WO2012111500A1 - 交番磁場を利用した非破壊検査装置および非破壊検査方法 - Google Patents

交番磁場を利用した非破壊検査装置および非破壊検査方法 Download PDF

Info

Publication number
WO2012111500A1
WO2012111500A1 PCT/JP2012/052836 JP2012052836W WO2012111500A1 WO 2012111500 A1 WO2012111500 A1 WO 2012111500A1 JP 2012052836 W JP2012052836 W JP 2012052836W WO 2012111500 A1 WO2012111500 A1 WO 2012111500A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
subject
output
signal
magnetic field
Prior art date
Application number
PCT/JP2012/052836
Other languages
English (en)
French (fr)
Inventor
中村 邦彦
義純 出井
Original Assignee
大日機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日機械工業株式会社 filed Critical 大日機械工業株式会社
Priority to EP12746911.2A priority Critical patent/EP2677311A4/en
Publication of WO2012111500A1 publication Critical patent/WO2012111500A1/ja
Priority to US13/965,958 priority patent/US9453817B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors

Definitions

  • the present invention relates to an apparatus and method using electromagnetic induction for flaw detection of a subject by applying an alternating magnetic field to a conductive subject and detecting a magnetic field due to an eddy current generated in the subject.
  • Patent Document 1 An example of such conventional eddy current flaw detection using electromagnetic induction is disclosed in Japanese Patent No. 3754499 (Patent Document 1).
  • the detection output is configured by detecting at least one of an output difference and a phase difference between detection signals induced in two detection coils arranged so as to be orthogonal to the excitation coil. It is possible to increase the level of damage, such as cracks on the surface of the steel frame covered with the fireproof coating inside the building, so that it can be inspected without removing the covering material.
  • the detection of damage is covered by the covering material because the magnetic field decreases exponentially as it goes in the depth direction of the subject (steel frame) due to the skin effect.
  • Patent Document 2 there is one that detects a leakage magnetic flux and performs flaw detection as disclosed in Japanese Patent No. 3266128 (Patent Document 2).
  • Patent Document 2 a plurality of magnetic sensors are provided along the magnetization direction of the magnetizer, the leakage magnetic flux corresponding to the same position on the subject is detected, and the measurement results of the plurality of magnetic sensors are calculated, thereby reducing noise.
  • the internal defect of the subject is detected by reducing the amount.
  • the end face of the magnetizer is not substantially perpendicular to the subject surface but is arranged along the subject. Since only a part of the magnetic field is applied obliquely to the subject, the magnetic field of the magnetizer is not effectively applied to the subject.
  • the detection sensor since the detection sensor is arranged on the back side of the subject, the detection sensor detects the magnetic field (leakage magnetic flux) that has passed through the subject.
  • This leakage magnetic flux becomes considerably weak because it decreases exponentially as it goes in the depth direction of the specimen.
  • the inspection becomes considerably complicated, for example, by arranging a plurality of magnetic sensors and calculating the measurement results while changing the magnetization conditions. In the case of inspecting by detecting such a leakage magnetic flux, the leakage magnetic flux becomes weak due to the skin effect for the reason described above, and thus the inspection must be limited.
  • a thin steel plate having a thickness of 1 mm is an object to be inspected, and the lift-off (distance between the subject and the detection sensor) is only 1 mm.
  • the inspection by detecting the leakage magnetic flux has a problem that the inspection target is limited to the thin-walled material due to the skin effect and cannot be applied to the flaw detection on the inside or the back surface of the thick-walled material. It was.
  • Patent Document 3 a proposal that flaw detection is performed using transmitted magnetic flux that passes through the inside of a subject is disclosed in JP 2010-48552 A (Patent Document 3).
  • Patent Document 3 the magnetic potential difference between two points of transmitted magnetic flux that passes through the inside of the subject (in Patent Document 3, the term “magnetic potential” is used, but FIG. 1 in Patent Document 3 and a schematic diagram thereof)
  • the magnetic circuit of FIG. 3 has an interlinkage of coils through which an applied current flows, so that it cannot be treated like a potential, and the concept of magnetic potential in Patent Document 3 is physically meaningless). An internal defect is detected.
  • a schematic diagram is shown in FIG. 3 of Patent Document 3 and the detection principle is described as follows.
  • the excitation core, the subject, and the pickup core constitute a magnetic path, and the magnetic flux applied from the excitation core to the subject flows through the passage, and if there is a defect inside the subject, the subject's Since the magnetic resistance increases, the output of the magnetic potential difference measuring means (detection coil) provided in the pickup core changes. Thus, the internal defect of the subject can be detected.
  • the magnetic field (magnetic flux) applied from the excitation core to the subject does not flow uniformly in the subject due to the skin effect, but is the largest on the surface applied to the subject and proceeds toward the inside of the subject. Decays exponentially according to As shown in FIG. 3 in Patent Document 3, there is no uniform transmitted magnetic flux flowing inside the subject as long as a normal alternating magnetic field is used.
  • the applied magnetic field has the maximum intensity at the surface of the subject. Decreasing the frequency of the applied magnetic flux can suppress the attenuation of the magnetic flux in the subject to some extent, but it is extremely difficult to pass a uniform transmitted magnetic flux through the subject. Even if an extremely low frequency far below 1 Hz can be applied and transmitted somehow, the detection efficiency of the coil is extremely lowered because the detection output of the coil is proportional to the square of the applied frequency. For example, if the detection output is 1 V at 1 kHz, it becomes 0.01 ⁇ V at 0.1 Hz, and it is buried in noise, making it difficult to process the detection signal.
  • the electronic circuit of the apparatus is required to be compatible with the ultra-low frequency, and in addition, the data acquisition time becomes long and quick measurement cannot be performed.
  • the transmitted magnetic flux does not flow uniformly in the subject due to the skin effect, and it cannot be applied to the flaw detection inside or behind the subject. there were.
  • Patent Document 4 discloses a metal conductor included in a measurement object by applying an alternating magnetic field to the measurement object and examining a magnetic response signal of the magnetic sensor. Foreign matter such as is detected.
  • the detection signal of the magnetic sensor is composed of a magnetic field generated by the applied AC magnetic field at the position of the magnetic sensor and a magnetic field caused by eddy current generated in the metal conductor included in the measurement target (the phase is delayed by 90 degrees with respect to the applied AC magnetic field).
  • the magnetic field generated by the former applied AC magnetic field at the position of the magnetic sensor becomes noise.
  • the detection sensitivity of the magnetic field due to the eddy current generated in the metal conductor is increased, and the presence / absence inspection of a foreign substance such as a metal conductor included in the measurement object is enabled.
  • the magnetic field generated by the applied AC magnetic field at the position of the magnetic sensor is removed by the cancel coil, so that the detection sensitivity of the magnetic field due to the eddy current generated in the metal conductor included in the measurement object is increased.
  • the purpose is to inspect the presence or absence of foreign matters such as metal conductors, and does not attempt to inspect the inside of the metal conductors included in the measurement object.
  • an alternating magnetic field is applied to the subject.
  • an eddy current is induced in the subject according to the skin effect, and a magnetic field generated by the eddy current is detected by the detection coil. Since the penetration of the applied magnetic field decreases exponentially in the depth direction of the subject due to the skin effect, the magnetic field output due to the eddy current flowing on the subject surface is strong, and the magnetic field output due to the eddy current inside the subject is extremely high It is weak.
  • These outputs are mixed and detected in the signal (AC signal) detected by the detection coil. That is, the minute output inside the subject is masked by the large output of the subject surface layer.
  • the detection output (AC signal) is rectified and detected by an electronic circuit and converted into a DC voltage for evaluation.
  • the DC voltage after this rectification and detection has a small output inside the subject that is masked. It is hardly reflected. This is an essential problem that has not yet been solved with respect to flaw detection on the inside and the back surface of an object such as a thick-walled material, and a problem that is eagerly desired to be solved.
  • the present invention has been proposed in order to solve the above problems in view of such circumstances, and an object of the present invention is to provide a technique that enables flaw detection on the inside and the back surface of a subject. More specifically, by giving an external signal for canceling the detection output of the subject surface layer portion to the detection output of the detection coil, and extracting the detection output inside the subject masked by the detection output of the subject surface layer portion, Inspection of the inside and back of the subject and inspection of wall thickness change are made possible.
  • a signal waveform generator capable of applying an alternating magnetic field to a subject, a position near the excitation coil and emitted from the subject.
  • a detection coil for detecting a magnetic field caused by an eddy current generated, and a circuit for generating a sine wave signal having substantially the same amplitude and opposite phase with respect to the detection signal of the detection coil, the output of the anti-phase sine wave generation circuit and the detection coil A non-destructive inspection apparatus using an alternating magnetic field having a circuit for outputting a sum with a detection signal and having a circuit means for detecting a residual signal of the sum signal output.
  • a signal waveform generator capable of applying an alternating magnetic field to a subject, and a magnetic field generated by an eddy current emitted from the subject that is disposed near the excitation coil are detected.
  • a non-destructive inspection apparatus using an alternating magnetic field having a circuit and circuit means for detecting a residual signal of the difference signal output, and cancels the detection output of the surface layer of the subject due to the skin effect, It is characterized in that the output inside the subject masked by the detection output of the surface layer part is detected.
  • a third aspect of the present invention is the nondestructive inspection apparatus according to the first or second aspect, wherein the subject is a conductive material.
  • a fourth aspect of the present invention is the nondestructive inspection apparatus according to the first or second aspect, wherein the circuit means for detecting is a synchronous detection circuit.
  • a signal waveform generator outputs a signal, an alternating magnetic field is applied to the subject by an excitation coil, and the subject is detected by a detection coil disposed in the vicinity of the excitation coil. The magnetic field due to the eddy current emitted from the detection coil is detected, and the sum of the sine wave signal having substantially the same amplitude and the opposite phase with respect to the detection signal of the detection coil and the detection signal of the detection coil is output.
