WO2012114871A1 - 油圧ショベルの位置誘導システム及びその制御方法 - Google Patents

油圧ショベルの位置誘導システム及びその制御方法 Download PDF

Info

Publication number
WO2012114871A1
WO2012114871A1 PCT/JP2012/052831 JP2012052831W WO2012114871A1 WO 2012114871 A1 WO2012114871 A1 WO 2012114871A1 JP 2012052831 W JP2012052831 W JP 2012052831W WO 2012114871 A1 WO2012114871 A1 WO 2012114871A1
Authority
WO
WIPO (PCT)
Prior art keywords
target surface
work
hydraulic excavator
vehicle body
current
Prior art date
Application number
PCT/JP2012/052831
Other languages
English (en)
French (fr)
Inventor
亮 深野
藤田 悦夫
正生 安東
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to KR1020137004695A priority Critical patent/KR101443769B1/ko
Priority to US13/819,248 priority patent/US8498806B2/en
Priority to CN201280002731.9A priority patent/CN103080434B/zh
Priority to DE112012000107.9T priority patent/DE112012000107B4/de
Publication of WO2012114871A1 publication Critical patent/WO2012114871A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the present invention relates to a position guidance system for a hydraulic excavator and a control method thereof.
  • a position guidance system that guides a work vehicle such as a hydraulic excavator to a target work target is known.
  • the position guidance system disclosed in Patent Document 1 has design data indicating a three-dimensional design landform.
  • the design terrain is composed of a plurality of design surfaces, and a part of the design surface is selected as a target surface.
  • the current position of the hydraulic excavator is detected by position measuring means such as GPS.
  • the position guidance system guides the hydraulic excavator to the target plane by displaying a guidance screen indicating the current position of the hydraulic excavator on the display unit.
  • the guide screen includes a hydraulic excavator in a side view, a target surface, and an operation range of the bucket tip.
  • the operator can use the positional relationship between the operation range of the target surface on the guidance screen and the tip of the bucket as a reference when determining whether the excavator is in a position suitable for work. it can. However, it is not easy to accurately determine whether or not the excavator is in a position suitable for work. Moreover, it is not easy to move the excavator to a position suitable for work even if the positional relationship between the target surface on the guidance screen and the operation range of the bucket tip is referred to.
  • An object of the present invention is to provide a hydraulic excavator position guidance system and a control method thereof that can easily move the hydraulic excavator to a position suitable for work.
  • the hydraulic excavator position guidance system is a position guidance system that guides the hydraulic excavator to a target surface in a work area.
  • the hydraulic excavator has a vehicle main body and a work machine attached to the vehicle main body.
  • the position guidance system includes a terrain data storage unit, a work implement data storage unit, a position detection unit, an optimum work position calculation unit, and a display unit.
  • the terrain data storage unit stores terrain data indicating the position of the target surface.
  • the work machine data storage unit stores work machine data.
  • the work machine data indicates a workable range around the vehicle body that the work machine can reach.
  • the position detection unit detects the current position of the vehicle body.
  • the optimum work position calculation unit calculates, as the optimum work position, the position of the vehicle body that maximizes the excavable range where the target surface and workable range overlap, based on the topographic data, work equipment data, and the current position of the vehicle body. To do.
  • the display unit displays a guidance screen indicating the optimum work position.
  • the hydraulic excavator position guidance system is the hydraulic excavator position guidance system according to the first aspect, wherein the excavable range includes a line segment indicating a cross section of the target surface in a side view. It is the part that overlaps the workable range.
  • a hydraulic excavator position guidance system is the hydraulic excavator position guidance system according to the first aspect, wherein the guide screen includes a cross-section of the target surface, the hydraulic excavator, and the optimum work position in a side view. Including a side view.
  • a hydraulic excavator position guidance system is the hydraulic excavator position guidance system according to the first aspect, and the guide screen includes a target surface, a hydraulic excavator, and an optimum work position in a top view. Includes top view shown.
  • a hydraulic excavator position guidance system is the hydraulic excavator position guidance system according to the first aspect, and further includes a current surface detection unit and a current surface storage unit.
  • the current status detection unit detects the latest current status.
  • the current status storage unit stores and updates the latest current status detected by the current status detection unit.
  • the optimum work position is calculated based on the height position of the workable range when the vehicle main body is located on the current state.
  • a hydraulic excavator position guidance system is the hydraulic excavator position guidance system according to the first aspect, and further includes a current surface detection unit and a current surface storage unit.
  • the current status detection unit detects the latest current status.
  • the current status storage unit stores and updates the latest current status detected by the current status detection unit.
  • the optimum work position calculation unit classifies the target surface into an excavated region and an unexcavated region based on the magnitude of the difference between the current state surface and the target surface.
  • the optimum work position calculation unit sets an unexcavated area closest to the vehicle body as a target of an excavable range.
  • a hydraulic excavator position guidance system is the hydraulic excavator position guidance system according to the first aspect, wherein the optimum work position calculation unit has a predetermined inclination angle of the current state or the target surface. When it is equal to or greater than the threshold, the optimum work position is not displayed on the guidance screen.
  • the hydraulic excavator position guidance system is the hydraulic excavator position guidance system according to the first aspect, wherein the optimum work is performed when the target surface is an upward slope or a horizontal plane when viewed from the hydraulic excavator.
  • the position is a position where the farthest from the vehicle main body coincides with the top of the target surface at the intersection of the boundary line of the workable range and the target surface.
  • the hydraulic excavator position guidance system is the hydraulic excavator position guidance system according to the first aspect, and when the target surface is a downward slope as viewed from the hydraulic excavator, the optimum working position is Of the intersections between the boundary line of the workable range and the target surface, the closer to the vehicle body is the position that coincides with the top of the target surface.
  • a hydraulic excavator according to a tenth aspect of the present invention includes the hydraulic excavator position guidance system according to any one of claims 1 to 9.
  • the control method for the position guidance system of the excavator according to the eleventh aspect of the present invention is a control method for the position guidance system that guides the excavator to the target surface in the work area.
  • the hydraulic excavator has a vehicle main body and a work machine attached to the vehicle main body.
  • the control method of the position guidance system of a hydraulic excavator includes the following steps. In the first step, the current position of the vehicle body is detected. In the second step, based on the terrain data, the work machine data, and the current position of the vehicle body, the position of the vehicle body that maximizes the excavable range where the target surface overlaps the workable range is calculated as the optimum work position.
  • the terrain data indicates the position of the target surface.
  • the work machine data indicates a workable range around the vehicle body that the work machine can reach. In the third step, a guidance screen showing the optimum work position is displayed.
  • the position of the vehicle body that maximizes the excavable range where the target surface and the workable range overlap is calculated as the optimum work position. Then, a guidance screen indicating the optimum work position is displayed on the display unit. Therefore, the operator can easily move the hydraulic excavator to a position suitable for work by moving the hydraulic excavator aiming at the optimum work position on the guide screen.
  • the position where the range on the target surface that can be reached by the work implement is maximized is calculated as the optimum work position in a side view. For this reason, the operator can work efficiently by operating the work machine at the optimum work position.
  • the operator can confirm the optimum work position from the side view. Therefore, the operator can easily adjust the position of the hydraulic excavator before and after.
  • the operator can confirm the optimum work position from the top view. For this reason, the operator can easily adjust the left and right positions of the excavator.
  • the optimum work position is calculated based on the height position of the workable range when the vehicle body is located on the current state.
  • the ground in the work area is not necessarily flat but often has undulations. Therefore, the height position of the vehicle main body at a position away from the target surface may be different from the height position of the vehicle main body when approaching the target surface thereafter. For this reason, if the optimum work position is calculated based on the height position of the workable range at the current position of the vehicle body, it is difficult to calculate the optimum work position with high accuracy.
  • the optimum work position is calculated at a position away from the target surface, the workable range when the vehicle main body is located on the current surface is set. Based on the height position, the optimum work position is calculated. As a result, the optimum work position can be calculated with high accuracy even in an undulating work area.
  • the excavated area that does not need to be excavated is optimal even when the unexcavated area and the excavated area are mixed due to intermittent excavation. Excluded from calculation of work position. For this reason, an effective optimum work position can be accurately calculated.
  • the optimum work position is not displayed on the guidance screen when the inclination angle of the current surface or the target surface is equal to or greater than a predetermined threshold value.
  • the predetermined threshold value is set to an angle of a slope indicating a limit at which the excavator can stably work.
  • the optimum work position can be shown on the guide screen within a range where the excavator can work stably.
  • the position guide system for a hydraulic excavator when the target surface is an ascending slope or a horizontal plane as viewed from the hydraulic excavator, the position reaches the top of the target surface with the work machine extended. Is calculated as the optimum work position. For this reason, for example, when the ascending slope is much larger than the excavator, the operator can operate the excavator so that excavation is sequentially performed while descending the ascending slope from the top.
  • the position reaching the top of the target surface in a contracted state of the work implement is Calculated as the optimum work position. For this reason, for example, the operator can operate the hydraulic excavator so as to descend the down slope while excavating the near side of the vehicle body.
  • the position of the vehicle main body that maximizes the excavable range where the target surface and the workable range overlap is calculated as the optimum work position. Then, a guidance screen indicating the optimum work position is displayed on the display unit. Therefore, the operator can easily move the hydraulic excavator to a position suitable for work by moving the hydraulic excavator aiming at the optimum work position on the guide screen.
  • the position of the vehicle main body that maximizes the excavable range where the target surface and the workable range overlap is calculated as the optimum work position. Then, a guidance screen indicating the optimum work position is displayed on the display unit. Therefore, the operator can easily move the hydraulic excavator to a position suitable for work by moving the hydraulic excavator aiming at the optimum work position on the guide screen.
  • the perspective view of a hydraulic excavator The figure which shows the structure of a hydraulic excavator typically.
  • the block diagram which shows the structure of the control system with which a hydraulic excavator is provided.
  • position typically.
  • the flowchart which shows the calculation method of an optimal work position.
  • region The figure which shows the calculation method of an optimal work position.
  • the figure which shows the calculation method of the optimal work position concerning other embodiment.
  • FIG. 1 is a perspective view of a hydraulic excavator 100 on which a position guidance system is mounted.
  • the excavator 100 includes a vehicle main body 1 and a work implement 2.
  • the vehicle main body 1 includes an upper swing body 3, a cab 4, and a traveling device 5.
  • the upper swing body 3 accommodates devices such as an engine and a hydraulic pump (not shown).
  • the cab 4 is placed at the front of the upper swing body 3.
  • a display input device 38 and an operation device 25 described later are arranged in the cab 4 (see FIG. 3).
  • the traveling device 5 has crawler belts 5a and 5b, and the excavator 100 travels as the crawler belts 5a and 5b rotate.
  • the work machine 2 is attached to the front portion of the vehicle body 1 and includes a boom 6, an arm 7, a bucket 8, a boom cylinder 10, an arm cylinder 11, and a bucket cylinder 12.
  • a base end portion of the boom 6 is swingably attached to a front portion of the vehicle main body 1 via a boom pin 13.
  • a base end portion of the arm 7 is swingably attached to a tip end portion of the boom 6 via an arm pin 14.
  • a bucket 8 is swingably attached to the tip of the arm 7 via a bucket pin 15.
  • FIG. 2 is a diagram schematically showing the configuration of the excavator 100.
  • FIG. 2A is a side view of the excavator 100
  • FIG. 2B is a rear view of the excavator 100.
  • the length of the boom 6, that is, the length from the boom pin 13 to the arm pin 14
