 includes a front view 54 a showing the target surface 70 and the bucket 8 and a side view 54 b showing the target surface 70 and the bucket 8.
  • the front view 54a of the delicate excavation screen 54 includes an icon 89 of the bucket 8 when viewed from the front and a line indicating a cross section of the target surface 70 when viewed from the front (hereinafter referred to as “target surface line 93”).
  • the side view 54 b of the delicate excavation screen 54 includes an icon 90 of the bucket 8 in a side view, a design surface line 91, and a target surface line 92.
  • the front view 54a and the side view 54b of the delicate excavation screen 54 display information indicating the positional relationship between the target surface 70 and the bucket 8, respectively.
  • the information indicating the positional relationship between the target surface 70 and the bucket 8 includes distance information 86a and angle information 86b.
  • the distance information 86 a indicates the distance in the Za direction between the tip of the bucket 8 and the target surface line 93.
  • the angle information 86b is information indicating an angle between the target surface line 93 and the bucket 8. Specifically, the angle information 86 b is an angle between an imaginary line passing through the tips of the plurality of teeth of the bucket 8 and the target plane line 93.
  • information indicating the positional relationship between the target surface 70 and the bucket 8 includes distance information 87a and angle information 87b.
  • the distance information 87a indicates the shortest distance between the tip of the bucket 8 and the target surface line 92, that is, the distance between the tip of the bucket 8 and the target surface line 92 in the direction perpendicular to the target surface line 92. is there.
  • the angle information 87b is information indicating the angle between the target surface line 92 and the bucket 8. Specifically, the angle information 87 b displayed in the side view 54 b is an angle between the bottom surface of the bucket 8 and the target surface line 92.
  • the delicate excavation screen 54 includes graphic information 88 that graphically indicates the shortest distance between the tip of the bucket 8 and the target surface line 92. Similar to the graphic information 84 on the rough excavation screen 53, the graphic information 88 includes an index bar 88a and an index mark 88b.
  • the relative positional relationship between the target plane lines 92 and 93 and the bucket 8 is displayed.
  • the operator can more easily excavate the current terrain into the same shape as the three-dimensional design terrain by moving the tip of the bucket 8 along the lines indicating the target plane lines 92 and 93.
  • the display range optimization control is control for optimizing the display range in order to make it easy for the operator to grasp the positional relationship between the target surface 70 and the work implement 2.
  • the display range indicates a range to be displayed as a guide screen with respect to the above-described designed terrain data. That is, a portion included in the display range of the design terrain expressed by the design terrain data is displayed as the guidance screen.
  • traveling mode screen 52 and rough excavation screen 53 include top views 52a and 53a and side views 52b and 53b, respectively.
  • the delicate excavation screen 54 includes a front view 54a and a side view 54b.
  • the display range optimization control in the present embodiment optimizes the display range for the side view of each guide screen.
  • 9 and 10 are flowcharts showing processing in the display range optimization control.
  • step S1 the current position of the vehicle body 1 is detected.
  • the calculation unit 44 calculates the current position of the vehicle main body 1 in the global coordinate system based on the detection signal from the position detection unit 19.
  • step S2 the display range is set.
  • the calculation unit 44 sets a rectangular display range.
  • the calculation unit 44 determines whether the short side of the display range is the vertical side or the horizontal side from the screen aspect ratio of the portion (hereinafter referred to as “display area”) that displays the guidance screen of the display unit 42.
  • display area the screen aspect ratio of the portion that displays the guidance screen of the display unit 42.
  • FIG. 11A when the display area has a vertically long shape, the horizontal side is obtained as the short side.
  • FIG. 11B when the display area has a horizontally long shape, the vertical side is obtained as the short side.
  • the screen aspect ratio is stored in a storage unit (not shown) of the display input device 38 and is read out by the display controller 39.
  • the calculation unit 44 determines a scale for displaying the guidance screen in the display area so that the predetermined range of the guidance screen is within the range of the short side of the display range.
  • the length of the short side of the display range is set based on the maximum reach length of the work implement 2. For example, on the travel mode screen, the scale of the display range is set so that the length of the short side of the display range is twice the maximum reach length. On the rough excavation screen, the scale of the display range is set so that the length of the short side of the display range is 1.5 times the maximum reach length. On the delicate excavation screen, the scale of the display range is set so that the length of the short side of the display range is 1.2 times the maximum reach length.
  • the maximum reach length of the work implement 2 is calculated from the work implement data.
  • the maximum reach length is the length of the work implement 2 when the work implement 2 is extended to the maximum, that is, the boom pin 13 and the bucket 8 when the work implement 2 is extended to the maximum. It is the length between the tip P3.
  • FIG. 13 schematically shows the posture of the work implement 2 when the length of the work implement 2 reaches the maximum reach length Lmax (hereinafter referred to as “maximum reach posture”).
  • the coordinate plane Yb-Zb shown in FIG. 13 has the position of the boom pin 13 as the origin in the vehicle body coordinate system ⁇ Xa, Ya, Za ⁇ described above.
  • the arm angle ⁇ 2 is the minimum value.
  • the bucket angle ⁇ 3 is calculated by numerical analysis for parameter optimization so that the reach length of the work implement 2 is maximized. Then, the maximum reach length Lmax is calculated from these results.
  • the display range 55 as shown in FIG. 14 is set by the above processing.
  • the size of the long side of the display range 55 is calculated from the size of the short side and the screen aspect ratio described above.
  • a predetermined position in the display range 55 is set as the reference point Pb.
  • the reference point Pb is fixedly set for each type of guidance screen. Specifically, the reference point Pb is expressed by a distance a1 in the Y-axis direction from a vertex of one corner of the display range 55 and a distance b1 in the Z-axis direction (hereinafter referred to as “offset value”). . Then, the offset value a1. For b1, a unique value is set in each of the travel mode screen 52, the rough excavation screen 53, and the fine excavation screen 54.
  • the display target surface line is determined.
  • the calculation unit 44 calculates the start point Ps and the end point Pe in the cross section in the side view on the target plane line 92 based on the terrain data, the work machine data, and the current position of the vehicle body. Is calculated.
  • the starting point Ps is a position closest to the vehicle main body 1 on the target plane line 92.
  • the end point Pe is a position away from the start point Ps by the maximum reach length Lmax of the work machine 2.
  • the coordinates of the start point Ps and the end point Pe on the intersection line between the Yb-Zb plane and the target surface 70 are calculated. Thereby, for example, as shown in FIG.
  • the coordinates of the start point Ps and the end point Pe on the target plane line 92 are calculated, and the portion of the target plane line 92 between the start point Ps and the end point Pe is the display target plane line. Determined as 78.
  • the position of the vehicle origin Po (here, the current position of the bucket pin 13) is determined as the position of the start point Ps.
  • the target surface line 92 is smaller than the maximum reach length Lmax, the end point Pe is located outside the target surface 70. Also, as shown in FIG.
  • the end point Pe is located outside the target surface 70 even when the position away from the start point Ps by the maximum reach distance is located outside the target surface 70.
  • the coordinates of the start point Ps on the target plane line 92 and the end point Pe on the design plane line 91 adjacent to the target plane line 92 are calculated, and the target plane line 92 and the design plane line are calculated. 91, a portion between the start point Ps and the end point Pe is determined as the display target surface line 78.
  • step S ⁇ b> 4 it is determined whether the traveling mode screen 52 or the rough excavation screen 53 is displayed on the display unit 42.
  • the process proceeds to step S5. That is, when the delicate excavation screen 54 is displayed on the display unit 42, the process proceeds to step S5.
  • step S5 the reference point Pb is set to the average position of the start point Ps and the end point Pe of the display target surface line 78. That is, as shown in FIG. 20, the reference point Pb is set to the midpoint Pm between the start point Ps and the end point Pe.
  • step S9 shown in FIG. 10 the guidance screen, ie, the fine excavation screen 54, is displayed.
  • the side view 54b of the delicate excavation screen 54 is shown in FIGS.
  • the display target surface line 78 is fixedly displayed, and the icon 89 of the bucket 8 is displayed so as to move on the side view 54b of the delicate excavation screen 54.
  • step S4 when it is determined in step S4 that the traveling mode screen 52 or the rough excavation screen 53 is displayed on the display unit 42, the process proceeds to step S6 shown in FIG.
  • step S6 as shown in FIG. 16, the Y coordinate of the reference point Pb is set to the Y coordinate of the vehicle origin Po.
  • step S7 it is determined whether or not the Z coordinate of the vehicle origin Po is between the upper boundary line and the lower boundary line.
  • the upper boundary line indicates the height position of the upper end of the display target surface line 78.
  • the lower boundary line indicates the height position of the lower end of the display target surface line 78.
  • the upper boundary line La is a line parallel to the Y axis that passes through the end point Pe of the display target surface line 78.
  • the lower boundary line Lb is a line parallel to the Y axis passing through the starting point Ps of the display target surface line 78.
  • step S8 the Z coordinate of the reference point Pb is set to the average position of the upper boundary line La and the lower boundary line Lb.
  • the Z coordinate of the reference point Pb is fixed to the Z coordinate of the midpoint Pm between the upper boundary line La and the lower boundary line Lb.
  • step S9 a guidance screen is displayed. That is, the traveling mode screen 52 or the rough excavation screen 53 is displayed. For example, when the rough excavation screen 53 is displayed, as shown in FIGS.
  • the display target surface line 78 is fixedly displayed on the side view 53b of the excavation screen 53, and the icon 75 of the excavator 100 is displayed so as to move up and down on the side view 53b of the rough excavation screen 53.
  • the side view 52 b of the travel mode screen 52 is also displayed in the same manner as the side view 53 b of the rough excavation screen 53.
  • step S7 If it is determined in step S7 that the Z coordinate of the vehicle origin Po is not between the upper boundary line La and the lower boundary line Lb, the process proceeds to step S10. In step S10, it is determined whether or not the Z coordinate of the vehicle origin Po is above the upper boundary line La. If the Z coordinate of the vehicle origin Po is above the upper boundary line La as shown in FIG. 23, the process proceeds to step S11.
  • the Y coordinate of the reference point Pb is set to a position obtained by adding the distance between the vehicle origin Po and the upper boundary line La to the average position of the upper boundary line La and the lower boundary line Lb. That is, as shown in FIG. 23, a value obtained by adding the distance Da in the Z-axis direction between the vehicle origin Po and the upper boundary line La to the Z coordinate of the midpoint Pm between the start point Ps and the end point Pe is set as the reference point. Set to the Z coordinate of Pb.
  • “Pb ′” indicates the position of the reference point when the Z coordinate of the vehicle origin Po is between the upper boundary line La and the lower boundary line Lb.
  • a guidance screen is displayed in step S9. That is, the traveling mode screen 52 or the rough excavation screen 53 is displayed.
  • a side view 53b of the rough excavation screen 53 as the vehicle body 1 moves upward from the upper boundary line La as shown in FIGS. 24 (a) to 24 (c).
  • the display target surface line 78 is displayed so as to gradually move downward.
  • the icon 75 of the excavator 100 is displayed so that the position in the vertical direction is fixed (see FIGS. 24B and 24C).
  • the side view 52 b of the travel mode screen 52 is also displayed in the same manner as the side view 53 b of the rough excavation screen 53.
  • step S10 If it is determined in step S10 that the Z coordinate of the vehicle origin Po is not above the upper boundary line La, the process proceeds to step S12. That is, as shown in FIG. 25, when it is determined that the Z coordinate of the vehicle origin Po is below the lower boundary line Lb, the process proceeds to step S12.
  • step S12 the Z coordinate of the reference point Pb is set to a position obtained by subtracting the distance between the vehicle origin Po and the lower boundary line Lb from the average position of the upper boundary line La and the lower boundary line Lb. That is, as shown in FIG. 25, a value obtained by subtracting the distance Db in the Z-axis direction between the vehicle origin Po and the lower boundary line Lb from the Z coordinate of the midpoint Pm between the start point Ps and the end point Pe is obtained as a reference point. Set to the Z coordinate of Pb.
  • a guidance screen is displayed in step S9. That is, the traveling mode screen 52 or the rough excavation screen 53 is displayed.
  • the traveling mode screen 52 or the rough excavation screen 53 is displayed.
  • the side view 53b of the rough excavation screen 53 as the vehicle body 1 moves downward from the lower boundary line Lb.
  • the display target surface line 78 is displayed so as to gradually move upward.
  • the icon 75 of the excavator 100 is displayed so that the position in the vertical direction is fixed (see FIGS. 26B and 26C).
  • the side view 52 b of the travel mode screen 52 is also displayed in the same manner as the side view 53 b of the rough excavation screen 53.
  • the Y coordinate of the reference point Pb is set to the Y coordinate of the vehicle origin Po (see FIG. 16). Therefore, when the vehicle body 1 moves in the Y-axis direction, as shown in FIGS. 27A to 27C, the icon 75 of the excavator 100 is fixed on the guide screen, and the display target surface line 78 is displayed. Displayed to move in the Y-axis direction.
  • the Z coordinate of the reference point Pb of the display range 55 is changed to a position above the Z coordinate of the middle point Pm according to the distance that the current position of the vehicle origin Po is away from the upper boundary line La. Further, the Z coordinate of the reference point Pb in the display range 55 is changed to a position below the Z coordinate of the midpoint Pm according to the distance that the current position of the vehicle body 1 is separated downward from the lower boundary line Lb. Thereby, the guidance screen can be smoothly scrolled.
  • each guidance screen is not limited to those described above, and may be changed as appropriate.
  • some or all of the functions of the display controller 39 may be executed by a computer arranged outside the excavator 100.
  • the target work target is not limited to the plane as described above, but may be a point, a line, or a three-dimensional shape.
  • the input unit 41 of the display input device 38 is not limited to a touch panel type, and may be configured by operation members such as hard keys and switches.
  • the work machine 2 includes the boom 6, the arm 7, and the bucket 8, but the configuration of the work machine 2 is not limited to this.
  • the tilt angles of the boom 6, the arm 7 and the bucket 8 are detected by the first to third stroke sensors 16-18, but the means for detecting the tilt angle is not limited to these.
  • an angle sensor that detects the inclination angles of the boom 6, the arm 7, and the bucket 8 may be provided.
  • the coordinates of the reference point Pb on the delicate excavation screen 54 are not limited to the midpoint Pm between the start point Ps and the end point Pe, and may be set at other predetermined positions.
  • the Z coordinate of the reference point Pb when the vehicle origin Po is located between the upper boundary line La and the lower boundary line Lb is the start point Ps and the end point Pe. Not only the Z coordinate of the middle point Pm but also the Z coordinate of another position may be set.
  • the vehicle origin Po indicating the current position of the vehicle main body 1 is set to the position of the bucket pin 15, but may be set to another position of the vehicle main body 1.
  • the portion of the target plane 70 between the start point Ps and the end point Pe is set as the display target plane line, but the entire target plane 70 may be set as the display target plane line.
  • each guidance screen is not limited to the above.
  • a top view of the excavator 100 may be displayed instead of the front view 54a described above.
  • the present invention has an effect of easily grasping the positional relationship between the display target surface displayed on the guide screen and the excavating machine, and is useful as a display system for the excavating machine and its control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 掘削機械の表示システムでは、上部境界線(La)の位置と下部境界線(Lb)の位置とが算出される。上部境界線(La)は、表示対象面(78)の断面の上端の高さ位置を示す。下部境界線(Lb)は、表示対象面(78)の断面の下端の高さ位置を示す。掘削機械の現在位置(Po)が上部境界線(La)と下部境界線(Lb)との間に位置するときには、表示範囲の所定の基準点(Pb)が、上部境界線(La)と下部境界線(Lb)との間の所定位置に設定される。掘削機械の現在位置(Po)が上部境界線(La)よりも上方に位置するときには、基準点(Pb)が所定位置よりも上方に設定される。掘削機械の現在位置(Po)が下部境界線(Lb)よりも下方に位置するときには、基準点(Pb)が所定位置よりも下方に設定される。

