WO2012114451A1 - 空気調和装置、空気調和装置の運転制御方法および冷却システム - Google Patents

空気調和装置、空気調和装置の運転制御方法および冷却システム Download PDF

Info

Publication number
WO2012114451A1
WO2012114451A1 PCT/JP2011/053780 JP2011053780W WO2012114451A1 WO 2012114451 A1 WO2012114451 A1 WO 2012114451A1 JP 2011053780 W JP2011053780 W JP 2011053780W WO 2012114451 A1 WO2012114451 A1 WO 2012114451A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
temperature
heat
transfer medium
Prior art date
Application number
PCT/JP2011/053780
Other languages
English (en)
French (fr)
Inventor
麻里 内田
小谷 正直
陽子 國眼
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/053780 priority Critical patent/WO2012114451A1/ja
Priority to JP2013500747A priority patent/JP5629366B2/ja
Publication of WO2012114451A1 publication Critical patent/WO2012114451A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle

Definitions

  • the present invention relates to an air conditioner, an operation control method for the air conditioner, and a cooling system, and more particularly, to an air conditioner that performs natural circulation for circulating a refrigerant due to a difference in refrigerant density, an operation control method for the air conditioner, and a cooling system. .
  • the air conditioner has a refrigeration cycle, and in a forced circulation cycle in which the refrigerant is circulated by the compressor, the refrigerant is driven by the compressor, flows into the condenser to be condensed and liquefied, decompressed by the expansion valve, The gas-liquid two-phase refrigerant flows into the evaporator and evaporates and cools.
  • a natural circulation combined type air conditioner capable of a natural circulation cycle in which the refrigerant is naturally circulated by a difference in density of the refrigerant is known (see, for example, Patent Document 1).
  • the refrigerant is driven by the density difference between the refrigerant liquid and the refrigerant gas, and the circulation amount of the refrigerant is affected by the height of the liquid column due to the refrigerant liquid formed on the evaporator inlet side.
  • an air conditioner that performs a natural circulation cycle to start heat exchange (that is, to activate the natural circulation cycle)
  • the influence of the indoor temperature, the outdoor temperature, and the refrigerant temperature in the natural circulation cycle is affected. receive.
  • Patent Document 1 is known as a technique for improving the refrigerant shortage during the cooling operation by the refrigerant natural circulation cycle.
  • Cooling operation by a natural circulation cycle is generally performed in an intermediate period (time when the outside air temperature is lower than the room temperature).
  • ⁇ T 5 ° C.
  • the refrigerant in the refrigerant circuit stored in the outdoor unit is kept at a pressure balanced with the outdoor temperature. For this reason, in order to start the cooling operation by natural circulation, it is necessary to shift the refrigerant in the refrigerant circuit to a predetermined pressure region not less than the pressure corresponding to the outdoor temperature and not more than the pressure corresponding to the indoor temperature.
  • an object of the present invention is to provide an air conditioner, an operation control method for an air conditioner, and a cooling system that can stably and quickly start the natural circulation in a natural circulation cycle.
  • the present invention is lower than the compressor, the first heat exchanger that exchanges heat with the first heat transfer medium on the heat source side, the expansion valve, and the first heat exchanger.
  • a bypass pipe that bypasses the compressor is provided in an annular refrigerant circuit that is installed in a position and is sequentially connected to a second heat transfer medium on the use side and a second heat exchanger that performs heat exchange.
  • An air conditioner capable of operating by switching between a natural circulation cycle for circulating a refrigerant according to a density difference between a heat exchanger, the expansion valve, and the second heat exchanger, and starting the natural circulation cycle
  • the second heat transfer on the use side flowing into the second heat exchanger And characterized in that the flow rate of the body increases from the predetermined flow rate.
  • an air conditioner an operation control method for an air conditioner, and a cooling system capable of stably and quickly starting the natural circulation in a natural circulation cycle.
  • FIG. 1 is a system diagram of an air conditioner S according to the present embodiment.
  • the air conditioner S includes a refrigerant circuit 10 in which a refrigerant circulates, an outdoor unit 1 installed outside the room (outside the air-conditioned space), an indoor unit 3 installed inside the room (the air-conditioned space), and a control device 5. And.
  • the air conditioner S has a function of performing “cooling operation” for cooling the room in which the indoor unit 3 is arranged and “heating operation” for heating the room in which the indoor unit 3 is arranged.
  • the “cooling operation” includes a cooling operation by a forced circulation cycle in which the refrigerant in the refrigerant circuit 10 is circulated by the compressor 11 described later (hereinafter referred to as “cooling operation (forced circulation)”), and a refrigerant due to a difference in refrigerant density. It has a function of performing a cooling operation (hereinafter referred to as “cooling operation (natural circulation)”) by a natural circulation cycle in which the refrigerant of the circuit 10 is circulated.
  • the air conditioner S also includes a refrigerant circuit 10 through which the refrigerant circulates and a heat transfer medium circulation circuit 30 through which the heat transfer medium circulates.
  • the refrigerant circuit 10 provided in the outdoor unit 1 includes a compressor 11 that compresses the refrigerant into a high-pressure refrigerant, a four-way valve 12 that switches a refrigerant flow direction between a cooling operation and a heating operation, and an outdoor heat exchanger 13. And the auxiliary outdoor heat exchanger 14, the outdoor heat exchanger 13 and the outdoor fan 13a for blowing outdoor air to the auxiliary outdoor heat exchanger 14, the expansion valve 15 for reducing the pressure of the refrigerant, and the flow rate of the refrigerant.
  • coolant flow control valve 16 the primary side fluid flow path 17a of the intermediate heat exchanger 17 which performs heat exchange with a heat transfer medium, electromagnetic valves 24 and 25, two-way valves 22 and 23, and the bypass valve 21 It is prepared for. These devices, valves, and the like are connected in an annular shape by a refrigerant pipe.
  • the compressor 11 is a variable capacity compressor capable of capacity control.
  • a compressor a piston type, a rotary type, a scroll type, a screw type, or a centrifugal type can be adopted.
  • the compressor 11 is a scroll type compressor, and capacity control is possible by inverter control, and the rotational speed is variable from low speed to high speed.
  • the outdoor heat exchanger 13 and the auxiliary outdoor heat exchanger 14 exchange heat between outdoor air as a heat source side heat medium blown from the outdoor fan 13a and refrigerant flowing in the heat exchangers 13 and 14.
  • a fin tube type is used.
  • the auxiliary outdoor heat exchanger 14 is connected in parallel to the outdoor heat exchanger 13, and is provided before and after the auxiliary outdoor heat exchanger 14 (upstream and downstream sides of the refrigerant flow during the cooling operation).
  • By opening and closing the electromagnetic valves 24 and 25 it is possible to switch between the case where the refrigerant flows only to the outdoor heat exchanger 13 and the case where the refrigerant flows to both the outdoor heat exchanger 13 and the auxiliary outdoor heat exchanger 14. It has become.
  • a bypass pipe 21a for bypassing the compressor 11 is provided, and a bypass valve 21 that is a two-way valve is attached to the bypass pipe 21a. Therefore, by controlling the opening and closing of the two-way valves 22 and 23 and the bypass valve 21 provided before and after the compressor 11, the flow path through which the refrigerant flows passes through the compressor 11 and bypasses the compressor 11. You can switch to and from.
  • a bypass pipe 16a that bypasses the expansion valve 15 is provided, and a refrigerant flow control valve 16 is attached to the bypass pipe 16a. That is, the expansion valve 15 and the refrigerant flow control valve 16 are connected in parallel. Therefore, by controlling the opening / closing of the expansion valve 15 and the refrigerant flow control valve 16, the refrigerant can be selectively passed through the expansion valve 15 and the refrigerant flow control valve 16.
  • the intermediate heat exchanger 17 performs heat exchange between the refrigerant flowing through the primary fluid flow path 17a and the heat transfer medium flowing through the secondary fluid flow path 17b.
  • a vessel or the like is used.
  • the intermediate heat exchanger 17 is installed at a position lower than the outdoor heat exchanger 13 and the auxiliary outdoor heat exchanger 14. This is for performing cooling operation by a natural circulation cycle.
  • HFC refrigerant HFO-1234yf, HFO-1234ze, natural refrigerant (for example, CO 2 refrigerant), or the like can be used.
  • natural refrigerant for example, CO 2 refrigerant
  • a heat transfer medium circulation circuit 30 provided from the outdoor unit 1 to the indoor unit 3 includes a circulation pump 31 for feeding the heat transfer medium, a three-way valve 32, and an indoor heat exchanger 33 installed in the indoor unit 3. And an indoor fan 33a that blows indoor air to the indoor heat exchanger 33 and a secondary fluid flow path 17b of the intermediate heat exchanger 17 that performs heat exchange with the refrigerant are sequentially connected by a pipe, It is the circuit formed in.
  • the indoor heat exchanger 33 performs heat exchange between indoor air as a use-side heat medium blown from the indoor fan 33a and a heat transfer medium flowing in the indoor heat exchanger 33.
