WO2012114458A1 - 大気中微生物等の捕集装置及びその捕集方法 - Google Patents

大気中微生物等の捕集装置及びその捕集方法 Download PDF

Info

Publication number
WO2012114458A1
WO2012114458A1 PCT/JP2011/053850 JP2011053850W WO2012114458A1 WO 2012114458 A1 WO2012114458 A1 WO 2012114458A1 JP 2011053850 W JP2011053850 W JP 2011053850W WO 2012114458 A1 WO2012114458 A1 WO 2012114458A1
Authority
WO
WIPO (PCT)
Prior art keywords
collection
substrate
microorganism
microorganisms
collecting
Prior art date
Application number
PCT/JP2011/053850
Other languages
English (en)
French (fr)
Inventor
竹中 啓
佐々木 康彦
富樫 盛典
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/985,708 priority Critical patent/US9433883B2/en
Priority to JP2013500754A priority patent/JP5700594B2/ja
Priority to PCT/JP2011/053850 priority patent/WO2012114458A1/ja
Publication of WO2012114458A1 publication Critical patent/WO2012114458A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2208Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with impactors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • G01N2001/245Fans

Definitions

  • the present invention relates to a collection device for microorganisms in the atmosphere and a collection method thereof.
  • a collection device for collecting fine particles in the atmosphere is provided on the market.
  • an atmospheric particulate collection device using impaction has attracted attention as an atmospheric particulate collection device capable of collecting particulates at a high collection rate.
  • the impaction is a method in which air containing particles is ejected from a nozzle and the particles are adhered to the collecting surface by colliding the ejected air with the collecting surface.
  • S k ⁇ d 2 uC / 9 ⁇ w (1)
  • w nozzle diameter
  • u average wind speed at the nozzle
  • air viscosity count
  • particle density
  • d particle diameter
  • C Cunningham correction coefficient (for particle motion)
  • the correction factor is about 1.15) under atmospheric pressure.
  • Aerosol technology Impactor critical particle size and collection efficiency, according to Inoue Shoin (1985-4), almost 100% of particles are collected if the square root of the Stokes number S k in equation (1) is 0.7 or more. Collide with the substrate.
  • bacteria to be collected examples include a portable airborne sampler described in Patent Document 1 and a sampling device and sampling method for microbiologically analyzing air described in Patent Document 2.
  • bacteria are collected by injecting air containing bacteria in the atmosphere from a plurality of nozzles onto a medium serving as a collection surface. The air sprayed from the nozzle onto the collecting surface passes between the medium and the plate provided with the nozzle and flows in the nozzle outer peripheral direction.
  • Non-Patent Document 1 there is a low-pressure impactor described in Non-Patent Document 1 as an object for collecting aerosols having a very small minimum particle size of several tens of nm.
  • a vacuum pump is used for air suction.
  • the vacuum pump greatly reduces the pressure on the nozzle outlet side, the Cunningham correction coefficient C increases, and as a result, the Stokes number increases from Equation (1), so that particles with a small diameter can be collected.
  • a large amount of air is aspirated because there are some microorganisms in the atmosphere that are collected, such as viruses, which are smaller than bacteria, and the number of microorganisms present in the atmosphere is very small. It is necessary.
  • influenza virus Take influenza virus as an example. TP Weber and NI Stilianakis., Inactivation of influenza A viruses in the environment and modes of transmission: a critical review, J Infect, Vol. 57, No. 5, pp 361-373, (1991). It is said that the diameter of the virus aggregate contained in is 0.5-5 ⁇ m. Also by E. Cole and C. Cook., Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies, Am J Infect Control, Vol. 26, No. 4, pp 453-464, (1998). It is said that the number of virus aggregates contained per infected person's sneeze is about 40,000 to 100,000. When the volume of the space is 100 m 3 , the number of virus aggregates existing per 1 m 3 is very small, 400 to 1,000.
  • Patent Documents 1 and 2 since a fan is used to suck air, a large amount of air can be sucked.
  • the target of collection is bacteria (minimum particle size: about 1 ⁇ m)
  • the device described in Patent Document 3 can collect very small particles such as aerosol (minimum particle size: several tens of nanometers), it uses a vacuum pump for air suction. There is a limit to the upper limit of the suction amount, and the apparatus is also enlarged.
  • One way to achieve this is to reduce the nozzle diameter and increase the number of nozzles. For example, when the nozzle diameter is reduced from the above formula (1), the Stokes number is increased, so that particles having a small diameter can be collected. However, since the amount of air passing through the nozzle decreases as the nozzle diameter decreases, it is necessary to increase the number of nozzles in order to maintain the suction amount. Therefore, it was found that the following two problems occur when the nozzle diameter is reduced and the number of nozzles is increased.
  • the increase in the number of nozzles reduces the spacing between nozzles, and the flow of air (hereinafter referred to as crosswind) passing between a plate having a plurality of nozzles (hereinafter referred to as a perforated plate) and a collection substrate is strong. It is a problem that a collection rate will fall.
  • the object of the present invention is to prevent atmospheric micro-organisms, etc., in a collection device for atmospheric fine particles using impaction, which prevents a decrease in the collection rate due to the influence of cross winds and prevents a variation in the collection rate due to the deflection of the perforated plate. It is in providing a collection apparatus and its collection method.
  • the object is to hold a perforated plate having a plurality of nozzles for injecting air containing microorganisms, a collection substrate having a collection surface for the microorganisms at a position facing the nozzles, and the collection substrate.
  • a collecting substrate holding part for performing, a fan for generating a flow of air from the porous plate in the direction of the flat plate, the porous plate, the collecting substrate holding part, and a container for holding the fan,
  • the microorganism collection apparatus including a collection substrate, an outer peripheral portion of the collection substrate holding portion, and an exhaust port provided between the containers, the inner circumference portion of the collection substrate and the collection substrate holding portion This is achieved by providing a second exhaust port.
  • the interval between the porous plate and the flat plate is 1/3 to 15 times the nozzle diameter.
  • the porous plate is a metal plate having a thickness of 0.01 mm-2 mm and a diameter of 5 mm-200 mm, and has 1000 to 10,000 circular nozzles having a hole diameter of 50 ⁇ m to 200 ⁇ m.
  • the flat plate is made of glass, quartz, resins (polypropylene, polyethylene terephthalate, polycarbonate, polystyrene, acrylonitrile butadiene styrene resin, polymethacrylic acid methyl ester acrylic, polydimethylsiloxane), metals (iron, aluminum, etc.) It is preferably a solid medium mainly composed of pure metals such as copper, tin, gold and silver and alloy steels, alloys such as copper alloys, aluminum alloys and nickel alloys), gelatin and agar.
  • resins polypropylene, polyethylene terephthalate, polycarbonate, polystyrene, acrylonitrile butadiene styrene resin, polymethacrylic acid methyl ester acrylic, polydimethylsiloxane
  • metals iron, aluminum, etc.
  • It is preferably a solid medium mainly composed of pure metals such as copper, tin, gold and silver and alloy steels, alloys such as
  • the object is that the collection substrate is composed of large and small ring members attached concentrically, and the surface of the ring member is used as the collection surface, and a gap between the large and small ring members is formed in the exhaust port. It is preferable that
  • the object is to provide a ring-shaped convex portion on the collection substrate located immediately below the nozzle, and use the upper surface of the convex portion as the collection surface, and the space between the ring-shaped convex portions is the exhaust port. It is preferable to make it communicate with.
  • the area of the apex of the convex part is 1 to 4 times the area of the nozzle, and the height of the convex part is 1 to 5 times the diameter of the convex part.
  • the object is to inject air from the nozzle formed in the perforated plate toward the collection surface, to attach microorganisms contained in the air to the collection surface, and the nozzle.
  • a method for collecting microorganisms comprising the step of dispersing the air that has passed through the exhaust port and the second exhaust port.