  • a signal waveform generator outputs a signal, an alternating magnetic field is applied to the subject by the excitation coil, and the subject is detected by a detection coil disposed in the vicinity of the excitation coil.
  • the magnetic field due to the eddy current emitted from the detection coil is detected, and the difference between the detection signal of the detection coil and the detection signal of the detection coil is output, and the difference between the detection signal of the detection coil and the amplitude of the detection signal of the detection coil is approximately equal.
  • the detection output (voltage) of the detection coil is observed as the sum of the detection voltages of all eddy currents induced in the subject, but the detection output of the magnetic field due to the eddy current generated on the subject surface is the largest.
  • the magnetic field detection output due to the eddy current generated there is an exponential function with respect to the surface of the subject, and the phase lag occurs as the distance toward the inside of the subject increases. This phase lag is proportional to the square root of the product of the excitation angular frequency and the conductivity and permeability of the subject.
  • the decrease in amplitude value is small and the phase lag is small.
  • the sum (addition) of the detection outputs in the subject surface layer is reflected as the dominant component of the detection output of the detection coil. Therefore, by applying an external sine wave signal with the same amplitude and opposite phase to the detection output of the detection coil and taking the sum, or by applying an external sine wave signal with the same amplitude and phase, and taking the difference, The detection output of the subject surface layer can be canceled from the detection output of the detection coil, and the detection inside the subject masked by the detection output of the surface layer can be simply and effectively taken out.
  • the sum signal or difference signal indicating the detected amount inside the subject thus obtained is a small signal output whose phase is different from that of the detection output of the detection coil, but the large output of the surface layer portion is removed. Therefore, the amplification circuit can amplify the signal with a high gain as necessary, and only the detected amount inside the subject to be examined can be amplified to a sufficiently large signal necessary for the examination.
  • the sum signal or difference signal is calculated by calculating the sum or difference by applying an external sine wave signal of the same amplitude and opposite phase or an external sine wave signal of the same amplitude and phase to the detection coil output.
  • the detection output to the surface layer portion is changed by changing the route of the eddy current induced in the surface layer portion, so that a difference is generated between the sum signal or the external sine wave signal given when the difference signal is generated. Therefore, the crack of this surface layer part can also be detected.
  • an external sine wave signal having the same amplitude and opposite phase or an external sine wave signal having the same amplitude and phase is applied to the detection coil output to generate a calculation signal that is the sum or difference of Inspection of the inside of the subject such as the thickness of the surface and damage to the back surface can be performed with high performance, and at the same time, damage on the surface of the subject can be detected.
  • the detection output decreases with the lift-off (distance from the detection sensor to the subject)
  • the lift-off cannot be made large in the prior art.
  • the present invention the large output of the surface layer portion is detected from the detection output. Since it is removed, amplification with high gain is possible, and lift-off can be drastically increased.
  • FIG. 1 is a schematic diagram illustrating an embodiment of the present invention and illustrating a state of a test for detecting an artificial groove formed on the back surface of a lower steel plate from the outer surface of an upper steel plate of a dual structure stainless steel plate. It is a figure which shows the example of a detection of the artificial groove
  • FIG. 10 is a view schematically showing a state in which the thickness of a stainless steel pipe placed directly under a gap from the surface of a stainless steel thin plate is measured according to another embodiment of the present invention. It is a figure which shows the result of the thickness measurement of piping.
  • FIG. 10 is a view schematically showing a state in which the thickness of a stainless steel pipe placed directly under a gap from the surface of a stainless steel thin plate is measured according to another embodiment of the present invention. It is a figure which shows the result of the thickness measurement of piping.
  • FIG. 9 is a schematic diagram illustrating another example of the present invention and illustrating a detection example of a minute flaw provided in the vicinity of a welded portion of a dissimilar joint pipe inner wall of stainless steel and carbon steel. It is a figure which shows the detection result of the micro flaw provided in the welding part vicinity of the dissimilar joint piping inner wall.
  • FIG. 1 is a block diagram showing a configuration of a nondestructive inspection apparatus 30 using a magnetic field of the present invention.
  • the nondestructive inspection apparatus using the magnetic field of this embodiment includes a computer 11, a signal waveform generator 1, a phase shifter 2, a power amplifier 3, excitation applying means 4, and detection.
  • a means 5, a potentiometer 6, an arithmetic circuit 7, an amplifier circuit 8, an amplifier circuit 9, and a detector circuit 10 are included.
  • the subject 20 is an object to be inspected by the nondestructive inspection apparatus 30 using a magnetic field, and may be any material having conductivity such as carbon steel, stainless steel, aluminum, copper, inconel, and zirconium.
  • the computer 11 controls the voltage, phase and frequency of the AC signal generated by the signal waveform generator 1 and checks the output of the amplifier circuit 8 TP- 2 and a check terminal TP-1 for checking the output of the amplifier circuit 9, a check terminal TP-3 for checking the output of the detection circuit 10, and the output of the detection circuit 10 according to application software (not shown) installed in the computer 11 are displayed.
  • application software not shown
  • the detection circuit 10 is preferably a synchronous detection circuit.
  • the signal waveform generator 1 can output at least two signal waveforms simultaneously (two outputs B and A are shown in FIG. 1), and these at least two signal waveform outputs are waveform types. , Frequency, voltage, phase, etc. can be determined separately according to the instructions of the computer 11 or according to the function of the signal waveform generator 1, one of the outputs B being supplied to the power amplifier 3, Another output A is supplied as a reference signal to the potentiometer 6 via the amplifier circuit 9 and the S2 contact of the switch S.
  • the amplifying circuit 8 and the amplifying circuit 9 are preferably DC coupling amplifying circuits having a constant amplitude characteristic and no phase transition over a wide frequency band including a frequency used for measurement from DC.
  • an AC coupled amplifier circuit with a constant amplitude characteristic and no phase transition can be used over a wide frequency band including the frequency used for measurement.
  • the amplifier circuit 9 includes means for shaping a waveform into a signal holding only phase information such as a rectangular wave at the output stage in order to facilitate phase comparison described later.
  • the excitation means 4 is composed of an excitation core 41 and an excitation coil 42 and applies a magnetic field to the subject 20 in accordance with the current supplied from the power amplifier 3.
  • the shape of the exciting core 41 is, for example, a U-shape, and the axial directions of both legs are arranged substantially perpendicular to the subject.
  • the exciting coil 42 is wound along the outer periphery of the exciting core 41.
  • the exciting coil 42 may be wound around the entire circumference of the exciting core 41 or may be partially wound.
  • FIG. 1 shows a case where the coil is wound around a part of the exciting core.
  • partial winding for example, when it is wound around both U-shaped legs, when one leg is wound clockwise, the other leg is wound counterclockwise, and the winding of one leg ends. And the winding start of the other leg are combined to form a continuous winding. That is, the direction of the magnetic field in the exciting core 41 at a certain moment when a current is applied to the exciting coil 42 is configured to be one direction.
  • the detection means 5 comprises a detection core 51 and a detection coil 52, and an eddy current is induced in the subject by the magnetic field applied to the subject 20 by the excitation means 4, and the magnetic field generated by this eddy current is detected.
  • the shape of the detection core 51 is, for example, a U-shape, and the axial directions of both legs are arranged substantially perpendicular to the subject.
  • the detection coil 52 is wound along the outer periphery of the detection core 51.
  • the detection coil 52 may be wound around the entire circumference of the detection core 51 or may be partially wound. When partially wound, for example, when wound around both U-shaped legs, when one leg is wound clockwise, the other leg is wound counterclockwise, and the end of one leg is wound and the other leg is wound. The beginning is combined to form a continuous winding.
  • the operation when performing inspection using the nondestructive inspection apparatus 30 using the magnetic field of the present invention will be described.
  • a method and apparatus for canceling the dominant component of the detection coil output by taking the sum (addition) of the detection coil output and a voltage signal having the same amplitude and opposite phase will be described.
  • the dominant component of the detection coil output may be canceled by taking the difference (subtraction) between the detection coil output and the voltage signal having the same amplitude and phase.
  • the phase of the detection coil output is set to the same phase as the reference signal
  • the amplitude value of the reference signal is set to the amplitude value of the detection coil output. Is obtained by taking the difference between the detection coil output and the reference signal.
  • a method and apparatus for canceling the dominant component of the detection coil output by calculating the sum of the detection coil output and the reference signal having the same amplitude and opposite phase will be described below.
  • switch S is set to the S1 side.
  • the output A (reference signal) of the signal waveform generator 1 is supplied only to the amplifier circuit 9 and is not supplied to the potentiometer 6.
  • Output B and output A have the same frequency. The frequency is determined in consideration of the material of the subject and the examination location.
  • the output B is current-amplified by the power amplifier 3 and sent to the excitation coil 42, and an alternating excitation magnetic field is generated when an alternating current flows through the excitation coil.
  • Most of the exciting magnetic field is collected in the exciting core 41 and applied from the end face toward the surface of the subject 20.
  • the direction of the magnetic field in the exciting core 41 at a certain moment is one direction.
  • the excitation core 41 has a U-shape and both the axial directions of both legs are arranged substantially perpendicular to the surface of the subject 20, the excitation core 41 is applied from the end surface of one leg when viewed from the subject 20.