  • a fin tube The formula is used.
  • the heat transfer medium flowing in the heat transfer medium circulation circuit 30 exchanges heat with the indoor air in the room where the indoor unit 3 is disposed via the indoor heat exchanger 33, thereby cooling or heating the room.
  • the capacity adjustment of the indoor heat exchanger 33 is controlled by the rotational speed of the circulation pump 31, the opening degree of the three-way valve 32, and the rotational speed of the indoor fan 33a.
  • water or brine (antifreeze) such as ethylene glycol can be used as the heat transfer medium.
  • the air conditioning apparatus S includes a control device 5.
  • the control device 5 determines the operation mode of the air conditioner S, and according to the determined operation mode, various valves (four-way valve 12, expansion valve 15, refrigerant flow rate control valve 16, bypass valve 21, two-way valves 22, 23, electromagnetic The state (opening) of the valves 24 and 25, the three-way valve 32), the rotational speed of the circulation pump 31, the rotational speed of the compressor 11, and the rotational speeds of the fans (outdoor fan 13a, indoor fan 33a) of each heat exchanger. It has the function to control and control various operations of the air conditioner S.
  • the air conditioning apparatus S includes a temperature sensor 41 for detecting the outdoor temperature T OA, a temperature sensor 42 for detecting the indoor temperature T RM, a temperature sensor 43 for detecting an inlet refrigerant temperature T EVIN intermediate heat exchanger 17 And a temperature sensor 44 that detects the outlet refrigerant temperature TEVOUT of the intermediate heat exchanger 17, and the temperature detection signals detected by the temperature sensors 41, 42, 43, 44 are input to the control device 5.
  • FIG. 2 is a system diagram illustrating the flow of the refrigerant and the heat transfer medium during the cooling operation (forced circulation) of the air-conditioning apparatus S according to the present embodiment.
  • the control device 5 controls the refrigerant flow rate control valve 16, the bypass valve 21, the electromagnetic valve 24, and the electromagnetic valve 25 to be closed and the two-way valve 22 and the two-way valve 23 to be opened. To do.
  • the control device 5 controls the opening (throttle) of the expansion valve 15 and controls the four-way valve 12 to be in the cooling operation position.
  • the control device 5 controls the rotational speeds of the compressor 11 and the outdoor fan 13a.
  • the auxiliary outdoor heat exchanger 14 stores excess refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 that functions as a condenser.
  • the refrigerant flowing through the outdoor heat exchanger 13 dissipates heat by exchanging heat with the outdoor air sent by the outdoor fan 13a, and becomes a high-pressure liquid refrigerant.
  • the liquid refrigerant that has flowed out of the outdoor heat exchanger 13 is depressurized by the expansion valve 15 and enters a low-temperature and low-pressure gas-liquid two-phase state. Then, the low-temperature and low-pressure refrigerant flows into the primary fluid passage 17a of the intermediate heat exchanger 17 that functions as an evaporator.
  • the refrigerant flowing through the primary side fluid flow path 17a of the intermediate heat exchanger 17 is heated by the heat transfer medium by exchanging heat with the heat transfer medium flowing through the secondary side fluid flow path 17b of the intermediate heat exchanger 17. It evaporates and is sent to the compressor 11 and circulates through the refrigerant circuit 10.
  • the control device 5 controls the rotational speeds of the circulation pump 31 and the indoor fan 33a.
  • the control device 5 controls the opening degree of the three-way valve 32.
  • the heat transfer medium cooled by flowing through the secondary fluid passage 17 b of the intermediate heat exchanger 17 flows into the indoor heat exchanger 33 of the indoor unit 3 by driving the circulation pump 31.
  • the heat transfer medium flowing through the indoor heat exchanger 33 absorbs heat by exchanging heat with air (indoor air) sent by the indoor fan 33a. Then, the heat transfer medium that has absorbed heat is sent from the indoor heat exchanger 33 to the secondary fluid flow path 17b of the intermediate heat exchanger 17 and circulates in the heat transfer medium circulation circuit 30.
  • the heat transfer medium absorbs heat in the indoor heat exchanger 33 of the indoor unit 3, whereby the air (room air) is cooled and the room (air-conditioned space) is cooled.
  • the refrigerant is caused to flow in the opposite direction to that during the cooling operation (forced circulation) shown in FIG. That is, by switching the four-way valve 12 of the refrigerant circuit 10, the high-temperature and high-pressure refrigerant discharged from the compressor 11 is sent to the intermediate heat exchanger 17, and the intermediate heat exchanger 17 functions as a condenser. And it decompresses with the expansion valve 15, and the outdoor heat exchanger 13 functions as an evaporator.
  • the heat transfer medium heated by the intermediate heat exchanger 17 flows into the indoor heat exchanger 33 and dissipates heat by exchanging heat with the air (indoor air) sent by the indoor fan 33a.
  • the air-conditioned space is heated.
  • FIG. 3 is a system diagram showing the flow of the refrigerant and the heat transfer medium during the cooling operation (natural circulation) of the air-conditioning apparatus S according to the present embodiment.
  • the control device 5 performs control so that the expansion valve 15, the two-way valve 22, and the two-way valve 23 are closed and the bypass valve 21, the electromagnetic valve 24, and the electromagnetic valve 25 are opened.
  • the control device 5 controls the opening degree of the refrigerant flow control valve 16.
  • the control device 5 controls the rotational speed of the outdoor fan 13a.
  • the compressor 11 is stopped.
  • the auxiliary outdoor heat exchanger 14 functions as a condenser together with the outdoor heat exchanger 13.
  • the refrigerant in the outdoor heat exchanger 13 and the auxiliary outdoor heat exchanger 14 functioning as a condenser dissipates heat to the outdoor air, condenses and liquefies.
  • the liquid refrigerant having a high density descends under the influence of gravity, passes through the refrigerant flow rate control valve 16, and flows into the primary side fluid passage 17a of the intermediate heat exchanger 17 functioning as an evaporator.
  • the refrigerant flowing through the primary fluid flow path 17a of the intermediate heat exchanger 17 absorbs heat from the heat transfer medium by exchanging heat with the heat transfer medium flowing through the secondary fluid flow path 17b of the intermediate heat exchanger 17. Evaporate and gasify.
  • the heat transfer medium circulation circuit 30 is the same as the operation of the heat transfer medium circulation circuit 30 during the cooling operation (forced circulation), and a description thereof will be omitted.
  • the indoor set temperature is 25 ° C. and the indoor / outdoor temperature difference that allows cooling operation (natural circulation) is 5 ° C., as shown in FIG.
  • the outdoor temperature is below 20 ° C., especially around April, May, September and October, but natural circulation operation is possible even in winter when the indoor heat load is high.
  • step S ⁇ b> 101 the control device 5 drives the outdoor fan 13 a of the outdoor unit 1, takes outdoor air into the outdoor unit 1, and detects the outdoor temperature TOA with the temperature sensor 41. Further, the control device 5 drives the indoor fan 33 a of the indoor unit 3 to take in indoor air into the indoor unit 3, and detects the indoor temperature TRM with the temperature sensor 42. Moreover, the control apparatus 5 acquires set temperature TRPS which is indoor target temperature. The set temperature TRPS is input to the control device 5 when the user operates a remote controller (not shown) installed indoors, for example.
  • step S102 the control unit 5 determines whether the indoor temperature T RM is higher than the set temperature T RPS. If the indoor temperature T RM is higher than the set temperature T RPS (S102 ⁇ Yes), the processing of the control unit 5 proceeds to step S104. When the room temperature T RM is not higher than the set temperature T RPS (No in S102), the process of the control device 5 proceeds to Step S103.
  • step S103 the control device 5 performs the heating operation (forced circulation) of the air conditioner S.
  • the heating operation forced circulation
  • step S104 the controller 5 is the temperature difference between the room temperature T RM and the outdoor temperature T OA (T RM -T OA) is equal to or greater than a predetermined value PS1. If the temperature difference (T RM -T OA) is larger than the predetermined value PS1 (S104 ⁇ Yes), the processing of the control unit 5 proceeds to step S105. When the temperature difference (T RM ⁇ T OA ) is not greater than the predetermined value PS1 (No in S104), the process of the control device 5 proceeds to Step S106.
  • step S105 the control device 5 determines whether or not the temperature difference (T RM ⁇ T RPS ) between the room temperature T RM and the set temperature T RPS is greater than a predetermined value PS2.
  • the process of the control device 5 proceeds to step S107.
  • the process of the control device 5 proceeds to Step S106.
  • step S106 the control device 5 performs the cooling operation (forced circulation) of the air conditioner S.
  • the cooling operation forced circulation
  • step S107 the control device 5 determines whether or not the operation mode (previous operation mode) before the air conditioner S is stopped is the cooling operation (natural circulation).
  • the process of the control device 5 proceeds to step S109 in FIG.
  • the process of the control device 5 proceeds to Step S108.
  • step S108 the control device 5 performs a switching operation to the cooling operation (natural circulation). The switching operation will be described later with reference to FIG. Then, the process of the control device 5 proceeds to step S109 in FIG.