  • the length of the arm 7, that is, the length from the arm pin 14 to the bucket pin 15
  • the length of the bucket 8, that is, the length from the bucket pin 15 to the tip of the tooth of the bucket 8 is L3.
  • the boom cylinder 10 drives the boom 6.
  • the arm cylinder 11 drives the arm 7.
  • the bucket cylinder 12 drives the bucket 8.
  • a proportional control valve 37 is disposed between a hydraulic cylinder such as the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 and a hydraulic pump (not shown) (see FIG. 3).
  • the proportional control valve 37 is controlled by the work machine controller 26 described later, whereby the flow rate of the hydraulic oil supplied to the hydraulic cylinder 10-12 is controlled. As a result, the operation of the hydraulic cylinder 10-12 is controlled.
  • the boom 6, the arm 7 and the bucket 8 are provided with first to third stroke sensors 16-18, respectively.
  • the first stroke sensor 16 detects the stroke length of the boom cylinder 10.
  • a position guidance controller 39 (see FIG. 3), which will be described later, determines the inclination angle of the boom 6 with respect to a Za axis (see FIG. 6) of the vehicle body coordinate system, which will be described later, from the stroke length of the boom cylinder 10 detected by the first stroke sensor 16. (Hereinafter referred to as “boom angle”) ⁇ 1 is calculated.
  • the second stroke sensor 17 detects the stroke length of the arm cylinder 11.
  • the position induction controller 39 calculates an inclination angle (hereinafter referred to as “arm angle”) ⁇ 2 of the arm 7 with respect to the boom 6 from the stroke length of the arm cylinder 11 detected by the second stroke sensor 17.
  • the third stroke sensor 18 detects the stroke length of the bucket cylinder 12.
  • the position induction controller 39 calculates an inclination angle (hereinafter referred to as “bucket angle”) ⁇ 3 of the bucket 8 with respect to the arm 7 from the stroke length of the bucket cylinder 12 detected by the third stroke sensor 18.
  • the vehicle body 1 is provided with a position detector 19.
  • the position detector 19 detects the current position of the excavator 100.
  • the position detection unit 19 includes two antennas 21 and 22 (hereinafter referred to as “GNSS antennas 21 and 22”) for RTK-GNSS (Real Time Kinematic-Global Navigation Satellite Systems, GNSS is a global navigation satellite system). ), A three-dimensional position sensor 23, and an inclination angle sensor 24.
  • the GNSS antennas 21 and 22 are spaced apart from each other by a certain distance along the Ya axis (see FIG. 6) of a vehicle body coordinate system Xa-Ya-Za described later.
  • a signal corresponding to the GNSS radio wave received by the GNSS antennas 21 and 22 is input to the three-dimensional position sensor 23.
  • the three-dimensional position sensor 23 detects the positions of the installation positions P1, P2 of the GNSS antennas 21, 22. As shown in FIG. 2B, the tilt angle sensor 24 detects the tilt angle ⁇ 4 (hereinafter referred to as “roll angle ⁇ 4”) in the vehicle width direction of the vehicle body 1 with respect to the gravity direction, that is, the vertical direction in the global coordinate system. To do.
  • FIG. 3 is a block diagram showing a configuration of a control system provided in the hydraulic excavator 100.
  • the excavator 100 includes an operation device 25, a work machine controller 26, a work machine control device 27, and a position guidance system 28.
  • the operating device 25 includes a work implement operation member 31, a work implement operation detection unit 32, a travel operation member 33, and a travel operation detection unit 34.
  • the work machine operation member 31 is a member for the operator to operate the work machine 2 and is, for example, an operation lever.
  • the work machine operation detection unit 32 detects the operation content of the work machine operation member 31 and sends it to the work machine controller 26 as a detection signal.
  • the traveling operation member 33 is a member for the operator to operate traveling of the excavator 100, and is, for example, an operation lever.
  • the traveling operation detection unit 34 detects the operation content of the traveling operation member 33 and sends it to the work machine controller 26 as a detection signal.
  • the work machine controller 26 includes a storage unit 35 such as a RAM and a ROM, and a calculation unit 36 such as a CPU.
  • the work machine controller 26 mainly controls the work machine 2.
  • the work machine controller 26 generates a control signal for operating the work machine 2 in accordance with the operation of the work machine operation member 31, and outputs the control signal to the work machine control device 27.
  • the work machine control device 27 has a proportional control valve 37, and the proportional control valve 37 is controlled based on a control signal from the work machine controller 26.
  • the hydraulic oil having a flow rate corresponding to the control signal from the work machine controller 26 flows out of the proportional control valve 37 and is supplied to the hydraulic cylinder 10-12.
  • the hydraulic cylinder 10-12 is driven according to the hydraulic oil supplied from the proportional control valve 37. Thereby, the work machine 2 operates.
  • the position guidance system 28 is a system for guiding the excavator 100 to a target surface in a work area.
  • the position guidance system 28 includes a display input device 38 and a position guidance controller 39 in addition to the first to third stroke sensors 16-18, the three-dimensional position sensor 23, and the tilt angle sensor 24 described above.
  • the display input device 38 includes a touch panel type input unit 41 and a display unit 42 such as an LCD.
  • the display input device 38 displays a guidance screen for guiding the excavator 100 to the target work target in the work area.
  • Various keys are displayed on the guidance screen.
  • the operator can execute various functions of the position guidance system 28 by touching various keys on the guidance screen.
  • the guidance screen will be described in detail later.
  • the position guidance controller 39 executes various functions of the position guidance system 28.
  • the position induction controller 39 and the work machine controller 26 can communicate with each other by wireless or wired communication means.
  • the position induction controller 39 includes a storage unit 43 such as a RAM and a ROM, and a calculation unit 44 such as a CPU.
  • the storage unit 43 stores data necessary for various processes executed in the calculation unit 44.
  • the storage unit 43 includes a terrain data storage unit 46, a work machine data storage unit 47, and a current state storage unit 48.
  • design terrain data is created and stored in advance.
  • the design terrain data indicates the shape and position of the three-dimensional design terrain within the work area.
  • the design landform is composed of a plurality of design surfaces 45 each represented by a triangular polygon.
  • reference numeral 45 is given to only one of the plurality of design surfaces, and reference numerals of the other design surfaces are omitted. The operator selects one or more of these design surfaces 45 as the target surface 70.
  • the work machine data storage unit 47 stores work machine data.
  • the work machine data is data indicating a workable range 76 (see FIG. 5) around the vehicle body 1 that can be reached by the work machine 2.
  • the work machine data includes the above-described length L1 of the boom 6, the length L2 of the arm 7, and the length L3 of the bucket 8.
  • the work implement data includes the minimum value and the maximum value of the boom angle ⁇ 1, the arm angle ⁇ 2, and the bucket angle ⁇ 3.
  • the current status storage unit 48 stores current status data.
  • the current status data is data indicating a current status (see reference numeral 78 in FIG. 5) detected by a current status detector 50 described later.
  • the current situation shows the current actual topography.
  • the current status detection unit 50 repeatedly executes detection of the current status at every predetermined time.
  • the current status storage unit 48 updates the current status data to data indicating the latest current status detected by the current status detection unit 50.
  • the calculation unit 44 includes a current position calculation unit 49, a current state detection unit 50, and an optimum work position calculation unit 51.
  • the current position calculation unit 49 detects the current position of the vehicle main body 1 in the global coordinate system based on the detection signal from the position detection unit 19. Further, the current position calculation unit 49 calculates the current position in the global coordinate system at the tip of the bucket 8 based on the current position in the global coordinate system of the vehicle body 1 and the work implement data described above.
  • the current status detection unit 50 detects the latest current status.
  • the optimum work position calculation unit 51 calculates the optimum work position based on the design terrain data, the work machine data, and the current position of the vehicle body 1. The optimum work position indicates the optimum position of the vehicle main body 1 for excavating the target surface 70. A method for calculating the current position of the tip of the bucket 8, a method for detecting the current state, and a method for calculating the optimum work position will be described in detail later.
  • the position guidance controller 39 causes the display input device 38 to display a guidance screen based on the calculation results of the current position calculation unit 49, the current state detection unit 50, and the optimum work position calculation unit 51.
  • the guidance screen is a screen for guiding the excavator 100 to the target surface 70. Hereinafter, the guidance screen will be described in detail.
  • FIG. 5 shows a guide screen 52.
  • the guidance screen 52 includes a top view 52a and a side view 52b.
  • the top view 52 a shows the design landform of the work area and the current position of the excavator 100.
  • the top view 52a represents the design terrain as viewed from above with a plurality of triangular polygons. Further, the target surface 70 is displayed in a color different from other design surfaces.
  • the current position of the excavator 100 is indicated by the icon 61 of the excavator as viewed from above, but may be indicated by other symbols.
  • the top view 52a information for guiding the excavator 100 to the target surface 70 is displayed.
  • the direction indicator 71 is displayed.
  • the direction indicator 71 is an icon indicating the direction of the target surface 70 relative to the excavator 100.
  • the top view 52 a further includes information indicating the optimum work position and information for causing the excavator 100 to face the target surface 70.
  • the optimum work position is an optimum position for excavating the target surface 70 by the excavator 100, and is calculated from the position of the target surface 70 and a workable range 76 described later.
  • the optimum working position is indicated by a straight line 72 in the top view 52a.
  • the facing compass 73 is an icon indicating a facing direction with respect to the target surface 70 and a direction in which the excavator 100 should be turned. The operator can confirm the degree of confrontation with respect to the target surface 70 with the confrontation compass 73.
  • the side view 52b is information indicating the design surface line 74, the current surface line 78, the target surface line 84, the icon 75 of the excavator 100 in a side view, the workable range 76 of the work implement 2, and the optimum work position.
  • the design surface line 74 indicates a cross section of the design surface 45 other than the target surface 70.
  • a current plane line 78 shows a cross section of the current plane described above.
  • a target plane line 84 indicates a cross section of the target plane 70.
  • the design surface line 74 and the target surface line 84 are obtained by calculating an intersection line 80 between the plane 77 passing through the current position of the tip P3 of the bucket 8 and the design landform.
  • the target surface line 84 is displayed in a color different from the design surface line 74.
  • the target surface line 84 and the design surface line 74 are expressed by changing the line type.
  • the workable range 76 indicates a range around the vehicle main body 1 where work by the work implement 2 is possible.
  • the workable range 76 is calculated from the work implement data described above. A method for calculating the workable range 76 will be described in detail later.
  • the optimum work position shown in the side view 52b corresponds to the optimum work position shown in the top view 52a described above, and is indicated by a triangular icon 81.
  • the reference position of the vehicle body 1 is also indicated by a triangular icon 82. The operator moves the excavator 100 so that the icon 82 of the reference position matches the icon 81 of the optimum work position.
  • the guidance screen 52 includes information indicating the optimum work position and information for causing the excavator 100 to face the target surface 70. For this reason, the operator can place the excavator 100 in the optimum position and direction for performing the work with respect to the target surface 70 by the guide screen 52. Therefore, the guide screen 52 is mainly referred to when the excavator 100 is positioned.
  • the target plane line 84 is calculated from the current position of the tip of the bucket 8.
  • the position guidance controller 39 is configured to control the bucket 8 in the global coordinate system ⁇ X, Y, Z ⁇ .
  • the current position of the tip P3 is calculated. Specifically, the current position of the tip P3 of the bucket 8 is obtained as follows.
  • FIG. 6A is a side view of the excavator 100.
  • FIG. 6B is a rear view of the excavator 100.
  • the front-rear direction of the excavator 100 that is, the Ya-axis direction of the vehicle body coordinate system is inclined with respect to the Y-axis direction of the global coordinate system.
  • the coordinates of the boom pin 13 in the vehicle main body coordinate system are (0, Lb1, -Lb2), and are stored in the work machine data storage unit 47 of the position guidance controller 39 in advance.
  • the three-dimensional position sensor 23 detects the installation positions P1 and P2 of the GNSS antennas 21 and 22.
  • a unit vector in the Ya-axis direction is calculated from the detected coordinate positions P1 and P2 by the following equation (1).
  • Ya (P1-P2) /
  • Z ′, Ya 0
  • Z ′ (1-c) Z + cYa (3)
  • c is a constant. From the expressions (2) and (3), Z ′ is expressed as the following expression (4).
  • the current inclination angles ⁇ 1, ⁇ 2, and ⁇ 3 of the boom 6, the arm 7, and the bucket 8 are calculated from the detection results of the first to third stroke sensors 16-18.