  • the present invention it is possible to provide an apparatus for collecting atmospheric microorganisms and the like and a method for collecting the same, which prevents a reduction in the collection rate due to the influence of cross wind and variations in the collection rate due to the deflection of the perforated plate.
  • virus avian influenza virus and foot-and-mouth disease virus
  • the inventors of the present invention have studied the various structures for preventing the deflection of the perforated plate while reducing the wind speed of the cross wind, and obtained the following examples.
  • the microorganism collection method and the collection device mean a virus, bacteria, yeast, protozoa, fungus, spore, pollen inspection method and inspection device.
  • viruses, spores, and pollen are simply indicated as “microorganisms”.
  • FIG. 1 is a diagram showing a schematic configuration of a microorganism collection apparatus according to an embodiment of the present invention.
  • a microorganism collection apparatus 10 holds a porous plate 101 that is a plate having a plurality of nozzles 1011, a collection substrate 102 having a surface for collecting microorganisms, and a collection substrate 102.
  • the collection substrate holding unit 103, the fan 104 for sucking air, the filter 105 for filtering the sucked air, the perforated plate 101, the collection substrate holding unit 103, the fan 104, and the filter 105 are held.
  • a holder 106 is provided.
  • the collection substrate 102 and the collection substrate holding unit 103 are donut-shaped, and include an inner peripheral exhaust port 107 and an outer peripheral exhaust port 108 which are gaps for allowing the sucked air to pass through the inner peripheral portion and the outer peripheral portion. .
  • the holder 106 and the collection substrate holding unit 103 are connected in a beam-like structure.
  • the inner peripheral exhaust port 107 (second Exhaust port) is provided. As shown in FIG. 1, the inner peripheral exhaust port 107 is provided at substantially the same position as the rotation axis of the fan 104.
  • the collection of the virus aggregate 109 in the atmosphere by the microorganism collection apparatus 10 is performed as follows. As the fan 104 rotates, an air flow 119 is generated, and air flows into the nozzle 1011 of the perforated plate 101. Virus aggregate 109 contained in the air also flows in along the air flow. The inflowing air hits the surface of the collection substrate 102 and flows along the surface. At this time, if the inertial force of the virus aggregate 109 with respect to the air flow force is strong, the virus aggregate 109 does not follow the air flow and collides with the surface of the collection substrate 102 and is captured.
  • Recovered virus is detected using virus culture cells.
  • the collection substrate 102 collected after collection of the virus aggregate 109 may be washed with a gene elution reagent containing guanidine salt as a main component to elute the virus gene. Thereafter, the viral genes eluted in the gene elution reagent are recovered by solid phase extraction and detected by a gene detection method such as PCR.
  • the flow direction of the air that has passed through the nozzle 1011 changes greatly on the collection substrate 102 and flows between the perforated plate 101 and the collection substrate 102 (this air flow is referred to as a cross wind).
  • this air flow is referred to as a cross wind.
  • the influence of crosswind increases, so that air flows obliquely from the nozzle 1011 to the collection substrate 102.
  • the change in the direction of the air flow on the collection substrate 102 becomes smaller, so the collection rate of the virus aggregate 109 is expected to decrease.
  • the virus aggregate passing through the nozzle 1011 disposed on the downstream side is compared with the collection rate of the virus aggregate 109 passing through the nozzle 1011 disposed on the upstream side.
  • the collection rate of 109 is low.
  • the exhaust port is only the outer peripheral part or only the inner peripheral part, the cross wind is changed from the inner peripheral part to the outer peripheral part or from the outer peripheral part to the inner peripheral part.
  • An exhaust port 108 was provided to divide the direction of the cross wind flow from the inner periphery to the outer periphery and from the outer periphery to the inner periphery.
  • the perforated plate 101 is a metal plate having a thickness of 0.01 mm-2 mm and a diameter of 5 mm-200 mm.
  • the hole diameter of the nozzle 1011 formed in the perforated plate 101 is determined by the collected particle diameter, and the number of holes is determined by the hole diameter and the intake air amount.
  • the calculation of equation (1) requires a pore diameter of 200 ⁇ m or less.
  • the pore diameter is preferably 50-100 ⁇ m.
  • the number of nozzles satisfying the intake amount is 1000 to 10,000. Further, the larger the nozzle pitch, the lower the crosswind speed, but the perforated plate 101 needs to be enlarged. Considering this trade-off, the nozzle pitch is preferably 0.5 mm-2 mm.
  • the nozzle is formed by processing such as etching, laser processing, electric discharge processing, electron beam processing, and machining.
  • the collection substrate 102 is a flat plate.
  • the material of the collection substrate 102 is glass, quartz, resins (polypropylene, polyethylene terephthalate, polycarbonate, polystyrene, acrylonitrile butadiene styrene resin, polymethacrylic acid methyl ester acrylic, polydimethylsiloxane), metals (iron, aluminum) And pure metals such as copper, tin, gold, and silver, and alloy steels, alloys such as copper alloys, aluminum alloys, and nickel alloys), gelatin, and a solid medium mainly composed of agar.
  • the optimum value of the interval between the perforated plate 101 and the collection substrate 102 varies depending on the diameter of the nozzle 1011, but is preferably 1/3 to 15 times the nozzle diameter, and more preferably 1/2 to 5 times. is there.
  • HEPA Filter 105 is a HEPA filter (High Efficiency Particulate Air Filter) that removes virus aggregates that could not be collected.
  • FIG. 2 is a graph showing the collection rate of the microorganism collection apparatus according to the embodiment of the present invention.
  • simulated virus aggregates polystyrene fine particles having a particle size of 0.3 ⁇ m were sprayed in the space and collected by the microorganism collection device 10.
  • the exhaust port is only the outer peripheral exhaust port 108 and when the exhaust port is divided into the inner peripheral exhaust port 107 and the outer peripheral exhaust port 108, the particulate collection experiment is performed 8 times, and the particulate collection in each case The rate was determined.
  • Collection rate I (number of particles contained in air before passing through porous plate 101 ⁇ number of particles contained in air after passing through exhaust port) / number of particles contained in air before passing through porous plate 101 (2)
  • the exhaust port is divided into the inner peripheral exhaust port 107 and the outer peripheral exhaust port 108 as in the present embodiment plotted with ⁇ only in the conventional outer peripheral exhaust port 108. It was confirmed that the collection rate was higher than in the case of.
  • FIG. 3 is a diagram showing a schematic configuration of a microorganism collecting apparatus according to Embodiment 2 of the present invention.
  • the present embodiment is a microorganism collecting apparatus 10 in which the influence of cross wind is further reduced by increasing the number of exhaust ports as compared with FIG.
  • a plurality of through holes are provided at positions shifted from directly below the nozzle 1011 of the perforated plate 101.
  • the collection substrate 102 and the collection substrate 103 have a structure in which large and small rings overlap on a concentric circle.
  • a structure like a beam is formed between the ring-shaped structures of the collection substrate 102 or the collection substrate holding portion 103, and the collection substrate 102 or the collection substrate holding portion 103 has a structure like a beam. It is designed to keep the structure. After the direction of flow of the air that has passed through the nozzle 1011 is changed by the collection substrate 102, it passes through the adjacent through holes. The collection rate can be improved by reducing the wind speed of the air flowing over the collection substrate 102 as a cross wind.
  • the virus aggregate 109 that has passed through one nozzle collides with the surface of the collection substrate 102 immediately below the nozzle.
  • the width of the ring-shaped portion of the collection substrate 102 is preferably 1 to 2 times the diameter of the nozzle 1011 in order to provide a margin for the expansion of the collision range and the positional deviation between the nozzle 1011 and the collection substrate 102.
  • FIG. 4 is a diagram showing a schematic configuration of a microorganism collecting apparatus according to Embodiment 3 of the present invention.
  • the microorganism collecting apparatus 10 in order to reduce the influence of crosswind, is provided with the unevenness collecting substrate 112 provided with unevenness.