  • step S ⁇ b> 109 the control device 5 detects the inlet refrigerant temperature T EVIN of the intermediate heat exchanger 17 with the temperature sensor 43. Further, the control device 5 calculates the pressure ratio K.
  • FIG. 7 is an example of a diagram illustrating a relationship between pressure and enthalpy during cooling operation (natural circulation).
  • the control unit 5, based on the indoor temperature T RM calculates the room temperature reference pressure P RM.
  • the control unit 5, based on the outdoor temperature T OA calculates the outdoor temperature reference pressure P OA.
  • the control unit 5, based on the inlet coolant temperature T EVIN calculates the refrigerant temperature reference pressure P ref.
  • the indoor temperature reference pressure P RM is the pressure of the refrigerant when the refrigerant in the refrigerant circuit 10 is the indoor temperature T RM, and is calculated based on the physical property value of the refrigerant enclosed in the refrigerant circuit 10.
  • the outdoor temperature reference pressure POA is the pressure of the refrigerant when the refrigerant in the refrigerant circuit 10 is the outdoor temperature TOA, and is calculated based on the physical property value of the refrigerant sealed in the refrigerant circuit 10.
  • the refrigerant temperature reference pressure P ref a pressure corresponding to the current refrigerant temperature in the refrigerant circuit 10, as the reference temperature, a pressure of the refrigerant example at the inlet refrigerant temperature T EVIN intermediate heat exchanger 17, the refrigerant It is calculated based on the physical property value of the refrigerant sealed in the circuit 10. Then, as shown in FIG. 7, the pressure difference (P RM ⁇ P OA ) between the indoor temperature reference pressure P RM and the outdoor temperature reference pressure P OA is ⁇ P, and the refrigerant temperature reference pressure P ref and the outdoor temperature reference pressure P OA are set. And the pressure ratio K is ⁇ P1 / ⁇ P, the controller 5 calculates the pressure ratio K.
  • the pressure difference (P ref ⁇ P OA ) is ⁇ P1.
  • step S110 the control device 5 determines whether or not the pressure ratio K calculated in step S109 is equal to or greater than a predetermined value PS3.
  • the pressure ratio K is equal to or greater than the predetermined value PS3 (S110 ⁇ Yes)
  • the process of the control device 5 proceeds to step S115.
  • the pressure ratio K is not equal to or greater than the predetermined value PS3 (S110 ⁇ No)
  • the process of the control device 5 proceeds to step S111.
  • step S111 the control device 5 outputs a startup operation command for cooling operation (natural circulation).
  • the start-up operation is a start-up operation for quickly starting the cooling operation (natural circulation), and specifically, processing from step S112 to step S114 described later.
  • step S112 the control device 5 opens the expansion valve 15 and closes the opening of the refrigerant flow rate control valve 16.
  • the expansion valve 15 is closed and the opening of the refrigerant flow control valve 16 is reduced.
  • the rotational speed of the circulation pump 31 is increased to increase the flow rate of the circulating heat transfer medium.
  • the three-way valve 32 is switched so that the amount of the heat transfer medium circulating between the intermediate heat exchanger 17 and the indoor heat exchanger 33 increases.
  • the processing of the control device 5 proceeds to step S116.
  • the process of the control device 5 returns to Step S113.
  • step S115 the control device 5 determines that the start-up operation is unnecessary. Then, the process of the control device 5 proceeds to step S116.
  • step S116 the control device 5 sets the opening of the refrigerant flow control valve 16 to flow control (or full open). Further, the rotational speed of the circulation pump 31 is driven at the rated speed of the cooling operation (natural circulation). The same applies to the three-way valve 32.
  • step S117 the control device 5 starts the cooling operation (natural circulation) of the air conditioner S.
  • step S201 the control device 5 closes the refrigerant flow control valve 16, the two-way valve 22, and the two-way valve 23.
  • the bypass valve 21, the electromagnetic valve 24, and the electromagnetic valve 25 are closed, and the expansion valve 15 is opened.
  • step S202 the control device 5 changes the opening degree of the electromagnetic valve 25.
  • the liquid refrigerant stored in the auxiliary outdoor heat exchanger 14 is discharged from the electromagnetic valve 25 through the expansion valve 15 to the inlet side of the intermediate heat exchanger 17, and to the inlet side of the intermediate heat exchanger 17.
  • a coolant liquid column is formed.
  • step S203 the control device 5 determines the refrigerant pressure in the region sandwiched between the solenoid valve 24 and the solenoid valve 25 (refrigerant pressure in the auxiliary outdoor heat exchanger 14) and the refrigerant pressure in the other refrigerant circuits 10 (for example, , The pressure difference between the refrigerant and the pressure of the refrigerant in the outdoor heat exchanger 13 is detected, and it is determined whether the pressure difference is within a specified value. Each pressure is detected by a pressure sensor (not shown). When the pressure difference is within the specified value (S203 / Yes), the process of the control device 5 proceeds to step S204. When the pressure difference is not within the specified value (No at S203), the process of the control device 5 returns to Step S202. Thus, the opening degree of the solenoid valve 25 is changed until the pressure difference is within the specified value, and the refrigerant stored in the auxiliary outdoor heat exchanger 14 is released.
  • step S ⁇ b> 204 the control device 5 fully opens the solenoid valves 24 and 25.
  • step S205 the control device 5 opens the bypass valve 21. And the process of the control apparatus 5 complete
  • the air conditioner S increases the rotational speed of the circulation pump 31 and increases the flow rate of the heat transfer medium flowing into the intermediate heat exchanger 17 in the start-up operation.
  • heat exchange between the refrigerant and the heat transfer medium in the intermediate heat exchanger 17 is promoted, and the refrigerant is quickly heated by the heat transfer medium.
  • the pressure of the refrigerant in the refrigerant circuit 10 is also increased, and can be quickly shifted to a pressure region where natural circulation is possible.
  • the heating amount is determined by the amount of refrigerant enclosed in the cycle, the heat capacity of the equipment constituting the cycle, and the like.
  • the air conditioning apparatus S which concerns on this embodiment starts the cooling operation by a natural circulation cycle rapidly, and air-conditions a room
  • the start-up time can be shortened and energy saving is improved.
  • the air conditioner S restricts the opening by the expansion valve 15 and the refrigerant flow rate control valve 16 in the start-up operation, so that the inlet side of the intermediate heat exchanger 17 Since the refrigerant liquid column can be formed in the cooling operation, it is possible to easily start the cooling operation by the natural circulation cycle.
  • the air conditioning apparatus S which concerns on this embodiment complete
  • DELTA inlet-outlet temperature difference
  • PS4 predetermined value
  • the refrigerant evaporates and gasifies, and flows from the outlet side of the intermediate heat exchanger 17 to the outdoor heat exchanger 13 and the auxiliary outdoor heat exchanger 14 through the bypass pipe 21a.
  • the air conditioning apparatus S which concerns on this embodiment is not limited to the structure of the said embodiment, A various change is possible within the range which does not deviate from the meaning of invention.
  • the auxiliary refrigerant is stored in the cooling operation by the forced circulation cycle and the auxiliary outdoor heat exchanger 14 that functions as a condenser in the cooling operation by the natural circulation cycle is provided.
  • coolant supply apparatus (not shown) which adjusts the refrigerant
  • the refrigerant is passed through the expansion valve 15 during the cooling operation by the forced circulation cycle, and the refrigerant is passed through the refrigerant flow control valve 16 during the cooling operation by the natural circulation cycle.
  • the present invention is not limited to this, and may be constituted by one pressure reducing valve (or one refrigerant flow rate control valve).
  • the air-conditioning apparatus S that supplies the heat transfer medium cooled by the intermediate heat exchanger 17 to the indoor heat exchanger 33 and cools (cools) the room (the air-conditioned space) has been described.
  • the present invention is not limited to this, and the present invention may be applied to a chiller system (cooling system) that supplies a heat transfer medium cooled by the intermediate heat exchanger 17 to an apparatus (not shown).
  • the time required for starting the cooling operation by the natural circulation cycle can be shortened, so that the present invention can also be applied to a device (for example, a data center) that can be left in a poorly cooled state.
  • the intermediate heat exchanger 17 and the heat transfer medium circulation circuit 30 are provided, and the rotation speed of the circulation pump 31 for feeding the heat transfer medium is increased during start-up operation.
  • the intermediate heat exchanger 17 and the heat transfer medium circulation circuit 30 are not provided, and the refrigerant is circulated through the indoor heat exchanger 33 instead of the intermediate heat exchanger 17.
  • the rotational speed of 33a may be increased.
  • the indoor heat exchanger 33 needs to be disposed at a position lower than the outdoor heat exchanger 13 in order to allow natural circulation of the refrigerant.