  • the coordinates (xat, yat, zat) of the tip P3 of the bucket 8 in the vehicle body coordinate system are based on the inclination angles ⁇ 1, ⁇ 2, ⁇ 3 and the lengths L1, L2, L3 of the boom 6, arm 7, and bucket 8. These are calculated by the following equations (7) to (9).
  • the position guidance controller 39 calculates the three-dimensional design landform and the bucket based on the current position of the tip P3 of the bucket 8 calculated as described above and the design landform data stored in the storage unit 43.
  • the intersection line 80 with the Ya-Za plane 77 passing through the 8 tip P3 is calculated.
  • the position guidance controller 39 displays the portion passing through the target plane 70 in the intersection line on the guidance screen 52 as the target plane line 84 described above.
  • the above-described current surface detection unit 50 detects the current surface line 78 based on the movement trajectory of the bottom of the vehicle body 1 and the movement trajectory of the tip P3 of the bucket 8. Specifically, as shown in FIG. 6, the current state detection unit 50 calculates the current position of the detection reference point P5 from the current position of the vehicle body 1 (installation position P1 of the GNSS antenna 21). The detection reference point P5 is located on the bottom surface of the crawler belts 5a and 5b. Then, the current surface detection unit 50 stores the locus of the detection reference point P5 in the current surface storage unit 48 as current surface data.
  • the data indicating the positional relationship between the installation position P1 of the GNSS antenna 21 and the detection reference point P5 is stored in the current state storage unit 48 described above. Further, the locus of the tip P3 of the bucket 8 is obtained by recording the current position of the tip P3 of the bucket 8 detected by the current position calculator 49 described above.
  • FIG. 7 schematically shows the posture of the work implement 2 when the length of the work implement 2 reaches the maximum reach length Lmax (hereinafter referred to as “maximum reach posture”).
  • the coordinate plane Yb-Zb shown in FIG. 7 has the position of the boom pin 13 as the origin in the vehicle body coordinate system ⁇ Xa, Ya, Za ⁇ described above.
  • the arm angle ⁇ 2 is the minimum value.
  • the bucket angle ⁇ 3 is calculated by numerical analysis for parameter optimization so that the reach length of the work implement 2 is maximized. The value of the bucket angle ⁇ 3 at this time is hereinafter referred to as “maximum reach angle”.
  • the minimum reach length Lmin is the reach length of the work machine 2 when the work machine 2 is contracted to the minimum.
  • FIG. 8 schematically shows the posture of the work machine 2 when the length of the work machine 2 becomes the minimum reach length Lmin (hereinafter referred to as “minimum reach position”).
  • the arm angle ⁇ 2 is the maximum value.
  • the bucket angle ⁇ 3 is calculated by numerical analysis for parameter optimization so that the reach length of the work implement 2 is minimized. The value of the bucket angle ⁇ 3 at this time is hereinafter referred to as “minimum reach angle”.
  • the workable range is a range obtained by removing the vehicle lower region 86 from the reachable range 83.
  • the reachable range 83 indicates a range in which the work machine 2 can reach.
  • the vehicle lower area 86 is an area located below the vehicle body 1.
  • the reachable range 83 is calculated from the work implement data described above and the current position of the vehicle main body 1.
  • the boundary line of the reachable range 83 includes a plurality of arcs A1-A4.
  • the boundary line of the reachable range 83 includes the first arc A1 to the fourth arc A4.
  • the first arc A1 is a locus drawn by the tip of the bucket 8 when the arm angle ⁇ 2 is the minimum value, the bucket angle ⁇ 3 is the maximum reach angle, and the boom angle ⁇ 1 changes between the minimum value and the maximum value.
  • the second arc A2 is a locus drawn by the tip of the bucket 8 when the boom angle ⁇ 1 is the maximum, the bucket angle ⁇ 3 is 0 °, and the arm angle ⁇ 2 changes between the minimum value and the maximum value.
  • the third arc A3 is a locus drawn by the tip of the bucket 8 when the arm angle ⁇ 2 is the maximum value, the bucket angle ⁇ 3 is the minimum reach angle, and the boom angle ⁇ 1 changes between the minimum value and the maximum value.
  • the fourth arc A4 is a locus drawn by the tip of the bucket 8 when the boom angle ⁇ 1 is the minimum value, the bucket angle ⁇ 3 is 0 °, and the arm angle ⁇ 2 changes between the minimum value and the maximum value.
  • the optimum work position calculation unit 51 calculates the position of the vehicle main body 1 where the excavable range 79 where the target surface 70 and the workable range 76 overlap is maximized as the optimum work position.
  • a method for calculating the optimum work position will be described based on the flowchart shown in FIG.
  • step S1 the current position of the vehicle body 1 is detected.
  • the current position calculation unit 49 calculates the current position of the vehicle body 1 in the global coordinate system based on the detection signal from the position detection unit 19.
  • step S2 it is determined whether the inclination angle of the target surface line 84 or the current surface line 78 is equal to or greater than a predetermined display determination threshold value.
  • the predetermined display determination threshold is set to an angle of a slope indicating a limit at which the excavator 100 can stably perform work.
  • the predetermined display determination threshold value is obtained in advance and stored in the work machine data storage unit 47.
  • the inclination angle ⁇ 5 (see FIG. 10) of the target plane line 84 is acquired from the designed terrain data in the terrain data storage unit 46.
  • the inclination angle ⁇ 6 (see FIG. 10) of the current surface line 78 is acquired from the current surface data in the current surface storage unit 48.
  • step S7 When at least one of the inclination angle ⁇ 5 of the target surface line 84 and the inclination angle ⁇ 6 of the current surface line 78 is equal to or greater than a predetermined display determination threshold value, the optimum work position is not displayed on the guide screen 52 in step S7.
  • the process proceeds to step S3. That is, when both the inclination angle ⁇ 5 of the target plane line 84 and the inclination angle ⁇ 6 of the current plane line 78 are smaller than the predetermined display determination threshold value, the process proceeds to step S3.
  • an excavable range target is selected.
  • the excavable range 79 is a portion where the target plane line 84 and the workable range 76 overlap in a side view.
  • the optimum work position calculation unit 51 classifies the target surface line 84 into the excavated region and the unexcavated region based on the distance G1 between the current surface line 78 and the target surface line 84. To do. Specifically, the optimum work position calculation unit 51 classifies a portion of the target plane line 84 where the distance G1 between the current plane plane 78 and the predetermined classification determination threshold Gth is equal to or greater than the unexcavated area.
  • the optimum work position calculation unit 51 classifies a portion of the target plane line 84 where the distance G1 between the target plane line 78 and the current plane line 78 is smaller than a predetermined classification determination threshold Gth as an excavated area. Then, the optimum work position calculation unit 51 determines the unexcavated area closest to the vehicle body 1 as the target of the excavable range 79.
  • step S4 the slope type is determined.
  • the target surface 70 is an upward slope, a horizontal plane, or a downward slope as viewed from the excavator.
  • the optimum work position calculation unit 51 determines the slope type based on the designed terrain data in the terrain data storage unit 46 and the current position of the vehicle body 1.
  • step S5 the optimum work position is calculated.
  • the position of the vehicle main body 1 at which the length Le of the excavable range 79 where the target plane line 84 and the workable range 76 overlap is maximized is calculated as the optimum work position.
  • the position where the length Le of the excavable range 79 is maximum is calculated within the target region of the excavable range 79 selected in step S3.
  • the optimum work position is calculated based on the height position of the workable range 76 when the vehicle body 1 is located on the current plane 78. That is, as shown in FIG. 13, the current position P4 of the boom pin 13 when it is away from the target plane line 84 and the position P4 ′ of the boom pin 13 when the vehicle body 1 is positioned in the vicinity of the target plane line 84. Is different depending on the shape of the current plane line 78. For this reason, the height position of the workable range 76 also changes in accordance with the change in the height of the current status line 78. Therefore, the optimum work position is calculated based on the height position of the workable range 76 corresponding to the current status line 78.
  • data indicating the height Hb from the detection reference point P5 on the bottom surface of the crawler belts 5a, 5b to the boom pin 13 is stored in the work implement data storage unit 47, and the height of the boom pin 13 from the current plane 78.
  • the position above Hb is calculated as the locus Tb of the boom pin 13 when the vehicle body 1 is positioned on the current status line 78.
  • the optimum work position is calculated based on the position of the workable range 76 when the boom pin 13 moves along the locus Tb.
  • step S4 when it is determined that the target surface 70 is an uphill slope or a horizontal plane, as shown in FIG. 14, of the intersections between the boundary line of the workable range 76 and the target surface line 84 A position where the intersection P6 far from the vehicle body 1 coincides with the top of the target plane line 84 is calculated as the optimum work position.
  • step S4 when it is determined in step S4 that the target surface 70 is a downward slope, as shown in FIG. 15, the intersection of the boundary line of the workable range 76 and the target surface line 84 is close to the vehicle body 1. The position at which the intersection P7 of the direction coincides with the top of the target plane line 84 is calculated as the optimum work position.
  • step S6 a guidance screen 52 showing the optimum work position is displayed on the display unit 42.
  • a straight line 72 indicating the optimum work position is displayed on the top view 52 a of the guidance screen 52.
  • a triangular icon 81 indicating the optimum work position is displayed on the side view 52 b of the guidance screen 52.
  • the position of the vehicle body 1 at which the excavable range 79 where the target plane line 84 and the workable range 76 overlap is maximized is calculated as the optimum work position.
  • a guidance screen 52 showing the optimum work position is displayed on the display unit 42.
  • the operator can easily move the excavator 100 to a position suitable for excavation work by manipulating the excavator 100 aiming at the optimum work position on the guide screen 52.
  • the operator can confirm the optimum work position by the icon 81 displayed on the side view 52b of the guidance screen 52 shown in FIG.
  • the operator can easily adjust the position of the excavator 100 in the front-rear direction.
  • the operator can confirm the optimum work position by the straight line 72 displayed on the top view 52 a of the guidance screen 52. For this reason, the operator can easily adjust the left and right positions of the excavator 100.
  • the height of the workable range 76 at the current position of the vehicle body 1 is not used as a reference, but the workable range 76 when the vehicle body 1 is positioned on the current plane line 78. Based on the height position, the optimum work position is calculated. For this reason, the optimum work position can be calculated with high accuracy even in an undulating work area.
  • the target plane line 84 is classified into an unexcavated area and an already excavated area, and the unexcavated area is set as a target of the excavable range 79. For this reason, as shown in FIG. 12, even when an unexcavated area and an already excavated area are mixed by intermittent excavation, an already excavated area that does not need to be excavated is excluded from the calculation of the optimum work position. The For this reason, an effective optimum work position can be accurately calculated.
  • the optimum work position is not displayed on the guidance screen 52.
  • the optimum work position can be shown on the guide screen 52 within a range where the excavator 100 can work stably.
  • the target surface 70 is an ascending slope or a horizontal surface when viewed from the excavator 100
  • the position reaching the top of the target surface line 84 with the work machine 2 extended is the optimum work position. Is calculated as For this reason, for example, when the upslope is much larger than the excavator 100, the operator can operate the excavator 100 so that excavation is sequentially performed while descending the upslope from the top.
  • the position reaching the top of the target surface line 84 with the work machine 2 contracted is calculated as the optimum work position. Is done. For this reason, for example, the operator can operate the excavator 100 so as to descend the down slope while excavating the near side of the vehicle body 1.
  • the tilt angles of the boom 6, the arm 7 and the bucket 8 are detected by the first to third stroke sensors 16-18, but the means for detecting the tilt angle is not limited to these.
  • an angle sensor that detects the inclination angles of the boom 6, the arm 7, and the bucket 8 may be provided.
  • the locus of the position of the tip P3 of the bucket 8 and the locus of the detection reference point P5 on the bottom surface of the crawler belts 5a and 5b are detected as the current surface line 78.
  • the method of detecting the current status line 78 is not limited to this.
  • the current plane line 78 may be detected by a laser distance measuring device as disclosed in Japanese Patent Laid-Open No. 2002-328022.
  • the current status line 78 may be detected by a stereo camera type measuring device.
  • the optimum work position is calculated based on the height position of the workable range 76 corresponding to the current status line 78.
  • the optimum work position may be calculated based on the height position of the workable range 76 from the virtual ground line 90.
  • the virtual ground line 90 is a line that passes through the detection reference point P5 on the bottom surface at the current position of the excavator 100 and is parallel to the Y-axis direction in the global coordinate system.
  • the present invention has an effect that the excavator can be easily moved to a position suitable for work, and is useful as a position induction system for the excavator and a control method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