  • a convex portion 1121 is provided immediately below the nozzle 1011 of the perforated plate 101.
  • the air that has passed through the nozzle 1011 flows into the concave portion of the collection substrate 112 after the direction of flow is changed by the convex portion 1121 of the concave and convex collection substrate 112.
  • the virus aggregate 109 that has passed through one nozzle collides with the surface of the unevenness collecting substrate 112 immediately below the nozzle.
  • the lower the flow rate of air passing through the nozzle the wider the collision range.
  • the area of the convex part 1121 is preferably 1 to 4 times the area of the nozzle 1011 in order to provide a margin for the expansion of the collision range and the positional deviation between the nozzle 1011 and the convex part 1121. Further, the larger the difference in the unevenness of the unevenness collecting substrate 112, the smaller the influence of the cross wind can be.
  • FIG. 5 is a diagram showing a schematic configuration of a microorganism collecting apparatus according to Embodiment 4 of the present invention.
  • the microorganism collection device 10 holds a perforated plate 101 that is a plate having a plurality of nozzles 1011, a collection substrate 102 having a surface for collecting microorganisms, and a collection substrate 102.
  • Holding substrate 103 for collecting, fan 104 for sucking air, filter 105 for filtering the sucked air, porous plate 101, collecting substrate holding part 103, fan 104, and filter 105 are held.
  • a holder 106 is provided.
  • the collection substrate holding unit 103 is circular and includes a column 123 that supports the porous plate 101.
  • the collection of the virus aggregate 109 in the atmosphere by the microorganism collection apparatus 10 is performed as follows. As the fan 104 rotates, an air flow 119 is generated, and the air flows into the nozzle 1011 of the perforated plate 101. Virus aggregate 109 contained in the air also flows in along the air flow. The inflowing air hits the surface of the collection substrate 102 and flows along the surface. At this time, if the inertial force of the virus aggregate 109 with respect to the air flow force is strong, the virus aggregate 109 does not follow the air flow and collides with the surface of the collection substrate 102 and is captured.
  • Recovered virus is detected using virus culture cells.
  • the collection substrate 102 collected after collection of the virus aggregate 109 may be washed with a gene elution reagent mainly composed of a guanidine salt to elute the virus gene. . Thereafter, the viral genes eluted in the gene elution reagent are recovered by solid phase extraction and detected by a gene detection method such as PCR.
  • a column 123 was provided to support the center of the perforated plate 101 for the purpose of minimizing the deflection.
  • FIG. 6 is a graph showing the difference in the deflection of the porous plate depending on the presence or absence of the pillar 123 supporting the porous plate.
  • the radius of the perforated plate as a parameter, the magnitude of displacement when a uniform load of 6 kPa was applied to the perforated plate was calculated, and the largest change value was taken as the maximum deflection.
  • the maximum displacement of the deflection can be reduced to about 1/10 times with the column plotted with ⁇ compared with the column without plotting with ⁇ .
  • FIG. 7 is a diagram showing a schematic configuration of a microorganism collecting apparatus according to Example 5 of the present invention.
  • the microorganism collection device 10 of the present embodiment is provided with a plurality of columns 1231 in the collection substrate holding portion 103 in order to suppress the deflection of the perforated plate. Since the porous plate 101 is supported by the plurality of columns 1231, the size of the deflection is smaller than that of the porous plate of FIG. (C) A method of reducing the influence of crosswind and suppressing deflection
  • FIG. 8 is a diagram showing a schematic configuration of a microorganism collecting apparatus according to Embodiment 6 of the present invention.
  • the microorganisms collection apparatus 10 in a present Example is the porous board 101 which is a board provided with the some nozzle 1011, the collection board
  • a holder 106 for holding the filter 105 is provided.
  • the collection substrate 102 and the collection substrate holding unit 103 are donut-shaped, and include an inner peripheral exhaust port 107 and an outer peripheral exhaust port 108 which are gaps for allowing the sucked air to pass through the inner peripheral portion and the outer peripheral portion.
  • the collection substrate holding unit 103 includes a column 123 that supports the porous plate 101.
  • the collection of the virus aggregate 109 in the atmosphere by the microorganism collection apparatus 10 is performed as follows. As the fan 104 rotates, an air flow 119 is generated, and the air flows into the nozzle 1011 of the perforated plate 101. Virus aggregate 109 contained in the air also flows in along the air flow. The inflowing air hits the surface of the collection substrate 102 and flows along the surface. At this time, if the inertial force of the virus aggregate 109 with respect to the air flow force is strong, the virus aggregate 109 does not follow the air flow and collides with the surface of the collection substrate 102 and is captured.
  • Recovered virus is detected using virus culture cells.
  • the collection substrate 102 collected after collection of the virus aggregate 109 may be washed with a gene elution reagent mainly composed of a guanidine salt to elute the virus gene. . Thereafter, the viral genes eluted in the gene elution reagent are recovered by solid phase extraction and detected by a gene detection method such as PCR.
  • an inner peripheral exhaust port 107 and an outer peripheral exhaust port 108 are provided, and the direction of the cross wind flow is from the inner peripheral portion to the outer peripheral portion. And from the outer periphery to the inner periphery.
  • a pillar 123 was provided for the purpose of minimizing deflection.
  • FIG. 9 is a diagram showing a schematic configuration of a microorganism collecting apparatus according to Embodiment 7 of the present invention.
  • FIG. 10 is a view showing the shape of a collection substrate according to Example 7 of the present invention.
  • the unevenness collecting substrate 112 includes a convex portion 1121 at a position immediately below the nozzle 1011 of the porous plate 101, and includes a groove 1123 for exhausting around the convex portion 1121.
  • the grooves 1123 are connected to each other and are connected to the outer periphery and the inner periphery of the unevenness collecting substrate 112.
  • the groove 1123 has a spider web shape, and the intersection of the groove 1123 and the position of the convex part 1121 are configured to overlap.
  • a portion other than the convex portion 1121 and the groove 1123 (hereinafter referred to as a wall portion 1122) is higher than the convex portion 1121.
  • the wall 1122 functions as a partition between the nozzles 1011 and a spacer between the projections 1121 and the nozzles 1011 by pressing the uneven collection substrate 112 and the porous plate 101.
  • the air that has passed through the nozzle 1011 of the perforated plate 101 is exhausted to the outside via the groove 1123 after the flow direction is changed by the convex portion 1121. Further, a difference in height between the wall portion 1122 and the convex portion 1121 is ensured as an interval between the porous plate 101 and the convex portion 1121.
  • Each nozzle 1011 was partitioned by a wall portion 1122, and the amount of air flowing on the upper surface of the adjacent convex portion 1121 was reduced, thereby reducing the influence of crosswind and improving the collection rate. Further, by supporting most of the porous plate 101 by the wall portion 1122, the deflection of the porous plate 101 can be reduced, and variation in the collection rate of each nozzle can be suppressed.
  • the present invention is provided with a plurality of exhaust ports for discharging the air ejected from the nozzle of the perforated plate to the collection surface, and the direction of the transverse wind on the collection surface is divided into a plurality of directions. The decrease could be suppressed.
  • the deflection of the porous plate can be suppressed.
  • SYMBOLS 10 Microbe collection apparatus, 101 ... Perforated plate, 102 ... Collection substrate, 103 ... Collection substrate holding part, 104 ... Fan, 105 ... Filter, 106 ... Holder, 107 ... Inner peripheral part exhaust port, 108 ... Outer part Exhaust port, 109 ... virus aggregate, 112 ... irregularity collecting substrate, 123 ... pillar.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 捕集基板の捕集面に微生物を付着させるインパクションによって微生物を捕集する装置において、複数のノズルが形成された多孔板の表面に発生する横風と多孔板のたわみを防止するもの。 多孔板のノズルから捕集面に噴出した空気を排出する排気口を、捕集面の周りと捕集面内に複数設け、捕集面上での風の向きを複数方向に分けて風速を下げることで微粒子の捕集率を上げることができる。