Abstract

 自然循環サイクルにおいて、自然循環の起動を安定して速やかに開始させることのできる空気調和装置、空気調和装置の運転制御方法および冷却システムを提供する。 圧縮機(11)と、第一熱交換器(13)と、膨張弁(15)と、第二熱交換器(17)との間で冷媒を循環させる強制循環サイクルと、バイパス配管(21a)と、第一熱交換器(13)と、膨張弁(15)と、第二熱交換器(17)との間で冷媒を密度差により循環させる自然循環サイクルとを切替えて運転可能な空気調和装置(S)であって、自然循環サイクルの起動時に、第二熱交換器(17)に流入する利用側の第二熱搬送媒体の流量を所定の流量より増加させる。

Description

空気調和装置、空気調和装置の運転制御方法および冷却システム
 本発明は、空気調和装置、空気調和装置の運転制御方法および冷却システムに関し、特に、冷媒の密度差により冷媒を循環させる自然循環を行う空気調和装置、空気調和装置の運転制御方法および冷却システムに関する。
 空気調和装置は冷凍サイクルを備えており、圧縮機により冷媒を循環させる強制循環サイクルでは、冷媒は圧縮機により駆動され、凝縮器に流入して凝縮液化し、膨張弁で減圧され、低温低圧の気液二相状態の冷媒が蒸発器に流入して蒸発気化して冷却を行う。
 また、冷媒の密度差により冷媒を自然循環させる自然循環サイクルが可能な自然循環併用式空気調和機が知られている(例えば、特許文献1参照)。自然循環サイクルでは、冷媒は冷媒液と冷媒ガスとの密度差により駆動され、冷媒の循環量は蒸発器入口側に形成された冷媒液による液柱の高さの影響を受ける。また、自然循環サイクルを行う空気調和装置が熱交換を開始するためには、(即ち、自然循環サイクルが起動するためには、)室内温度、室外温度、自然循環サイクル内の冷媒温度の影響を受ける。そのため、自然循環サイクル内の冷媒温度が適正な範囲から外れている場合には、冷媒液が蒸発器に供給されず冷媒不足による冷房運転の能力不足や立ち上がりの遅れが生じることになる。冷媒自然循環サイクルにより冷房運転時の冷媒不足を改善する技術として、例えば、特許文献1が知られている。
特開平11-257767号公報
 自然循環サイクルによる冷房運転は、一般に、中間期(外気温度が室内温度より低い時期)において行われる。この自然循環サイクルによる運転が行われるためには、通常、室内温度と室外温度との間にある程度の温度差(例えばΔT=5℃程度)が必要であり、この温度差が小さくなると、凝縮器内で流入したガス冷媒を完全に液化させることができなくなる。また、室外温度が低い場合、室外ユニット内におさめられた冷媒回路内の冷媒は室外温度と平衡した圧力に保たれている。このため、自然循環による冷房運転を開始するためには、冷媒回路内の冷媒を室外温度相当の圧力以上で、室内温度相当の圧力以下の所定の圧力領域に移行させる必要がある。
 そこで、本発明は、自然循環サイクルにおいて、自然循環の起動を安定して速やかに開始させることのできる空気調和装置、空気調和装置の運転制御方法および冷却システムを提供することを課題とする。
 このような課題を解決するために、本発明は、圧縮機と、熱源側の第一熱搬送媒体と熱交換を行う第一熱交換器と、膨張弁と、前記第一熱交換器より低い位置に設置され、利用側の第二熱搬送媒体と熱交換を行う第二熱交換器とを順次接続して環状に形成された冷媒回路に、前記圧縮機をバイパスするバイパス配管を設けて成る空気調和装置において、前記圧縮機と、前記第一熱交換器と、前記膨張弁と、前記第二熱交換器との間で冷媒を循環させる強制循環サイクルと、記バイパス配管と、前記第一熱交換器と、前記膨張弁と、前記第二熱交換器との間で冷媒を密度差により循環させる自然循環サイクルとを切替えて運転可能な空気調和装置であって、前記自然循環サイクルの起動時に、前記第二熱交換器に流入する利用側の第二熱搬送媒体の流量を所定の流量より増加させることを特徴とする。
 本発明によれば、自然循環サイクルにおいて、自然循環の起動を安定して速やかに開始させることのできる空気調和装置、空気調和装置の運転制御方法および冷却システムを提供することができる。
本実施形態に係る空気調和装置の系統図である。 本実施形態に係る空気調和装置の冷房運転(強制循環)時における冷媒および熱搬送媒体の流れを示す系統図である。 本実施形態に係る空気調和装置の冷房運転(自然循環)時における冷媒および熱搬送媒体の流れを示す系統図である。 空気調和装置の起動時における制御を説明するフローチャートである。 空気調和装置の起動時における制御を説明するフローチャートである。 自然循環への切り替え操作における制御を説明するフローチャートである。 冷房運転(自然循環)時における圧力とエンタルピーの関係を示す図の一例である。 一年間の室外温度の変化と冷房負荷の関係を示す一例である。
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
≪空気調和装置≫
 図1は、本実施形態に係る空気調和装置Sの系統図である。
 空気調和装置Sは、冷媒が循環する冷媒回路10を有し室外(被空調空間外)に設置される室外ユニット1と、室内(被空調空間)に設置される室内ユニット3と、制御装置5と、を備えている。
 空気調和装置Sは、室内ユニット3が配置された室内を冷房する「冷房運転」と、室内ユニット3が配置された室内を暖房する「暖房運転」と、を行う機能を有している。
 さらに、「冷房運転」は、後述する圧縮機11により冷媒回路10の冷媒を循環させる強制循環サイクルによる冷房運転(以下、「冷房運転(強制循環)」と称す)と、冷媒の密度差により冷媒回路10の冷媒を循環させる自然循環サイクルによる冷房運転(以下、「冷房運転(自然循環)」と称す)と、を行う機能を有している。
 また、空気調和装置Sは、冷媒が循環する冷媒回路10と、熱搬送媒体が循環する熱搬送媒体循環回路30と、を備えている。
<冷媒回路>
 室外ユニット1に設けられた冷媒回路10は、冷媒を圧縮して高圧の冷媒とする圧縮機11と、冷房運転と暖房運転とで冷媒の流れ方向を切り替える四方弁12と、室外熱交換器13と、補助室外熱交換器14と、室外熱交換器13および補助室外熱交換器14に対して室外空気を送風する室外ファン13aと、冷媒を減圧する膨張弁15と、冷媒の流量を制御する冷媒流量制御弁16と、熱搬送媒体との熱交換を行う中間熱交換器17の一次側流体流路17aと、電磁弁24,25と、二方弁22,23と、バイパス弁21とを備えて構成されている。これらの各機器、弁等は、冷媒配管によって環状に接続されている。
 圧縮機11は、容量制御が可能な可変容量型の圧縮機である。このような圧縮機としては、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものを採用可能である。具体的には、圧縮機11は、スクロール式の圧縮機であり、インバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。
 室外熱交換器13および補助室外熱交換器14は、室外ファン13aから送風される熱源側の熱媒体としての室外空気と各熱交換器13,14内を流れる冷媒との間で熱交換を行うものであり、例えばフィンチューブ式のものが用いられている。補助室外熱交換器14は、室外熱交換器13に対して並列に接続されており、補助室外熱交換器14の前後(冷房運転時における冷媒の流れの上流側と下流側)に設けられた電磁弁24,25を開閉することにより、冷媒を、室外熱交換器13のみに流す場合と、室外熱交換器13および補助室外熱交換器14の両方に流す場合とに切り替えることができるようになっている。