 本発明の課題は、油圧ショベルを作業に適した位置まで容易に移動させることができる油圧ショベルの位置誘導システム及びその制御方法を提供することにある。油圧ショベルの位置誘導システムにおいて、最適作業位置演算部は、目標面(70)と作業可能範囲(76)との重なり合う掘削可能範囲(79)が最大となる車両本体の位置を最適作業位置として算出する。表示部は、最適作業位置を示す案内画面を表示する。

Description

油圧ショベルの位置誘導システム及びその制御方法
 本発明は、油圧ショベルの位置誘導システム及びその制御方法に関する。
 油圧ショベルなどの作業車両を、目標作業対象まで誘導する位置誘導システムが知られている。例えば、特許文献1に開示されている位置誘導システムは、3次元の設計地形を示す設計データを有している。設計地形は複数の設計面によって構成されており、設計面の一部が目標面として選択される。また、GPSなどの位置計測手段によって、油圧ショベルの現在位置が検出される。位置誘導システムは、油圧ショベルの現在位置を示す案内画面を表示部に表示することによって、油圧ショベルを目標面まで誘導する。案内画面は、側面視における油圧ショベルと、目標面と、バケットの先端の動作範囲とを含む。
特開2001-98585号公報
 上記の位置誘導システムでは、オペレータは、案内画面上の目標面とバケットの先端の動作範囲の位置関係を、油圧ショベルが作業に適した位置にいるか否かを判断する際の参考にすることができる。しかし、油圧ショベルが作業に適した位置にいるか否かを正確に判断することは容易ではない。また、案内画面上の目標面とバケットの先端の動作範囲の位置関係を参考にしても、油圧ショベルを作業に適した位置まで移動させることは容易ではない。
 本発明の課題は、油圧ショベルを作業に適した位置まで容易に移動させることができる油圧ショベルの位置誘導システム及びその制御方法を提供することにある。
 本発明の第1の態様に係る油圧ショベルの位置誘導システムは、油圧ショベルを作業エリア内の目標面まで誘導する位置誘導システムである。油圧ショベルは、車両本体と、車両本体に取り付けられる作業機とを有する。位置誘導システムは、地形データ記憶部と、作業機データ記憶部と、位置検出部と、最適作業位置演算部と、表示部と、を備える。地形データ記憶部は、目標面の位置を示す地形データを記憶する。作業機データ記憶部は、作業機データを記憶する。作業機データは、作業機が届くことができる車両本体の周囲の作業可能範囲を示す。位置検出部は、車両本体の現在位置を検出する。最適作業位置演算部は、地形データと作業機データと車両本体の現在位置とに基づいて、目標面と作業可能範囲との重なり合う掘削可能範囲が最大となる車両本体の位置を最適作業位置として算出する。表示部は、最適作業位置を示す案内画面を表示する。
 本発明の第2の態様に係る油圧ショベルの位置誘導システムは、第1の態様に係る油圧ショベルの位置誘導システムであって、掘削可能範囲は、側面視において目標面の断面を示す線分と作業可能範囲との重なりあう部分である。
 本発明の第3の態様に係る油圧ショベルの位置誘導システムは、第1の態様の油圧ショベルの位置誘導システムであって、案内画面は、側面視における目標面の断面と油圧ショベルと最適作業位置とを示す側面図を含む。
 本発明の第4の態様に係る油圧ショベルの位置誘導システムは、第1の態様の油圧ショベルの位置誘導システムであって、案内画面は、上面視における目標面と油圧ショベルと最適作業位置とを示す上面図を含む。
 本発明の第5の態様に係る油圧ショベルの位置誘導システムは、第1の態様の油圧ショベルの位置誘導システムであって、現況面検出部と、現況面記憶部とをさらに備える。現況面検出部は、最新の現況面を検出する。現況面記憶部は、現況面検出部で検出された最新の現況面を記憶し更新する。最適作業位置は、車両本体が現況面上に位置しているときの作業可能範囲の高さ位置に基づいて算出される。
 本発明の第6の態様に係る油圧ショベルの位置誘導システムは、第1の態様の油圧ショベルの位置誘導システムであって、現況面検出部と、現況面記憶部とをさらに備える。現況面検出部は、最新の現況面を検出する。現況面記憶部は、現況面検出部で検出された最新の現況面を記憶し更新する。最適作業位置演算部は、現況面と目標面との差の大きさに基づいて目標面を掘削済領域と未掘削領域とに分類する。最適作業位置演算部は、車両本体に最も近い未掘削領域を掘削可能範囲の対象とする。
 本発明の第7の態様に係る油圧ショベルの位置誘導システムは、第1の態様の油圧ショベルの位置誘導システムであって、最適作業位置演算部は、現況面又は目標面の傾斜角が所定の閾値以上であるときには、案内画面に最適作業位置を表示させない。
 本発明の第8の態様に係る油圧ショベルの位置誘導システムは、第1の態様の油圧ショベルの位置誘導システムであって、目標面が油圧ショベルから見て上り斜面又は水平面である場合、最適作業位置は、作業可能範囲の境界線と目標面との交点のうち車両本体から遠い方が目標面の頂上部と一致する位置である。
 本発明の第9の態様に係る油圧ショベルの位置誘導システムは、第1の態様の油圧ショベルの位置誘導システムであって、目標面が油圧ショベルから見て下り斜面である場合、最適作業位置は、作業可能範囲の境界線と目標面との交点のうち車両本体に近い方が目標面の頂上部と一致する位置である。
 本発明の第10の態様に係る油圧ショベルは、請求項1から9のいずれかに記載の油圧ショベルの位置誘導システムを備える。
 本発明の第11の態様に係る油圧ショベルの位置誘導システムの制御方法は、油圧ショベルを作業エリア内の目標面まで誘導する位置誘導システムの制御方法である。油圧ショベルは、車両本体と、車両本体に取り付けられる作業機とを有する。油圧ショベルの位置誘導システムの制御方法は、次のステップを備える。第1ステップでは、車両本体の現在位置を検出する。第2ステップでは、地形データと作業機データと車両本体の現在位置とに基づいて、目標面と作業可能範囲との重なり合う掘削可能範囲が最大となる車両本体の位置を最適作業位置として算出する。地形データは、目標面の位置を示す。作業機データは、作業機が届くことができる車両本体の周囲の作業可能範囲を示す。第3ステップでは、最適作業位置を示す案内画面を表示する。
 本発明の第1の態様に係る油圧ショベルの位置誘導システムでは、目標面と作業可能範囲との重なり合う掘削可能範囲が最大となる車両本体の位置が最適作業位置として算出される。そして、最適作業位置を示す案内画面が表示部に表示される。このため、オペレータは、案内画面上の最適作業位置を目指して油圧ショベルを移動させることにより、油圧ショベルを作業に適した位置まで容易に移動させることができる。
 本発明の第2の態様に係る油圧ショベルの位置誘導システムでは、側面視において、作業機が到達可能な目標面上の範囲が最大となる位置が最適作業位置として算出される。このため、オペレータは、最適作業位置において作業機を操作することにより、効率よく作業を行うことができる。
 本発明の第3の態様に係る油圧ショベルの位置誘導システムでは、オペレータは、側面図によって最適作業位置を確認することができる。このため、オペレータは、油圧ショベルの前後の位置調整を容易に行うことができる。
 本発明の第4の態様に係る油圧ショベルの位置誘導システムでは、オペレータは、上面図によって最適作業位置を確認することができる。このため、オペレータは、油圧ショベルの左右の位置調整を容易に行うことができる。
 本発明の第5の態様に係る油圧ショベルの位置誘導システムでは、車両本体が現況面上に位置しているときの作業可能範囲の高さ位置に基づいて、最適作業位置が算出される。作業エリア内の地面は、必ずしも平坦ではなく起伏を有していることが多い。従って、目標面から離れた位置での車両本体の高さ位置と、その後に目標面に近づいたときの車両本体の高さ位置とが異なる場合がある。このため、もし車両本体の現在位置での作業可能範囲の高さ位置に基づいて最適作業位置が算出されると、最適作業位置を精度よく算出することは困難である。そこで、本態様に係る油圧ショベルの位置誘導システムでは、目標面から離れた位置で最適作業位置を算出する場合であっても、車両本体が現況面上に位置しているときの作業可能範囲の高さ位置に基づいて、最適作業位置が算出される。これにより、起伏のある作業エリア内においても、最適作業位置を精度よく算出することができる。
 本発明の第6の態様に係る油圧ショベルの位置誘導システムでは、断続的な掘削によって未掘削領域と掘削済領域とが混在する場合であっても、既に掘削する必要のない掘削済領域が最適作業位置の算出から除外される。このため、有効な最適作業位置を精度よく算出することができる。
 本発明の第7の態様に係る油圧ショベルの位置誘導システムでは、現況面又は目標面の傾斜角が所定の閾値以上であるときには、最適作業位置が案内画面に表示されない。例えば、所定の閾値は、油圧ショベルが安定的に作業を行うことができる限界を示す斜面の角度に設定される。これにより、油圧ショベルが安定的に作業できる範囲内で最適作業位置を案内画面に示すことができる。
 本発明の第8の態様に係る油圧ショベルの位置誘導システムでは、目標面が油圧ショベルから見て上り斜面又は水平面である場合には、作業機を延ばした状態で目標面の頂上部に届く位置が、最適作業位置として算出される。このため、例えば、上り斜面が油圧ショベルに比べて非常に大きい場合には、頂上部から上り斜面を下りながら順に掘削を行うように、オペレータは油圧ショベルを操作することができる。
 本発明の第9の態様に係る油圧ショベルの位置誘導システムでは、目標面が油圧ショベルから見て下り斜面である場合には、作業機を縮めた状態で目標面の頂上部に届く位置が、最適作業位置として算出される。このため、例えば、車両本体の手前側を掘削しながら、下り斜面を降りていくように、オペレータは油圧ショベルを操作することができる。
 本発明の第10の態様に係る油圧ショベルの位置誘導システムでは、目標面と作業可能範囲との重なり合う掘削可能範囲が最大となる車両本体の位置が最適作業位置として算出される。そして、最適作業位置を示す案内画面が表示部に表示される。このため、オペレータは、案内画面上の最適作業位置を目指して油圧ショベルを移動させることにより、油圧ショベルを作業に適した位置まで容易に移動させることができる。
 本発明の第11の態様に係る油圧ショベルの位置誘導システムでは、目標面と作業可能範囲との重なり合う掘削可能範囲が最大となる車両本体の位置が最適作業位置として算出される。そして、最適作業位置を示す案内画面が表示部に表示される。このため、オペレータは、案内画面上の最適作業位置を目指して油圧ショベルを移動させることにより、油圧ショベルを作業に適した位置まで容易に移動させることができる。
油圧ショベルの斜視図。 油圧ショベルの構成を模式的に示す図。 油圧ショベルが備える制御系の構成を示すブロック図。 設計地形データによって示される設計地形を示す図。 案内画面を示す図。 バケットの先端の現在位置を求める方法を示す図。 最大リーチ姿勢での作業機を模式的に示す図。 最小リーチ姿勢での作業機を模式的に示す図。 作業可能範囲の算出方法を示す図。 最適作業位置の算出方法を示す図。 最適作業位置の算出方法を示すフローチャート。 未掘削領域と掘削済領域との分類方法を示す図。 最適作業位置の算出方法を示す図。 登り斜面での最適作業位置の算出方法を示す図。 下り斜面での最適作業位置の算出方法を示す図。 他の実施形態にかかる最適作業位置の算出方法を示す図。
 1.構成
 1-1.油圧ショベルの全体構成
 以下、図面を参照して、本発明の一実施形態に係る油圧ショベルの位置誘導システムについて説明する。図1は、位置誘導システムが搭載される油圧ショベル100の斜視図である。油圧ショベル100は、車両本体1と作業機2とを有する。車両本体1は、上部旋回体3と運転室4と走行装置5とを有する。上部旋回体3は、図示しないエンジンや油圧ポンプなどの装置を収容している。運転室4は上部旋回体3の前部に載置されている。運転室4内には、後述する表示入力装置38及び操作装置25が配置される(図3参照)。走行装置5は履帯5a,5bを有しており、履帯5a,5bが回転することにより油圧ショベル100が走行する。
 作業機2は、車両本体1の前部に取り付けられており、ブーム6とアーム7とバケット8とブームシリンダ10とアームシリンダ11とバケットシリンダ12とを有する。ブーム6の基端部は、ブームピン13を介して車両本体1の前部に揺動可能に取り付けられている。アーム7の基端部は、アームピン14を介してブーム6の先端部に揺動可能に取り付けられている。アーム7の先端部には、バケットピン15を介してバケット8が揺動可能に取り付けられている。
 図2は、油圧ショベル100の構成を模式的に示す図である。図2(a)は油圧ショベル100の側面図であり、図2(b)は油圧ショベル100の背面図である。図2(a)に示すように、ブーム6の長さ、すなわち、ブームピン13からアームピン14までの長さは、L1である。アーム7の長さ、すなわち、アームピン14からバケットピン15までの長さは、L2である。バケット8の長さ、すなわち、バケットピン15からバケット8のツースの先端までの長さは、L3である。
 図1に示すブームシリンダ10とアームシリンダ11とバケットシリンダ12とは、それぞれ油圧によって駆動される油圧シリンダである。ブームシリンダ10はブーム6を駆動する。アームシリンダ11は、アーム7を駆動する。バケットシリンダ12は、バケット8を駆動する。ブームシリンダ10、アームシリンダ11、バケットシリンダ12などの油圧シリンダと図示しない油圧ポンプとの間には、比例制御弁37が配置されている(図3参照)。比例制御弁37が後述する作業機コントローラ26によって制御されることにより、油圧シリンダ10-12に供給される作動油の流量が制御される。これにより、油圧シリンダ10-12の動作が制御される。
