WO2012111202A1 - Component-mounting machine - Google Patents

Component-mounting machine Download PDF

Info

Publication number
WO2012111202A1
WO2012111202A1 PCT/JP2011/076092 JP2011076092W WO2012111202A1 WO 2012111202 A1 WO2012111202 A1 WO 2012111202A1 JP 2011076092 W JP2011076092 W JP 2011076092W WO 2012111202 A1 WO2012111202 A1 WO 2012111202A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
component
event
suction nozzle
storage
Prior art date
Application number
PCT/JP2011/076092
Other languages
French (fr)
Japanese (ja)
Inventor
聖一 寺岡
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to CN201180064653.0A priority Critical patent/CN103314657B/en
Priority to DE112011104888T priority patent/DE112011104888T5/en
Publication of WO2012111202A1 publication Critical patent/WO2012111202A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement

Definitions

  • the present invention relates to a component mounter for mounting an electronic component or the like on a substrate, and more particularly, to a component mounter provided with an imaging monitoring device that images a component suction state of a suction nozzle to determine pass / fail.
  • the component mounter is configured to include a substrate transfer device, a component supply device, a component transfer device, and an imaging monitoring device.
  • the component transfer device is also called a component mounting robot, and has a component mounting head and a head driving mechanism.
  • the component mounting head has a suction nozzle having a suction mechanism capable of controlling air pressure, sucks and collects a component from the component supply device using negative pressure, and mounts the component at a predetermined position on the board. .
  • the component mounting head is driven by, for example, a head drive mechanism that enables movement in two orthogonal directions.
  • An imaging monitoring device is used for the purpose of confirming that the suction nozzle is picking up components in the correct state.
  • the imaging monitoring device includes an imaging unit (imaging camera) that captures an image of a component suction state of the suction nozzle to obtain image data, a storage unit that stores image data, and a component suction state and components of the suction nozzle based on the image data It is common to have a determination unit that determines whether or not the quality is good.
  • the image data obtained by the imaging monitoring device can be used as an important clue when elucidating an event or investigating the cause when a defective board occurs or a device abnormality occurs in a component mounter. Often done.
  • Patent Document 1 An example of a component mounter equipped with this type of imaging monitoring apparatus is disclosed in Patent Document 1.
  • the component mounting apparatus disclosed in Patent Document 1 captures a chip component sucked by a suction nozzle with an imaging camera and recognizes the position of the component from an image, and stores the image when the position of the component cannot be recognized.
  • Storage means for displaying, and display means for displaying the stored image Thereby, it is supposed that a picked-up image by the picking-up camera in which parts cannot be mounted can be seen, and the suction state at that time can be known.
  • the applicant of the present application discloses an image processing verification system that can be incorporated into a component mounter in Patent Document 2.
  • the image processing verification system includes means for storing data that can reproduce image processing in a database, and means for acquiring the data and reproducing and verifying image processing. This eliminates the need to actually repeat the production process using a trial-and-error method when a defective substrate occurs or when a device abnormality occurs, so that accurate verification can be easily performed.
  • the image data meeting the specified conditions and the parameters necessary for the image processing are stored, and there is an advantage that the data can be automatically stored in the database during actual production.
  • the conditions to be specified are set in advance by combining the operation conditions on the mounting machine side, for example, the device number of the medium (feeder or tray) that supplies the components, the type of suction nozzle, the image processing algorithm, etc. To do.
  • the device of Patent Document 1 is a method of storing an image when the position of a component cannot be recognized, in other words, a method of storing data when a failure occurs.
  • the verification accuracy is remarkably improved by grasping the progress from the normal operation state before the occurrence of the defects and abnormalities. Even if all the image data is to be stored for this purpose, the image data has a large data size, so that the storage location and storage area are insufficient. As a result, old image data is deleted, and there is a problem that efficient verification work cannot be performed.
  • the image data to be stored can be saved by specifying the conditions to save the storage area, but the old image data is deleted as time passes. In addition, no image data remains if a defect or abnormality occurs under conditions other than the specified conditions.
  • the image data immediately before and immediately after the causal event is more important than the image data when a good operating state continues.
  • an abnormality determination image processing abnormality
  • the image data before and after that is particularly important. In this way, assuming a causal event that may cause a defect or abnormality and selectively saving important image data before and after the occurrence has not been performed by conventional component mounters.