 また、圧縮機11をバイパスするためのバイパス配管21aが設けられており、このバイパス配管21aには二方弁であるバイパス弁21が取り付けられている。そのため、圧縮機11の前後に設けられた二方弁22,23とバイパス弁21の開閉を制御することにより、冷媒が流れる流路が、圧縮機11を経由する場合と、圧縮機11をバイパスする場合とに切り替えることができるようになっている。
 さらに、膨張弁15をバイパスするバイパス配管16aが設けられており、このバイパス配管16aには、冷媒流量制御弁16が取り付けられている。つまり、膨張弁15と冷媒流量制御弁16とは並列に接続されている。よって、膨張弁15と冷媒流量制御弁16の開閉を制御することにより、冷媒を膨張弁15と冷媒流量制御弁16とに選択的に流すことができる。
 中間熱交換器17は、一次側流体流路17aを通流する冷媒と二次側流体流路17bを通流する熱搬送媒体との間で熱交換が行われるものであり、プレート式熱交換器等が用いられる。中間熱交換器17は、室外熱交換器13および補助室外熱交換器14よりも低い位置に設置される。これは、自然循環サイクルによる冷房運転を行うためである。
 なお、冷媒として、HFC冷媒、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO冷媒)などを用いることができる。
<熱搬送媒体循環回路>
 室外ユニット1から室内ユニット3に亘って設けられた熱搬送媒体循環回路30は、熱搬送媒体を送液する循環ポンプ31と、三方弁32と、室内ユニット3に設置された室内熱交換器33と、室内熱交換器33に対して室内空気を送風する室内ファン33aと、冷媒との熱交換を行う中間熱交換器17の二次側流体流路17bとを配管で順次接続して、環状に形成された回路である。
 室内熱交換器33は、室内ファン33aから送風される利用側の熱媒体としての室内空気と室内熱交換器33内を流れる熱搬送媒体との間で熱交換を行うものであり、例えばフィンチューブ式のものが用いられている。
 この熱搬送媒体循環回路30内を流れる熱搬送媒体は、室内熱交換器33を介して室内ユニット3が配置された室内の室内空気と熱交換して、室内を冷房または暖房する。室内熱交換器33の能力調整は、循環ポンプ31の回転速度、三方弁32の開度、室内ファン33aの回転速度によって制御されている。
 なお、熱搬送媒体として、水や、エチレングリコールなどのブライン(不凍液)などを用いることができる。
<制御装置>
 また、空気調和装置Sは、制御装置5を備えている。
 制御装置5は、空気調和装置Sの運転モードを決定し、決定した運転モードに従って各種弁(四方弁12、膨張弁15、冷媒流量制御弁16、バイパス弁21、二方弁22,23、電磁弁24,25、三方弁32)の状態(開度)、循環ポンプ31の回転速度、圧縮機11の回転速度、各熱交換器のファン(室外ファン13a、室内ファン33a)の回転速度、を制御して、空気調和装置Sの各種運転を制御する機能を有している。
 また、空気調和装置Sは、室外温度TOAを検出する温度センサ41と、室内温度TRMを検出する温度センサ42と、中間熱交換器17の入口冷媒温度TEVINを検出する温度センサ43と、中間熱交換器17の出口冷媒温度TEVOUTを検出する温度センサ44と、を備え、温度センサ41,42,43,44で検出された温度の検出信号は、制御装置5に入力される。
<冷房運転(強制循環)>
 まず、冷房運転(強制循環)時における空気調和装置Sの動作について、図2を用いて説明する。図2は、本実施形態に係る空気調和装置Sの冷房運転(強制循環)時における冷媒および熱搬送媒体の流れを示す系統図である。
 図2に示すように、制御装置5は、冷媒流量制御弁16、バイパス弁21、電磁弁24および電磁弁25が閉弁し、二方弁22、二方弁23が開弁するように制御する。制御装置5は、膨張弁15の開度(絞り)を制御し、四方弁12を冷房運転の位置となるように制御する。制御装置5は、圧縮機11および室外ファン13aの回転速度を制御する。
 なお、冷房運転(強制循環)時において、補助室外熱交換器14には余剰冷媒が貯留されるようになっている。
 圧縮機11から吐出された高温高圧の冷媒は、凝縮器として機能する室外熱交換器13に流入する。室外熱交換器13を通流する冷媒は、室外ファン13aにより送られてくる室外空気と熱交換することにより放熱して、高圧の液冷媒となる。室外熱交換器13から流出した液冷媒は、膨張弁15で減圧され、低温低圧の気液二相状態となる。
 そして、低温低圧の冷媒は、蒸発器として機能する中間熱交換器17の一次側流体流路17aに流入する。中間熱交換器17の一次側流体流路17aを通流する冷媒は、中間熱交換器17の二次側流体流路17bを流れる熱搬送媒体と熱交換することにより熱搬送媒体によって加熱されて蒸発気化し圧縮機11へと送られ、冷媒回路10を循環する。
 次に、熱搬送媒体循環回路30について説明する。制御装置5は、循環ポンプ31および室内ファン33aの回転速度を制御する。また、制御装置5は、三方弁32の開度を制御する。
 中間熱交換器17の二次側流体流路17bを通流し冷却された熱搬送媒体は、循環ポンプ31を駆動させることにより、室内ユニット3の室内熱交換器33に流入する。室内熱交換器33を通流する熱搬送媒体は、室内ファン33aにより送られてくる空気(室内空気)と熱交換することにより吸熱する。そして、吸熱した熱搬送媒体は、室内熱交換器33から中間熱交換器17の二次側流体流路17bへと送られ、熱搬送媒体循環回路30を循環する。
 このように、室内ユニット3の室内熱交換器33で熱搬送媒体が吸熱することにより、空気(室内空気)が冷却され、室内(被空調空間)が冷房される。
<暖房運転>
 なお、暖房運転時は、図2に示す冷房運転(強制循環)時と逆向きに冷媒を通流させる。即ち、冷媒回路10の四方弁12を切り替えて、圧縮機11から吐出された高温高圧の冷媒が中間熱交換器17へと送られ、中間熱交換器17が凝縮器として機能する。そして、膨張弁15で減圧され、室外熱交換器13が蒸発器として機能する。
 また、中間熱交換器17で加熱された熱搬送媒体は、室内熱交換器33に流入し、室内ファン33aにより送られてくる空気(室内空気)と熱交換することにより放熱して、室内(被空調空間)が暖房される。
<冷房運転(自然循環)>
 次に、冷房運転(自然循環)時における空気調和装置Sの動作について、図3を用いて説明する。図3は、本実施形態に係る空気調和装置Sの冷房運転(自然循環)時における冷媒および熱搬送媒体の流れを示す系統図である。
 図3に示すように、制御装置5は、膨張弁15、二方弁22、二方弁23が閉弁し、バイパス弁21、電磁弁24および電磁弁25が開弁するように制御する。制御装置5は、冷媒流量制御弁16の開度を制御する。制御装置5は、室外ファン13aの回転速度を制御する。なお、圧縮機11は停止している。
 なお、冷房運転(自然循環)時において、補助室外熱交換器14は室外熱交換器13共に凝縮器として機能するようになっている。
 凝縮器として機能する室外熱交換器13および補助室外熱交換器14内の冷媒は、室外空気へ放熱して、凝縮し、液化する。密度の大きい液冷媒は、重力の影響を受けて下降していき、冷媒流量制御弁16を通り、蒸発器として機能する中間熱交換器17の一次側流体流路17aに流入する。中間熱交換器17の一次側流体流路17aを通流する冷媒は、中間熱交換器17の二次側流体流路17bを通流する熱搬送媒体と熱交換することにより熱搬送媒体から吸熱して、蒸発し、ガス化する。このとき、冷媒の密度差による圧力勾配ができるため、蒸発した冷媒は、バイパス配管21aを通って、室外熱交換器13および補助室外熱交換器14に向かって流れていき、冷媒回路10を循環する。