Description

掘削機械の表示システム及びその制御方法
 本発明は、掘削機械の表示システム及びその制御方法に関する。
 油圧ショベルなどの掘削機械と目標面との位置関係を示す案内画面を表示する表示システムが知られている。目標面は、設計地形を構成する複数の設計面から作業対象として選択された平面である。例えば、特許文献1に開示されている表示システムは、油圧ショベルのバケットの位置及び姿勢と、目標面の位置及び勾配などの検出データから、バケットと目標面との相対位置関係を演算する。そして、表示システムは、側面視におけるバケットと目標面との模式図をモニタ上に表示する。このとき、表示システムは、目標面とバケットの先端との間の距離に応じて、画像の表示スケールを変更する。また、油圧ショベルの車体及び作業機と目標面との全体が同一画面に含まれる程度の縮尺に固定して上記の画像をモニタ上に表示してもよいことも開示されている。
特開2001-123476号公報
 特許文献1の表示システムのように、目標面と作業機との間の距離に応じて、画像の表示スケールが変更される場合、目標面と作業機とが過度に小さく表示されてしまい、目標面と作業機との位置関係を把握することが困難になる可能性がある。また、掘削機械と目標面との全体が同一画面に含まれる程度の縮尺に固定して画像をモニタ上に表示する場合にも、目標面と作業機とが大きく離れているときには、目標面と掘削機械とが、過度に小さく表示されてしまう。このため、目標面と掘削機械との位置関係を把握することが困難になる。
 本発明の課題は、案内画面に表示される表示対象面と掘削機械との位置関係を容易に把握することができる掘削機械の表示システム及びその制御方法を提供することにある。
 本発明の第1の態様に係る掘削機械の表示システムは、案内画面を表示するシステムである。案内画面は、掘削機械の現在位置と、掘削対象の目標地形の一部を示す表示対象面の側面視における断面とを示す。掘削機械の表示システムは、記憶部と、位置検出部と、演算部と、表示部とを備える。記憶部は、表示対象面の位置を示す地形データを記憶する。位置検出部は、掘削機械の現在位置を検出する。演算部は、地形データに対して案内画面として表示する所定の表示範囲を設定する。演算部は、地形データと掘削機械の現在位置とに基づいて、上部境界線の位置と下部境界線の位置とを算出する。上部境界線は、表示対象面の断面の上端の高さ位置を示す。下部境界線は、表示対象面の断面の下端の高さ位置を示す。演算部は、掘削機械の現在位置が上部境界線と下部境界線との間に位置するときには、表示範囲の所定の基準点を上部境界線と下部境界線との間の所定位置に設定する。演算部は、掘削機械の現在位置が上部境界線よりも上方に位置するときには、基準点を所定位置よりも上方に設定する。演算部は、掘削機械の現在位置が下部境界線よりも下方に位置するときには、基準点を所定位置よりも下方に設定する。表示部は、表示範囲に含まれる表示対象面の側面視における断面と掘削機械の現在位置とを示す案内画面を表示する。
 本発明の第2の態様に係る掘削機械の表示システムは、第1の態様の掘削機械の表示システムであって、演算部は、掘削機械の現在位置が上部境界線よりも上方に位置するときには、表示範囲の基準点を所定位置から上方に掘削機械の現在位置と上部境界線との間の距離を追加した位置に設定する。また、演算部は、掘削機械の現在位置が下部境界線よりも下方に位置するときには、表示範囲の基準点を所定位置から下方に掘削機械の現在位置と下部境界線との間の距離を追加した位置に設定する。
 本発明の第3の態様に係る掘削機械は、第1又は第2の態様の掘削機械の表示システムを備える。
 本発明の第4の態様に係る掘削機械の表示システムの制御方法は、案内画面を表示する表示システムの制御方法である。案内画面は、掘削機械の現在位置と、掘削対象の目標地形の一部を示す表示対象面の側面視における断面とを示す。この制御方法は以下のステップを備える。第1ステップでは、掘削機械の現在位置を検出する。第2ステップでは、表示対象面の位置を示す地形データに対して案内画面として表示する所定の表示範囲を設定する。第3ステップでは、地形データと掘削機械の現在位置とに基づいて、上部境界線の位置と下部境界線の位置とを算出する。上部境界線は、表示対象面の側面視における断面の上端の高さ位置を示す。下部境界線は、表示対象面の側面視における断面の下端の高さ位置を示す。第4ステップでは、掘削機械の現在位置が上部境界線と下部境界線との間に位置するときには、表示範囲の所定の基準点を上部境界線と下部境界線との間の所定位置に設定する。第5ステップでは、掘削機械の現在位置が上部境界線よりも上方に位置するときには、基準点を所定位置よりも上方に設定する。第6ステップでは、掘削機械の現在位置が下部境界線よりも下方に位置するときには、基準点を所定位置よりも下方に設定する。第7ステップでは、表示範囲に含まれる表示対象面の側面視における断面と掘削機械の現在位置とを示す案内画面を表示する。
 本発明の第1の態様に係る掘削機械の表示システムでは、掘削機械の現在位置が上部境界線と下部境界線との間に位置するときには、案内画面の表示範囲の基準点が上部境界線と下部境界線との間の所定位置に固定される。このため、掘削機械が上部境界線と下部境界線との間で上方又は下方へ移動しても、案内画面において表示対象面の断面は移動せずに、掘削機械が上方又は下方へ移動するように表示される。そして、掘削機械が上部境界線よりも上方に移動すると、表示範囲の基準点が所定位置よりも上方の位置に変更される。これにより、案内画面において表示対象面の断面は下方に移動し、表示範囲が掘削機械を追って上方へ移動するように表示される。また、掘削機械が下部境界線よりも下方に移動すると、表示範囲の基準点が所定位置よりも下方の位置に変更される。これにより、案内画面において表示対象面の断面は上方に移動し、表示範囲が掘削機械を追って下方へ移動するように表示される。これにより、目標面と掘削機械とが過度に小さく表示されることが抑えられる。このため、オペレータは、目標面と掘削機械との位置関係を容易に把握することができる。
 本発明の第2の態様に係る掘削機械の表示システムでは、掘削機械の現在位置が上部境界線から上方に離れた距離に応じて、表示範囲の基準点が、所定位置より上方の位置に変更される。また、掘削機械の現在位置が下部境界線から下方に離れた距離に応じて、表示範囲の基準点が、所定位置より下方の位置に変更される。これにより、案内画面をスムーズにスクロールさせることができる。
 本発明の第3の態様に係る掘削機械では、掘削機械の現在位置が上部境界線と下部境界線との間に位置するときには、案内画面の表示範囲の基準点が上部境界線と下部境界線との間の所定位置に固定される。このため、掘削機械が上部境界線と下部境界線との間で上方又は下方へ移動しても、案内画面において表示対象面の断面は移動せずに、掘削機械が上方又は下方へ移動するように表示される。そして、掘削機械が上部境界線よりも上方に移動すると、表示範囲の基準点が所定位置よりも上方の位置に変更される。これにより、案内画面において表示対象面の断面は下方に移動し、表示範囲が掘削機械を追って上方へ移動するように表示される。また、掘削機械が下部境界線よりも下方に移動すると、表示範囲の基準点が所定位置よりも下方の位置に変更される。これにより、案内画面において表示対象面の断面は上方に移動し、表示範囲が掘削機械を追って下方へ移動するように表示される。これにより、目標面と掘削機械とが過度に小さく表示されることが抑えられる。このため、オペレータは、目標面と掘削機械との位置関係を容易に把握することができる。
 本発明の第4の態様に係る掘削機械の表示システムの制御方法では、掘削機械の現在位置が上部境界線と下部境界線との間に位置するときには、案内画面の表示範囲の基準点が上部境界線と下部境界線との間の所定位置に固定される。このため、掘削機械が上部境界線と下部境界線との間で上方又は下方へ移動しても、案内画面において表示対象面の断面は移動せずに、掘削機械が上方又は下方へ移動するように表示される。そして、掘削機械が上部境界線よりも上方に移動すると、表示範囲の基準点が所定位置よりも上方の位置に変更される。これにより、案内画面において表示対象面の断面は下方に移動し、表示範囲が掘削機械を追って上方へ移動するように表示される。また、掘削機械が下部境界線よりも下方に移動すると、表示範囲の基準点が所定位置よりも下方の位置に変更される。これにより、案内画面において表示対象面の断面は上方に移動し、表示範囲が掘削機械を追って下方へ移動するように表示される。これにより、目標面と掘削機械とが過度に小さく表示されることが抑えられる。このため、オペレータは、目標面と掘削機械との位置関係を容易に把握することができる。