 図2(a)に示すように、ブーム6とアーム7とバケット8には、それぞれ第1~第3ストロークセンサ16-18が設けられている。第1ストロークセンサ16は、ブームシリンダ10のストローク長さを検出する。後述する位置誘導コントローラ39(図3参照)は、第1ストロークセンサ16が検出したブームシリンダ10のストローク長さから、後述する車両本体座標系のZa軸(図6参照)に対するブーム6の傾斜角(以下、「ブーム角」と呼ぶ)θ1を算出する。第2ストロークセンサ17は、アームシリンダ11のストローク長さを検出する。位置誘導コントローラ39は、第2ストロークセンサ17が検出したアームシリンダ11のストローク長さから、ブーム6に対するアーム7の傾斜角(以下、「アーム角」と呼ぶ)θ2を算出する。第3ストロークセンサ18は、バケットシリンダ12のストローク長さを検出する。位置誘導コントローラ39は、第3ストロークセンサ18が検出したバケットシリンダ12のストローク長さから、アーム7に対するバケット8の傾斜角(以下、「バケット角」と呼ぶ)θ3を算出する。
 車両本体1には、位置検出部19が備えられている。位置検出部19は、油圧ショベル100の現在位置を検出する。位置検出部19は、RTK-GNSS(Real Time Kinematic - Global Navigation Satellite Systems、GNSSは全地球航法衛星システムをいう。)用の2つのアンテナ21,22(以下、「GNSSアンテナ21,22」と呼ぶ)と、3次元位置センサ23と、傾斜角センサ24とを有する。GNSSアンテナ21,22は、後述する車両本体座標系Xa-Ya-ZaのYa軸(図6参照)に沿って一定距離だけ離間して配置されている。GNSSアンテナ21,22で受信されたGNSS電波に応じた信号は3次元位置センサ23に入力される。3次元位置センサ23は、GNSSアンテナ21,22の設置位置P1,P2の位置を検出する。図2(b)に示すように、傾斜角センサ24は、重力方向すなわちグローバル座標系における鉛直方向に対する車両本体1の車幅方向の傾斜角θ4(以下、「ロール角θ4」と呼ぶ)を検出する。
 図3は、油圧ショベル100が備える制御系の構成を示すブロック図である。油圧ショベル100は、操作装置25と、作業機コントローラ26と、作業機制御装置27と、位置誘導システム28を備える。操作装置25は、作業機操作部材31と、作業機操作検出部32と、走行操作部材33と、走行操作検出部34とを有する。作業機操作部材31は、オペレータが作業機2を操作するための部材であり、例えば操作レバーである。作業機操作検出部32は、作業機操作部材31の操作内容を検出して、検出信号として作業機コントローラ26へ送る。走行操作部材33は、オペレータが油圧ショベル100の走行を操作するための部材であり、例えば操作レバーである。走行操作検出部34は、走行操作部材33の操作内容を検出して、検出信号として作業機コントローラ26へ送る。
 作業機コントローラ26は、RAMやROMなどの記憶部35や、CPUなどの演算部36を有している。作業機コントローラ26は、主として作業機2の制御を行う。作業機コントローラ26は、作業機操作部材31の操作に応じて作業機2を動作させるための制御信号を生成して、作業機制御装置27に出力する。作業機制御装置27は比例制御弁37を有しており、作業機コントローラ26からの制御信号に基づいて比例制御弁37が制御される。作業機コントローラ26からの制御信号に応じた流量の作動油が比例制御弁37から流出され、油圧シリンダ10-12に供給される。油圧シリンダ10-12は、比例制御弁37から供給された作動油に応じて駆動される。これにより、作業機2が動作する。
 1-2.位置誘導システム28の構成
 位置誘導システム28は、油圧ショベル100を、作業エリア内の目標面まで誘導するためのシステムである。位置誘導システム28は、上述した第1~第3ストロークセンサ16-18、3次元位置センサ23、傾斜角センサ24のほかに、表示入力装置38と、位置誘導コントローラ39とを有している。
 表示入力装置38は、タッチパネル式の入力部41と、LCDなどの表示部42とを有する。表示入力装置38は、作業エリア内の目標作業対象まで油圧ショベル100を誘導するための案内画面を表示する。また、案内画面には、各種のキーが表示される。オペレータは、案内画面上の各種のキーに触れることにより、位置誘導システム28の各種の機能を実行させることができる。案内画面については後に詳細に説明する。
 位置誘導コントローラ39は、位置誘導システム28の各種の機能を実行する。位置誘導コントローラ39と作業機コントローラ26とは、無線あるいは有線の通信手段により互いに通信可能となっている。位置誘導コントローラ39は、RAMやROMなどの記憶部43と、CPUなどの演算部44とを有している。
 記憶部43は、演算部44において実行される各種の処理に必要なデータを格納している。記憶部43は、地形データ記憶部46と、作業機データ記憶部47と、現況面記憶部48とを有している。地形データ記憶部46には、設計地形データが予め作成されて記憶されている。設計地形データは、作業エリア内の3次元の設計地形の形状及び位置を示す。具体的には、図4に示すように、設計地形は、三角形ポリゴンによってそれぞれ表現される複数の設計面45によって構成されている。なお、図4では複数の設計面のうちの1つのみに符号45が付されており、他の設計面の符号は省略されている。オペレータは、これらの設計面45のうちの1つ、或いは、複数の設計面を目標面70として選択する。
 作業機データ記憶部47は、作業機データを記憶している。作業機データは、作業機2が届くことができる車両本体1の周囲の作業可能範囲76(図5参照)を示すデータである。作業機データは、上述したブーム6の長さL1、アーム7の長さL2、バケット8の長さL3を含む。また、作業機データは、ブーム角θ1、アーム角θ2、バケット角θ3のそれぞれの最小値及び最大値を含む。
 現況面記憶部48は、現況面データを記憶している。現況面データは、後述する現況面検出部50で検出された現況面(図5の符号78参照)を示すデータである。現況面は、現在の実際の地形を示す。現況面検出部50は、所定時間ごとに現況面の検出を繰り返し実行する。現況面記憶部48は、現況面検出部50で検出された最新の現況面を示すデータに現況面データを更新する。
 演算部44は、現在位置演算部49と現況面検出部50と最適作業位置演算部51とを有する。現在位置演算部49は、位置検出部19からの検出信号に基づいて車両本体1のグローバル座標系における現在位置を検出する。また、現在位置演算部49は、車両本体1のグローバル座標系における現在位置と、上述した作業機データとに基づいて、バケット8の先端のグローバル座標系における現在位置を算出する。現況面検出部50は、最新の現況面を検出する。最適作業位置演算部51は、設計地形データと作業機データと車両本体1の現在位置とに基づいて、最適作業位置を算出する。最適作業位置は、目標面70を掘削するための車両本体1の最適位置を示す。バケット8の先端の現在位置の算出方法、現況面の検出方法、最適作業位置の算出方法については後に詳細に説明する。
 位置誘導コントローラ39は、現在位置演算部49と現況面検出部50と最適作業位置演算部51との演算結果に基づいて、案内画面を表示入力装置38に表示させる。案内画面は、油圧ショベル100を目標面70まで誘導するための画面である。以下、案内画面について詳細に説明する。
 2.案内画面
 2-1.案内画面の構成
 図5に案内画面52を示す。案内画面52は、上面図52aと側面図52bとを含む。
 上面図52aは、作業エリアの設計地形と油圧ショベル100の現在位置とを示す。上面図52aは、複数の三角形ポリゴンによって上面視による設計地形を表現している。また、目標面70は、他の設計面と異なる色で表示される。なお、図5では、油圧ショベル100の現在位置が上面視による油圧ショベルのアイコン61で示されているが、他のシンボルによって示されてもよい。
 上面図52aには、油圧ショベル100を目標面70まで誘導するための情報が表示される。具体的には、方位インジケータ71が表示される。方位インジケータ71は、油圧ショベル100に対する目標面70の方向を示すアイコンである。さらに、上面図52aは、最適作業位置を示す情報と、油圧ショベル100を目標面70に対して正対させるための情報をさらに含んでいる。最適作業位置は、油圧ショベル100が目標面70に対して掘削を行うために最適な位置であり、目標面70の位置と後述する作業可能範囲76とから算出される。最適作業位置は、上面図52aにおいて直線72で示されている。油圧ショベル100を目標面70に対して正対させるための情報は、正対コンパス73として表示される。正対コンパス73は、目標面70に対する正対方向と油圧ショベル100を旋回させるべき方向とを示すアイコンである。オペレータは、正対コンパス73により、目標面70への正対度を確認することができる。
 側面図52bは、設計面線74と、現況面線78と、目標面線84と、側面視による油圧ショベル100のアイコン75と、作業機2の作業可能範囲76と、最適作業位置を示す情報を含む。設計面線74は、目標面70以外の設計面45の断面を示す。現況面線78は、上述した現況面の断面を示す。目標面線84は目標面70の断面を示す。設計面線74と目標面線84とは、図4に示すように、バケット8の先端P3の現在位置を通る平面77と設計地形との交線80を算出することにより求められる。目標面線84は、設計面線74と異なる色で表示される。なお、図5では線種を変えて目標面線84と設計面線74を表現している。作業可能範囲76は、作業機2による作業が可能な車両本体1の周囲の範囲を示す。作業可能範囲76は、上述した作業機データから算出される。作業可能範囲76の算出方法については後に詳細に説明する。側面図52bに示される最適作業位置は、上述した上面図52aに示される最適作業位置に相当し、三角形のアイコン81で示される。また、車両本体1の基準位置も三角形のアイコン82によって示される。オペレータは、基準位置のアイコン82が最適作業位置のアイコン81と合致するように油圧ショベル100を移動させる。
 以上のように、案内画面52は、最適作業位置を示す情報と油圧ショベル100を目標面70に対して正対させるための情報とを含む。このため、オペレータは、案内画面52により、目標面70に対して、作業を行うために最適な位置及び方向に油圧ショベル100を配置することができる。従って、案内画面52は、主として油圧ショベル100の位置決めを行うときに参照される。
 2-2.バケット8先端の現在位置の算出方法
 上述したように、目標面線84はバケット8の先端の現在位置から算出される。位置誘導コントローラ39は、3次元位置センサ23、第1~第3ストロークセンサ16-18、傾斜角センサ24などからの検出結果に基づき、グローバル座標系{X,Y,Z}でのバケット8の先端P3の現在位置を算出する。具体的には、バケット8の先端P3の現在位置は、次のようにして求められる。
 まず、図6に示すように、上述したGNSSアンテナ21の設置位置P1を原点とする車両本体座標系{Xa,Ya,Za}を求める。図6(a)は油圧ショベル100の側面図である。図6(b)は油圧ショベル100の背面図である。ここでは、油圧ショベル100の前後方向すなわち車両本体座標系のYa軸方向がグローバル座標系のY軸方向に対して傾斜しているものとする。また、車両本体座標系でのブームピン13の座標は(0,Lb1,-Lb2)であり、予め位置誘導コントローラ39の作業機データ記憶部47に記憶されている。
 3次元位置センサ23はGNSSアンテナ21,22の設置位置P1,P2を検出する。検出された座標位置P1、P2から以下の(1)式よってYa軸方向の単位ベクトルが算出される。
Ya=(P1-P2)/|P1-P2|・・・(1)
図6(a)に示すように、YaとZの2つのベクトルで表される平面を通り、Yaと垂直なベクトルZ’を導入すると、以下の関係が成り立つ。
(Z’,Ya)=0・・・(2)
Z’=(1-c)Z+cYa・・・(3)
cは定数である。
(2)式および(3)式より、Z’は以下の(4)式のように表される。
Z’=Z+{(Z,Ya)/((Z,Ya)-1)}(Ya-Z)・・・(4)
さらに、YaおよびZ’と垂直なベクトルをX’とすると、X’は以下の(5)式のようのように表される。
X’=Ya⊥Z’・・・(5)
図6(b)に示すように、車両本体座標系は、これをYa軸周りに上述したロール角θ4だけ回転させたものであるから、以下の(6)式のように示される。
Figure JPOXMLDOC01-appb-I000001
・・・(6)
 また、第1~第3ストロークセンサ16-18の検出結果から、上述したブーム6、アーム7、バケット8の現在の傾斜角θ1、θ2、θ3が算出される。車両本体座標系内でのバケット8の先端P3の座標(xat、yat、zat)は、傾斜角θ1、θ2、θ3およびブーム6、アーム7、バケット8の長さL1、L2、L3を用いて、以下の(7)~(9)式により算出される。
xat=0・・・(7)
yat=Lb1+L1sinθ1+L2sin(θ1+θ2)+L3sin(θ1+θ2+θ3)・・・(8)
zat=-Lb2+L1cosθ1+L2cos(θ1+θ2)+L3cos(θ1+θ2+θ3)・・・(9)
なお、バケット8の先端P3は、車両本体座標系のYa-Za平面上で移動するものとする。
そして、グローバル座標系でのバケット8の先端P3の座標が以下の(10)式から求められる。
P3=xat・Xa+yat・Ya+zat・Za+P1・・・(10)