 なお、熱搬送媒体循環回路30は、冷房運転(強制循環)時の熱搬送媒体循環回路30の動作と同じで有り説明を省略する。
 なお、例えば、室内の設定温度を25℃とし、冷房運転(自然循環)が可能な室内外温度差を5℃とすれば、図8に示すように、冷房運転(自然循環)を行う時期は室外温度が20℃を下回る時期であり、特に、4月、5月、9月、10月頃となるが、冬期においても室内側の熱負荷が高い場合は自然循環運転が可能となる。
<空気調和装置の起動時における制御>
 制御装置5が実行する空気調和装置Sの運転モードについて説明する。図4および図5は、空気調和装置Sの起動時における制御を説明するフローチャートである。なお、空気調和装置Sは停止しており、空気調和装置Sの空調運転を開始する場合について説明する。
 ステップS101において、制御装置5は、室外ユニット1の室外ファン13aを駆動させ、室外ユニット1内に室外空気を取り込み、温度センサ41で室外温度TOAを検出する。また、制御装置5は、室内ユニット3の室内ファン33aを駆動させ、室内ユニット3内に室内空気を取り込み、温度センサ42で室内温度TRMを検出する。また、制御装置5は、室内の目標温度である設定温度TRPSを取得する。なお、設定温度TRPSは、例えば、室内に設置されたリモコン(図示せず)を使用者が操作することにより、制御装置5に入力される。
 ステップS102において、制御装置5は、室内温度TRMが設定温度TRPSより高いか否かを判定する。室内温度TRMが設定温度TRPSより高い場合(S102・Yes)、制御装置5の処理はステップS104に進む。室内温度TRMが設定温度TRPSより高くない場合(S102・No)、制御装置5の処理はステップS103に進む。
 ステップS103において、制御装置5は、空気調和装置Sの暖房運転(強制循環)を実行する。このように、室内の設定温度が室内温度よりも高い場合、暖房運転(強制循環)を実行する。
 ステップS104において、制御装置5は、室内温度TRMと室外温度TOAとの温度差(TRM-TOA)が所定値PS1より大きいか否かを判定する。温度差(TRM-TOA)が所定値PS1より大きい場合(S104・Yes)、制御装置5の処理はステップS105に進む。温度差(TRM-TOA)が所定値PS1より大きくない場合(S104・No)、制御装置5の処理はステップS106に進む。
 ステップS105において、制御装置5は、室内温度TRMと設定温度TRPSとの温度差(TRM-TRPS)が所定値PS2より大きいか否かを判定する。温度差(TRM-TRPS)が所定値PS2より大きい場合(S105・Yes)、制御装置5の処理はステップS107に進む。温度差(TRM-TRPS)が所定値PS2より大きくない場合(S105・No)、制御装置5の処理はステップS106に進む。
 ステップS106において、制御装置5は、空気調和装置Sの冷房運転(強制循環)を実行する。
 このように、自然循環サイクルによる冷房運転ができない場合(S104・No)や、冷房負荷が大きい場合(S105・Yes)には、圧縮機11を駆動させる冷房運転(強制循環)を実行する。
 ステップS107において、制御装置5は、空気調和装置Sの停止前の運転モード(前回の運転モード)が冷房運転(自然循環)であるか否かを判定する。停止前の運転モードが冷房運転(自然循環)である場合(S107・Yes)、制御装置5の処理は図5のステップS109に進む。停止前の運転モードが冷房運転(自然循環)でない場合(S107・No)、制御装置5の処理はステップS108に進む。
 ステップS108において、制御装置5は、冷房運転(自然循環)への切替操作を行う。なお、切替操作は、図6を用いて後述する。そして、制御装置5の処理は図5のステップS109に進む。
 ステップS109において、制御装置5は、温度センサ43で中間熱交換器17の入口冷媒温度TEVINを検出する。また、制御装置5は、圧力比率Kを算出する。
 ここで、図7を用いて説明する。図7は、冷房運転(自然循環)時における圧力とエンタルピーの関係を示す図の一例である。
 まず、制御装置5は、室内温度TRMに基づいて、室内温度基準圧力PRMを算出する。また、制御装置5は、室外温度TOAに基づいて、室外温度基準圧力POAを算出する。また、制御装置5は、入口冷媒温度TEVINに基づいて、冷媒温度基準圧力Prefを算出する。
 ここで、室内温度基準圧力PRMとは、冷媒回路10内の冷媒が室内温度TRMとした場合における冷媒の圧力であり、冷媒回路10に封入された冷媒の物性値に基づいて算出される。室外温度基準圧力POAとは、冷媒回路10内の冷媒が室外温度TOAとした場合における冷媒の圧力であり、冷媒回路10に封入された冷媒の物性値に基づいて算出される。
 冷媒温度基準圧力Prefとは、冷媒回路10内の現在の冷媒温度に相当する圧力であり、基準温度としては、例えば中間熱交換器17の入口冷媒温度TEVINにおける冷媒の圧力であり、冷媒回路10に封入された冷媒の物性値に基づいて算出される。
 そして、図7に示すように、室内温度基準圧力PRMと室外温度基準圧力POAとの圧力差(PRM-POA)をΔPとし、冷媒温度基準圧力Prefと室外温度基準圧力POAとの圧力差(Pref-POA)をΔP1とし、圧力比率Kは、ΔP1/ΔPとして、制御装置5は圧力比率Kを算出する。
 ステップS110において、制御装置5は、ステップS109で算出した圧力比率Kが、所定値PS3以上か否かを判定する。圧力比率Kが、所定値PS3以上の場合(S110・Yes)、制御装置5の処理はステップS115に進む。圧力比率Kが、所定値PS3以上でない場合(S110・No)、制御装置5の処理はステップS111に進む。
 ステップS111において、制御装置5は、冷房運転(自然循環)の立ち上げ運転指令を出力する。
 ここで、立ち上げ運転とは、冷房運転(自然循環)を速やかに起動させるための立ち上げ運転であり、具体的には後述するステップS112からステップS114の処理である
 ステップS112において、制御装置5は、膨張弁15を開弁状態とし、冷媒流量制御弁16の開度を閉弁状態とする。あるいは、膨張弁15を閉弁状態とし、冷媒流量制御弁16の開度を絞った状態とする。また、循環ポンプ31の回転速度を増加させ循環する熱搬送媒体の流量を増加させる。また、中間熱交換器17と室内熱交換器33との間を循環する熱搬送媒体の量が増加するように三方弁32を切り替える。
 ステップS113において、制御装置5は、温度センサ43で中間熱交換器17の入口冷媒温度TEVINを検出するとともに、温度センサ44で中間熱交換器17の出口冷媒温度TEVOUTを検出する。また、制御装置5は、中間熱交換器17の出入口冷媒温度差ΔEV(=TEVOUT-TEVIN)を算出する。
 ステップS114において、制御装置5は、出入口冷媒温度差ΔEV(=TEVOUT-TEVIN)が所定値PS4より大きいか否かを判定する。出入口冷媒温度差ΔEV(=TEVOUT-TEVIN)が所定値PS4より大きい場合(S114・Yes)、制御装置5の処理はステップS116に進む。出入口冷媒温度差ΔEV(=TEVOUT-TEVIN)が所定値PS4より大きくない場合(S114・No)、制御装置5の処理はステップS113に戻る。
 ステップS115において、制御装置5は、立ち上げ運転は不要であると判定する。そして、制御装置5の処理はステップS116に進む。
 ステップS116において、制御装置5は、冷媒流量制御弁16の開度を流量制御(あるいは全開)とする。また、循環ポンプ31の回転速度を冷房運転(自然循環)の定格速度で駆動させる。三方弁32についても、同様である。