Description

大気中微生物等の捕集装置及びその捕集方法
 本発明は大気中微生物等の捕集装置及びその捕集方法に関する。
 大気中の微粒子の捕集を目的とした捕集装置(大気中微粒子捕集装置)が市場に提供されている。その中でも、微粒子を高い捕集率で捕集することのできる大気中微粒子捕集装置として、インパクションを使用した大気中微粒子捕集装置が注目されている。 
 インパクションは粒子を含む空気をノズルから噴射させ、噴射した空気を捕集面に衝突させることにより粒子を捕集面に付着させる方法である。
 このインパクションによって粒子を捕集するための捕集条件は、次式で与えられるストークス数Sk により説明される。
Sk = ρd2uC/9μw (1)
 この式(1)おいて、w:ノズル径、u:ノズルでの平均風速、μ:空気の粘性計数、ρ:粒子の密度、d:粒子の直径、C:カニンガムの補正係数(粒子運動に際する補正係数:大気圧下で約1.15)を示す。
 エアロゾルテクノロジ:インパクタの限界粒子径と捕集効率、井上書院(1985-4)によると、式(1)のストークス数Skの平方根が0.7以上であればほぼ100%の粒子が捕集基板に衝突する。
 インパクションを利用した大気中微粒子捕集装置は、細菌(最小粒径:約1μm)を捕集対象としたものと、エアロゾル(最小粒径:数十nm)を捕集対象としたものとがある。
 細菌を捕集対象としたものとして、特許文献1に記載のポータブル型空中浮遊菌サンプラや特許文献2に記載の空気を微生物学的に分析するためのサンプリング装置及びサンプリング方法等がある。 
 これらの装置では、複数のノズルから捕集面となる培地に大気中の細菌を含む空気を噴射させることで細菌を捕集する。ノズルから捕集面に噴射された空気は、培地とノズルを備えた板の間を通過してノズル外周方向に流れる。
 一方、最小粒径が数十nmと非常に小さいエアロゾルを捕集対象としたものとして、非特許文献1記載の低圧インパクタがある。この低圧インパクタでは真空ポンプを空気の吸引に用いる。真空ポンプがノズルの出口側の気圧を大きく下げることでカニンガムの補正係数Cが大きくなり、結果として式(1)からストークス数が大きくなるため、直径の小さい粒子を捕集することができる。
 特許文献3記載の低圧インパクタでは、ノズルから捕集面に噴射された空気は捕集面の中心部にある排気口方向に流れる。
特開2000-30024号公報 特開2000-23662号公報 PCT WO99/37990号公報
J. Keskinen、 K. Pietarinen and M. Lehtimaki、 Electrical Low Pressure Impactor、 J. Aerosol Sci. Vol.23、 pp353-360、 (1992).
 捕集の対象となる大気中の微生物には細菌に比べウイルスのように大きさが小さいものがあるということと、大気中に存在する微生物の数が非常に少ないため、大量の空気を吸引する必要があるということである。
 インフルエンザウイルスを例とする。T. P. Weber and N.I. Stilianakis.、 Inactivation of influenza A viruses in the environment and modes of transmission: a critical review、 J Infect、 Vol.57、 No.5、 pp361-373、 (1991) によるとインフルエンザの感染者の呼気に含まれるウイルス凝集体の直径は0.5 - 5μmといわれている。またE. Cole and C. Cook.、 Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies、 Am J Infect Control、 Vol.26、 No.4、 pp453-464、 (1998) によると感染者のくしゃみ一回あたりに含まれるウイルス凝集物の数は約40,000個~100,000個であるといわれている。空間の体積を100m3とすると、1m3あたりに存在するウイルス凝集物の数は400~1,000個と非常に少ない。
 特許文献1および2記載の装置では、空気を吸引するためにファンを使用しているため大量の空気を吸引することが可能である。しかしこの特許文献1,2は捕集対象が細菌(最小粒径:約1μm)であるため、ウイルス凝集体のように小さい微生物を捕集することは難しい。次に、特許文献3記載の装置はエアロゾル(最小粒径:数十nm)のような非常に小さい粒子を捕集することが可能であるものの、空気吸引に真空ポンプを使用しているため空気の吸引量の上限に制限があり、また装置も大型化する。
 以上のことから、大気中の微生物を捕集するには、細菌を捕集対象とした大気中微粒子捕集装置と同等の空気の吸引量を保ち、かつウイルス凝集体まで捕集することが可能な装置が必要となる。
 そのための一つの手段としてノズル径を小さくし、ノズルの数を増やすことが考えられる。例えば、上記式(1)よりノズル径を小さくすると、ストークス数が大きくなるため直径の小さい粒子を捕集することができる。しかしながらノズル径が小さくなるとノズルを通過する空気の量が減少するため、吸引量を維持するにはノズルの数を増やす必要がある。そのため、ノズル径を小さくしノズルの数を増やすと、以下のような二つの問題が生じることが分かった。
 一つは、ノズルの数が増えたことによってノズルの間隔が小さくなり、複数のノズルを備えた板(以下多孔板)と捕集基板の間を通過する空気の流れ(以下横風という)が強くなり、捕集率が低下してしまうという問題である。
 もう一つは、ノズル径が小さくなったことで圧力損失が増大するため多孔板のたわみが大きくなることである。多孔板と捕集基板の間隔が不均一になり、捕集率のばらつきがノズルごとに大きくなってしまうという問題である。
 本発明の目的は、インパクションを利用した大気中微粒子捕集装置において、横風の影響による捕集率の低下を防止し、多孔板のたわみによる捕集率のばらつきを防止した大気中微生物等の捕集装置及びその捕集方法を提供することにある。
 上記目的は、微生物を含む空気を噴射させるための複数のノズルを備えた多孔板と、前記ノズルと対向する位置に前記微生物の捕集面を備えた捕集基板と、この捕集基板を保持するための捕集基板保持部と、前記多孔板から前記平板の向きに空気の流れを発生するためのファンと、前記多孔板と前記捕集基板保持部と前記ファンを保持する容器と、前記捕集基板と前記捕集基板保持部の外周部と前記容器との間に設けられた排気口とを備えた微生物捕集装置において、前記捕集基板と前記捕集基板保持部の内周部に第二の排気口を設けたことにより達成される。
 また上記目的は、前記多孔板と前記平板との間隔は前記ノズル径の1/3~15倍であることが好ましい。
 また上記目的は、前記多孔板は厚さ0.01mm―2mm、直径5mm-200mmの金属板で、1000個から10000個の孔径50μmから200μmの円形のノズルを備えていることが好ましい。
 また上記目的は、前記平板は、ガラス、石英、樹脂類(ポリプロピレン、ポリエチレンテレフタラート、ポリカーボネイト、ポリスチレン、アクリロニトリルブタジエンスチレン樹脂、ポリメタクリル酸メチルエステル等アクリル、ポリジメチルシロキサン)、金属類(鉄、アルミニウム、銅、錫、金、銀などの純金属および合金鋼、銅合金、アルミニウム合金、ニッケル合金などの合金)、ゼラチン、寒天を主成分とする固形培地であることが好ましい。
 また上記目的は、前記捕集基板は同心円上に取り付けられた大小のリング部材から構成され、このリング部材の面を前記捕集面とするとともに、前記大小のリング部材間の隙間を前記排気口とすることが好ましい。
 また上記目的は、前記ノズルの直下に位置する前記捕集基板にリング状の凸部を設け、この凸部の上面を前記捕集面とするとともに、前記リング状の凸部間は前記排気口と連通させることが好ましい。
 また上記目的は、前記凸部の頂点の面積は前記ノズルの面積の1倍~4倍で、前記凸部の高さは前記凸部の直径の1倍~5倍であることが好ましい。
 また上記目的は、前記捕集基板に前記多孔板を支えるための柱を複数若しくは単数設けることが好ましい。
 また上記目的は、前記多孔板に形成された前記ノズルから空気を前記捕集面に向かって噴射する工程と、前記空気に含まれた微生物を前記捕集面に付着させる工程と、前記ノズルを通過した空気を前記排気口と前記第二の排気口とに分散させる工程とからなる微生物の捕集方法であることにより達成される。
 本発明によれば、横風の影響による捕集率の低下と、多孔板のたわみによる捕集率のばらつきを防止した大気中微生物等の捕集装置及びその捕集方法を提供できる。
本発明の実施例1に係る微生物捕集装置の概略構成を示す図である。 本発明の実施例1に係る微生物捕集装置の捕集率を示すグラフ図である。 本発明の実施例2に係る微生物捕集装置の概略構成を示す図である。 本発明の実施例3に係る微生物捕集装置の概略構成を示す図である。 本発明の実施例4に係る微生物捕集装置の概略構成を示す図である。 本発明の実施例4に係る多孔板のたわみを示すグラフ図である。 本発明の実施例5に係る微生物捕集装置の概略構成を示す図である。 本発明の実施例6に係る微生物捕集装置の概略構成を示す図である。 本発明の実施例7に係る微生物捕集装置の概略構成を示す図である。 本発明の実施例7に係る捕集基板の形状を示す図である。
 さて、近年鳥インフルエンザ・ウイルスや口蹄疫ウイルスなどのウイルス(以下、ウイルスという)の蔓延が社会問題となっており、早急に蔓延を阻止する必要がある。そのためには多くのウイルスを捕集して発生原因の追及が急務となっている。