油圧ショベルの斜視図。 油圧ショベルの構成を模式的に示す図。 油圧ショベルが備える制御系の構成を示すブロック図。 設計地形データによって示される設計地形を示す図。 走行モードの案内画面を示す図。 バケットの先端の現在位置を求める方法を示す図。 粗掘削モードの案内画面を示す図。 繊細掘削モードの案内画面を示す図。 表示範囲最適化制御の処理を示すフローチャート。 表示範囲最適化制御の処理を示すフローチャート。 表示部上の表示エリアの例を示す図。 表示範囲の短辺の大きさを示す表。 作業機のリーチ長さが最大となるときの作業機の姿勢を示す図。 表示範囲の例を示す図。 始点と終点との位置の一例を示す図。 表示対象面線の一例と表示範囲の基準点の設定方法を示す図。 始点と終点との位置の一例を示す図。 始点と終点との位置の一例を示す図。 表示対象面線と表示範囲の基準点の設定方法を示す図。 繊細掘削モードの案内画面における表示範囲の基準点の設定方法を示す図。 繊細掘削モードの案内画面における画像の変化を示す図。 走行モード及び粗掘削モードの案内画面における画像の変化を示す図。 走行モード及び粗掘削モードの案内画面における表示範囲の基準点の設定方法を示す図。 走行モード及び粗掘削モードの案内画面における画像の変化を示す図。 走行モード及び粗掘削モードの案内画面における表示範囲の基準点の設定方法を示す図。 走行モード及び粗掘削モードの案内画面における画像の変化を示す図。 走行モード及び粗掘削モードの案内画面における画像の変化を示す図。
 1.構成
 1-1.油圧ショベルの全体構成
 以下、図面を参照して、本発明の一実施形態に係る掘削機械の表示システムについて説明する。図1は、表示システムが搭載される掘削機械の一例としての油圧ショベル100の斜視図である。油圧ショベル100は、車両本体1と作業機2とを有する。車両本体1は、上部旋回体3と運転室4と走行装置5とを有する。上部旋回体3は、図示しないエンジンや油圧ポンプなどの装置を収容している。運転室4は上部旋回体3の前部に載置されている。運転室4内には、後述する表示入力装置38及び操作装置25が配置される(図3参照)。走行装置5は履帯5a,5bを有しており、履帯5a,5bが回転することにより油圧ショベル100が走行する。
 作業機2は、車両本体1の前部に取り付けられており、ブーム6とアーム7とバケット8とブームシリンダ10とアームシリンダ11とバケットシリンダ12とを有する。ブーム6の基端部は、ブームピン13を介して車両本体1の前部に揺動可能に取り付けられている。アーム7の基端部は、アームピン14を介してブーム6の先端部に揺動可能に取り付けられている。アーム7の先端部には、バケットピン15を介してバケット8が揺動可能に取り付けられている。
 図2は、油圧ショベル100の構成を模式的に示す図である。図2(a)は油圧ショベル100の側面図であり、図2(b)は油圧ショベル100の背面図である。図2(a)に示すように、ブーム6の長さ、すなわち、ブームピン13からアームピン14までの長さは、L1である。アーム7の長さ、すなわち、アームピン14からバケットピン15までの長さは、L2である。バケット8の長さ、すなわち、バケットピン15からバケット8のツースの先端までの長さは、L3である。
 図1に示すブームシリンダ10とアームシリンダ11とバケットシリンダ12とは、それぞれ油圧によって駆動される油圧シリンダである。ブームシリンダ10はブーム6を駆動する。アームシリンダ11は、アーム7を駆動する。バケットシリンダ12は、バケット8を駆動する。ブームシリンダ10、アームシリンダ11、バケットシリンダ12などの油圧シリンダと図示しない油圧ポンプとの間には、比例制御弁37が配置されている(図3参照)。比例制御弁37が後述する作業機コントローラ26によって制御されることにより、油圧シリンダ10-12に供給される作動油の流量が制御される。これにより、油圧シリンダ10-12の動作が制御される。
 図2(a)に示すように、ブーム6とアーム7とバケット8には、それぞれ第1~第3ストロークセンサ16-18が設けられている。第1ストロークセンサ16は、ブームシリンダ10のストローク長さを検出する。後述する表示コントローラ39(図3参照)は、第1ストロークセンサ16が検出したブームシリンダ10のストローク長さから、後述する車両本体座標系のZa軸(図6参照)に対するブーム6の傾斜角θ1を算出する。第2ストロークセンサ17は、アームシリンダ11のストローク長さを検出する。表示コントローラ39は、第2ストロークセンサ17が検出したアームシリンダ11のストローク長さから、ブーム6に対するアーム7の傾斜角θ2を算出する。第3ストロークセンサ18は、バケットシリンダ12のストローク長さを検出する。表示コントローラ39は、第3ストロークセンサ18が検出したバケットシリンダ12のストローク長さから、アーム7に対するバケット8の傾斜角θ3を算出する。
 車両本体1には、位置検出部19が備えられている。位置検出部19は、油圧ショベル100の現在位置を検出する。位置検出部19は、RTK-GNSS(Real Time Kinematic - Global Navigation Satellite Systems、GNSSは全地球航法衛星システムをいう。)用の2つのアンテナ21,22(以下、「GNSSアンテナ21,22」と呼ぶ)と、3次元位置センサ23と、傾斜角センサ24とを有する。GNSSアンテナ21,22は、後述する車両本体座標系Xa-Ya-ZaのYa軸(図6参照)に沿って一定距離だけ離間して配置されている。GNSSアンテナ21,22で受信されたGNSS電波に応じた信号は3次元位置センサ23に入力される。3次元位置センサ23は、GNSSアンテナ21,22の設置位置P1,P2の位置を検出する。図2(b)に示すように、傾斜角センサ24は、重力方向(鉛直線)に対する車両本体1の車幅方向の傾斜角θ4(以下、「ロール角θ4」と呼ぶ)を検出する。
 図3は、油圧ショベル100が備える制御系の構成を示すブロック図である。油圧ショベル100は、操作装置25と、作業機コントローラ26と、作業機制御装置27と、表示システム28を備える。操作装置25は、作業機操作部材31と、作業機操作検出部32と、走行操作部材33と、走行操作検出部34とを有する。作業機操作部材31は、オペレータが作業機2を操作するための部材であり、例えば操作レバーである。作業機操作検出部32は、作業機操作部材31の操作内容を検出して、検出信号として作業機コントローラ26へ送る。走行操作部材33は、オペレータが油圧ショベル100の走行を操作するための部材であり、例えば操作レバーである。走行操作検出部34は、走行操作部材33の操作内容を検出して、検出信号として作業機コントローラ26へ送る。
 作業機コントローラ26は、RAMやROMなどの記憶部35や、CPUなどの演算部36を有している。作業機コントローラ26は、主として作業機2の制御を行う。作業機コントローラ26は、作業機操作部材31の操作に応じて作業機2を動作させるための制御信号を生成して、作業機制御装置27に出力する。作業機制御装置27は比例制御弁37を有しており、作業機コントローラ26からの制御信号に基づいて比例制御弁37が制御される。作業機コントローラ26からの制御信号に応じた流量の作動油が比例制御弁37から流出され、油圧シリンダ10-12に供給される。油圧シリンダ10-12は、比例制御弁37から供給された作動油に応じて駆動される。これにより、作業機2が動作する。
 1-2.表示システム28の構成
 表示システム28は、作業エリア内の目標面と油圧ショベル100の現在位置との関係を示す案内画面を表示するためのシステムである。表示システム28は、上述した第1~第3ストロークセンサ16-18、3次元位置センサ23、傾斜角センサ24のほかに、表示入力装置38と、表示コントローラ39とを有している。
 表示入力装置38は、タッチパネル式の入力部41と、LCDなどの表示部42とを有する。表示入力装置38は、案内画面を表示する。また、案内画面には、各種のキーが表示される。オペレータは、案内画面上の各種のキーに触れることにより、表示システム28の各種の機能を実行させることができる。案内画面については後に詳細に説明する。
 表示コントローラ39は、表示システム28の各種の機能を実行する。表示コントローラ39と作業機コントローラ26とは、無線あるいは有線の通信手段により互いに通信可能となっている。表示コントローラ39は、RAMやROMなどの記憶部43や、CPUなどの演算部44を有している。記憶部43は、作業機データを記憶している作業機データ記憶部47と、設計地形データを記憶する地形データ記憶部46とを有する。作業機データは、上述したブーム6の長さL1、アーム7の長さL2、バケット8の長さL3を含む。また、作業機データは、ブーム6の傾斜角θ1、アーム7の傾斜角θ2、バケット8の傾斜角θ3のそれぞれの最小値及び最大値を含む。地形データ記憶部46には、作業エリア内の3次元の設計地形の形状及び位置を示す設計地形データが予め作成されて記憶されている。表示コントローラ39は、設計地形データや上述した各種のセンサからの検出結果などのデータに基づいて、案内画面を表示入力装置38に表示させる。具体的には、図4に示すように、設計地形は、三角形ポリゴンによってそれぞれ表現される複数の設計面74によって構成されている。なお、図4では複数の設計面のうちの1つのみに符号74が付されており、他の設計面の符号は省略されている。オペレータは、これらの設計面74のうちの1つ、或いは、複数の設計面を目標面70として選択する。表示コントローラ39は、油圧ショベル100の現在位置と目標面70との位置関係を示す案内画面を表示入力装置38に表示させる。
 2.案内画面