 ステップS117において、制御装置5は、空気調和装置Sの冷房運転(自然循環)を開始する。
 次に、図6を用いて、図4のステップS108に示す自然循環への切り替え操作について説明する。
 ステップS201において、制御装置5は、冷媒流量制御弁16、二方弁22、二方弁23を閉弁状態とする。なお、この状態において、バイパス弁21、電磁弁24および電磁弁25は閉弁しており、膨張弁15は開弁している。
 ステップS202において、制御装置5は、電磁弁25の開度を変更する。これにより、補助室外熱交換器14に貯留されている液冷媒が、電磁弁25から膨張弁15を通り、中間熱交換器17の入口側へと放出され、中間熱交換器17の入口側に冷媒液柱を形成する。
 ステップS203において、制御装置5は、電磁弁24および電磁弁25で挟まれた領域における冷媒の圧力(補助室外熱交換器14における冷媒の圧力)と、その他の冷媒回路10における冷媒の圧力(例えば、室外熱交換器13における冷媒の圧力)との圧力差を検出し、その圧力差が規定値以内であるか否かを判定する。なお、それぞれの圧力検出は圧力センサ(図示せず)で検出する。
 圧力差が規定値以内である場合(S203・Yes)、制御装置5の処理はステップS204に進む。圧力差が規定値以内でない場合(S203・No)、制御装置5の処理はステップS202に戻る。
 このように、圧力差が規定値以内となるまで電磁弁25の開度を変更して、補助室外熱交換器14に貯留された冷媒を放出する。
 ステップS204において、制御装置5は、電磁弁24および電磁弁25の開度を全開状態にする。
 ステップS205において、制御装置5は、バイパス弁21を開弁状態とする。そして、制御装置5の処理は、ステップS108に示す冷房運転(自然循環)への切替操作を終了し、図5のステップS109に進む。
<空気調和装置Sの作用効果>
 次に、本実施形態に係る空気調和装置Sの作用効果について説明する。
 空気調和装置Sの自然循環サイクルによる冷房運転を開始させるためには、冷媒回路10内の冷媒の圧力を自然循環が可能な圧力領域(図7のサイクルで示す圧力領域)へと移行させる必要がある。
 しかし、例えば、空気調和装置Sが停止していた状態では、冷媒回路10内の冷媒の圧力(即ち、冷媒温度基準圧力Prefに相当)は、室外温度TOAと平衡した圧力(即ち、室外温度基準圧力POAに相当)となっている。
 本実施形態に係る空気調和装置Sは、ステップS112に示すように、立ち上げ運転において、循環ポンプ31の回転速度を増加させ、中間熱交換器17に流入する熱搬送媒体の流量を増加させることにより、中間熱交換器17における冷媒と熱搬送媒体との熱交換が促進され、冷媒が熱搬送媒体により速やかに加熱される。これにより、冷媒回路10内の冷媒の圧力も上昇して、自然循環が可能な圧力領域へと速やかに移行させることができる。ここで、加熱量は、サイクル内の冷媒封入量やサイクルを構成する機器の熱容量などにより決定される。
 これにより、本実施形態に係る空気調和装置Sは、自然循環サイクルによる冷房運転を速やかに開始し、室内を空調するため、使用者の快適性が向上する。また、立ち上げ時間を短くすることができ、省エネルギ性が向上する。
 また、本実施形態に係る空気調和装置Sは、ステップS112に示すように、立ち上げ運転において、膨張弁15および冷媒流量制御弁16で開度を絞ることにより、中間熱交換器17の入口側に冷媒液柱を形成することができるので、自然循環サイクルによる冷房運転を起動しやすくすることができる。
 また、本実施形態に係る空気調和装置Sは、ステップS113、ステップS114に示すように、中間熱交換器17の出入口温度差ΔEVが所定値(PS4)より大きくなったときに立ち上げ運転の終了と判定する。
 中間熱交換器17において冷媒が熱搬送媒体により加熱されると、入口冷媒温度TEVINと出口冷媒温度TEVOUTとは、共に上昇し、出入口温度差ΔEVは小さいままである。更に冷媒が加熱されると、冷媒が蒸発してガス化し、中間熱交換器17の出口側からバイパス配管21aを通り、室外熱交換器13および補助室外熱交換器14に向かって流れる。このため、冷媒が蒸発してガス化すると、即ち、冷媒の自然循環が開始されると、出口冷媒温度TEVOUTは、急に立ち上がる。一方、中間熱交換器17の入口側には冷媒液柱が形成されており、入口冷媒温度TEVINは緩やかに上昇する。
 このように、出入口温度差ΔEV(=TEVOUT-TEVIN)が所定値(PS4)より大きくなったか否かを判定することにより、冷媒の自然循環が開始されたか、即ち、立ち上げ運転を終了するか否かを判定することができる。
≪変形例≫
 なお、本実施形態に係る空気調和装置Sは、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
 例えば、上記実施形態においては、強制循環サイクルによる冷房運転時は余剰冷媒を貯留し、自然循環サイクルによる冷房運転時は凝縮器として機能する補助室外熱交換器14を備えるものとして説明したが、これに限られるものではなく、サイクルの運転状態に応じて冷媒回路10内の冷媒量を調整する冷媒供給装置(図示せず)であってもよい。
 また、上記実施形態においては、強制循環サイクルによる冷房運転時は冷媒を膨張弁15に通流させ、自然循環サイクルによる冷房運転時は冷媒を冷媒流量制御弁16に通流させるものとして説明したが、これに限られるものではなく、一つの減圧弁(または、一つの冷媒流量制御弁)で構成してもよい。
 また、上記実施形態においては、中間熱交換器17で冷却された熱搬送媒体を室内熱交換器33に供給し、室内(被空調空間)を冷房(冷却)する空気調和装置Sとして説明したが、これに限られるものではなく、中間熱交換器17で冷却された熱搬送媒体を機器(図示せず)に供給するチラーシステム(冷却システム)に適用してもよい。
 本発明によれば、自然循環サイクルによる冷却運転の起動に要する時間を短縮することができるので、冷却不良状態で放置できる期間が短い機器(例えば、データセンタなど)にも適用することができる。
 また、上記実施形態においては、中間熱交換器17と熱搬送媒体循環回路30とを備え、立ち上げ運転時において、熱搬送媒体を送液する循環ポンプ31の回転速度を増加させるものとして説明したが、これに限られるものではない。例えば、中間熱交換器17と熱搬送媒体循環回路30を備えないで、中間熱交換器17に代えて室内熱交換器33に冷媒を循環させる構成であって、立ち上げ運転時において、室内ファン33aの回転速度を増加させるものであってもよい。なお、この構成において、冷媒の自然循環が可能となるためには、室内熱交換器33を室外熱交換器13よりも低い位置に配置する必要がある。
S     空気調和装置
1     室外ユニット
3     室内ユニット
5     制御装置
10    冷媒回路
11    圧縮機
12    四方弁
13    室外熱交換器(第一熱交換器)
13a   室外ファン
14    補助室外熱交換器(第一熱交換器)
15    膨張弁
16    冷媒流量制御弁(膨張弁)
16a   バイパス配管
17    中間熱交換器(第二熱交換器)
17a   一次側流体流路
17b   二次側流体流路
21    バイパス弁
21a   バイパス配管
22,23 二方弁
24,25 電磁弁
30    熱搬送媒体循環回路
31    循環ポンプ
32    三方弁
33    室内熱交換器
33a   室内ファン
41,42 温度センサ
43    温度センサ(第一温度検出手段)
44    温度センサ(第二温度検出手段)