  • the direction of the magnetic field applied and the direction of the magnetic field applied from the end face of the other leg are opposite, and the direction of the magnetic field in the excitation core is from one leg to the other leg.
  • the direction alternates because the applied magnetic field is alternating current.
  • the eddy current induced in the subject 20 is obtained when the shape of the exciting core 41 is, for example, a U-shape and the axial directions of both legs are arranged substantially perpendicular to the subject. It is induced in two places of the subject 20 around the position where both end faces of the U-shaped excitation core 41 face each other, and the directions of the eddy currents are opposite. This is because the direction of the magnetic field applied to the subject 20 from both end faces of the excitation core 41 is opposite. Due to the eddy currents induced at these two locations, opposite magnetic fields are generated.
  • the magnetic field generated at two locations of the subject 20 is detected by the detection means 5 disposed in the vicinity of the excitation means 4, and a voltage is induced in the detection coil.
  • the detection means 5 is wound around the U-shaped detection core 51 and its legs in opposite directions, and the detection coil 52 is combined into a single winding by combining the end of one winding with the starting point of the other winding. Since the direction of the magnetic field generated at two locations of the subject 20 is opposite, the magnetic field that has entered one leg of the detection core 51 faces the other leg (alternating because it is alternating current), A voltage proportional to the sum of the number of windings wound on both legs is induced in the detection coil 52.
  • the output voltage of the detection coil 52 is appropriately amplified by the amplifier circuit 8, and the output can be confirmed at the check terminal TP-2.
  • the output A reference signal
  • the output of the check terminal TP-1 and the check terminal TP-2 are simultaneously displayed on the oscilloscope on the computer 11 with time on the horizontal axis and voltage on the vertical axis. When displayed, the trace is fixed using the trigger function.
  • the computer 11 is equipped with a sound board, the AD converter required for computer measurement may be built in the sound board or may be an external one. Alternatively, measurement software having an AD converter installed in the computer 11 may be used.
  • the output display of the check terminal TP-1 and the check terminal TP-2 is not limited to computer measurement, and it is of course possible to display the time on the horizontal axis and the voltage on the vertical axis using an instrument oscilloscope. is there.
  • the phase of the output B of the signal waveform generator 1 is adjusted by the phase shifter 2 so that the time waveform of the check terminal TP-2 has an opposite phase to the check terminal TP-1. .
  • the detection coil output voltage and the output A (reference signal) of the signal waveform generator 1 are set in opposite phases.
  • switch S is switched to the S2 contact.
  • the output A (reference signal) of the signal waveform generator 1 is supplied to both the amplifier circuit 9 and the potentiometer 6.
  • the signal output supplied to the arithmetic circuit 7 through the switch S 2 via the potentiometer 6 is summed (added) with the output voltage of the detection coil 52.
  • the calculation result by the calculation circuit 7 is amplified by the amplification circuit 8 and then displayed as the output of the check terminal TP-2 on the oscilloscope display of the computer 11.
  • the output of the check terminal TP-1 is displayed together with the output of the check terminal TP-2.
  • the potentiometer 6 is turned to change the resistance value continuously, and the amplitude value of the reference signal input from the output A (reference signal) of the signal waveform generator 1 to the arithmetic circuit 7 via the S2 contact of the switch S. Adjust. Since the output voltage of the detection coil 52 and the output A (reference signal) of the signal waveform generator 1 are already set to have opposite phases, the output A (reference) branched through the S2 contact of the switch S By adjusting the amplitude value of the signal) to make the peak value of the voltage waveform at the check terminal TP-2 almost zero (the dominant phase component at the start of adjustment is canceled and a small amplitude voltage with a different phase remains) The amplitude value of the output A (reference signal) branched via the S2 contact of the switch S can be matched with the amplitude value of the detection coil output.
  • a small-amplitude voltage signal having a different phase remaining after canceling the dominant phase component from the output of the detection coil 52 is masked by a magnetic field detection signal caused by a strong eddy current induced in the surface layer of the subject 20.
  • 20 is a detection signal of a magnetic field due to an eddy current induced in the interior of 20.
  • This adjustment operation is further performed by adjusting the resistance value of the potentiometer 6 until the check terminal TP-3 displaying the output of the detection circuit 10 monitored at the check terminal TP-3 becomes zero as much as possible.
  • the detected component of the magnetic field due to the eddy current can be canceled almost certainly.
  • the detection circuit 10 is a synchronous detection circuit.
  • the output of the detection circuit 10 gives a direction cosine to the output A (reference signal) of the signal waveform generator 1 of the voltage signal obtained by amplifying the output of the arithmetic circuit 7 by the amplifier circuit 8.
  • the resistance value of the potentiometer 6 so as to approach zero as much as possible, a slight residual component left in the arithmetic circuit 7 is almost certainly removed from the detected component of the magnetic field due to the eddy current in the subject surface layer. Can do.
  • the output of the potentiometer 6 the strong detection output of the subject surface layer due to the skin effect can be canceled, and the inside of the subject masked by the detection output of the subject surface layer can be cancelled. Can be detected.
  • the output of the potentiometer 6 of the reference signal input from the output A (reference signal) of the signal waveform generator 1 to the arithmetic circuit 7 via the S2 contact of the switch S has an amplitude with respect to the output of the detection coil 52.
  • the voltage signal is set to be equal and opposite in phase.
  • FIG. 2 shows a test for detecting a groove artificially formed from the outer surface of the upper steel plate to the back surface of the lower steel plate by using a stainless steel plate having a double structure in which two stainless steel plates are arranged with a gap therebetween.
  • the steel plate size is 600 mm wide and 400 mm long on both the upper and lower sides, and the plate thickness is 5 mm for the upper steel plate and 10 mm for the lower steel plate.
  • On the bottom surface of the lower steel plate a groove having a width of 4 mm, a depth of 3 mm, and a length of 400 mm was artificially processed in the center of the steel plate (position 300 mm from the end surface in the longitudinal direction).
  • the gap between the steel plates was made variable every 5 mm from 10 mm to 30 mm using commercially available NR sponge rubber.
  • FIG. 3 shows the detection results obtained using the nondestructive inspection apparatus of the present invention.
  • An artificial groove (4 mm wide and 3 mm deep) on the back surface of the lower steel plate (10 mm thick) could be detected from the outer surface of the upper steel plate (5 mm thick).
  • This test result indicates that damage to the inner wall of the inner pipe of the double pipe can be detected from the outer surface of the outer pipe, and is expected to pioneer new inspection targets for nondestructive inspection.
  • FIG. 4 is a diagram schematically illustrating a test piece used in a test for detecting a minute flaw on the inner wall of a stainless steel pipe.
  • the stainless steel pipe is a 150A schedule pipe (Sch40) with a plate thickness of 7.1 mm.
  • a slit-shaped micro scratch with a width of 0.5 mm, a depth of 3.5 mm, and a length of 20 mm is processed by electric discharge machining, and this micro scratch is lifted off from the outer surface of the pipe.
  • a detection test was conducted with a nondestructive inspection device.
  • Fig. 5 shows the results of a micro-scratch detection test on the inner wall of a stainless steel pipe. Slit-like scratches (width 0.5 mm, depth 3.5 mm Max, length 20 mm) on the inner wall of a stainless steel pipe with a thickness of 7.1 mm were clearly detected from the outer surface of the pipe with a 20 mm lift-off.
  • FIG. 6 is a diagram illustrating the shape of a test piece used for measuring the thickness of a carbon steel pipe and the measurement location.
  • the test pieces are four 300A carbon steel pipes (length 400 mm) with different wall thicknesses, and the wall thicknesses are 6.4 mm, 10.3 mm, 14.3 mm, and 17.4 mm, respectively.
  • For each pipe commercial piping purchased with a specified size is used as it is, and no processing is added.
  • the measurement location was a point where each pipe was equally divided into 8 along the outer periphery of the center of the pipe (position 200 mm from the pipe end face), and each spot was measured with a 6 mm lift-off from the pipe surface.
  • Fig. 7 shows the results of thickness measurement of 300A carbon steel piping.
  • the measured values at 8 points were shown for each thickness pipe, and the average value and standard deviation were calculated from the measured values for each thickness, and the results are shown in the figure.
  • the unit of average value and standard deviation is voltage [V].
  • FIG. 8 is a diagram schematically illustrating a state in which the thickness of a stainless steel pipe placed directly under the gap from the surface of the stainless steel sheet is measured.
  • the pipes were 150A Sch80 SUS304 pipes (thickness 11mm, 1.5m length), and 500mm long thicknesses were cut from both ends to produce test pieces with thicknesses of 7mm, 9mm, and 11mm.
  • a SUS304 steel plate having a thickness of 0.1 mm was used for the upper thin plate.
  • the gap between the thin plate and the pipe was varied from 25 mm to 105 mm every 20 mm using commercially available NR sponge rubber. Note that the lift-off of the sensor with respect to the thin plate on the upper surface is 0.2 mm.
  • Fig. 9 shows the results of pipe wall thickness measurement.
  • a very high correlation was found between the sensor output and the pipe wall thickness.
  • a linear dependency is observed between the pipe wall thickness and the detection output.
  • This test result shows that the change in wall thickness of a steel pipe covered with a metal exterior covering material and several tens of millimeters of dewproof material can be inspected with high accuracy from the outside of the dewproof material with a cover of the covering material. Is shown.
  • FIG. 10 is a diagram for explaining a detection example of a minute flaw provided in the immediate vicinity of a welded portion of the inner wall of a dissimilar joint pipe made of stainless steel and carbon steel, and schematically illustrates the test piece and the state of the test.
  • the test piece uses a SUS side HAZ part (heat-affected zone) on the inner wall of the 150A SUS304 / SS400 dissimilar joint pipe with slit-like scratches (width 0.5mm, depth 2mmMax, length 20mm) by electric discharge machining. It was. In the measurement, the outer surface of the pipe just above the slit wound on the inside of the pipe was scanned in the circumferential direction of the pipe.
  • Fig. 11 shows the result of detection of micro-scratches provided in the immediate vicinity of the welded portion of the inner wall of the dissimilar joint pipe.
  • a clear change (convex downward) is recognized in the detection output of the sensor corresponding to the position of the minute flaw. This indicates that the sensor was able to detect a minute flaw near the welded portion of the inner wall of the pipe from the outside of the pipe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