 以下、案内画面について詳細に説明する。案内画面には、図5に示す走行モードの案内画面(以下、「走行モード画面52」と呼ぶ)と、図7及び図8に示す掘削モードの案内画面53,54とがある。走行モード画面52は、油圧ショベル100を走行させて目標面70の近くまで誘導するために油圧ショベル100の現在位置と目標面70との位置関係を示す画面である。掘削モードの案内画面53,54は、掘削作業の対象である地面が目標面70と同じ形状になるように油圧ショベル100の作業機2を誘導するために油圧ショベル100の現在位置と目標面70との位置関係を示す画面である。掘削モードの案内画面53,54は、目標面70と作業機2との位置関係を、走行モード画面52よりも詳細に示す。掘削モードの案内画面53,54は、図7に示す粗掘削モードの案内画面53(以下、「粗掘削画面53」と呼ぶ)と、図8に示す繊細掘削モードの案内画面54(以下、「繊細掘削画面54」と呼ぶ)とを有する。
 2-1.走行モード画面52
 図5に走行モード画面52を示す。走行モード画面52は、作業エリアの設計地形と油圧ショベル100の現在位置とを示す上面図52aと、目標面70と油圧ショベル100と作業機2の作業可能範囲76とを示す側面図52bとを含む。
 走行モード画面52には、複数の操作キーが表示される。操作キーは、画面切換キー65を含む。画面切換キー65は、走行モード画面52と掘削モードの案内画面53,54との間の切換を実行させるためのキーである。例えば、画面切換キー65が一度押されると、走行モード画面52と、粗掘削画面53と、繊細掘削画面54とを選択するためのポップアップ画面が表示される。なお、ポップアップ画面が表示されていない通常の表示状態では、走行モード画面52と粗掘削画面53と繊細掘削画面54とのうち、現在表示されている案内画面に対応するアイコンが画面切換キー65として案内画面上に表示される。例えば、図5では、走行モード画面52が表示されているため、走行モード画面52を示すアイコンが画面切換キー65として表示されている。また、図7に示すように、粗掘削画面53が表示されているときには、粗掘削画面53を示すアイコンが画面切換キー65として表示される。
 走行モード画面52の上面図52aは、作業エリアの設計地形と油圧ショベル100の現在位置とを示す。上面図52aは、複数の三角形ポリゴンによって上面視による設計地形を表現している。具体的には、上面図52aは、グローバル座標系の水平面を投影面として設計地形を表現している。また、目標面70は、他の設計面と異なる色で表示される。なお、図5では、油圧ショベル100の現在位置が上面視による油圧ショベルのアイコン61で示されているが、他のシンボルによって示されてもよい。また、上面図52aは、油圧ショベル100を目標面70まで誘導するための情報を含む。具体的には、方位インジケータ71が表示される。方位インジケータ71は、油圧ショベル100に対する目標面70の方向を示すアイコンである。従って、オペレータは、走行モード画面52によって、油圧ショベル100を目標面70の近くまで容易に移動させることができる。
 また、走行モード画面52の上面図52aは、目標作業位置を示す情報と、油圧ショベル100を目標面70に対して正対させるための情報をさらに含んでいる。目標作業位置は、油圧ショベル100が目標面70に対して掘削を行うために最適な位置であり、目標面70の位置と後述する作業可能範囲76とから算出される。目標作業位置は、上面図52aにおいて直線72で示されている。油圧ショベル100を目標面70に対して正対させるための情報は、正対コンパス73として表示される。正対コンパス73は、目標面70に対する正対方向と油圧ショベル100を旋回させるべき方向とを示すアイコンである。オペレータは、正対コンパス73により、目標面70への正対度を確認することができる。
 走行モード画面52の側面図52bは、設計面線91と、目標面線92と、側面視による油圧ショベル100のアイコン75と、作業機2の作業可能範囲76と、目標作業位置を示す情報を含む。設計面線91は、目標面70以外の設計面74の断面を示す。目標面線92は、目標面70の断面を示す。設計面線91及び目標面線92は、図4に示すように、バケット8の先端P3の現在位置を通る平面77と設計地形との交線80を算出することにより求められる。目標面線92は、設計面線91と異なる色で表示される。なお、図5では線種を変えて、目標面線92と設計面線91とを表現している。
 作業可能範囲76は、作業機2が実際に届くことができる車両本体1の周囲の範囲を示す。作業可能範囲76は、記憶部43に記憶されている作業機データから算出される。側面図52bに示される目標作業位置は、上述した上面図52aに示される目標作業位置に相当し、三角形のアイコン81で示される。また、油圧ショベル100上の目標点が三角形のアイコン82によって示される。オペレータは、目標点のアイコン82が目標作業位置のアイコン81と合致するように油圧ショベル100を移動させる。
 以上のように、走行モード画面52は、目標作業位置を示す情報と油圧ショベル100を目標面70に対して正対させるための情報とを含む。このため、オペレータは、走行モード画面52により、目標面70に対して、作業を行うために最適な位置及び方向に油圧ショベル100を配置することができる。従って、走行モード画面52は、油圧ショベル100の位置決めをするために使用される。
 なお、上述したように、目標面線92はバケット8の先端の現在位置から算出される。表示コントローラ39は、3次元位置センサ23、第1~第3ストロークセンサ16-18、傾斜角センサ24などからの検出結果に基づき、グローバル座標系{X,Y,Z}でのバケット8の先端の現在位置を算出する。具体的には、バケット8の先端の現在位置は、次のようにして求められる。
 まず、図6に示すように、上述したGNSSアンテナ21の設置位置P1を原点とする車両本体座標系{Xa,Ya,Za}を求める。図6(a)は油圧ショベル100の側面図である。図6(b)は油圧ショベル100の背面図である。ここでは、油圧ショベル100の前後方向すなわち車両本体座標系のYa軸方向がグローバル座標系のY軸方向に対して傾斜しているものとする。また、車両本体座標系でのブームピン13の座標は(0,Lb1,-Lb2)であり、予め表示コントローラ39の記憶部43に記憶されている。
 3次元位置センサ23はGNSSアンテナ21,22の設置位置P1,P2を検出する。検出された座標位置P1、P2から以下の(1)式よってYa軸方向の単位ベクトルが算出される。
Ya=(P1-P2)/|P1-P2|・・・(1)
図6(a)に示すように、YaとZの2つのベクトルで表される平面を通り、Yaと垂直なベクトルZ’を導入すると、以下の関係が成り立つ。
(Z’,Ya)=0・・・(2)
Z’=(1-c)Z+cYa・・・(3)
cは定数である。
(2)式および(3)式より、Z’は以下の(4)式のように表される。
Z’=Z+{(Z,Ya)/((Z,Ya)-1)}(Ya-Z)・・・(4)
さらに、YaおよびZ’と垂直なベクトルをX’とすると、X’は以下の(5)式のようのように表される。
X’=Ya⊥Z’・・・(5)
図6(b)に示すように、車両本体座標系は、これをYa軸周りに上述したロール角θ4だけ回転させたものであるから、以下の(6)式のように示される。
Figure JPOXMLDOC01-appb-I000001
・・・(6)
 また、第1~第3ストロークセンサ16-18の検出結果から、上述したブーム6、アーム7、バケット8の現在の傾斜角θ1、θ2、θ3が算出される。車両本体座標系内でのバケット8の先端P3の座標(xat、yat、zat)は、傾斜角θ1、θ2、θ3およびブーム6、アーム7、バケット8の長さL1、L2、L3を用いて、以下の(7)~(9)式により算出される。
xat=0・・・(7)
yat=Lb1+L1sinθ1+L2sin(θ1+θ2)+L3sin(θ1+θ2+θ3)・・・(8)
zat=-Lb2+L1cosθ1+L2cos(θ1+θ2)+L3cos(θ1+θ2+θ3)・・・(9)
なお、バケット8の先端P3は、車両本体座標系のYa-Za平面上で移動するものとする。
そして、グローバル座標系でのバケット8の先端P3の座標が以下の(10)式から求められる。
P3=xat・Xa+yat・Ya+zat・Za+P1・・・(10)
 図4に示すように、表示コントローラ39は、上記のように算出したバケット8の先端の現在位置と、記憶部43に記憶された設計地形データとに基づいて、3次元設計地形とバケット8の先端P3を通るYa-Za平面77との交線80を算出する。そして、表示コントローラ39は、この交線のうち目標面70を通る部分を上述した目標面線92として案内画面に表示する。
 2-2.粗掘削画面53
 図7に粗掘削画面53を示す。粗掘削画面53には、上述した走行モード画面52と同様の画面切換キー65が表示される。また、粗掘削画面53は、作業エリアの設計地形と油圧ショベル100の現在位置とを示す上面図53aと、目標面70と油圧ショベル100とを示す側面図53bとを含む。
 粗掘削画面53の上面図53aは、上述した走行モード画面52の上面図52aと異なり、油圧ショベル100の旋回平面を投影面として設計地形を表現している。従って、上面図53aは、油圧ショベル100の真上から見た図であり、油圧ショベル100が傾いたときには設計面が傾くことになる。粗掘削画面53の側面図53bは、設計面線91と、目標面線92と、側面視による油圧ショベル100のアイコン75と、バケット8と目標面70との位置関係を示す情報を含む。バケット8と目標面70との位置関係を示す情報は、数値情報83とグラフィック情報84とを含む。数値情報83は、バケット8の先端と目標面線92との最短距離を示す数値である。グラフィック情報84は、バケット8の先端と目標面線92との最短距離をグラフィックで示した情報である。具体的には、グラフィック情報84は、インデックスバー84aと、インデックスバー84aのうちバケット8の先端と目標面線92との距離がゼロに相当する位置を示すインデックスマーク84bとを含む。インデックスバー84aは、バケット8の先端と目標面線92との最短距離に応じて、各インデックスバー84aが点灯するようになっている。なお、グラフィック情報84の表示のオン/オフがオペレータの操作により変更可能とされてもよい。