  • the present invention has been made in view of the above problems of the background art, and selects only image data before and after the occurrence of a causal event that can change the operating status of the component supply device or the component transfer device, and stores it for a long period of time. Therefore, it is an object to be solved to provide a component mounting machine that can efficiently clarify an event and investigate the cause when a defective board occurs or when an apparatus abnormality occurs.
  • the invention of a component mounting machine for solving the above-described problems includes a substrate carrying device that carries a substrate into a component mounting position, positions and carries it out, a component supply device that supplies a plurality of types of components, and the component supply device.
  • a component transfer device having a suction nozzle that is mounted on the substrate that is positioned by sucking and positioning the component supplied from the image pickup unit, and an imaging unit that captures an image of a state in which the suction nozzle sucks the component and obtains image data;
  • a storage unit that stores the image data, and an imaging monitoring device that includes a determination unit that determines a component suction state of the suction nozzle and the quality of the component based on the image data.
  • the imaging monitoring device is configured to perform a predetermined time before or after the causal event when a causal event that may change an operating state of the component feeding device or the component transfer device occurs.
  • the image data Stored in the storage unit the image data as a storage object image data of a constant, characterized by erasing the image data other than the store target image data after used for the determination by the determining unit.
  • the imaging monitoring apparatus relates to a causal event whose occurrence timing can be predicted, after the occurrence of the causal event from the predetermined time or the predetermined number before the predicted occurrence timing.
  • the image data until the predetermined time or the predetermined number elapses is stored as the storage target image data.
  • the cause event that can predict the occurrence timing includes a break of the part in the part supply device and a replacement of a medium for supplying the part, and a periodicity in the part transfer device It includes at least one event of maintenance, automatic cleaning of the suction nozzle, and switching of the type of the substrate.
  • the imaging monitoring apparatus according to any one of the first to third aspects, wherein the imaging monitoring device receives image data corresponding to the predetermined time or more or the predetermined number or more with respect to a cause event whose generation timing cannot be predicted. Temporarily stored and updated sequentially, and the latest image data corresponding to the predetermined time or the predetermined number is stored in the storage unit as the storage target image data in the temporary storage when the cause event occurs. In addition, image data until the predetermined time or the predetermined number elapses after the occurrence of the cause event is stored as the storage target image data.
  • the cause event in which the occurrence timing cannot be predicted is the replacement and readjustment of the device constituent members for recovering the failure of the component supply device or the component transfer device
  • the An abnormality determination of the operation state of the suction nozzle by the imaging monitoring device, an abnormality determination by a state monitoring sensor provided in the component supply device, the component transfer device, or the imaging monitoring device, and at least one event of the substrate type switching It is characterized by including.
  • the imaging monitoring apparatus according to any one of the first to fifth aspects, wherein the storage unit is prioritized according to a predetermined priority order when the storage unit is full of the storage target image data. It is characterized in that the image data to be saved is deleted in order from the lowest priority.
  • the imaging monitoring device captures a predetermined characteristic state different from a state in which the suction nozzle sucks the part, and features image data And the feature image data before and after the occurrence of the causal event is stored as storage target image data.
  • the imaging monitoring device of the component mounter is configured to perform a predetermined process before and after the cause event when a cause event that may change the operation status of the component supply device or the component transfer device occurs.
  • Time or a predetermined number of pieces of image data are stored as storage target image data in the storage unit, and image data other than the storage target image data is used for determination by the determination unit and then deleted. Therefore, only important image data before and after the causal event can be selected and stored for a long time within the limited storage capacity of the storage unit.
  • the stored image data it is possible to grasp the progress of the component suction state of the suction nozzle from before the occurrence of the cause event to after it has occurred. Research can be done efficiently.
  • the cause event for which the occurrence timing can be predicted a predetermined time or a predetermined number of image data before and after the predicted occurrence timing is stored as the image data to be stored.