【課題】 従来の磁気を利用した非破壊検査装置では、表皮効果により検査対象が被検体の表層部に限られ、厚肉構造の被検体の内部や裏面の探傷検査ができなかった。 【解決手段】 被検体に誘起される渦電流による磁場の検出出力から被検体表層部の検出出力をキャンセルする外部信号を与えることにより表皮効果の影響を除外した。これにより、被検体表層部の検出出力によってマスキングされていた被検体内部の検出出力を取り出すことができ、被検体の内部や裏面の探傷および肉厚検査などができるようになった。

Description

交番磁場を利用した非破壊検査装置および非破壊検査方法
 本発明は、導電性の被検体に交番磁場を印加し、被検体に生ずる渦電流による磁場を検出することにより被検体の探傷を行う電磁誘導を利用した装置および方法に関するものである。
 このような従来の電磁誘導を利用した渦流探傷の一例として、特許第3753499号公報(特許文献1)に開示されたものがある。特許文献1では、励磁コイルと直交するように配置した2個の検出コイルに誘起された検出信号の間の出力差および位相差の少なくとも何れかを検出するように構成することにより、検出出力を高めることができて、建築物内部の耐火被覆に覆われた鉄骨表面の亀裂などの損傷状況を、被覆材を剥ぐことなく検査できるようにしている。しかしながら、このように構成されたものにあっては、表皮効果により、磁場が被検体(鉄骨)の深さ方向に向かうに従い指数関数的に減少するために、損傷の検出が被覆材に覆われた被検体(鉄骨)の表面に限られ、被検体の内部や裏面の損傷を検査できないという問題点があった。この問題点は、特許文献1に限らず、数多くの電磁誘導を利用した渦流探傷装置や渦流探傷方法および探傷プローブ(センサ)が提案されているが、これ等に共通する深刻な問題点である。
 また、従来の検査装置の他の例として、特許第3266128号公報(特許文献2)に開示された漏洩磁束を検出して探傷を行うものがある。特許文献2では、磁化器の磁化方向に沿って複数の磁気センサを設け、被検体上の同一位置に対応する漏洩磁束を検出し、複数の磁気センサの測定結果を演算することによって、ノイズを低減させて被検体の内部欠陥を検出するようにしたものである。しかしながら、このように構成されたものにあっては、磁化器の端面が被検体面に対して略垂直ではなく被検体に沿って配置されているが、これでは、被検体には磁化器の磁場の一部だけが、しかも被検体に対して斜め方向に印加されるため、磁化器の磁場は被検体に対し有効には印加されない。さらに重要なことは、検出センサが被検体の裏面側に配置されているため、検出センサは被検体を通過してきた磁場(漏洩磁束)を検出することになるが、表皮効果により、磁場が被検体の深さ方向に向かうに従い指数関数的に減少するために、この漏洩磁束はかなり微弱なものとなることである。また複数の磁気センサを配置し、磁化条件を変えて測定した結果を演算しなければならないなど、検査が相当に煩雑になる。この様な漏洩磁束を検出して検査するものにあっては、上述した理由により、漏洩磁束は表皮効果により微弱なものとなるため検査は限定的にならざるを得ない。特許文献2の実施例では、1mm厚の薄鋼板が検査対象であり、リフトオフ(被検体と検出センサ間の距離)は1mmしかとれていない。この様に、漏洩磁束を検出して検査するものにあっては、表皮効果により、検査対象が薄肉材に限定され、厚肉材の内部や裏面の探傷には到底適用できないという問題点があった。
 また、従来の検査装置の他の例として、被検体の内部を透過する透過磁束を利用して探傷を行うと云う提案が、特開2010-48552号公報(特許文献3)に開示されている。特許文献3では、被検体の内部を透過する透過磁束の2点間における磁位差(特許文献3では磁位という用語を使っているが、特許文献3における図1及びそれを模式化した図3の磁気回路に印加電流が流れるコイルの鎖交があるため、電位のようには扱えず、特許文献3で云う磁位という概念は物理的に意味が無い)を測定することにより被検体の内部欠陥を検出すると云うものである。特許文献3における図3に概略図を示してその検出原理が次のように説明されている。即ち、励磁コアと被検体およびピックアップコアとが磁束の通路を構成するとし、励磁コアから被検体に印加された磁束がこの通路の中を流れ、被検体の内部に欠陥があると被検体の磁気抵抗が大きくなるから、ピックアップコアに設けられた磁位差測定手段(検出コイル)の出力が変化する。これによって被検体の内部欠陥を検出できるとしている。しかしながら、励磁コアから被検体に印加された磁場(磁束)は、表皮効果により、被険体内を一様には流れず、被検体への印加表面で最も大きく、被検体の内部に向かって進むに従い指数関数的に減衰する。特許文献3における図3で画かれているような被検体の内部を流れる一様な透過磁束は、通常の交番磁場を利用する限り、存在しない。印加された磁場は被検体の表面で最大強度を持つ。印加磁束の周波数を低くすることで被険体内の磁束の減衰をある程度抑えられるが、被険体内に一様な透過磁束を通すのは極めて困難である。仮に1Hzを遥かに下回る超低周波数を印加して何とか透過させることができたとしても、コイルの検出出力が印加周波数の自乗に比例するため、検出効率が極端に低下する。例えば、1kHzで検出出力が1Vであるとすると、0.1Hzでは0.01μVとなり、ノイズに埋もれてしまい検出信号の処理が極めて困難になる。さらに、超低周波数に起因して装置の電子回路に超低周波数対応が求められ、その上、データ捕捉時間が長くなって迅速な測定ができなくなるなど、全く実用にならない。この様に、透過磁束を利用して検査するものにあっては、表皮効果により透過磁束が被険体内に一様に流れず、被検体の内部や裏面の探傷には適用できないという問題点があった。
 また、従来の検査装置の他の例として特許第3896489号公報(特許文献4)では、測定対象に交流磁場を印加して磁気センサの磁気応答信号を調べることにより、測定対象に含まれる金属導体などの異物を検出している。磁気センサの検出信号は、印加交流磁場が磁気センサの位置に作る磁場と、測定対象に含まれる金属導体に発生する渦電流による磁場(印加交流磁場に対して位相が90度遅れる)とから構成され、金属導体などの異物の検出には、前者の印加交流磁場が磁気センサの位置に作る磁場が雑音(ノイズ)となる。この交流磁場をキャンセルコイルによって取り除くことにより、金属導体に発生する渦電流による磁場の検出感度を高めて、測定対象に含まれる金属導体などの異物の有無検査を可能にしている。このように特許文献4では、印加交流磁場が磁気センサの位置に作る磁場をキャンセルコイルによって取除くことにより、測定対象に含まれる金属導体に生ずる渦電流による磁場の検出感度を高めたものであり、金属導体などの異物の有無検査が目的で、測定対象に含まれる金属導体の内部を検査しようとするものではない。
特許第3753499号公報 特許第3266128号公報 特開2010-48552号公報 特許第3896489号公報
 渦流探傷に代表される磁場を利用した非破壊検査では、被検体に交番磁場を印加する。これにより、被検体には表皮効果に応じて渦電流が誘起され、この渦電流が発する磁場を検出コイルで検出する。表皮効果により印加磁場の浸透が被検体の深さ方向に指数関数的に減少するため、被検体表面に流れる渦電流による磁場の出力が強大で、被検体内部の渦電流による磁場の出力は極微弱である。検出コイルで検出される信号(交流信号)には、これ等の出力がミキシングされて検出される。即ち、被検体表層部の大出力によって、被検体内部の微小出力はマスキングされている。検出出力(交流信号)は、評価のために、電子回路で整流・検波されて直流電圧に変換されるが、この整流・検波後の直流電圧には、マスキングされた被検体内部の微小出力は殆んど反映されない。このことが、厚肉材などの被検体の内部や裏面の探傷検査に対して未だ解決に至っていない本質的な問題点であり、解決が渇望されている課題である。
 本発明は、このような事情に鑑みて上記課題を解決するために提案されたもので、その目的とするところは被検体の内部や裏面の探傷を可能にする技術を提供することにある。より詳しくは、検出コイルの検出出力に被検体表層部の検出出力をキャンセルする外部信号を与えて、被検体表層部の検出出力にマスキングされていた被検体内部の検出出力をとり出すことにより、被検体の内部や裏面の探傷および肉厚変化などの検査を可能にするものである。
 上記目的を達成するために、本発明の第1の形態は、信号波形生成器と、被検体に交番磁場を印加可能な励磁コイルと、前記励磁コイルの近傍位置に配置され前記被検体から発せられる渦電流による磁場を検知する検出コイルと、前記検出コイルの検出信号に対し振幅がほぼ等しく逆位相の正弦波信号を生成する回路を備えて該逆位相正弦波生成回路出力と前記検出コイルの検出信号との和を出力する回路を備え、該和信号出力の残余の信号を検波する回路手段を備えた交番磁場を利用した非破壊検査装置であって、表皮効果による被検体表層部の検出出力をキャンセルして該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することを特徴とする。
 本発明の第2の形態は、信号波形生成器と、被検体に交番磁場を印加可能な励磁コイルと、前記励磁コイルの近傍位置に配置され前記被検体から発せられる渦電流による磁場を検知する検出コイルと、前記検出コイルの検出信号に対し振幅がほぼ等しく同位相の正弦波信号を生成する回路を備えて該同位相正弦波生成回路出力と前記検出コイルの検出信号との差を出力する回路を備え、該差信号出力の残余の信号を検波する回路手段を備えた交番磁場を利用した非破壊検査装置であって、表皮効果による被検体表層部の検出出力をキャンセルして該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することを特徴とする。
 本発明の第3の形態は、第1または第2の形態の非破壊検査装置であって、前記被検体は導電性を有する材料である、非破壊検査装置である。
 本発明の第4の形態は、第1または第2の形態の非破壊検査装置であって、前記検波する回路手段が同期検波回路である、非破壊検査装置である。
 本発明の第5の形態は、信号波形生成器によって、信号を出力し、励磁コイルによって、被検体に交番磁場を印加し、前記励磁コイルの近傍位置に配置された検出コイルによって、前記被検体から発せられる渦電流による磁場を検知し、前記検出コイルの検出信号に対し振幅がほぼ等しく逆位相の正弦波信号と前記検出コイルの検出信号との和を出力し、該和信号出力の残余の信号を検波することを含み、表皮効果による被検体表層部の検出出力をキャンセルして該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することによる、被検体の非破壊検査方法である。