 以上のように、粗掘削画面53では、目標面線92と油圧ショベル100との相対位置関係と、バケット8の先端と目標面線92との最短距離を示す数値が詳細に表示される。オペレータは、目標面線92を示すラインに沿ってバケット8の先端を移動させることによって、現在の地形が3次元設計地形になるように、容易に掘削することができる。
 2-3.繊細掘削画面54
 図8に、繊細掘削画面54を示す。繊細掘削画面54は、目標面70と油圧ショベル100との位置関係を粗掘削画面53よりも、より詳細に示す。繊細掘削画面54には、上述した走行モード画面52と同様の画面切換キー65が表示される。なお、図8では、繊細掘削画面54が表示されているため、繊細掘削画面54を示すアイコンが画面切換キー65として表示されている。また、繊細掘削画面54は、目標面70とバケット8とを示す正面図54aと、目標面70とバケット8とを示す側面図54bとを含む。繊細掘削画面54の正面図54aには、正面視によるバケット8のアイコン89と、正面視による目標面70の断面を示す線(以下、「目標面線93」と呼ぶ)とを含む。繊細掘削画面54の側面図54bには、側面視によるバケット8のアイコン90と、設計面線91と、目標面線92とを含む。また、繊細掘削画面54の正面図54aと側面図54bとには、それぞれ、目標面70とバケット8との位置関係を示す情報が表示される。
 正面図54aにおいて目標面70とバケット8との位置関係を示す情報は、距離情報86aと角度情報86bとを含む。距離情報86aは、バケット8の先端と、目標面線93との間のZa方向の距離を示したものである。また、角度情報86bは、目標面線93とバケット8との間の角度を示す情報である。具体的には、角度情報86bは、バケット8の複数のツースの先端を通る仮想線と目標面線93との間の角度である。
 側面図54bにおいて目標面70とバケット8との位置関係を示す情報は、距離情報87aと角度情報87bとを含む。距離情報87aは、バケット8の先端と、目標面線92との間の最短距離、すなわち目標面線92の垂線方向におけるバケット8の先端と目標面線92との間の距離を示したものである。また、角度情報87bは、目標面線92とバケット8との間の角度を示す情報である。具体的には、側面図54bに表示される角度情報87bは、バケット8の底面と目標面線92との間の角度である。
 なお、繊細掘削画面54は、バケット8の先端と目標面線92との最短距離をグラフィックで示すグラフィック情報88を含む。グラフィック情報88は、粗掘削画面53のグラフィック情報84と同様に、インデックスバー88aとインデックスマーク88bとを有する。
 以上のように、繊細掘削画面54では、目標面線92,93とバケット8との相対位置関係が表示される。オペレータは、目標面線92,93を示すラインに沿ってバケット8の先端を移動させることによって、現在の地形が3次元設計地形と同じ形状になるように、さらに容易に掘削することができる。
 3.案内画面の表示範囲最適化制御
 次に、表示コントローラ39の演算部44によって実行される案内画面の表示範囲最適化制御について説明する。表示範囲最適化制御は、オペレータが目標面70と作業機2との位置関係を把握することを容易にするために、表示範囲を最適化する制御である。表示範囲は、上述した設計地形データに対して案内画面として表示する範囲を示す。すなわち、設計地形データによって表現される設計地形のうち表示範囲に含まれる部分が案内画面として表示される。なお、上述したように走行モード画面52および粗掘削画面53は、それぞれ、上面図52a,53aと側面図52b,53bとを含む。また、繊細掘削画面54は、正面図54aと側面図54bとを含む。本実施形態での表示範囲最適化制御は、各案内画面の側面図に対する表示範囲を最適化するものである。図9及び図10は、表示範囲最適化制御における処理を示すフローチャートである。
 ステップS1では、車両本体1の現在位置が検出される。ここでは、上述したように、演算部44が、位置検出部19からの検出信号に基づいて車両本体1のグローバル座標系における現在位置を算出する。
 ステップS2では、表示範囲が設定される。ここでは、演算部44は、長方形の表示範囲を設定する。演算部44は、表示部42の案内画面を表示する部分(以下、「表示エリア」と呼ぶ)の画面アスペクト比から表示範囲の短辺が縦の辺と横の辺とのいずれであるのかを求める。例えば、図11(a)に示すように、表示エリアが縦長の形状である場合には、横の辺が短辺として求められる。また、図11(b)に示すように、表示エリアが横長の形状である場合には、縦の辺が短辺として求められる。なお、画面アスペクト比は表示入力装置38の図示しない記憶部に保存されており、表示コントローラ39によって読み出される。そして、演算部44は、案内画面の所定範囲が表示範囲の短辺の範囲内に収まるように案内画面を表示エリア内に表示するための縮尺を決定する。具体的には、図12に示すように、作業機2の最大リーチ長さを基準にして、表示範囲の短辺の長さが設定される。例えば、走行モード画面では、表示範囲の短辺の長さが最大リーチ長さの2倍になるように表示範囲の縮尺が設定される。粗掘削画面では、表示範囲の短辺の長さが最大リーチ長さの1.5倍になるように表示範囲の縮尺が設定される。繊細掘削画面では、表示範囲の短辺の長さが最大リーチ長さの1.2倍になるように表示範囲の縮尺が設定される。
 なお、作業機2の最大リーチ長さは作業機データから算出される。図13に示すように、最大リーチ長さは、作業機2を最大限まで延ばしたときの作業機2の長さ、すなわち、作業機2を最大限まで延ばしたときのブームピン13とバケット8の先端P3との間の長さである。図13は、作業機2の長さが最大リーチ長さLmaxとなるときの作業機2の姿勢(以下、「最大リーチ姿勢」と呼ぶ)を模式的に示している。図13に示す座標平面Yb-Zbは、上述した車両本体座標系{Xa,Ya,Za}においてブームピン13の位置を原点としたものである。最大リーチ姿勢では、アーム角θ2は最小値となる。また、バケット角θ3は、作業機2のリーチ長さが最大となるように、パラメータ最適化のための数値解析によって算出される。そして、これらの結果から最大リーチ長さLmaxが算出される。
 以上の処理により図14に示すような表示範囲55が設定される。表示範囲55の長辺の大きさは、上述した短辺の大きさと画面アスペクト比から算出される。また、表示範囲55における所定の位置が基準点Pbとして設定される。基準点Pbは、案内画面の種類ごとに固定的に設定されている。具体的には、基準点Pbは、表示範囲55の1つの角の頂点からのY軸方向の距離a1と、Z軸方向の距離b1とで表される(以下、「オフセット値」と呼ぶ)。そして、基準点Pbのオフセット値a1.b1は、走行モード画面52と粗掘削画面53と繊細掘削画面54とのそれぞれにおいて固有の値が設定されている。
 図9に戻り、ステップS3では、表示対象面線が決定される。ここでは、図15に示すように、演算部44は、地形データと作業機データと車両本体の現在位置とに基づいて、目標面線92上の側面視における断面において、始点Psと終点Peとを演算する。始点Psは、目標面線92上において車両本体1に最も近い位置である。終点Peは、始点Psから作業機2の最大リーチ長さLmax離れた位置である。具体的には、Yb-Zb平面と目標面70との交線上において始点Psと終点Peとの座標が演算される。これにより、例えば図16に示すように、目標面線92上の始点Psと終点Peとの座標が算出され、目標面線92のうち始点Psと終点Peとの間の部分が表示対象面線78として決定される。ただし、図17に示すように、車両本体1が目標面70上に位置している場合には、車両原点Poの位置(ここではバケットピン13の現在位置)が始点Psの位置として決定される。また、図18に示すように、目標面線92が最大リーチ長さLmaxよりも小さい場合には、終点Peは目標面70の外側に位置する。また、図17に示すように、始点Psから最大リーチ距離だけ離れた位置が目標面70の外側に位置する場合にも、終点Peは目標面70の外側に位置する。この場合、図19に示すように、目標面線92上の始点Psと、目標面線92に隣接する設計面線91上の終点Peとの座標が算出され、目標面線92と設計面線91とのうち始点Psと終点Peとの間の部分が表示対象面線78として決定される。
 図9に戻り、ステップS4では、走行モード画面52又は粗掘削画面53が表示部42に表示されているか否かが判断される。走行モード画面52又は粗掘削画面53が表示部42に表示されていない場合には、ステップS5へ進む。すなわち、繊細掘削画面54が表示部42に表示されている場合には、ステップS5へ進む。
 ステップS5では、表示対象面線78の始点Psと終点Peとの平均位置に基準点Pbを設定する。すなわち、図20に示すように、基準点Pbが始点Psと終点Peとの中点Pmに設定される。そして、図10に示すステップS9において、案内画面すなわち繊細掘削画面54が表示される。上述したように、基準点Pbが始点Psと終点Peとの中点Pmに設定されているため、図21(a)-(c)に示すように、繊細掘削画面54の側面図54b上では表示対象面線78が固定的に表示され、繊細掘削画面54の側面図54b上をバケット8のアイコン89が移動するように表示される。