 図4に示すように、位置誘導コントローラ39は、上記のように算出したバケット8の先端P3の現在位置と、記憶部43に記憶された設計地形データとに基づいて、3次元設計地形とバケット8の先端P3を通るYa-Za平面77との交線80を算出する。そして、位置誘導コントローラ39は、この交線のうち目標面70を通る部分を上述した目標面線84として案内画面52に表示する。
 また、上述した現況面検出部50は、車両本体1の底部の移動の軌跡と、バケット8の先端P3の移動の軌跡とに基づいて現況面線78を検出する。具体的には、図6に示すように、現況面検出部50は、車両本体1の現在位置(GNSSアンテナ21の設置位置P1)から検出基準点P5の現在位置を算出する。検出基準点P5は、履帯5a,5bの底面に位置している。そして、現況面検出部50は、検出基準点P5の軌跡を現況面データとして現況面記憶部48に保存する。なお、上述した現況面記憶部48には、GNSSアンテナ21の設置位置P1と検出基準点P5との位置関係を示すデータが予め保存されている。また、バケット8の先端P3の軌跡は、上述した現在位置演算部49が検出したバケット8の先端P3の現在位置を記録することによって求められる。
 2-3.作業可能範囲76の算出方法
 まず、作業可能範囲76の算出方法について説明する前に、作業機2の最大リーチ長さLmaxと最小リーチ長さLminについて説明する。最大リーチ長さLmaxは、作業機2を最大に伸ばした状態での作業機2のリーチ長さである。なお、作業機2のリーチ長さは、ブームピン13とバケット8の先端P3との間の距離である。図7に、作業機2の長さが最大リーチ長さLmaxとなるときの作業機2の姿勢(以下、「最大リーチ姿勢」と呼ぶ)を模式的に示す。図7に示す座標平面Yb-Zbは、上述した車両本体座標系{Xa,Ya,Za}においてブームピン13の位置を原点としたものである。最大リーチ姿勢では、アーム角θ2は最小値となる。また、バケット角θ3は、作業機2のリーチ長さが最大となるように、パラメータ最適化のための数値解析によって算出される。このときのバケット角θ3の値を以下、「最大リーチ角」と呼ぶ。
 最小リーチ長さLminは、作業機2を最小に縮めた状態での作業機2のリーチ長さである。図8に、作業機2の長さが最小リーチ長さLminとなるときの作業機2の姿勢(以下、「最小リーチ姿勢」と呼ぶ)を模式的に示す。最小リーチ姿勢では、アーム角θ2は最大値となる。また、バケット角θ3は、作業機2のリーチ長さが最小となるように、パラメータ最適化のための数値解析によって算出される。このときのバケット角θ3の値を以下、「最小リーチ角」と呼ぶ。
 次に、作業可能範囲76の算出方法について図9に基づいて説明する。作業可能範囲は、到達可能範囲83から車両下部領域86を除いた範囲である。到達可能範囲83は、作業機2が届くことができる範囲を示す。車両下部領域86は、車両本体1の下方に位置する領域である。到達可能範囲83は、上述した作業機データと車両本体1の現在位置とから算出される。到達可能範囲83の境界線は、複数の円弧A1-A4を含む。例えば、到達可能範囲83の境界線は、第1円弧A1から第4円弧A4を含む。第1円弧A1は、アーム角θ2が最小値、バケット角θ3が最大リーチ角で、ブーム角θ1が最小値と最大値との間で変化するときのバケット8の先端が描く軌跡である。第2円弧A2は、ブーム角θ1が最大、バケット角θ3が0°で、アーム角θ2が最小値と最大値との間で変化するときのバケット8の先端が描く軌跡である。第3円弧A3は、アーム角θ2が最大値、バケット角θ3が最小リーチ角で、ブーム角θ1が最小値と最大値との間で変化するときのバケット8の先端が描く軌跡である。第4円弧A4は、ブーム角θ1が最小値、バケット角θ3が0°で、アーム角θ2が最小値と最大値との間で変化するときのバケット8の先端が描く軌跡である。
 2-4.最適作業位置の算出方法
 次に、最適作業位置の算出方法について説明する。最適作業位置演算部51は、目標面70と作業可能範囲76との重なり合う掘削可能範囲79が最大となる車両本体1の位置を最適作業位置として算出する。以下、図11に示すフローチャートに基づいて最適作業位置の算出方法を説明する。
 ステップS1では、車両本体1の現在位置が検出される。ここでは、上述したように、現在位置演算部49が、位置検出部19からの検出信号に基づいて車両本体1のグローバル座標系における現在位置を算出する。
 ステップS2では、目標面線84又は現況面線78の傾斜角が所定の表示判定閾値以上であるか否かが判定される。所定の表示判定閾値は、油圧ショベル100が安定的に作業を行うことができる限界を示す斜面の角度に設定される。所定の表示判定閾値は、予め求められて作業機データ記憶部47に記憶されている。目標面線84の傾斜角θ5(図10参照)は、地形データ記憶部46の設計地形データから取得される。現況面線78の傾斜角θ6(図10参照)は、現況面記憶部48の現況面データから取得される。目標面線84の傾斜角θ5及び現況面線78の傾斜角θ6の少なくとも一方が所定の表示判定閾値以上であるときには、ステップS7において、案内画面52上で最適作業位置が非表示とされる。目標面線84の傾斜角θ5又は現況面線78の傾斜角θ6が所定の表示判定閾値以上ではないときにはステップS3に進む。すなわち、目標面線84の傾斜角θ5と現況面線78の傾斜角θ6との両方が所定の表示判定閾値より小さいときにはステップS3に進む。
 ステップS3では、掘削可能範囲対象が選定される。図10に示すように、掘削可能範囲79は、側面視において目標面線84と作業可能範囲76との重なりあう部分である。ただし、図12に示すように、最適作業位置演算部51は、現況面線78と目標面線84との間の距離G1に基づいて目標面線84を掘削済領域と未掘削領域とに分類する。具体的には、最適作業位置演算部51は、目標面線84のうち、現況面線78との間の距離G1が所定の分類判定閾値Gth以上の部分を未掘削領域に分類する。また、最適作業位置演算部51は、目標面線84のうち、現況面線78との間の距離G1が所定の分類判定閾値Gthより小さい部分を掘削済領域に分類する。そして、最適作業位置演算部51は、車両本体1に最も近い未掘削領域を掘削可能範囲79の対象に決定する。
 ステップS4では、斜面種類が判定される。ここでは、目標面70が油圧ショベルから見て上り斜面であるのか、水平面であるのか、下り斜面であるのかが判定される。最適作業位置演算部51は、地形データ記憶部46の設計地形データと、車両本体1の現在位置とに基づいて斜面種類を判定する。
 ステップS5では、最適作業位置が算出される。ここでは、図10に示すように、目標面線84と作業可能範囲76との重なり合う掘削可能範囲79の長さLeが最大となる車両本体1の位置が最適作業位置として算出される。ただし、ステップS3で選定された掘削可能範囲79の対象となる領域内で掘削可能範囲79の長さLeが最大となる位置が算出される。
 また、最適作業位置は、車両本体1が現況面線78上に位置しているときの作業可能範囲76の高さ位置に基づいて算出される。すなわち、図13に示すように、目標面線84から離れているときのブームピン13の現在位置P4と、車両本体1が目標面線84の近傍に位置しているときのブームピン13の位置P4’とは、現況面線78の形状に応じて異なる。このため、作業可能範囲76の高さ位置も、現況面線78の高さの変化に合わせて変化する。従って、最適作業位置は、現況面線78に応じた作業可能範囲76の高さ位置に基づいて算出される。具体的には、履帯5a,5bの底面の検出基準点P5からブームピン13までの高さHbを示すデータが作業機データ記憶部47に記憶されており、現況面線78からブームピン13の高さHbだけ上方の位置が、車両本体1が現況面線78上に位置しているときのブームピン13の軌跡Tbとして算出される。最適作業位置は、ブームピン13がこの軌跡Tbに沿って移動したときの作業可能範囲76の位置に基づいて算出される。
 また、上述したステップS4において、目標面70が上り斜面又は水平面であると判定された場合には、図14に示すように、作業可能範囲76の境界線と目標面線84との交点のうち車両本体1から遠い方の交点P6が目標面線84の頂上部と一致する位置が、最適作業位置として算出される。また、ステップS4において目標面70が下り斜面であると判定された場合には、図15に示すように、作業可能範囲76の境界線と目標面線84との交点のうち車両本体1に近い方の交点P7が目標面線84の頂上部と一致する位置が、最適作業位置として算出される。
 ステップS6では、最適作業位置を示す案内画面52が表示部42に表示される。ここでは、図5に示すように、案内画面52の上面図52aに、最適作業位置を示す直線72が表示される。また、案内画面52の側面図52bに最適作業位置を示す三角形のアイコン81が表示される。
 3.特徴
 本実施形態に係る油圧ショベル100の位置誘導システム28では、目標面線84と作業可能範囲76との重なり合う掘削可能範囲79が最大となる車両本体1の位置が最適作業位置として算出される。そして、最適作業位置を示す案内画面52が表示部42に表示される。このため、オペレータは、案内画面52上の最適作業位置を目指して油圧ショベル100を操縦することにより、油圧ショベル100を掘削作業に適した位置まで容易に移動させることができる。具体的には、オペレータは、図5に示す案内画面52の側面図52bに表示されるアイコン81によって最適作業位置を確認することができる。このため、オペレータは、油圧ショベル100の前後の位置調整を容易に行うことができる。また、オペレータは、案内画面52の上面図52aに表示される直線72によって最適作業位置を確認することができる。このため、オペレータは、油圧ショベル100の左右の位置調整を容易に行うことができる。
 図13に示すように、車両本体1の現在位置における作業可能範囲76の高さを基準とするのではなく、車両本体1が現況面線78上に位置しているときの作業可能範囲76の高さ位置に基づいて、最適作業位置が算出される。このため、起伏のある作業エリア内においても、最適作業位置を精度よく算出することができる。
 目標面線84が未掘削領域と掘削済領域とに分類され、未掘削領域が掘削可能範囲79の対象とされる。このため、図12に示すように、断続的な掘削によって未掘削領域と掘削済領域とが混在する場合であっても、既に掘削する必要のない掘削済領域が最適作業位置の算出から除外される。このため、有効な最適作業位置を精度よく算出することができる。
 目標面線84の傾斜角θ5又は現況面線78の傾斜角θ6が所定の表示判定閾値以上であるときには、最適作業位置が案内画面52に表示されない。これにより、油圧ショベル100が安定的に作業できる範囲内で最適作業位置を案内画面52に示すことができる。
 図14に示すように、目標面70が油圧ショベル100から見て上り斜面又は水平面である場合には、作業機2を延ばした状態で目標面線84の頂上部に届く位置が、最適作業位置として算出される。このため、例えば、上り斜面が油圧ショベル100に比べて非常に大きい場合には、頂上部から上り斜面を下りながら順に掘削を行うように、オペレータは油圧ショベル100を操作することができる。
 図15に示すように、目標面70が油圧ショベル100から見て下り斜面である場合には、作業機2を縮めた状態で目標面線84の頂上部に届く位置が、最適作業位置として算出される。このため、例えば、車両本体1の手前側を掘削しながら、下り斜面を降りていくように、オペレータは油圧ショベル100を操作することができる。
 4.他の実施形態 
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、位置誘導システム28の機能の一部、或いは、全てが、油圧ショベル100の外部に配置されたコンピュータによって実行されてもよい。上記の実施形態では作業機2は、ブーム6、アーム7、バケット8を有しているが、作業機2の構成はこれに限られない。
 上記の実施形態では、第1~第3ストロークセンサ16-18によって、ブーム6、アーム7、バケット8の傾斜角を検出しているが、傾斜角の検出手段はこれらに限られない。例えば、ブーム6、アーム7、バケット8の傾斜角を検出する角度センサが備えられてもよい。
 上記の実施形態では、バケット8の先端P3の位置の軌跡、及び、履帯5a,5bの底面の検出基準点P5の位置の軌跡が、現況面線78として検出されている。しかし、現況面線78の検出方法はこれに限られない。例えば、特開2002-328022号公報に開示されているように、レーザー距離測定装置によって現況面線78が検出されてもよい。或いは、特開平11-211473号公報に開示されているように、ステレオカメラ式の計測装置によって現況面線78が検出されてもよい。
 図13に示すように、上記の実施形態では、最適作業位置は、現況面線78に応じた作業可能範囲76の高さ位置に基づいて算出されている。しかし、図16に示すように、最適作業位置は、仮想地面線90からの作業可能範囲76の高さ位置に基づいて算出されてもよい。仮想地面線90は、油圧ショベル100の現在位置における底面の検出基準点P5を通りグローバル座標系におけるY軸方向に平行な線である。
 本発明は、油圧ショベルを作業に適した位置まで容易に移動させることができる効果を有し、油圧ショベルの位置誘導システム及びその制御方法として有用である。
1   車両本体
2   作業機
19  位置検出部
28  位置誘導システム
42  表示部
46  地形データ記憶部
47  作業機データ記憶部
48  現況面記憶部
50  現況面検出部
51  最適作業位置演算部
52  案内画面
70  目標面
76  作業可能範囲
100 油圧ショベル
 