 本発明の第6の形態は、信号波形生成器によって、信号を出力し、励磁コイルによって、被検体に交番磁場を印加し、前記励磁コイルの近傍位置に配置された検出コイルによって、前記被検体から発せられる渦電流による磁場を検知し、前記検出コイルの検出信号に対し振幅がほぼ等しく同位相の正弦波信号と前記検出コイルの検出信号との差を出力し、該差信号出力の残余の信号を検波することを含み、表皮効果による被検体表層部の検出出力をキャンセルして該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することによる、被検体の非破壊検査方法である。
 本発明によれば、前記検出コイルの検出出力信号のうち、その支配的成分である被検体表層部の渦電流による検出出力をキャンセルすることができる。検出コイルの検出出力(電圧)は、被検体に誘起される全ての渦電流による検出電圧がミキシングされた和として観測されるが、被検体表面で発生した渦電流による磁場の検出出力が最も大きく、被検体の内部に向かう程、そこで発生する渦電流による磁場の検出出力は、その振幅値が被検体表面に対して指数関数で減少するとともに位相遅れが生じる。この位相遅れは励磁角周波数と被検体の導電率および透磁率の積の平方根に比例する。被検体の表面近傍では、振幅値の減少が小さくまた位相遅れは小さい。この被検体表層部における検出出力の和(足し算)が検出コイルの検出出力の支配的成分として反映される。したがって、検出コイルの検出出力に対し、これと同振幅逆位相の外部正弦波信号を印加して和をとる、或は同振幅同位相の外部正弦波信号を印加して差をとることにより、検出コイルの検出出力から被検体表層部の検出出力分をキャンセルでき、表層部の検出出力分によってマスキングされていた被検体内部の検出分を簡便にして効果的に取り出すことができる。このようにして得られた被検体内部の検出分を示す和信号、乃至差信号は、検出コイルの検出出力とは位相が異なった小信号出力であるが、表層部の大出力を取り除いているため、増幅回路で必要に応じた高利得での増幅が可能となり、検査したい被検体内部の検出分だけを検査に必要となる十分な大きさの信号にまで増幅して得ることができる。また、この和信号、乃至差信号は、検出コイル出力に対して同振幅逆位相の外部正弦波信号、或は同振幅同位相の外部正弦波信号を印加して和或は差をとった演算信号であり、この演算信号の生成時の位置における検出コイル出力に対して、新しい検査位置(例えば走査等により被検体上で検出コイルを移動した場所)の表層部に亀裂などの損傷がある場合には、表層部に誘起される渦電流のルート変更によって表層部に対する検出出力が変化するため、和信号或は差信号の生成時に与えた外部正弦波信号との間に差異が生じる。したがってこの表層部の亀裂をも検出できる。即ち、検出コイル出力に対して同振幅逆位相の外部正弦波信号、或は同振幅同位相の外部正弦波信号を印加して和或は差をとった演算信号を生成することにより、被検体の厚みや裏面の損傷などの被検体内部の検査を高性能で行えると同時に、被検体表面の損傷をも検出することができる。更に、検出出力はリフトオフ(検出センサから被検体までの距離)にともなって減少するため、従来はリフトオフを大きく取れないという問題があったが、本発明では、検出出力から表層部の大出力を取り除いているため、高利得での増幅が可能となり、リフトオフを飛躍的に大きくとることが可能になった。即ち、後述の実施例で詳述するように、従来不可能であった二重管の内側配管の内壁の損傷を外側の配管表面から検出可能であることが示された。また、肉厚が10mmを超える炭素鋼配管の肉厚の変化をリフトオフ下で然も高精度に検出することが可能になった。また、金属製の外装被覆材と数十ミリ厚の防露材でカバーされた鋼製配管の肉厚や配管内壁の損傷を被覆材のカバー付き防露材の外側から高精度で検査することが可能になった。さらに、ステンレス鋼と炭素鋼の異材継手配管内壁の溶接部直近に生じた微小傷の検出が可能になった。これ等は本発明の非破壊検査装置による実施例のほんの一部であり、本発明の磁場を利用した非破壊検査装置を用いることにより、年来の懸案事項であった配管を含む厚肉材の内部や裏面の探傷を高リフトオフ下で検査することが可能になった。
本発明における非破壊検査装置の構成を示すブロック図である。 本発明の一実施例を示すもので、二重構造のステンレス鋼板の上側鋼板の外面から下側鋼板の裏面につけた人工溝を検出する試験の様子を説明した模式図である。 上側鋼板の外面から下側鋼板の裏面につけた人工溝の検出例を示す図である。 本発明のその他の実施例を示すもので、ステンレス鋼配管内壁の微小傷の検出試験に用いたテストピースを模式的に説明した図である。 ステンレス鋼配管内壁の微小傷の検出例を示す図である。 本発明のその他の実施例を示すもので、炭素鋼配管の肉厚測定に使用したテストピースの形状と測定箇所を説明した模式図である。 炭素鋼配管の肉厚測定の結果を示す図である。 本発明のその他の実施例を示すもので、ステンレス鋼薄板の表面から間隙を介して真下に置かれたステンレス鋼配管の肉厚測定を行った様子を模式的に説明した図である。 配管の肉厚測定の結果を示す図である。 本発明のその他の実施例を示すもので、ステンレス鋼と炭素鋼の異材継手配管内壁の溶接部直近に設けた微小傷の検出事例を説明する模式図である。 異材継手配管内壁の溶接部直近に設けた微小傷の検出結果を示す図である。
 以下、本発明の一実施形態について図面を用いて説明する。
 図1は、本発明の磁場を利用した非破壊検査装置30の構成を示すブロック図である。同図に示すように、本実施形態の磁場を利用した非破壊検査装置は、コンピュータ11と、信号波形生成器1と、移相器2と、パワーアンプ3と、励磁印加手段4と、検出手段5と、ポテンショメータ6と演算回路7と、増幅回路8と、増幅回路9と、検波回路10とから構成される。
 被検体20は、磁場を利用した非破壊検査装置30の検査対象であり、炭素鋼、ステンレス鋼、アルミニウム、銅、インコネル、ジルコニウム等、導電性を有する材料であれば何であってもよい。
 コンピュータ11は、図示しない操作者などの入力指示に従い、信号波形生成器1が発生する交流信号の電圧や位相および周波数などを制御することに加えて、増幅回路8の出力を調べるチェック端子TP-2や増幅回路9の出力を調べるチェック端子TP-1、さらに検波回路10の出力を調べるチェック端子TP-3を表示させるとともに、コンピュータ11にインストールされた図示しないアプリケーションソフトに従って検波回路10の出力などを演算処理するなど、様々な処理を行う。なお、前記検波回路10は、同期検波回路であることが望ましい。
 信号波形生成器1は、少なくとも2つの信号波形を同時に出力することができ(図1ではBとAの2つの出力が示されている)、これ等少なくとも2つの信号波形出力は、波形の種類、周波数、電圧、位相などを、コンピュータ11の指示に従って或は信号波形生成器1が有する機能に従って、それぞれ別々に決定されることができ、その出力の一つBはパワーアンプ3に供給され、別の一つの出力Aはリファレンス信号として増幅回路9およびスイッチSのS2接点を介してポテンショメータ6に供給される。前記増幅回路8および前記増幅回路9は、直流から測定に使用する周波数を含む広い周波数帯域に亘って、振幅特性が一定で位相推移のない直流結合増幅回路であることが望ましい。また、測定に使用する周波数を含む広い周波数帯域に亘って、振幅特性が一定で位相推移のない交流結合増幅回路も使用可能であるが、後述する走査等の測定手段により検出信号が変化する場合の過渡応答特性を考慮すると、直流結合増幅回路を使用するほうがより望ましいことは言うまでもない。また前記増幅回路9は、後述する位相比較を容易にするため、その出力段において、矩形波等の位相情報のみを保持した信号への波形整形等の手段が含まれる。
 励磁手段4は、励磁コア41と励磁コイル42から構成され、パワーアンプ3から供給される電流に応じて被検体20に磁場を印加する。励磁コア41の形状は、例えばコの字形状をなし、その両脚の軸方向がともに被検体に対して略垂直に配置される。励磁コイル42は励磁コア41の外周に沿って巻かれる。この励磁コイル42は励磁コア41の全周に亘って巻かれてもよいが、部分的に巻かれてもよい。図1では、励磁コアの一部に巻かれた場合を示している。部分的に巻かれるその他の例として、例えばコの字形状の両脚にそれぞれ巻かれる場合は、片脚を右回りで巻かれた場合には他脚を左回りで巻かれ、片脚の巻き終わりと他脚の巻き始めを結合して連続した一本の巻線として構成する。即ち、励磁コイル42に電流が印加された場合のある瞬間における励磁コア41内の磁場の向きが一方向となるように構成される。
 検出手段5は、検出コア51と検出コイル52から構成され、励磁手段4によって被検体20に印加された磁場により被検体には渦電流が誘起されるが、この渦電流によって発生する磁場を検出する。検出コア51の形状は、例えばコの字状で、その両脚の軸方向がともに被検体に対して略垂直に配置される。検出コイル52は検出コア51の外周に沿って巻かれる。この検出コイル52は検出コア51の全周に亘って巻かれてもよいが、部分的に巻かれてもよい。部分的に巻かれる場合、例えばコの字形状の両脚にそれぞれ巻かれる場合は、片脚を右回りで巻いた場合には他脚を左回りで巻き、片脚の巻き終わりと他脚の巻き始めを結合して連続した一本の巻線として構成する。
 次に、図1に基づき、本発明の磁場を利用した非破壊検査装置30を用いて検査を行う際の動作について説明する。なお、以下では、検出コイル出力と同振幅逆位相の電圧信号との和(足し算)をとることにより、検出コイル出力の支配成分をキャンセルする方法および装置について説明する。これはまた、検出コイル出力と同振幅同位相の電圧信号との差(引き算)をとって検出コイル出力の支配成分をキャンセルするように構成してもよい。この場合は、以下で説明する検出出力とリファレンス信号との位相調整において、検出コイル出力の位相をリファレンス信号に対して同位相に設定した上で、リファレンス信号の振幅値を検出コイル出力の振幅値に等しくなるように設定し、検出コイル出力とリファレンス信号の差を取ることによって得られる。以下、検出コイル出力と同振幅逆位相のリファレンス信号との和をとって、検出コイル出力の支配成分をキャンセルする方法および装置について説明する。
 まず、スイッチSをS1側にする。これにより、信号波形生成器1の出力A(リファレンス信号)は増幅回路9だけに供給され、ポテンショメータ6には供給されない。
 信号波形生成器1の周波数を決定する。出力B、出力Aとも同じ周波数にする。周波数は、被検体の材質、検査場所などを勘案して決定する。
 信号波形生成器1の出力のうち、出力Bはパワーアンプ3で電流増幅されて励磁コイル42に送られ、励磁コイルに交番電流が流れることによって交番する励磁磁場が発生する。励磁磁場の大部分は励磁コア41に集められ、その端面から被検体20の表面に向けて印加される。ある瞬間における励磁コア41内の磁場の向きは一方向である。例えば、励磁コア41がコの字形状をなし、その両脚の軸方向がともに被検体20の表面に対して略垂直に配置されている場合は、被検体20からみて、片脚の端面から印加される磁場と他脚の端面から印加される磁場の向きが逆で、励磁コア内の磁場の向きは片脚から他脚に向かう。その向きは印加磁場が交流であるから交番する。