 このことから、上述したようなインパクションによるウイルスの捕集が考えられるが、上述のインパクションは細菌の捕集を対象としているため、細菌より粒径が小さいウイルスの捕集には不向きであることが分かった。そのため空気を噴射するためのノズル径をウイルスの粒径に合わせて小さくし、ウイルスの捕集量を増やすこととしたが、ノズル径を小さくすると通る空気量に限界があることが分かった。
 これに対して、板に形成されるノズルの数を増やすことで空気の供給量を増加させることを考えた。しかしながら、排気口の位置の関係から噴射される空気が排気口方向へ流れる風(以下、横風という)となってしまい、ウイルスの捕集量率が低下してしまうことが分かった。また、ノズルの量を増加させたことによって、多孔板にたわみが生じてウイルスの捕集率にばらつきが生じることが分かった。
 そこで、本願発明の発明者らは横風の風速を弱めるとともに、多孔板のたわみを防止する構造を種々検討した結果、以下のごとき実施例を得た。
 なお、本明細書において、微生物捕集方法及び捕集装置とは、ウイルス、細菌、酵母、原生動物、菌類、胞子、花粉の検査方法及び検査装置を意味する。また、本明細書では、表記を簡単にするため、一般的に定義されている微生物(細菌、酵母、原生動物、菌類)の他、ウイルス、胞子、花粉を含め単に「微生物」と表記した。
 以下、図面を参照して、本発明の実施例を説明する。なお、後述する実施の形態は一例であって、各実施例同士の組み合わせ、公知又は周知の技術との組み合わせや置換による他の態様も可能であることは言うまでもない。
(A)横風の影響を下げることで捕集率を向上する方法
 図1は、本発明の実施例に係る微生物捕集装置の概略構成を示す図である。 
 図1において、微生物捕集装置10は複数のノズル1011を備えた板である多孔板101と、微生物を捕集するための面を備えた捕集基板102と、捕集基板102を保持するための捕集基板保持部103と、空気を吸引するためのファン104と、吸引した空気をろ過するためのフィルタ105と、多孔板101、捕集基板保持部103、ファン104、フィルタ105を保持するためのホルダ106を備える。
 捕集基板102および捕集基板保持部103はドーナツ型で、内周部と外周部に吸引した空気を通過させるための隙間である内周部排気口107と外周部排気口108を備えている。また図には記載はないが、ホルダ106と捕集基板保持部103は梁のような構造で連結されている。
 つまり、本実施例はドーナツ形状となった捕集基板102と捕集基板保持部103の外周側にあった外周部排気口108の他に内周側に内周部排気口107(第二の排気口)を設けたものである。この内周部排気口107は図1に示すようにファン104の回転軸とほぼ同じ位置に設けられている。
 微生物捕集装置10による大気中のウイルス凝集体109の捕集は次のようにして実行される。 
 ファン104が回転することにより空気の流れ119が生じ、多孔板101のノズル1011に空気が流入する。空気中に含まれているウイルス凝集体109も空気の流れにのって流入する。流入した空気は捕集基板102の面にあたり、面に沿って流れる。このとき空気の流れの力に対するウイルス凝集体109の慣性力が強いと、ウイルス凝集体109は空気の流れに追従せずに捕集基板102の面に衝突し捕捉される。
 上記式(1)で与えられるストークス数が大きいほど、ウイルス凝集体109が捕集基板102の面に衝突する確率は高くなる。 
 その後流入した空気の一部は内周部排気口107に、一部は外周部排気口108を通過し、フィルタ105を通過し微生物捕集装置10の外に排出される。このとき捕集されなかった小さいウイルス凝集体109はフィルタ105によってろ過される。捕集後に捕集基板102を回収し、水もしくは緩衝液で洗浄することで捕集基板102の面に吸着しているウイルス凝集体109を溶出させ、液中に回収することができる。
 回収したウイルスはウイルス培養細胞などを用い検出する。ウイルスの検出に遺伝子検出法を用いる場合、ウイルス凝集体109の捕集後に回収した捕集基板102を、グアニジン塩を主成分とする遺伝子溶出試薬で洗浄しウイルスの遺伝子を溶出させても良い。その後遺伝子溶出試薬中に溶出したウイルスの遺伝子を固相抽出法で回収し、PCRなどの遺伝子検出法により検出する。
 排気口を複数に分けた効果について説明する。 
 ノズル1011を通過した空気は捕集基板102上で流れ方向が大きく変わり、多孔板101と捕集基板102の間を流れる(この空気の流れを横風とする)。ノズルの数が多くなりノズルの間隔が小さくなると、横風の影響が増すためノズル1011から捕集基板102まで空気は斜めに流れる。この空気の流れが斜めになるほど、捕集基板102上における空気の流れの方向の変化が小さくなるため、ウイルス凝集体109の捕集率は低下すると予想する。下流側ほど横風の速度は高くなるため、上流側に配置されているノズル1011を通過するウイルス凝集体109の捕集率と比較すると、下流側に配置されているノズル1011を通過するウイルス凝集体109の捕集率は低くなる。
 排気口が外周部のみ若しくは内周部のみであれば、横風は内周部から外周部もしくは外周部から内周部となるが、横風の速度を下げるため、内周部排気口107と外周部排気口108を設け、横風の流れの向きを内周部から外周部方向と外周部から内周部方向に分けた。
 各構成部品について説明する。多孔板101は厚さ0.01mm―2mm、直径5mm-200mmの金属板である。この多孔板101に形成されたノズル1011の孔径は捕集粒子径で決まり、孔数は孔径と吸気量で決まる。仮に吸気量0.1m3/minで捕集粒子径300μmの微粒子を90%以上捕集するには、式(1)の計算では孔径200μm以下であることが必要で、ノズルの加工性、ノズルを通過する空気の乱流条件などを考慮すると孔径50―100μmが好ましい。
 このとき吸気量を満たすノズル数は1000個―10000個となる。また、ノズルのピッチが大きいほど横風の速度を小さくすることができるが、多孔板101を大きくする必要がある。このトレードオフを考慮するとノズルのピッチは0.5mm-2mmが好ましい。ノズルの形成は、エッチング、レーザー加工、放電加工、電子線ビーム加工、機械加工などの加工により行う。
 捕集基板102は平板である。この捕集基板102の材質は、ガラス、石英、樹脂類(ポリプロピレン、ポリエチレンテレフタラート、ポリカーボネイト、ポリスチレン、アクリロニトリルブタジエンスチレン樹脂、ポリメタクリル酸メチルエステル等アクリル、ポリジメチルシロキサン)、金属類(鉄、アルミニウム、銅、錫、金、銀などの純金属および合金鋼、銅合金、アルミニウム合金、ニッケル合金などの合金)、ゼラチン、寒天を主成分とする固形培地で形成されることが好ましい。
 多孔板101と捕集基板102との間隔の最適値はノズル1011の径によって変わるが、ノズル径の1/3~15倍となることが好ましく、さらに好ましくは1/2~5倍の範囲である。
 フィルタ105は、HEPAフィルタ(High Efficiency Particulate Air Filter)で、捕集しきれなかったウイルス凝集体を除去するものである。
 図2は本発明の実施例に係る微生物捕集装置の捕集率を示すグラフ図である。 
 図2において、粒径0.3μmの模擬ウイルス凝集体(ポリスチレン微粒子)を空間中に散布し、微生物捕集装置10で捕集した。排気口が外周部排気口108のみのときと、内周部排気口107と外周部排気口108に分けたときで微粒子の捕集実験を8回ずつ行い、それぞれの場合での微粒子の捕集率を求めた。
 捕集率Iは次の式(2)から計算した。
 捕集率I=(多孔板101を通過する前の空気に含まれる粒子数 - 排気口を通過した後の空気に含まれる粒子数)/多孔板101を通過する前の空気に含まれる粒子数 (2)
 図2の■でプロットされた従来対して◆でプロットした本実施例のように、排気口を内周部排気口107と外周部排気口108に分けたほうが、従来の外周部排気口108のみの場合と較べると捕集率は高くなることが確認できた。
 図3は本発明の実施例2に係る微生物捕集装置の概略構成を示す図である。 
 図3において、本実施例は排気口の数を図1より増やすことにより、横風の影響をさらに低減した微生物捕集装置10である。捕集基板102と捕集基板保持部103に対し、多孔板101のノズル1011の直下からずれた位置に複数の貫通穴を複数設けたものである。捕集基板102と捕集基板103は大小のリングが同心円上に重なった構造になっている。図には記載していないが、捕集基板102もしくは捕集基板保持部103のリング状構造の間には梁のような構造となっており、捕集基板102もしくは捕集基板保持部103の構造を保つようになっている。ノズル1011を通過した空気は捕集基板102によって流れの方向が変わったのち、隣あう貫通穴を通過する。横風として捕集基板102上を流れる空気の風速が低減することで捕集率を向上させることができる。
 横風の影響が無いとき、一つのあるノズルを通過したウイルス凝集体109はノズルの直下の捕集基板102の面に衝突する。ノズルを通過する空気の流速が低いほど衝突範囲は広がる。衝突範囲の広がりやノズル1011と捕集基板102の位置ずれに対する余裕を持たせるため、捕集基板102のリング状の部分の幅はノズル1011の直径の1倍から2倍が好ましい。
 図4は本発明の実施例3に係る微生物捕集装置の概略構成を示す図である。 