 図9に戻り、ステップS4において走行モード画面52又は粗掘削画面53が表示部42に表示されていると判定されたときには、図10に示すステップS6へ進む。ステップS6では、図16に示すように、基準点PbのY座標が車両原点PoのY座標に設定される。
 次に、ステップS7では、車両原点PoのZ座標が上部境界線と下部境界線の間にあるか否かが判定される。上部境界線は、表示対象面線78の上端の高さ位置を示す。下部境界線は、表示対象面線78の下端の高さ位置を示す。例えば、図16に示すように、上部境界線Laは、表示対象面線78の終点Peを通るY軸に平行な線である。また、下部境界線Lbは、表示対象面線78の始点Psを通るY軸に平行な線である。車両原点PoのZ座標が上部境界線Laと下部境界線Lbの間にあると判定されたときには、ステップS8へ進む。
 ステップS8では、基準点PbのZ座標を上部境界線Laと下部境界線Lbとの平均位置に設定する。ここでは、図16に示すように、基準点PbのZ座標が、上部境界線Laと下部境界線Lbとの中点PmのZ座標に固定される。そして、ステップS9において案内画面が表示される。すなわち、走行モード画面52又は粗掘削画面53が表示される。例えば粗掘削画面53が表示される場合には、図22(a)-(c)に示すように、車両本体1が上部境界線Laと下部境界線Lbとの間で上下に移動すると、粗掘削画面53の側面図53b上では表示対象面線78が固定的に表示され、粗掘削画面53の側面図53b上を油圧ショベル100のアイコン75が上下に移動するように表示される。走行モード画面52の側面図52bも、粗掘削画面53の側面図53bと同様に表示される。
 ステップS7において車両原点PoのZ座標が上部境界線Laと下部境界線Lbの間にないと判定された場合は、ステップS10に進む。ステップS10では、車両原点PoのZ座標が上部境界線Laより上にあるか否かが判定される。ここで、図23に示すように、車両原点PoのZ座標が上部境界線Laより上にある場合には、ステップS11に進む。
 ステップS11では、基準点PbのY座標を上部境界線Laと下部境界線Lbとの平均位置に車両原点Poと上部境界線Laとの間の距離を加えた位置に設定する。すなわち、図23に示すように、始点Psと終点Peとの中点PmのZ座標に、車両原点Poと上部境界線Laとの間のZ軸方向の距離Daを加えた値を、基準点PbのZ座標に設定する。なお、図23において、「Pb’」は、車両原点PoのZ座標が上部境界線Laと下部境界線Lbとの間にある場合の基準点の位置を示している。
 そして、ステップS9において案内画面が表示される。すなわち、走行モード画面52又は粗掘削画面53が表示される。例えば粗掘削画面53が表示される場合には、図24(a)-(c)に示すように、車両本体1が上部境界線Laから上方へ移動するほど、粗掘削画面53の側面図53b上では表示対象面線78が徐々に下方へ移動するように表示される。また、粗掘削画面53の側面図53b上では油圧ショベル100のアイコン75は、上下方向の位置が固定されているように表示される(図24(b),(c)参照)。走行モード画面52の側面図52bも、粗掘削画面53の側面図53bと同様に表示される。
 ステップS10において車両原点PoのZ座標が上部境界線Laより上にないと判定された場合にはステップS12に進む。すなわち、図25に示すように、車両原点PoのZ座標が下部境界線Lbより下方にあると判定された場合にはステップS12に進む。
 ステップS12では、基準点PbのZ座標を上部境界線Laと下部境界線Lbとの平均位置から車両原点Poと下部境界線Lbとの間の距離を引いた位置に設定する。すなわち、図25に示すように、始点Psと終点Peとの中点PmのZ座標から、車両原点Poと下部境界線Lbとの間のZ軸方向の距離Dbを引いた値を、基準点PbのZ座標に設定する。
 そして、ステップS9において案内画面が表示される。すなわち、走行モード画面52又は粗掘削画面53が表示される。例えば粗掘削画面53が表示される場合には、図26(a)-(c)に示すように、車両本体1が下部境界線Lbから下方へ移動するほど、粗掘削画面53の側面図53b上では表示対象面線78が徐々に上方へ移動するように表示される。また、粗掘削画面53の側面図53b上では油圧ショベル100のアイコン75は、上下方向の位置が固定されているように表示される(図26(b),(c)参照)。走行モード画面52の側面図52bも、粗掘削画面53の側面図53bと同様に表示される。
 なお、上述したように、走行モード画面52又は粗掘削画面53が表示されているときには、基準点PbのY座標は車両原点PoのY座標に設定される(図16参照)。従って、車両本体1がY軸方向に移動する場合には、図27(a)-(c)に示すように、案内画面上では油圧ショベル100のアイコン75が固定され、表示対象面線78がY軸方向に移動するように表示される。
 4.特徴
 本実施形態に係る表示システム28では、走行モード画面52及び粗掘削画面53では、図16に示すように、車両原点Poが上部境界線Laと下部境界線Lbとの間に位置するときには、表示範囲55の基準点PbのZ座標が上部境界線Laと下部境界線Lbとの間の中点PmのZ座標に固定される。このため、図22に示すように、車両原点Poが上部境界線Laと下部境界線Lbとの間で上方又は下方へ移動しても、案内画面において表示対象面線78は移動せずに、油圧ショベル100のアイコン75が上方又は下方へ移動するように表示される。そして、図24に示すように、車両原点Poが上部境界線Laよりも上方に移動すると、表示範囲55の基準点PbのZ座標が中点PmのZ座標よりも上方の位置に変更される。これにより、案内画面において表示対象面線78は下方に移動し、表示範囲55が車両本体1を追って上方へ移動するように表示される。また、図26に示すように、車両原点Poが下部境界線Lbよりも下方に移動すると、表示範囲55の基準点PbのZ座標が中点PmのZ座標よりも下方の位置に変更される。これにより、案内画面において表示対象面線78は上方に移動し、表示範囲55が車両本体1を追って下方へ移動するように表示される。これにより、目標面線92と車両本体1とが過度に小さく表示されることが抑えられる。このため、オペレータは、目標面70と車両本体1との位置関係を容易に把握することができる。
 さらに、車両原点Poの現在位置が上部境界線Laから上方に離れた距離に応じて、表示範囲55の基準点PbのZ座標が、中点PmのZ座標より上方の位置に変更される。また、車両本体1の現在位置が下部境界線Lbから下方に離れた距離に応じて、表示範囲55の基準点PbのZ座標が、中点PmのZ座標より下方の位置に変更される。これにより、案内画面をスムーズにスクロールさせることができる。
 5.他の実施形態 
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、各案内画面の内容は上記のものに限られず、適宜、変更されてもよい。また、表示コントローラ39の機能の一部、或いは、全てが、油圧ショベル100の外部に配置されたコンピュータによって実行されてもよい。また、目標作業対象は、上述したような平面に限らず、点、線、或いは3次元の形状であってもよい。表示入力装置38の入力部41は、タッチパネル式のものに限られず、ハードキーやスイッチなどの操作部材によって構成されてもよい。上記の実施形態では、作業機2は、ブーム6、アーム7、バケット8を有しているが、作業機2の構成はこれに限られない。
 上記の実施形態では、第1~第3ストロークセンサ16-18によって、ブーム6、アーム7、バケット8の傾斜角を検出しているが、傾斜角の検出手段はこれらに限られない。例えば、ブーム6、アーム7、バケット8の傾斜角を検出する角度センサが備えられてもよい。
 繊細掘削画面54での基準点Pbの座標は、始点Psと終点Peとの中点Pmに限らず他の所定の位置に設定されてもよい。同様に、走行モード画面52及び粗掘削画面53において、車両原点Poが上部境界線Laと下部境界線Lbとの間に位置するときの基準点PbのZ座標は、始点Psと終点Peとの中点PmのZ座標に限らず他の位置のZ座標に設定されてもよい。
 上記の実施形態では、車両本体1の現在位置を示す車両原点Poがバケットピン15の位置に設定されているが、車両本体1の他の位置に設定されてもよい。
 上記の実施形態では、目標面70において始点Psと終点Peとの間の部分が表示対象面線として設定されているが、目標面70の全体が表示対象面線として設定されてもよい。
 各案内画面に含まれる画面は、上記のものに限られない。例えば、繊細掘削画面54において、上述した正面図54aに代えて油圧ショベル100の上面図が表示されてもよい。
 本発明は、案内画面に表示される表示対象面と掘削機械との位置関係を容易に把握することができる効果を有し、掘削機械の表示システム及びその制御方法として有用である。
19   位置検出部
28   表示システム
42   表示部
44   演算部
46   地形データ記憶部
55   表示範囲
78   表示対象面線
La   上部境界線
Lb   下部境界線
Pb   基準点
100  油圧ショベル
 