 励磁手段4によって被検体20に磁場が印加されることにより、被検体20には渦電流が誘起され、この渦電流による磁場が発生する。被検体20に誘起される渦電流は、励磁コア41の形状が、例えばコの字形状をなし、その両脚の軸方向がともに被検体に対して略垂直に配置されている場合には、コの字状の励磁コア41の両端面が対向する位置を中心に被検体20の二箇所で誘起され、それらの渦電流の向きは逆向きである。これは、励磁コア41の両端面から被検体20に印加される磁場の向きが逆向きであることによる。これら二箇所で誘起される渦電流によって、それぞれ逆向きの磁場が発生する。
 被検体20の二箇所で発生する磁場は、励磁手段4の近傍に配置された検出手段5によって検出され、検出コイルには電圧が誘起される。検出手段5がコの字状の検出コア51とその両脚にそれぞれ逆向きに巻かれ、片方の巻線の終端を他方の巻線の始点と結合して一本の巻線とした検出コイル52で構成される場合は、被検体20の二箇所で発生する磁場の向きが逆向きであるから、検出コア51の片脚に入った磁場は他脚に向かい(交流であるから交番する)、検出コイル52には両脚に巻かれた巻線数の和に比例した電圧が誘導される。
 検出コイル52の出力電圧は、増幅回路8で適宜増幅され、その出力はチェック端子TP-2で確認できる。一方、信号波形生成器1の出力のうち、出力A(リファレンス信号)は増幅回路9で適宜増幅され、その出力はチェック端子TP-1で確認できる。チェック端子TP-1およびチェック端子TP-2の出力は、コンピュータ11で水平軸を時間、垂直軸を電圧にとって、同時にオシロスコープ表示される。表示に際し、トリガ機能を使ってトレースは固定される。コンピュータ計測に際して必要となるADコンバータは、コンピュータ11にサウンドボードが装備されている場合にはサウンドボード内に内蔵されているものでもよいが、外付けのものでもよい。また、コンピュータ11にインストールされたADコンバータを具備した計測ソフトを使って行ってもよい。さらに、チェック端子TP-1およびチェック端子TP-2の出力表示は、コンピュータ計測に限らず、計測器のオシロスコープを用いて水平軸を時間、垂直軸を電圧にとって表示させてもよいことは勿論である。
 コンピュータ11のオシロスコープ表示上で、チェック端子TP-2の時間波形がチェック端子TP-1に対して逆位相となるように、信号波形生成器1の出力Bの位相を移相器2によって調整する。以上で、検出コイル出力電圧と信号波形生成器1の出力A(リファレンス信号)とは互いに逆位相に設定される。
 次に、スイッチSをS2接点に切り替える。これにより、信号波形生成器1の出力A(リファレンス信号)は、増幅回路9並びにポテンショメータ6の両方に供給される。
 信号波形生成器1の出力A(リファレンス信号)のうちスイッチS2を通りポテンショメータ6を介して演算回路7に供給された信号出力は、検出コイル52の出力電圧との和(足し算)がなされる。演算回路7による演算結果は増幅回路8で増幅された後、コンピュータ11のオシロスコープ表示上でチェック端子TP-2の出力として表示される。コンピュータ11のオシロスコープ表示上には、チェック端子TP-2の出力とともに、チェック端子TP-1の出力が表示される。
 ポテンショメータ6のボリュームの摘みを回して抵抗値を連続的に変え、信号波形生成器1の出力A(リファレンス信号)からスイッチSのS2接点を介して演算回路7に入力されるリファレンス信号の振幅値を調整する。検出コイル52の出力電圧と信号波形生成器1の出力A(リファレンス信号)とは既に互いに逆位相になるように設定されているから、スイッチSのS2接点を介して分岐された出力A(リファレンス信号)の振幅値を調整してチェック端子TP-2の電圧波形の波高値をほぼ零にする(調整開始時の支配位相成分がキャンセルされ、位相が異なる小振幅の電圧が残る)ことにより、スイッチSのS2接点を介して分岐された出力A(リファレンス信号)の振幅値を検出コイル出力の振幅値に一致させることができる。検出コイル52の出力からその支配位相成分をキャンセルした後に残る位相が異なる小振幅の電圧信号は、被検体20の表層部に誘起された強大な渦電流による磁場の検出信号にマスキングされた被検体20の内部に誘起された渦電流による磁場の検出信号である。この調整作業はさらに、チェック端子TP-3でモニタリングされる検波回路10の出力を表示するチェック端子TP-3が限りなくゼロになるまで、ポテンショメータ6の抵抗値を調整することで、被検体表面の渦電流による磁場の検出成分をほぼ確実にキャンセルできる。検波回路10は同期検波回路であることがより望ましい。この場合、検波回路10の出力は、演算回路7の出力を増幅回路8で増幅された電圧信号の信号波形生成器1の出力A(リファレンス信号)に対する方向余弦を与えるから、検波回路10の出力が限りなくゼロに近づくようにポテンショメータ6の抵抗値を調整することにより、被検体表層部の渦電流による磁場の検出成分に対して演算回路7で取り残した僅かな残余成分をほぼ確実に取り除くことができる。このようにして,ポテンショメータ6の出力を設定することにより,表皮効果による被検体表層部の強大な検出出力をキャンセルすることができ、該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することができる。
 これにより、信号波形生成器1の出力A(リファレンス信号)からスイッチSのS2接点を介して演算回路7に入力されるリファレンス信号のポテンショメータ6の出力は、検出コイル52の出力に対して振幅が等しく位相が逆の電圧信号に設定される。結果、検出コイル52の出力電圧からその支配成分である被検体表層部に誘起される渦電流による磁場の検出分を効果的にキャンセルできる。
 図2は、二枚のステンレス鋼板を隙間を設けて重ねて配置した二重構造のステンレス鋼板を用いて、上側の鋼板の外表面から下側鋼板の裏面に人工的につけた溝を検出する試験を行った様子を説明した模式図である。鋼板サイズは、上側、下側とも、幅600mm、長さ400mmで、板厚は上側鋼板が5mm、下側鋼板が10mmである。下側の鋼板裏面には、鋼板の中央(長手方向端面から300mmの位置)に幅4mm、深さ3mm、長さ400mmの溝を人工的に加工した。鋼板間の隙間は、市販のNRスポンジゴムを用いて、10mmから30mmまで5mm毎に可変にした。 
 図3に本発明の非破壊検査装置を用いて行った検出結果を示す。上側鋼板(5mm厚)の外表面上から下側鋼板(10mm厚)の裏面の人工溝(幅4mm、深さ3mm)を検出できた。上側鋼板と下側鋼板の間隙が小さいほど明瞭に検出するが、間隙が30mmであっても十分に検出できることが示された。この試験結果は、二重管の内側配管の内壁の損傷を外側の配管の外表面から検出可能であることを示しており、非破壊検査の新しい検査対象を開拓するものとして期待される。
 図4は、ステンレス鋼配管内壁の微小傷の検出試験に用いたテストピースを模式的に説明した図である。ステンレス鋼配管は、150Aスケジュール管(Sch40)で板厚は7.1mmである。配管の内壁の周方向に、放電加工により、幅0.5mm、深さ3.5mm、長さ20mmのスリット状の微小傷を加工し、この微小傷を配管の外表面からリフトオフを設けて本発明の非破壊検査装置で検出試験を行った。
 図5にステンレス鋼配管内壁の微小傷の検出試験の結果を示す。板厚が 7.1mmのステンレス鋼配管内壁のスリット状の微小傷(幅0.5mm、深さ3.5mmMax、長さ20mm)を20mmのリフトオフを設けて配管の外表面から明瞭に検出できた。
 図6は、炭素鋼配管の肉厚測定に使用したテストピースの形状と測定箇所を説明した図である。テストピースは、肉厚の異なる4本の300A炭素鋼配管(長さ400mm)で、肉厚はそれぞれ、6.4mm、10.3mm、14.3mm、および17.4mmである。各管とも、サイズを指定して購入した市販の配管をそのまま使用し、何等の加工を加えていない。測定箇所は、各管とも配管の中央(配管端面から200mmの位置)の外周に沿って8等分する地点で、各地点とも配管表面から6mmのリフトオフを設けて測定した。
 図7に300A炭素鋼配管の肉厚測定の結果を示す。各肉厚の配管毎に8点の測定値を図示するとともに、肉厚毎に測定値から平均値と標準偏差を算出して結果を図中に示した。平均値と標準偏差の単位は電圧[V]である。板厚が厚くなる程、分散が大きくなる傾向があるが、配管肉厚と検出出力との間に極めて高い相関(相関係数r=0.996)が認められる。これにより、従来不可能であった厚肉の炭素鋼配管の肉厚の検出が可能となった。減肉率30%を96%以上の確率で、減肉率40%を99%以上の確率で検出可能である。
 図8は、ステンレス鋼薄板の表面から間隙を介して真下に置かれたステンレス鋼配管の肉厚測定を行った様子を模式的に説明した図である。配管は、150A Sch80 SUS304配管(肉厚11mm、1.5m長)を用い、その両端面から各々500mm長の肉厚を切削加工し、7mm、9mm、11mmの肉厚からなるテストピースを製作した。上面の薄板には、板厚0.1mmのSUS304鋼板を用いた。薄板と配管との間隙は、市販のNRスポンジゴムを用いて、25mmから105mmまでを20mm毎に可変にした。なお、上面の薄板に対するセンサのリフトオフは0.2mmである。
 図9に配管の肉厚測定の結果を示す。センサによる検出出力と配管の肉厚との間には極めて高い相関が認められた。この高い相関関係は、上側の薄板と検査すべき配管との間隙量(25mm~105mm)に関係なく配管肉厚と検出出力との間にr=0.99以上の相関係数が得られており、配管肉厚と検出出力との間に線形従属関係が認められる。この試験結果は、金属製の外装被覆材と数十ミリ厚の防露材でカバーされた鋼製配管の肉厚の変化を,被覆材のカバー付き防露材の外側から高精度で検査できることを示している。
 図10は、ステンレス鋼と炭素鋼との異材継手配管内壁の溶接部直近に設けた微小傷の検出事例を説明する図で、テストピース並びに試験の様子を模式的に説明したものである。テストピースは、150A SUS304 / SS400異材継手配管内壁のSUS側HAZ部(熱影響部)に、放電加工によりスリット状の傷(幅0.5mm、深さ2mmMax、長さ20mm)を付けたものを用いた。測定は、配管の内側につけたスリット傷の真上の配管の外表面上を配管の周方向に走査した。
 図11に異材継手配管内壁の溶接部直近に設けた微小傷の検出結果を示す。微小傷の位置に対応してセンサの検出出力に明らかな変化(下に凸)が認められる。これは、センサが配管内壁の溶接部直近の微小傷を配管の外側から検出し得たことを示している。
  1 信号波形生成器
  2 移相器
  3 パワーアンプ
  4 励磁手段
  5 検出手段
  6 ポテンショメータ
  7 演算回路
  8 増幅回路
  9 増幅回路
 10 検波回路
 11 コンピュータ
 20 被検体 