Claims (11)

  1.  車両本体と前記車両本体に取り付けられる作業機とを有する油圧ショベルを、作業エリア内の目標面まで誘導する位置誘導システムであって、
     前記目標面の位置を示す地形データを記憶する地形データ記憶部と、
     前記作業機が届くことができる前記車両本体の周囲の作業可能範囲を示す作業機データを記憶する作業機データ記憶部と、
     前記車両本体の現在位置を検出する位置検出部と、
     前記地形データと前記作業機データと前記車両本体の現在位置とに基づいて、前記目標面と前記作業可能範囲との重なり合う掘削可能範囲が最大となる前記車両本体の位置を最適作業位置として算出する最適作業位置演算部と、
     前記最適作業位置を示す案内画面を表示する表示部と、
    を備える油圧ショベルの位置誘導システム。
  2.  前記掘削可能範囲は、側面視において前記目標面の断面を示す線分と前記作業可能範囲との重なりあう部分である、
    請求項1に記載の油圧ショベルの位置誘導システム。
  3.  前記案内画面は、側面視における前記目標面の断面と前記油圧ショベルと前記最適作業位置とを示す側面図を含む、
    請求項1に記載の油圧ショベルの位置誘導システム。
  4.  前記案内画面は、上面視における前記目標面と前記油圧ショベルと前記最適作業位置とを示す上面図を含む、
    請求項1に記載の油圧ショベルの位置誘導システム。
  5.  最新の現況面を検出する現況面検出部と、
     前記現況面検出部で検出された最新の現況面を記憶し更新する現況面記憶部と、
    をさらに備え、
     前記最適作業位置は、前記車両本体が前記現況面上に位置しているときの前記作業可能範囲の高さ位置に基づいて算出される、
    請求項1に記載の油圧ショベルの位置誘導システム。
  6.  最新の現況面を検出する現況面検出部と、
     前記現況面検出部で検出された最新の現況面を記憶し更新する現況面記憶部と、
    をさらに備え、
     前記最適作業位置演算部は、前記現況面と前記目標面との差の大きさに基づいて前記目標面を掘削済領域と未掘削領域とに分類し、前記車両本体に最も近い前記未掘削領域を前記掘削可能範囲の対象とする、
    請求項1に記載の油圧ショベルの位置誘導システム。
  7.  前記最適作業位置演算部は、前記現況面又は前記目標面の傾斜角が所定の閾値以上であるときには、前記案内画面に前記最適作業位置を表示させない、
    請求項1に記載の油圧ショベルの位置誘導システム。
  8.  前記目標面が前記油圧ショベルから見て上り斜面又は水平面である場合、前記最適作業位置は、前記作業可能範囲の境界線と前記目標面との交点のうち前記車両本体から遠い方が前記目標面の頂上部と一致する位置である、
    請求項1に記載の油圧ショベルの位置誘導システム。
  9.  前記目標面が前記油圧ショベルから見て下り斜面である場合、前記最適作業位置は、前記作業可能範囲の境界線と前記目標面との交点のうち前記車両本体に近い方が前記目標面の頂上部と一致する位置である、
    請求項1に記載の油圧ショベルの位置誘導システム。
  10.  請求項1から9のいずれかに記載の油圧ショベルの位置誘導システムを備える油圧ショベル。
  11.  車両本体と前記車両本体に取り付けられる作業機とを有する油圧ショベルを、作業エリア内の目標面まで誘導する位置誘導システムの制御方法であって、
     前記車両本体の現在位置を検出するステップと、
     前記目標面の位置を示す地形データと、前記作業機が届くことができる前記車両本体の周囲の作業可能範囲を示す作業機データと、前記車両本体の現在位置とに基づいて、前記目標面と前記作業可能範囲との重なり合う掘削可能範囲が最大となる前記車両本体の位置を最適作業位置として算出するステップと、
     前記最適作業位置を示す案内画面を表示するステップと、
    を備える油圧ショベルの位置誘導システムの制御方法。
     