Claims (4)

  1.  掘削機械の現在位置と、掘削対象の目標地形の一部を示す表示対象面とを示す案内画面を表示する掘削機械の表示システムであって、
     前記表示対象面の位置を示す地形データを記憶する記憶部と、
     前記掘削機械の現在位置を検出する位置検出部と、
     前記地形データに対して前記案内画面として表示する所定の表示範囲を設定し、前記地形データと前記掘削機械の現在位置とに基づいて、前記表示対象面の断面の上端の高さ位置を示す上部境界線の位置と、前記表示対象面の断面の下端の高さ位置を示す下部境界線の位置を算出し、前記掘削機械の現在位置が前記上部境界線と前記下部境界線との間に位置するときには前記表示範囲の所定の基準点を前記上部境界線と前記下部境界線との間の所定位置に設定し、前記掘削機械の現在位置が前記上部境界線よりも上方に位置するときには前記基準点を前記所定位置よりも上方に設定し、前記掘削機械の現在位置が前記下部境界線よりも下方に位置するときには前記基準点を前記所定位置よりも下方に設定する、演算部と、
     前記表示範囲に含まれる前記表示対象面の側面視における断面と前記掘削機械の現在位置とを示す前記案内画面を表示する表示部と、
    を備える掘削機械の表示システム。
  2.  前記演算部は、前記掘削機械の現在位置が前記上部境界線よりも上方に位置するときには、前記基準点を前記所定位置から上方に前記掘削機械の現在位置と前記上部境界線との間の距離を追加した位置に設定し、前記掘削機械の現在位置が前記下部境界線よりも下方に位置するときには前記基準点を前記所定位置から下方に前記掘削機械の現在位置と前記下部境界線との間の距離を追加した位置に設定する、
    請求項1に記載の掘削機械の表示システム。
  3.  請求項1又は2に記載の掘削機械の表示システムを備える掘削機械。
  4.  掘削機械の現在位置と、掘削対象の目標地形の一部を示す表示対象面とを示す案内画面を表示する掘削機械の表示システムの制御方法であって、
     前記掘削機械の現在位置を検出するステップと、
     前記表示対象面の位置を示す地形データに対して前記案内画面として表示する所定の表示範囲を設定するステップと、
     前記地形データと前記掘削機械の現在位置とに基づいて、前記表示対象面の側面視における断面の上端の高さ位置を示す上部境界線の位置と、前記表示対象面の側面視における断面の下端の高さ位置を示す下部境界線の位置を算出するステップと、
     前記掘削機械の現在位置が前記上部境界線と前記下部境界線との間に位置するときには前記表示範囲の所定の基準点を前記上部境界線と前記下部境界線との間の所定位置に設定するステップと、
     前記掘削機械の現在位置が前記上部境界線よりも上方に位置するときには前記基準点を前記所定位置よりも上方に設定するステップと、
     前記掘削機械の現在位置が前記下部境界線よりも下方に位置するときには前記基準点を前記所定位置よりも下方に設定するステップと、
     前記表示範囲に含まれる前記表示対象面の側面視における断面と前記掘削機械の現在位置とを示す前記案内画面を表示するステップと、
    を備える掘削機械の表示システムの制御方法。
     
PCT/JP2012/052834 2011-02-22 2012-02-08 掘削機械の表示システム及びその制御方法 WO2012114873A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157004498A KR20150036733A (ko) 2011-02-22 2012-02-08 굴삭 기계의 표시 시스템 및 그 제어 방법
DE112012000119.2T DE112012000119B4 (de) 2011-02-22 2012-02-08 Displaysystem in einem Bagger und Verfahren zum Steuern desselben
KR1020137004690A KR101654113B1 (ko) 2011-02-22 2012-02-08 굴삭 기계의 표시 시스템 및 그 제어 방법
CN201280002692.2A CN103080433B (zh) 2011-02-22 2012-02-08 挖掘机械的显示系统及其控制方法
US13/819,260 US9435106B2 (en) 2011-02-22 2012-02-08 Display system in an excavator and method for controlling same
US15/237,264 US10267020B2 (en) 2011-02-22 2016-08-15 Display system in an excavator and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011036201A JP5059954B2 (ja) 2011-02-22 2011-02-22 掘削機械の表示システム及びその制御方法。
JP2011-036201 2011-02-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/819,260 A-371-Of-International US9435106B2 (en) 2011-02-22 2012-02-08 Display system in an excavator and method for controlling same
US15/237,264 Division US10267020B2 (en) 2011-02-22 2016-08-15 Display system in an excavator and method for controlling same