Claims (6)

  1.  信号波形生成器と、
     被検体に交番磁場を印加可能な励磁コイルと、
     前記励磁コイルの近傍位置に配置され前記被検体から発せられる渦電流による磁場を検知する検出コイルと、
     前記検出コイルの検出信号に対し振幅がほぼ等しく逆位相の正弦波信号を生成する回路を備えて該逆位相正弦波生成回路出力と前記検出コイルの検出信号との和を出力する回路を備え、
     該和信号出力の残余の信号を検波する回路手段を備えて、
     表皮効果による被検体表層部の検出出力をキャンセルして該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することを特徴とする交番磁場を利用した非破壊検査装置。
  2.  信号波形生成器と、
     被検体に交番磁場を印加可能な励磁コイルと、
     前記励磁コイルの近傍位置に配置され前記被検体から発せられる渦電流による磁場を検知する検出コイルと、
     前記検出コイルの検出信号に対し振幅がほぼ等しく同位相の正弦波信号を生成する回路を備えて該同位相正弦波生成回路出力と前記検出コイルの検出信号との差を出力する回路を備え、
     該差信号出力の残余の信号を検波する回路手段を備えて、
     表皮効果による被検体表層部の検出出力をキャンセルして該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することを特徴とする交番磁場を利用した非破壊検査装置。
  3.  前記被検体は導電性を有する材料である、請求項1または2に記載の非破壊検査装置。
  4.  前記検波する回路手段が同期検波回路である、請求項1または2に記載の非破壊検査装置。
  5.  信号波形生成器によって、信号を出力し、
     励磁コイルによって、被検体に交番磁場を印加し、
     前記励磁コイルの近傍位置に配置された検出コイルによって、前記被検体から発せられる渦電流による磁場を検知し、
     前記検出コイルの検出信号に対し振幅がほぼ等しく逆位相の正弦波信号と前記検出コイルの検出信号との和を出力し、
     該和信号出力の残余の信号を検波することを含み、
     表皮効果による被検体表層部の検出出力をキャンセルして該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することによる、被検体の非破壊検査方法。
  6.  信号波形生成器によって、信号を出力し、
     励磁コイルによって、被検体に交番磁場を印加し、
     前記励磁コイルの近傍位置に配置された検出コイルによって、前記被検体から発せられる渦電流による磁場を検知し、
     前記検出コイルの検出信号に対し振幅がほぼ等しく同位相の正弦波信号と前記検出コイルの検出信号との差を出力し、
     該差信号出力の残余の信号を検波することを含み、
     表皮効果による被検体表層部の検出出力をキャンセルして該被検体表層部の検出出力によってマスキングされていた被検体内部の出力を検出することによる、被検体の非破壊検査方法。
PCT/JP2012/052836 2011-02-18 2012-02-08 交番磁場を利用した非破壊検査装置および非破壊検査方法 WO2012111500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12746911.2A EP2677311A4 (en) 2011-02-18 2012-02-08 NON-DESTRUCTIVE TEST DEVICE WITH A MAGNETIC CHANGE FIELD AND METHOD FOR NON-DESTRUCTIVE TESTING
US13/965,958 US9453817B2 (en) 2011-02-18 2013-08-13 Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011049580A JP4756409B1 (ja) 2011-02-18 2011-02-18 交番磁場を利用した非破壊検査装置および非破壊検査方法
JP2011-049580 2011-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/965,958 Continuation US9453817B2 (en) 2011-02-18 2013-08-13 Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method