PCT/JP2012/052831 2011-02-22 2012-02-08 油圧ショベルの位置誘導システム及びその制御方法 WO2012114871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137004695A KR101443769B1 (ko) 2011-02-22 2012-02-08 유압 셔블의 위치 유도 시스템 및 그 제어 방법
US13/819,248 US8498806B2 (en) 2011-02-22 2012-02-08 Hydraulic shovel positional guidance system and method of controlling same
CN201280002731.9A CN103080434B (zh) 2011-02-22 2012-02-08 液压挖掘机的位置引导系统及其控制方法
DE112012000107.9T DE112012000107B4 (de) 2011-02-22 2012-02-08 Hydraulikbagger-Positionsleitsystem und Verfahren zur Steuerung desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011036200A JP5202667B2 (ja) 2011-02-22 2011-02-22 油圧ショベルの位置誘導システム及びその制御方法
JP2011-036200 2011-02-22

Publications (1)

Publication Number Publication Date
WO2012114871A1 true WO2012114871A1 (ja) 2012-08-30

Family

ID=46720656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052831 WO2012114871A1 (ja) 2011-02-22 2012-02-08 油圧ショベルの位置誘導システム及びその制御方法

Country Status (6)

Country Link
US (1) US8498806B2 (ja)
JP (1) JP5202667B2 (ja)
KR (1) KR101443769B1 (ja)
CN (1) CN103080434B (ja)
DE (1) DE112012000107B4 (ja)
WO (1) WO2012114871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061790A1 (ja) * 2012-10-19 2014-04-24 株式会社小松製作所 油圧ショベルの掘削制御システム
JP2019035326A (ja) * 2014-06-20 2019-03-07 住友重機械工業株式会社 ショベル及びその制御方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678508B2 (en) 2009-11-16 2017-06-13 Flanders Electric Motor Service, Inc. Systems and methods for controlling positions and orientations of autonomous vehicles
JP5059954B2 (ja) * 2011-02-22 2012-10-31 株式会社小松製作所 掘削機械の表示システム及びその制御方法。
AU2012202213B2 (en) 2011-04-14 2014-11-27 Joy Global Surface Mining Inc Swing automation for rope shovel
CN108130933A (zh) * 2011-12-26 2018-06-08 住友重机械工业株式会社 挖土机、挖土机的图像显示方法以及装置
JP5789279B2 (ja) * 2013-04-10 2015-10-07 株式会社小松製作所 掘削機械の施工管理装置、油圧ショベルの施工管理装置、掘削機械及び施工管理システム
EP2913216B1 (en) * 2013-09-27 2022-01-19 Transoft Solutions, Inc. Method and apparatus for generating a vehicle path
KR101669787B1 (ko) * 2014-05-14 2016-10-27 가부시키가이샤 고마쓰 세이사쿠쇼 유압 쇼벨의 교정 시스템 및 교정 방법
DE112014000083B4 (de) * 2014-05-15 2018-04-05 Komatsu Ltd. Anzeigesystem für Baggermaschine und Anzeigeverfahren für Baggermaschine
DE112014000063B4 (de) * 2014-05-15 2020-09-17 Komatsu Ltd. Anzeigesystem für eine Baggermaschine, Baggermaschine und Anzeigeverfahren für eine Baggermaschine
JP6522441B2 (ja) * 2015-06-29 2019-05-29 日立建機株式会社 作業機械の作業支援システム
US10794047B2 (en) * 2015-07-15 2020-10-06 Komatsu Ltd. Display system and construction machine
JP6480830B2 (ja) * 2015-08-24 2019-03-13 株式会社小松製作所 ホイールローダの制御システム、その制御方法およびホイールローダの制御方法
CN107923745B (zh) * 2015-08-26 2021-07-23 住友建机株式会社 挖土机的测量装置
KR102547626B1 (ko) * 2015-09-16 2023-06-23 스미도모쥬기가이고교 가부시키가이샤 쇼벨
CN112482486B (zh) * 2015-12-28 2022-11-22 住友建机株式会社 铲土机
JP6506205B2 (ja) * 2016-03-31 2019-04-24 日立建機株式会社 建設機械
JP6618852B2 (ja) * 2016-05-26 2019-12-11 日立建機株式会社 作業機械
JP6934286B2 (ja) * 2016-07-26 2021-09-15 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP7156775B2 (ja) 2016-07-26 2022-10-19 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
JP6550358B2 (ja) * 2016-09-16 2019-07-24 日立建機株式会社 建設機械の施工時間予測システム
US10377125B2 (en) * 2016-12-09 2019-08-13 Caterpillar Inc. Control systems and methods to optimize machine placement for additive construction operations
JP6289731B2 (ja) * 2017-01-13 2018-03-07 株式会社小松製作所 作業機械の制御システム、作業機械の制御方法、及びナビゲーションコントローラ
US11422563B2 (en) * 2017-03-02 2022-08-23 Komatsu Ltd. Control system for work vehicle, method for setting trajectory of work implement, and work vehicle
JP6878226B2 (ja) 2017-09-19 2021-05-26 日立建機株式会社 作業機械
JP2019167720A (ja) * 2018-03-22 2019-10-03 株式会社フジタ 建設機械の自動制御システム
JP6841784B2 (ja) * 2018-03-28 2021-03-10 日立建機株式会社 作業機械
JP7188941B2 (ja) * 2018-08-31 2022-12-13 株式会社小松製作所 作業機械の制御装置および制御方法
JP7065002B2 (ja) * 2018-09-19 2022-05-11 日立建機株式会社 作業機械
ES2901898T3 (es) 2018-12-21 2022-03-24 Hiab Ab Un vehículo provisto de un sistema de control, y un procedimiento para el vehículo
FI128483B (en) * 2019-04-25 2020-06-15 Novatron Oy Measuring arrangement for measuring the three-dimensional position and orientation of the central axis of the first axis with respect to the central axis of the second axis
JP7263287B2 (ja) * 2020-03-26 2023-04-24 日立建機株式会社 作業機械
CN112095710A (zh) * 2020-09-16 2020-12-18 上海三一重机股份有限公司 挖掘机位姿显示方法、装置及其所应用的挖掘机
JP7472751B2 (ja) * 2020-10-02 2024-04-23 コベルコ建機株式会社 掘削位置決定システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098585A (ja) * 1999-10-01 2001-04-10 Komatsu Ltd 建設機械の掘削作業ガイダンス装置および掘削制御装置
JP2004068433A (ja) * 2002-08-07 2004-03-04 Hitachi Constr Mach Co Ltd 掘削機械の表示システム及びそのプログラム
WO2004027164A1 (ja) * 2002-09-17 2004-04-01 Hitachi Construction Machinery Co., Ltd. 建設機械の掘削作業教示装置
JP2006214246A (ja) * 2005-02-07 2006-08-17 Aoki Asunaro Kensetsu Kk 作業機の施工支援システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720972B2 (ja) 1998-01-22 2005-11-30 株式会社小松製作所 地形形状計測装置
US6442456B2 (en) * 2000-03-07 2002-08-27 Modular Mining Systems, Inc. Anti-rut system for autonomous-vehicle guidance
JP4671317B2 (ja) 2001-05-02 2011-04-13 株式会社小松製作所 地形形状計測装置およびガイダンス装置
JP4012448B2 (ja) * 2002-09-17 2007-11-21 日立建機株式会社 建設機械の掘削作業教示装置
US8095248B2 (en) * 2007-09-04 2012-01-10 Modular Mining Systems, Inc. Method and system for GPS based navigation and hazard avoidance in a mining environment
US8990004B2 (en) * 2008-12-17 2015-03-24 Telenav, Inc. Navigation system with query mechanism and method of operation thereof
US8583361B2 (en) * 2011-08-24 2013-11-12 Modular Mining Systems, Inc. Guided maneuvering of a mining vehicle to a target destination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098585A (ja) * 1999-10-01 2001-04-10 Komatsu Ltd 建設機械の掘削作業ガイダンス装置および掘削制御装置
JP2004068433A (ja) * 2002-08-07 2004-03-04 Hitachi Constr Mach Co Ltd 掘削機械の表示システム及びそのプログラム
WO2004027164A1 (ja) * 2002-09-17 2004-04-01 Hitachi Construction Machinery Co., Ltd. 建設機械の掘削作業教示装置
JP2006214246A (ja) * 2005-02-07 2006-08-17 Aoki Asunaro Kensetsu Kk 作業機の施工支援システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061790A1 (ja) * 2012-10-19 2014-04-24 株式会社小松製作所 油圧ショベルの掘削制御システム
CN103917717A (zh) * 2012-10-19 2014-07-09 株式会社小松制作所 液压挖掘机的挖掘控制系统
JP5603520B1 (ja) * 2012-10-19 2014-10-08 株式会社小松製作所 油圧ショベルの掘削制御システム
KR101516693B1 (ko) 2012-10-19 2015-05-04 가부시키가이샤 고마쓰 세이사쿠쇼 유압 셔블의 굴삭 제어 시스템
US9411325B2 (en) 2012-10-19 2016-08-09 Komatsu Ltd. Excavation control system for hydraulic excavator
JP2019035326A (ja) * 2014-06-20 2019-03-07 住友重機械工業株式会社 ショベル及びその制御方法
US10968597B2 (en) 2014-06-20 2021-04-06 Sumitomo Heavy Industries, Ltd. Shovel and control method thereof
JP7178885B2 (ja) 2014-06-20 2022-11-28 住友重機械工業株式会社 ショベル及びその制御方法

Also Published As

Publication number Publication date
KR101443769B1 (ko) 2014-09-23
CN103080434A (zh) 2013-05-01
US20130158785A1 (en) 2013-06-20
JP2012172428A (ja) 2012-09-10
DE112012000107T5 (de) 2013-07-04
DE112012000107B4 (de) 2015-10-29
JP5202667B2 (ja) 2013-06-05
CN103080434B (zh) 2015-04-15
KR20130069744A (ko) 2013-06-26
US8498806B2 (en) 2013-07-30

Similar Documents

Publication Publication Date Title
JP5202667B2 (ja) 油圧ショベルの位置誘導システム及びその制御方法
JP5059954B2 (ja) 掘削機械の表示システム及びその制御方法。
JP5054833B2 (ja) 油圧ショベルの表示システム及びその制御方法
JP5059953B2 (ja) 油圧ショベルの作業可能範囲表示装置とその制御方法
JP5054832B2 (ja) 油圧ショベルの表示システム及びその制御方法
JP5781668B2 (ja) 油圧ショベルの表示システム
JP5555190B2 (ja) 油圧ショベルの表示システム及びその制御方法
JP5480941B2 (ja) 掘削機械の表示システム及びその制御方法。
WO2013153906A1 (ja) 油圧ショベルの掘削制御システム
WO2014054354A1 (ja) 掘削機械の表示システム及び掘削機械
JP5364741B2 (ja) 油圧ショベルの位置誘導システム及び位置誘導システムの制御方法
JP7135056B2 (ja) 作業機械の表示システム及び作業機械
JP5364742B2 (ja) 油圧ショベルの位置誘導システム及び位置誘導システムの制御方法
JP5409853B2 (ja) 油圧ショベルの作業可能範囲表示装置とその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002731.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137004695

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13819248

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120001079

Country of ref document: DE

Ref document number: 112012000107

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749721

Country of ref document: EP

Kind code of ref document: A1