Publications (1)

Publication Number Publication Date
WO2012114873A1 true WO2012114873A1 (ja) 2012-08-30

Family

ID=46720658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052834 WO2012114873A1 (ja) 2011-02-22 2012-02-08 掘削機械の表示システム及びその制御方法

Country Status (6)

Country Link
US (2) US9435106B2 (ja)
JP (1) JP5059954B2 (ja)
KR (2) KR101654113B1 (ja)
CN (1) CN103080433B (ja)
DE (1) DE112012000119B4 (ja)
WO (1) WO2012114873A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012202213B2 (en) * 2011-04-14 2014-11-27 Joy Global Surface Mining Inc Swing automation for rope shovel
US9043098B2 (en) * 2012-10-05 2015-05-26 Komatsu Ltd. Display system of excavating machine and excavating machine
JP6258582B2 (ja) * 2012-12-28 2018-01-10 株式会社小松製作所 建設機械の表示システムおよびその制御方法
CN103278135B (zh) * 2013-06-25 2015-06-17 俞斌 激光水平精确检测系统
US9644346B2 (en) * 2014-05-14 2017-05-09 Komatsu Ltd. Calibration system and calibration method for excavator
JP6054921B2 (ja) * 2014-08-06 2016-12-27 株式会社小松製作所 油圧ショベルの掘削制御システム
EP3196368B1 (en) * 2014-09-18 2020-04-22 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
US10017112B2 (en) * 2015-03-03 2018-07-10 Hitachi Construction Machinery Co., Ltd. Surroundings monitoring device of vehicle
EP3276089B1 (en) * 2015-03-27 2024-03-13 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
JP6316770B2 (ja) * 2015-04-15 2018-04-25 日立建機株式会社 建設機械
JP6480830B2 (ja) * 2015-08-24 2019-03-13 株式会社小松製作所 ホイールローダの制御システム、その制御方法およびホイールローダの制御方法
JP6626710B2 (ja) * 2015-12-25 2019-12-25 株式会社小松製作所 作業車両および作業車両の制御方法
CN108431337A (zh) * 2015-12-28 2018-08-21 住友建机株式会社 铲土机
EP3399111B1 (en) 2015-12-28 2020-04-15 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
JP7395521B2 (ja) * 2016-03-24 2023-12-11 住友重機械工業株式会社 ショベル、ショベルのシステム
JP6506205B2 (ja) * 2016-03-31 2019-04-24 日立建機株式会社 建設機械
JP6633464B2 (ja) * 2016-07-06 2020-01-22 日立建機株式会社 作業機械
JP6826832B2 (ja) 2016-07-26 2021-02-10 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP6934287B2 (ja) * 2016-07-26 2021-09-15 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP7156775B2 (ja) 2016-07-26 2022-10-19 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP7122802B2 (ja) * 2016-08-05 2022-08-22 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP6871695B2 (ja) * 2016-08-05 2021-05-12 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP6618498B2 (ja) * 2017-03-31 2019-12-11 日立建機株式会社 作業機械
CN107462246A (zh) * 2017-07-07 2017-12-12 南京天辰礼达电子科技有限公司 一种挖机引导系统
JP6454383B2 (ja) * 2017-07-18 2019-01-16 株式会社小松製作所 建設機械の表示システムおよびその制御方法
WO2019031511A1 (ja) * 2017-08-09 2019-02-14 住友建機株式会社 ショベル、ショベルの表示装置及びショベルの表示方法
JP7059281B2 (ja) * 2017-08-09 2022-04-25 住友建機株式会社 ショベル、ショベルの表示装置及びショベルの表示方法
TWI688502B (zh) * 2018-02-14 2020-03-21 先進光電科技股份有限公司 用於警告車輛障礙物的設備
JP7123591B2 (ja) * 2018-03-22 2022-08-23 株式会社小松製作所 作業機械、および作業機械を含むシステム
JP6823036B2 (ja) * 2018-11-05 2021-01-27 株式会社小松製作所 建設機械の表示システムおよびその制御方法
CN112064700B (zh) * 2020-09-18 2022-05-31 广西科技大学 一种装载机最佳铲装轨迹匹配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098585A (ja) * 1999-10-01 2001-04-10 Komatsu Ltd 建設機械の掘削作業ガイダンス装置および掘削制御装置
JP2001123476A (ja) * 1999-10-26 2001-05-08 Hitachi Constr Mach Co Ltd 掘削機械の表示システム及び記録媒体
JP2004068433A (ja) * 2002-08-07 2004-03-04 Hitachi Constr Mach Co Ltd 掘削機械の表示システム及びそのプログラム
WO2004027164A1 (ja) * 2002-09-17 2004-04-01 Hitachi Construction Machinery Co., Ltd. 建設機械の掘削作業教示装置
JP2006214246A (ja) * 2005-02-07 2006-08-17 Aoki Asunaro Kensetsu Kk 作業機の施工支援システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA948824B (en) * 1993-12-08 1995-07-11 Caterpillar Inc Method and apparatus for operating geography altering machinery relative to a work site
US6114993A (en) * 1998-03-05 2000-09-05 Caterpillar Inc. Method for determining and displaying the position of a truck during material removal
US6282477B1 (en) * 2000-03-09 2001-08-28 Caterpillar Inc. Method and apparatus for displaying an object at an earthworking site
CN1249307C (zh) * 2000-11-17 2006-04-05 日立建机株式会社 建筑机械的显示装置和显示控制装置
US6655465B2 (en) * 2001-03-16 2003-12-02 David S. Carlson Blade control apparatuses and methods for an earth-moving machine
CN100545359C (zh) * 2003-09-02 2009-09-30 株式会社小松制作所 施工目标指示装置
US7516563B2 (en) * 2006-11-30 2009-04-14 Caterpillar Inc. Excavation control system providing machine placement recommendation
US8139108B2 (en) * 2007-01-31 2012-03-20 Caterpillar Inc. Simulation system implementing real-time machine data
CN201459800U (zh) * 2009-08-27 2010-05-12 三一重机有限公司 一种挖掘机运行方向的判断装置
JP5202667B2 (ja) * 2011-02-22 2013-06-05 株式会社小松製作所 油圧ショベルの位置誘導システム及びその制御方法
JP5059953B2 (ja) * 2011-02-22 2012-10-31 株式会社小松製作所 油圧ショベルの作業可能範囲表示装置とその制御方法
JP5054833B2 (ja) * 2011-02-22 2012-10-24 株式会社小松製作所 油圧ショベルの表示システム及びその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098585A (ja) * 1999-10-01 2001-04-10 Komatsu Ltd 建設機械の掘削作業ガイダンス装置および掘削制御装置
JP2001123476A (ja) * 1999-10-26 2001-05-08 Hitachi Constr Mach Co Ltd 掘削機械の表示システム及び記録媒体
JP2004068433A (ja) * 2002-08-07 2004-03-04 Hitachi Constr Mach Co Ltd 掘削機械の表示システム及びそのプログラム
WO2004027164A1 (ja) * 2002-09-17 2004-04-01 Hitachi Construction Machinery Co., Ltd. 建設機械の掘削作業教示装置
JP2006214246A (ja) * 2005-02-07 2006-08-17 Aoki Asunaro Kensetsu Kk 作業機の施工支援システム

Also Published As

Publication number Publication date
DE112012000119T5 (de) 2013-07-04
KR101654113B1 (ko) 2016-09-05
JP2012172429A (ja) 2012-09-10
DE112012000119B4 (de) 2014-12-24
US9435106B2 (en) 2016-09-06
US10267020B2 (en) 2019-04-23
US20160356022A1 (en) 2016-12-08
JP5059954B2 (ja) 2012-10-31
KR20150036733A (ko) 2015-04-07
CN103080433B (zh) 2014-06-11
CN103080433A (zh) 2013-05-01
US20130158786A1 (en) 2013-06-20
KR20130044335A (ko) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5059954B2 (ja) 掘削機械の表示システム及びその制御方法。
JP5054833B2 (ja) 油圧ショベルの表示システム及びその制御方法
JP5054832B2 (ja) 油圧ショベルの表示システム及びその制御方法
JP5555190B2 (ja) 油圧ショベルの表示システム及びその制御方法
JP5781668B2 (ja) 油圧ショベルの表示システム
JP5202667B2 (ja) 油圧ショベルの位置誘導システム及びその制御方法
JP5480941B2 (ja) 掘削機械の表示システム及びその制御方法。
KR101678759B1 (ko) 굴삭 기계의 표시 시스템 및 굴삭 기계
JP5426743B1 (ja) 掘削機械の表示システム及び掘削機械
JP5059953B2 (ja) 油圧ショベルの作業可能範囲表示装置とその制御方法
JP5364741B2 (ja) 油圧ショベルの位置誘導システム及び位置誘導システムの制御方法
WO2014077221A1 (ja) 掘削機械の表示システム及び掘削機械
JP5364742B2 (ja) 油圧ショベルの位置誘導システム及び位置誘導システムの制御方法
JP5409853B2 (ja) 油圧ショベルの作業可能範囲表示装置とその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002692.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137004690

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13819260

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120001192

Country of ref document: DE

Ref document number: 112012000119

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750296

Country of ref document: EP

Kind code of ref document: A1