Publications (1)

Publication Number Publication Date
WO2012111500A1 true WO2012111500A1 (ja) 2012-08-23

Family

ID=44597155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052836 WO2012111500A1 (ja) 2011-02-18 2012-02-08 交番磁場を利用した非破壊検査装置および非破壊検査方法

Country Status (4)

Country Link
US (1) US9453817B2 (ja)
EP (1) EP2677311A4 (ja)
JP (1) JP4756409B1 (ja)
WO (1) WO2012111500A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482347B1 (ko) * 2012-12-27 2015-01-13 주식회사 포스코 강판의 내부 결함 검출 장치 및 방법
JPWO2015190414A1 (ja) * 2014-06-12 2017-04-20 コニカミノルタ株式会社 非破壊検査装置
JP6740077B2 (ja) 2016-10-05 2020-08-12 大日機械工業株式会社 非破壊検査測定システムの較正装置および非破壊検査測定方法
JP6432645B1 (ja) * 2017-06-28 2018-12-05 Jfeスチール株式会社 焼鈍炉中の鋼板の磁気変態率測定方法および磁気変態率測定装置、連続焼鈍プロセス、連続溶融亜鉛めっきプロセス
RU2694428C1 (ru) * 2018-11-26 2019-07-15 Общество с ограниченной ответственностью "Научно-внедренческое предприятие "Кропус" (ООО "НВП "Кропус") Измерительный тракт вихретокового дефектоскопа для контроля труб
CN111380952B (zh) * 2018-12-29 2023-05-19 宝武特种冶金有限公司 一种用于无缝钢管内壁污物及渗碳缺陷的无损检测装置与方法
CN111337569A (zh) * 2020-04-16 2020-06-26 中国科学院海洋研究所 一种新型的脉冲近场、远场组合式涡流传感器
CN111896610B (zh) * 2020-08-21 2022-11-25 爱德森(厦门)电子有限公司 提高金属材料间隙检测精度和检测范围的方法及其装置
CN111982967A (zh) * 2020-08-22 2020-11-24 核动力运行研究所 一种基于永磁铁的磁饱和脉冲涡流红外无损评价方法
BR102020024201A2 (pt) * 2020-11-26 2022-05-31 Vallourec Soluções Tubulares Do Brasil S.A. Sistema e método de inspeção de peças metálicas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130652A (en) * 1980-03-18 1981-10-13 Anritsu Corp Metal discriminating device
JP2622536B2 (ja) * 1990-03-16 1997-06-18 株式会社日本非破壊計測研究所 渦流探傷方法及びその装置
JP3266128B2 (ja) 1999-02-08 2002-03-18 日本鋼管株式会社 漏洩磁束探傷法及び漏洩磁束探傷装置
WO2003027659A1 (fr) * 2001-09-21 2003-04-03 Tok Engineering Co., Ltd. Procede permettant de detecter des corps etrangers metalliques et systeme permettant de detecter des corps etrangers metalliques
JP3753499B2 (ja) 1997-04-14 2006-03-08 株式会社竹中工務店 磁気探傷装置及び方法
JP3896489B2 (ja) 2004-07-16 2007-03-22 国立大学法人 岡山大学 磁気検知装置及び物質判定装置
JP2010048552A (ja) 2006-12-14 2010-03-04 Osaka Univ 非破壊検査装置及び非破壊検査方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823368A (en) * 1954-07-14 1974-07-09 Magnetic Analysis Corp Calibration and balance system in pulse eddy current testing apparatus
US3916301A (en) * 1974-05-20 1975-10-28 Republic Steel Corp Magnetic flaw detection apparatus
US4191922A (en) * 1978-03-14 1980-03-04 Republic Steel Corporation Electromagnetic flaw detection system and method incorporating improved automatic coil error signal compensation
FR2451032A1 (fr) * 1979-03-09 1980-10-03 Commissariat Energie Atomique Appareil numerique pour le controle de pieces par courants de foucault
FR2570501B1 (fr) * 1984-09-20 1987-12-18 Siderurgie Fse Inst Rech Procede de detection de defauts de surface par courants de foucault et dispositif mettant en oeuvre ce procede
DE3720686A1 (de) * 1987-06-23 1989-01-05 Foerster Inst Dr Friedrich Verfahren zum untersuchen eines objektes
JPH0854375A (ja) 1994-08-11 1996-02-27 Kaisei Enjinia Kk 電磁誘導型検査装置
JPH10293122A (ja) * 1997-04-17 1998-11-04 Nkk Corp 金属体の探傷装置及び探傷方法
DE10229735A1 (de) * 2002-07-02 2004-01-22 rinas Gerätetechnik GmbH Verfahren zum Erkennen und Lokalisieren von Materialfehlern

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130652A (en) * 1980-03-18 1981-10-13 Anritsu Corp Metal discriminating device
JP2622536B2 (ja) * 1990-03-16 1997-06-18 株式会社日本非破壊計測研究所 渦流探傷方法及びその装置
JP3753499B2 (ja) 1997-04-14 2006-03-08 株式会社竹中工務店 磁気探傷装置及び方法
JP3266128B2 (ja) 1999-02-08 2002-03-18 日本鋼管株式会社 漏洩磁束探傷法及び漏洩磁束探傷装置
WO2003027659A1 (fr) * 2001-09-21 2003-04-03 Tok Engineering Co., Ltd. Procede permettant de detecter des corps etrangers metalliques et systeme permettant de detecter des corps etrangers metalliques
JP3896489B2 (ja) 2004-07-16 2007-03-22 国立大学法人 岡山大学 磁気検知装置及び物質判定装置
JP2010048552A (ja) 2006-12-14 2010-03-04 Osaka Univ 非破壊検査装置及び非破壊検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677311A4

Also Published As

Publication number Publication date
JP2012173281A (ja) 2012-09-10
US20140055130A1 (en) 2014-02-27
JP4756409B1 (ja) 2011-08-24
EP2677311A4 (en) 2014-07-02
US9453817B2 (en) 2016-09-27
EP2677311A1 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP4756409B1 (ja) 交番磁場を利用した非破壊検査装置および非破壊検査方法
JP4998821B2 (ja) 渦流検査方法及び該渦流検査方法を実施するための渦流検査装置
WO2011001771A1 (ja) 漏洩磁束探傷方法及び装置
JP2007127600A (ja) 電磁誘導型検査装置および電磁誘導型検査方法
JP5383597B2 (ja) 渦電流検査装置および検査方法
JP5269564B2 (ja) 管状体の欠陥評価方法及び管状体の欠陥評価装置
JP2013205024A (ja) 交番磁場を使用した非破壊検査用検出器
JP2008032575A (ja) 渦電流測定用プローブ及びそれを用いた探傷装置
JP2003240761A (ja) 磁性金属被検体の表層欠陥又は表面欠陥の検出方法及び装置
JP2011047736A (ja) オーステナイト系ステンレス鋼溶接部の検査方法
WO2008072508A1 (ja) 非破壊検査装置及び非破壊検査方法
JP2012093095A (ja) 非破壊検査装置及び非破壊検査方法
KR101150486B1 (ko) 펄스유도자속을 이용한 배관감육 탐상장치 및 탐상방법
KR101339117B1 (ko) 펄스와전류를 이용한 이면 결함 탐지 장치 및 방법
JPS6314905B2 (ja)
JP6452880B1 (ja) 管状体のきず又は欠陥の検査方法及び装置
JP2013160739A (ja) 磁性体の探傷方法及び探傷装置
KR20080070292A (ko) 교류자기장을 이용한 금속 피검체의 결함 탐지 장치
WO2012021034A2 (ko) 이중코아를 이용한 도체두께 탐상장치
JP3266899B2 (ja) 磁性金属体の探傷方法および装置
JP2017067743A (ja) 非破壊検査装置及び非破壊検査方法
JP2016008931A (ja) 非破壊検査装置および非破壊検査方法
JP3307220B2 (ja) 磁性金属体の探傷方法および装置
JP2013068465A (ja) 渦電流検出器と位相制御回路
WO2006113504A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012746911

Country of ref document: EP