 図4において、本実施例は横風の影響を低減するため、凹凸捕集基板112に凹凸を設けた微生物捕集装置10としたものである。
 横風の影響を小さくすることが微粒子の捕集率の向上に重要であることから、多孔板101のノズル1011の直下に凸部1121を設けた。ノズル1011を通過した空気は凹凸捕集基板112の凸部1121によって流れの方向が変わったのち、捕集基板112の凹部に流れ込む。隣あう凸部1121の上面に流れる空気の量を少なくすることで横風の影響を小さくし捕集率を向上させることができる。
 横風の影響が無いとき、一つのあるノズルを通過したウイルス凝集体109はノズルの直下の凹凸捕集基板112の面に衝突する。ノズルを通過する空気の流速が低いほど衝突範囲は広がる。衝突範囲の広がりやノズル1011と凸部1121の位置ずれに対する余裕を持たせるため、凸部1121の面積はノズル1011の面積の1倍から4倍が好ましい。また、凹凸捕集基板112の凹凸の差が大きいほど横風の影響を小さくすることができるが、加工限界や構造の強度から凸部1211の直径の1倍から5倍が好ましい。
(B)多孔板の支持する柱を設け、たわみを抑える方法
 図5は本発明の実施例4に係る微生物捕集装置の概略構成を示す図である。 
 図5において、微生物捕集装置10は、複数のノズル1011を備えた板である多孔板101と、微生物を捕集するための面を備えた捕集基板102と、捕集基板102を保持するための捕集基板保持部103と、空気を吸引するためのファン104と、吸引した空気をろ過するためのフィルタ105と、多孔板101、捕集基板保持部103、ファン104、フィルタ105を保持するためのホルダ106を備える。捕集基板保持部103は円形で、多孔板101を支える柱123を備える。
 微生物捕集装置10による大気中のウイルス凝集体109の捕集は次のように実行する。ファン104が回転することにより空気の流れ119が生じ、多孔板101のノズル1011に空気は流入する。空気中に含まれているウイルス凝集体109も空気の流れにのって流入する。流入した空気は捕集基板102の面にあたり、面に沿って流れる。このとき空気の流れの力に対するウイルス凝集体109の慣性力が強いと、ウイルス凝集体109は空気の流れに追従せずに捕集基板102の面に衝突し捕捉される。
 式(1)で与えられるストークス数が大きいほど、ウイルス凝集体109が捕集基板102の面に衝突する確率は高くなる。その後流入した空気は外側排気口108を通過し、フィルタ105を通過し微生物捕集装置10の外に排出される。このとき捕集されなかった小さいウイルス凝集体109はフィルタ105によってろ過される。捕集後に捕集基板102を水、緩衝液で洗浄することで捕集基板102の面に吸着しているウイルス凝集体109を溶出させ、液中に回収することができる。
 回収したウイルスはウイルス培養細胞などを用い検出する。もしくはウイルスの検出に遺伝子検出法を用いる場合、ウイルス凝集体109の捕集後に回収した捕集基板102を、グアニジン塩を主成分とする遺伝子溶出試薬で洗浄しウイルスの遺伝子を溶出させてもいい。その後遺伝子溶出試薬中に溶出したウイルスの遺伝子を固相抽出法で回収し、PCRなどの遺伝子検出法により検出する。
 ウイルス凝集体109の捕集時には圧力損失によりノズル1011の入口と出口では気圧差が発生するため、多孔板101はたわむ。たわみが大きいと多孔板101と捕集基板ン102の間隔が不均一になるため、捕集率がノズルごとにばらつくと予想した。たわみを最小限に抑える目的で、多孔板101の中心を支えるように柱123を設けた。
 図6は、多孔板を支える柱123の有無による多孔板のたわみの大きさの差を示すグラフである。多孔板の半径をパラメータとして、多孔板に6kPaの均等負荷がかかっている時の変位の大きさを計算し、もっとも大きい変化の値をたわみの最大変位とした。図6に示すように、●でプロットした柱なしに比べ、▲でプロットした柱ありのほうが、たわみの最大変位を約1/10倍に小さくすることができた。
 図7は本発明の実施例5に係る微生物捕集装置の概略構成を示す図である。
 図7において、本実施例の微生物捕集装置10は多孔板のたわみを抑えるため、捕集基板保持部103に複数の柱1231を設けたものである。複数の柱1231によって多孔板101は支持されるため、図5の多孔板に比べ、たわみの大きさは小さくなる。
(C)横風の影響を下げ、かつたわみを抑える方法
 先の実施例(A)、(B)で示した二つの効果を併せ持つ実施例を示す。
 図8は本発明の実施例6に係る微生物捕集装置の概略構成を示す図である。
 図8において、本実施例における微生物捕集装置10は、複数のノズル1011を備えた板である多孔板101と、微生物を捕集するための面を備えた捕集基板102と、捕集基板102を保持するための捕集基板保持部103と、空気を吸引するためのファン104と、吸引した空気をろ過するためのフィルタ105と、多孔板101、捕集基板保持部103、ファン104、フィルタ105を保持するためのホルダ106を備える。
 捕集基板102および捕集基板保持部103はドーナツ型で、内周部と外周部に吸引した空気を通過させるための隙間である内周部排気口107と外周部排気口108を備える。また、捕集基板保持部103は多孔板101を支える柱123を備えている。
 微生物捕集装置10による大気中のウイルス凝集体109の捕集は次のように実行する。ファン104が回転することにより空気の流れ119が生じ、多孔板101のノズル1011に空気は流入する。空気中に含まれているウイルス凝集体109も空気の流れにのって流入する。流入した空気は捕集基板102の面にあたり、面に沿って流れる。このとき空気の流れの力に対するウイルス凝集体109の慣性力が強いと、ウイルス凝集体109は空気の流れに追従せずに捕集基板102の面に衝突し捕捉される。
 式(1)で与えられるストークス数が大きいほど、ウイルス凝集体109が捕集基板102の面に衝突する確率は高くなる。その後流入した空気は外側排気口108を通過し、フィルタ105を通過し微生物捕集装置10の外に排出される。このとき捕集されなかった小さいウイルス凝集体109はフィルタ105によってろ過される。捕集後に捕集基板102を水、緩衝液で洗浄することで捕集基板102の面に吸着しているウイルス凝集体109を溶出させ、液中に回収することができる。
 回収したウイルスはウイルス培養細胞などを用い検出する。もしくはウイルスの検出に遺伝子検出法を用いる場合、ウイルス凝集体109の捕集後に回収した捕集基板102を、グアニジン塩を主成分とする遺伝子溶出試薬で洗浄しウイルスの遺伝子を溶出させてもいい。その後遺伝子溶出試薬中に溶出したウイルスの遺伝子を固相抽出法で回収し、PCRなどの遺伝子検出法により検出する。
 多孔板101と捕集基板102の間を流れる空気(横風)の速度を下げるため、内周部排気口107と外周部排気口108を設け、横風の流れの向きを内周部から外周部方向と外周部から内周部方向に分けた。
 ウイルス凝集体109の捕集時には圧力損失によりノズル1011の入口と出口では気圧差が発生するため、多孔板101はたわむ。たわみが大きいと多孔板101と捕集基板ン102の間隔が不均一になるため、捕集率がノズルごとにばらつくと予想した。たわみを最小限に抑える目的で柱123を設けた。
 凹凸捕集基板112の構造を変えることで、横風の影響を下げ、かつたわみを抑えた実施例を示す。 
 図9は本発明の実施例7に係る微生物捕集装置の概略構成を示す図である。 
 図10は本発明の実施例7に係る捕集基板の形状を示す図である。 
 図9,図10において、凹凸捕集基板112は、多孔板101のノズル1011の直下の位置に凸部1121を備え、凸部1121の周囲に排気のための溝1123を備える。溝1123は互いに連結し、凹凸捕集基板112の外周と内周までつながっている。
 図10では、溝1123は蜘蛛の巣状で、溝1123の交点と凸部1121の位置は重なるように構成されている。凸部1121、溝1123以外の個所(以下壁部1122とする)は、凸部1121よりも高い。微生物捕集装置10の使用時には、凹凸捕集基板112と多孔板101を押し付けることで、壁部1122はノズル1011間の仕切りと凸部1121とノズル1011間のスペーサとして機能している。
 多孔板101のノズル1011を通過した空気は、凸部1121によって流れの方向が変わったのち、溝1123を経由して外部に排気される。また、壁部1122と凸部1121の高さの差が多孔板101と凸部1121の間隔として確保される。各ノズル1011を壁部1122によって仕切り、隣あう凸部1121の上面に流れる空気の量を少なくすることで横風の影響を小さくし捕集率を向上させることができた。また、多孔板101の大部分を壁部1122によって支持することで、多孔板101のたわみを小さくし、ノズルごとの捕集率のばらつきを抑えることができた。
 以上のごとく、本発明は多孔板のノズルから捕集面に噴出した空気を排出する排気口を複数設け、捕集面上での横風の向きを複数方向に分けたため、横風による捕集率の低下を抑えることができたものである。
 また捕集面を備えた構造体に、多孔板を保持するための一つまたは複数の柱を設けることにより、多孔板のたわみを抑えることができたものである。
 10…微生物捕集装置、101…多孔板、102…捕集基板、103…捕集基板保持部、104…ファン、105…フィルタ、106…ホルダ、107…内周部排気口、108…外周部排気口、109…ウイルス凝集体、112…凹凸捕集基板、123…柱。