Claims (6)

  1.  圧縮機と、熱源側の第一熱搬送媒体と熱交換を行う第一熱交換器と、膨張弁と、前記第一熱交換器より低い位置に設置され、利用側の第二熱搬送媒体と熱交換を行う第二熱交換器とを順次接続して環状に形成された冷媒回路に、前記圧縮機をバイパスするバイパス配管を設けて成る空気調和装置において、
     前記圧縮機と、前記第一熱交換器と、前記膨張弁と、前記第二熱交換器との間で冷媒を循環させる強制循環サイクルと、
     前記バイパス配管と、前記第一熱交換器と、前記膨張弁と、前記第二熱交換器との間で冷媒を密度差により循環させる自然循環サイクルとを切替えて運転可能な空気調和装置であって、
     前記自然循環サイクルの起動時に、前記第二熱交換器に流入する利用側の第二熱搬送媒体の流量を所定の流量より増加させる
    ことを特徴とする空気調和装置。
  2.  前記第二熱交換器を通流する冷媒の流入側温度を検出する第一温度検出手段と、流出側温度を検出する第二温度検出手段と、をさらに備え、
     前記第一温度検出手段の検出温度と、前記第二温度検出手段の検出温度との温度差が、所定値より大きくなると、増加させた前記第二熱交換器に流入する利用側の第二熱搬送媒体の流量を前記所定の流量に変更する
    ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記自然循環サイクルの起動時に、前記第二熱交換器に流入する利用側の第二熱搬送媒体の流量を所定の流量より増加させるとともに、前記膨張弁の開度を所定の開度より絞る
    ことを特徴とする請求項1に記載の空気調和装置。
  4.  前記第二熱交換器を通流する冷媒の流入側温度を検出する第一温度検出手段と、流出側温度を検出する第二温度検出手段と、をさらに備え、
     前記第一温度検出手段の検出温度と、前記第二温度検出手段の検出温度との温度差が、所定値より大きくなると、前記膨張弁の開度を所定の開度に変更する
    ことを特徴とする請求項3に記載の空気調和装置。
  5.  圧縮機と、熱源側の第一熱搬送媒体と熱交換を行う第一熱交換器と、膨張弁と、前記第一熱交換器より低い位置に設置され、利用側の第二熱搬送媒体と熱交換を行う第二熱交換器とを順次接続して環状に形成された冷媒回路に、前記圧縮機をバイパスするバイパス配管を設けて成る空気調和装置において、
     前記圧縮機と、前記第一熱交換器と、前記膨張弁と、前記第二熱交換器との間で冷媒を循環させる強制循環サイクルと、
     前記バイパス配管と、前記第一熱交換器と、前記膨張弁と、前記第二熱交換器との間で冷媒を密度差により循環させる自然循環サイクルとを切替えて運転可能な空気調和装置の運転制御方法であって、
     前記自然循環サイクルの起動時に、前記第二熱交換器に流入する利用側の第二熱搬送媒体の流量を所定の流量より増加させる
    ことを特徴とする空気調和装置の運転制御方法。
  6.  圧縮機と、熱源側の第一熱搬送媒体と熱交換を行う第一熱交換器と、膨張弁と、前記第一熱交換器より低い位置に設置され、利用側の第二熱搬送媒体と熱交換を行う第二熱交換器とを順次接続して環状に形成された冷媒回路に、前記圧縮機をバイパスするバイパス配管を設けて成る冷却システムにおいて、
     前記圧縮機と、前記第一熱交換器と、前記膨張弁と、前記第二熱交換器との間で冷媒を循環させる強制循環サイクルと、
     前記バイパス配管と、前記第一熱交換器と、前記膨張弁と、前記第二熱交換器との間で冷媒を密度差により循環させる自然循環サイクルとを切替えて運転可能な冷却システムであって、
     前記自然循環サイクルの起動時に、前記第二熱交換器に流入する利用側の第二熱搬送媒体の流量を所定の流量より増加させる
    ことを特徴とする冷却システム。
PCT/JP2011/053780 2011-02-22 2011-02-22 空気調和装置、空気調和装置の運転制御方法および冷却システム WO2012114451A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/053780 WO2012114451A1 (ja) 2011-02-22 2011-02-22 空気調和装置、空気調和装置の運転制御方法および冷却システム
JP2013500747A JP5629366B2 (ja) 2011-02-22 2011-02-22 空気調和装置、空気調和装置の運転制御方法および冷却システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053780 WO2012114451A1 (ja) 2011-02-22 2011-02-22 空気調和装置、空気調和装置の運転制御方法および冷却システム

Publications (1)

Publication Number Publication Date
WO2012114451A1 true WO2012114451A1 (ja) 2012-08-30

Family

ID=46720271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053780 WO2012114451A1 (ja) 2011-02-22 2011-02-22 空気調和装置、空気調和装置の運転制御方法および冷却システム

Country Status (2)

Country Link
JP (1) JP5629366B2 (ja)
WO (1) WO2012114451A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947336A (zh) * 2020-08-24 2020-11-17 珠海格力电器股份有限公司 一种制冷循环系统及其控制方法
CN112460863A (zh) * 2020-12-10 2021-03-09 珠海格力电器股份有限公司 一种冷水机组及其制冷控制方法和装置
CN114531822A (zh) * 2022-01-12 2022-05-24 比赫电气(太仓)有限公司 一种密闭式冷却循环液冷系统及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160238A (ja) * 1989-11-17 1991-07-10 Takenaka Komuten Co Ltd 冷媒自然循環式冷房システム
JPH08189713A (ja) * 1995-01-13 1996-07-23 Daikin Ind Ltd 二元冷凍装置
JPH09196476A (ja) * 1996-01-17 1997-07-31 Shinko Atomosu Kk 冷媒循環システムの膨張弁の制御装置
JPH11257767A (ja) * 1998-03-16 1999-09-24 Mitsubishi Electric Corp 自然循環併用式空気調和機
JP2000356430A (ja) * 1999-06-16 2000-12-26 Tokyo Gas Co Ltd 水冷式空調装置およびその運転方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765778B2 (ja) * 1986-11-04 1995-07-19 ダイキン工業株式会社 熱移動装置
JP3334601B2 (ja) * 1998-04-03 2002-10-15 三菱電機株式会社 自然循環併用式空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160238A (ja) * 1989-11-17 1991-07-10 Takenaka Komuten Co Ltd 冷媒自然循環式冷房システム
JPH08189713A (ja) * 1995-01-13 1996-07-23 Daikin Ind Ltd 二元冷凍装置
JPH09196476A (ja) * 1996-01-17 1997-07-31 Shinko Atomosu Kk 冷媒循環システムの膨張弁の制御装置
JPH11257767A (ja) * 1998-03-16 1999-09-24 Mitsubishi Electric Corp 自然循環併用式空気調和機
JP2000356430A (ja) * 1999-06-16 2000-12-26 Tokyo Gas Co Ltd 水冷式空調装置およびその運転方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947336A (zh) * 2020-08-24 2020-11-17 珠海格力电器股份有限公司 一种制冷循环系统及其控制方法
CN112460863A (zh) * 2020-12-10 2021-03-09 珠海格力电器股份有限公司 一种冷水机组及其制冷控制方法和装置
CN114531822A (zh) * 2022-01-12 2022-05-24 比赫电气(太仓)有限公司 一种密闭式冷却循环液冷系统及其工作方法

Also Published As

Publication number Publication date
JPWO2012114451A1 (ja) 2014-07-07
JP5629366B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
US9322562B2 (en) Air-conditioning apparatus
JP5383816B2 (ja) 空気調和装置
JP5279919B2 (ja) 空気調和装置
US9140459B2 (en) Heat pump device
WO2012104891A1 (ja) 空気調和装置
JPWO2011048662A1 (ja) ヒートポンプ装置
JP2004085177A (ja) マルチ空気調和機及び、その室外ファンの運転制御方法
WO2015097787A1 (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
JP2011080634A (ja) 冷凍サイクル装置および温水暖房装置
JP5300806B2 (ja) ヒートポンプ装置
AU2011358039A1 (en) Air-conditioning apparatus
JP4273493B2 (ja) 冷凍空調装置
JP6120943B2 (ja) 空気調和装置
JP6486847B2 (ja) 環境試験装置
JP2007163071A (ja) ヒートポンプ式冷暖房装置
KR20120083139A (ko) 히트펌프식 급탕장치
JP5629366B2 (ja) 空気調和装置、空気調和装置の運転制御方法および冷却システム
JP2007183045A (ja) ヒートポンプ式冷暖房装置
JP5312681B2 (ja) 空気調和装置
JP5752135B2 (ja) 空気調和装置
JP5005011B2 (ja) 空気調和装置
JP5150300B2 (ja) ヒートポンプ式給湯装置
JP4258426B2 (ja) 冷凍サイクル装置
JP5639664B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859529

Country of ref document: EP

Kind code of ref document: A1