Claims (9)

  1.  微生物を含む空気を噴射させるための複数のノズルを備えた多孔板と、前記ノズルと対向する位置に前記微生物の捕集面を備えた捕集基板と、この捕集基板を保持するための捕集基板保持部と、前記多孔板から前記平板の向きに空気の流れを発生するためのファンと、前記多孔板と前記捕集基板保持部と前記ファンを保持する容器と、前記捕集基板と前記捕集基板保持部の外周部と前記容器との間に設けられた排気口とを備えた微生物捕集装置において、
     前記捕集基板と前記捕集基板保持部の内周部に第二の排気口を設けたことを特徴とする微生物捕集装置。
  2.  請求項1記載の微生物捕集装置において、
     前記多孔板と前記平板との間隔は前記ノズル径の1/3~15倍であることを特徴とする微生物捕集装置。
  3.  請求項1記載の微生物捕集装置において、
     前記多孔板は厚さ0.01mm―2mm、直径5mm-200mmの金属板で、1000個から10000個の孔径50μmから200μmの円形のノズルを備えていることを特徴とする微生物捕集装置。
  4.  請求項2記載の微生物捕集装置において、
     前記平板は、ガラス、石英、樹脂類(ポリプロピレン、ポリエチレンテレフタラート、ポリカーボネイト、ポリスチレン、アクリロニトリルブタジエンスチレン樹脂、ポリメタクリル酸メチルエステル等アクリル、ポリジメチルシロキサン)、金属類(鉄、アルミニウム、銅、錫、金、銀などの純金属および合金鋼、銅合金、アルミニウム合金、ニッケル合金などの合金)、ゼラチン、寒天を主成分とする固形培地であることを特徴とする微生物捕集装置。
  5.  請求項1記載の微生物捕集装置において、
     前記捕集基板は同心円上に取り付けられた大小のリング部材から構成され、このリング部材の面を前記捕集面とするとともに、前記大小のリング部材間の隙間を前記排気口としたことを特徴とする微生物捕集装置。
  6.  請求項1記載の微生物捕集装置において、
     前記ノズルの直下に位置する前記捕集基板にリング状の凸部を設け、この凸部の上面を前記捕集面とするとともに、前記リング状の凸部間は前記排気口と連通することを特徴とする微生物捕集装置。
  7.  請求項6記載の微生物捕集装置において、
     前記凸部の頂点の面積は前記ノズルの面積の1倍~4倍で、前記凸部の高さは前記凸部の直径の1倍~5倍であることを特徴とする微生物捕集装置。
  8.  請求項1記載の微生物捕集装置において、
     前記捕集基板に前記多孔板を支えるための柱を複数若しくは単数設けたことを特徴とする微生物捕集装置。
  9.  請求項1乃至8のいずれかに記載の微生物捕集装置を用いる空気中の微生物の捕集方法において、
     前記多孔板に形成された前記ノズルから空気を前記捕集面に向かって噴射する工程と、前記空気に含まれた微生物を前記捕集面に付着させる工程と、前記ノズルを通過した空気を前記排気口と前記第二の排気口とに分散させる工程とからなる微生物の捕集方法。
PCT/JP2011/053850 2011-02-22 2011-02-22 大気中微生物等の捕集装置及びその捕集方法 WO2012114458A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/985,708 US9433883B2 (en) 2011-02-22 2011-02-22 Device and method for collecting airborne microorganisms
JP2013500754A JP5700594B2 (ja) 2011-02-22 2011-02-22 大気中微生物等の捕集装置及びその捕集方法
PCT/JP2011/053850 WO2012114458A1 (ja) 2011-02-22 2011-02-22 大気中微生物等の捕集装置及びその捕集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053850 WO2012114458A1 (ja) 2011-02-22 2011-02-22 大気中微生物等の捕集装置及びその捕集方法

Publications (1)

Publication Number Publication Date
WO2012114458A1 true WO2012114458A1 (ja) 2012-08-30

Family

ID=46720278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053850 WO2012114458A1 (ja) 2011-02-22 2011-02-22 大気中微生物等の捕集装置及びその捕集方法

Country Status (3)

Country Link
US (1) US9433883B2 (ja)
JP (1) JP5700594B2 (ja)
WO (1) WO2012114458A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192787A1 (ja) * 2013-05-31 2014-12-04 シャープ株式会社 検出装置
WO2016194463A1 (ja) * 2015-05-29 2016-12-08 株式会社村田製作所 抽出方法、分析方法、抽出装置および分析装置
JPWO2015049759A1 (ja) * 2013-10-03 2017-03-09 株式会社日立製作所 気中物質検知装置用のカートリッジ及び気中物質検知装置
CN107281860A (zh) * 2016-03-30 2017-10-24 中国科学院大连化学物理研究所 一种舱内空气净化装置
CN107638765A (zh) * 2016-07-21 2018-01-30 中国科学院大连化学物理研究所 一种低噪音低能耗空气净化装置
CN110514486A (zh) * 2019-07-24 2019-11-29 中国农业大学 一种便携式花粉及真菌孢子采样器
JP2022066052A (ja) * 2020-10-16 2022-04-28 ピコテクバイオ株式会社 微生物捕集装置及び微生物評価方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474335B2 (en) * 2010-01-12 2013-07-02 Veltek Associates, Inc. Microbial air sampler
DE102013006954B4 (de) * 2013-04-23 2019-12-24 Mann+Hummel Gmbh Ölnebelabscheider für eine Kurbelgehäuseentlüftung zum Abscheiden von Partikeln und entsprechendes Verfahren
US9151678B2 (en) * 2013-04-23 2015-10-06 Bruce R. Robinson Sensor shield
KR102199814B1 (ko) * 2014-02-27 2021-01-08 엘지전자 주식회사 부유미생물 측정장치 및 그 측정방법
WO2017044536A1 (en) * 2015-09-08 2017-03-16 Rutgers, The State University Of New Jersey Personal electrostatic bioaerosol sampler with high sampling flow rate
US9933445B1 (en) 2016-05-16 2018-04-03 Hound Labs, Inc. System and method for target substance identification
JP7182125B2 (ja) * 2018-10-05 2022-12-02 曙ブレーキ工業株式会社 粉塵測定装置および粉塵測定方法
US20200245899A1 (en) * 2019-01-31 2020-08-06 Hound Labs, Inc. Mechanical Breath Collection Device
CN110903956A (zh) * 2019-11-20 2020-03-24 安徽金联地矿科技有限公司 用于矿区环境保护的微生物收集装置
JP2021162598A (ja) * 2020-03-31 2021-10-11 ダイキン工業株式会社 検知ユニット、収容容器、検知装置
US11933731B1 (en) 2020-05-13 2024-03-19 Hound Labs, Inc. Systems and methods using Surface-Enhanced Raman Spectroscopy for detecting tetrahydrocannabinol
US11806711B1 (en) 2021-01-12 2023-11-07 Hound Labs, Inc. Systems, devices, and methods for fluidic processing of biological or chemical samples using flexible fluidic circuits
WO2024089183A1 (en) * 2022-10-27 2024-05-02 Avelo Ag Device and system for collecting aerosol particles and preparing the sample for analysis
CN116539380B (zh) * 2023-06-15 2024-04-19 宁夏测衡联合实业有限公司 一种恒温恒流大气采样装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023662A (ja) * 1998-06-10 2000-01-25 Millipore Sa 空気を微生物学的に分析するためのサンプリング装置及びサンプリング方法
JP2009011265A (ja) * 2007-07-06 2009-01-22 Kansai Seiki Kogyo Kk 空中浮遊菌サンプラー
JP2009055790A (ja) * 2007-08-29 2009-03-19 Midori Anzen Co Ltd 微生物の採取方法、微生物疑似培地および微生物回収具
WO2009157510A1 (ja) * 2008-06-27 2009-12-30 株式会社日立製作所 菌捕集担体カートリッジ、担体処理装置および菌の計測方法
JP2010124711A (ja) * 2008-11-25 2010-06-10 Kyowa Kogyo Kk 空中浮遊物捕集装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI104127B (fi) 1998-01-27 1999-11-15 Dekati Oy Menetelmä sähköisissä impaktoreissa tapahtuvien coulombisten häviöiden minimoimiseksi ja sähköinen impaktori
TW409186B (en) * 1998-10-26 2000-10-21 Midori Anzen K K Portable sampling device for air floating bacterium
JP4358349B2 (ja) 1999-04-19 2009-11-04 ミドリ安全株式会社 ポータブル型空中浮遊菌サンプラ
US6472203B1 (en) * 1999-11-01 2002-10-29 Environmental Microbiology Laboratory, Inc. Combination air sampling cassette and nutrient media dish
FR2880355B1 (fr) * 2004-12-31 2007-04-20 Acanthe Sarl Crible pour bio-impacteur, bio-impacteur equipe d'un tel crible
JP2009011256A (ja) * 2007-07-06 2009-01-22 Japan Health Science Foundation 精子と融合した融合不能卵の調製方法及びこの方法を利用した体外受精方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023662A (ja) * 1998-06-10 2000-01-25 Millipore Sa 空気を微生物学的に分析するためのサンプリング装置及びサンプリング方法
JP2009011265A (ja) * 2007-07-06 2009-01-22 Kansai Seiki Kogyo Kk 空中浮遊菌サンプラー
JP2009055790A (ja) * 2007-08-29 2009-03-19 Midori Anzen Co Ltd 微生物の採取方法、微生物疑似培地および微生物回収具
WO2009157510A1 (ja) * 2008-06-27 2009-12-30 株式会社日立製作所 菌捕集担体カートリッジ、担体処理装置および菌の計測方法
JP2010124711A (ja) * 2008-11-25 2010-06-10 Kyowa Kogyo Kk 空中浮遊物捕集装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192787A1 (ja) * 2013-05-31 2014-12-04 シャープ株式会社 検出装置
JPWO2015049759A1 (ja) * 2013-10-03 2017-03-09 株式会社日立製作所 気中物質検知装置用のカートリッジ及び気中物質検知装置
US10309876B2 (en) 2013-10-03 2019-06-04 Hitachi, Ltd. Cartridge for airborne substance sensing device, and airborne substance sensing device
WO2016194463A1 (ja) * 2015-05-29 2016-12-08 株式会社村田製作所 抽出方法、分析方法、抽出装置および分析装置
JP6075519B1 (ja) * 2015-05-29 2017-02-08 株式会社村田製作所 抽出方法、分析方法、抽出装置および分析装置
US10266875B2 (en) 2015-05-29 2019-04-23 Murata Manufacturing Co., Ltd. Extraction method, analytical method, extraction device, and analytical device
CN107281860A (zh) * 2016-03-30 2017-10-24 中国科学院大连化学物理研究所 一种舱内空气净化装置
CN107281860B (zh) * 2016-03-30 2019-11-08 中国科学院大连化学物理研究所 一种舱内空气净化装置
CN107638765A (zh) * 2016-07-21 2018-01-30 中国科学院大连化学物理研究所 一种低噪音低能耗空气净化装置
CN110514486A (zh) * 2019-07-24 2019-11-29 中国农业大学 一种便携式花粉及真菌孢子采样器
JP2022066052A (ja) * 2020-10-16 2022-04-28 ピコテクバイオ株式会社 微生物捕集装置及び微生物評価方法

Also Published As

Publication number Publication date
US20130319239A1 (en) 2013-12-05
JP5700594B2 (ja) 2015-04-15
US9433883B2 (en) 2016-09-06
JPWO2012114458A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5700594B2 (ja) 大気中微生物等の捕集装置及びその捕集方法
US6110247A (en) Micromachined impactor pillars
JP2008240701A (ja) 排気ポンプ、連通管及び排気システム
WO2013118259A1 (ja) 大気中微生物監視装置及びそのための方法
WO2017136108A1 (en) Methods and devices for vapor sampling
US7258716B2 (en) Microimpactor system having optimized impactor spacing
US11794126B2 (en) System, apparatuses, devices, and methods for producing particles
KR102294469B1 (ko) 공기 중 바이오입자의 온전한 포집을 위한 장치
EP2596844A1 (en) Grease Filter
Yu et al. Improving the collection efficiency of the liquid impinger for ultrafine particles and viral aerosols by applying granular bed filtration
JP4358349B2 (ja) ポータブル型空中浮遊菌サンプラ
EP3188821B1 (en) Filtering device for dust and other pollutants
US10279310B2 (en) Method and system for fluid stream chemical compounds collection, deposition and separation
AU2014319969A1 (en) Method and system for fluid stream chemical compounds collection, deposition and separation
CN107086054B (zh) 一种基于微流体惯性冲击器原理的气溶胶过滤器
JP6290476B2 (ja) バグフィルター用空気増幅装置および該バグフィルター用空気増幅装置を用いたバグフィルター用空気増幅システム
JP2017131875A (ja) 電気集塵装置
KR20230032546A (ko) 공기 중 유해물질을 포집하기 위한 장치
CN211384170U (zh) 动态拦截净化器
JP2022163999A (ja) 微粒子捕集装置および微粒子捕集方法
JP4441027B2 (ja) ポータブル型空中浮遊菌サンプラ
JP6456605B2 (ja) 粒子検出装置
CN211215813U (zh) 一种用于气体净化盘的辐条、气体净化盘及气体净化装置
CN218620813U (zh) 一种pcr扩增气溶胶防泄漏装置
CN213492772U (zh) 口腔飞沫抽吸装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500754

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985708

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859357

Country of ref document: EP

Kind code of ref document: A1