  • the cause event that can predict the occurrence timing includes parts breakage in the parts supply device and replacement of the medium for supplying the parts, and periodic maintenance in the parts transfer device and automatic cleaning of the suction nozzle,
  • at least one event of substrate type switching is included.
  • the causal events for which the occurrence timing can be predicted by storing only the image data before and after the occurrence timing, the storage period can be significantly prolonged as compared with the case of storing all the image data.
  • image data corresponding to a predetermined time or more or a predetermined number or more is temporarily stored and sequentially updated, and temporarily stored when the cause event occurs.
  • the latest image data corresponding to a predetermined time or a predetermined number is stored, and a predetermined time or a predetermined number of image data after the occurrence of the causal event is stored.
  • the cause event for which the generation timing cannot be predicted is the replacement and readjustment of the device constituent members for recovering the failure of the component supply device or the component transfer device, and the suction nozzle by the imaging monitoring device And at least one event of abnormality determination by a state monitoring sensor provided in a component supply device, a component transfer device, or an imaging monitoring device, and a substrate type switching.
  • a state monitoring sensor provided in a component supply device, a component transfer device, or an imaging monitoring device, and a substrate type switching.
  • a predetermined time or a predetermined number of image data immediately before the causal event is temporarily stored in the storage unit. Therefore, even if the cause event cannot be predicted, the image data before the cause event can be selected and stored. Also, by storing only the image data before and after the generation timing, the storage period can be extended significantly compared to when all the image data is stored.
  • the storage target image data when the storage unit is full of the storage target image data, the storage target image data is deleted in order from a lower priority according to a predetermined priority order.
  • the latest storage target image data can be stored by deleting the storage target image data having a low priority.
  • prioritization there are a method of setting the priority of the old image data to be saved low in time series, a method of setting the priority for each type of cause event, and the like.
  • the feature image data is obtained by imaging a predetermined feature state different from the state in which the suction nozzle sucks the component, and the feature image data before and after the cause event is generated is saved as the save target image data.
  • the types of image data before and after the occurrence of the causal event increase and become multifaceted. Therefore, when a defective substrate occurs or when an apparatus abnormality occurs, event elucidation and cause investigation can be performed more efficiently.
  • FIG. 1 It is a perspective view which shows the apparatus structure of the component mounting machine of 1st Embodiment. It is a figure explaining the component mounting flow in the component mounting machine of 1st Embodiment. It is a figure explaining the preservation
  • FIG. 1 is a perspective view showing a device configuration of a component mounter 1 according to the first embodiment.
  • the component mounter 1 assembles the board transfer device 3, the component supply device 4, the component transfer device 5, and the imaging monitoring device 6 on the base 2, and controls each device 3 to 6 from a control computer (not shown).
  • a control computer not shown.
  • the horizontal width direction of the component mounter 1 (the direction from the upper left to the lower right in FIG. 1) is the X axis direction
  • the horizontal longitudinal direction of the component mounter 1 see FIG. 1).
  • 1 is a Y-axis direction
  • a vertical height direction is a Z-axis direction.
  • the board transfer device 3 is provided in the middle of the component mounting machine 1 in the longitudinal direction.
  • the substrate transfer device 3 is a so-called double conveyor type device in which the first transfer device 31 and the second transfer device 32 are arranged in parallel, and the two substrates 9 are operated in parallel to carry in and position in the X-axis direction. Take it out.
  • the first transport device 31 is guided by a pair of guide rails 31A and 31B and guide rails 31A and 31B arranged in parallel on the base 2 in the X-axis direction, and a pair of substrates 9 is placed and transported. Conveyor belt (not shown) or the like.
  • the first transport device 31 is provided with a clamp device (not shown) that pushes up and positions the substrate 9 transported to the component mounting position from the base 2 side.
  • the second transport device 32 is configured in the same manner as the first transport device 31.
  • the component supply device 4 is a feeder-type device, and is provided at the front portion in the longitudinal direction of the component mounter 1 (left front side in FIG. 1).
  • the component supply device 4 is configured by arranging a plurality of cassette type feeders 41 in parallel on the base 2.
  • Each cassette-type feeder 41 includes a main body 42 that is detachably attached to the base 2, a supply reel 43 that is rotatably and detachably attached to a rear portion of the main body 42, and a component supply that is provided at the tip of the main body 42.
  • Part 44 The supply reel 43 is a medium for supplying parts, and is wound with a carrier tape (not shown) holding a predetermined number of parts at regular intervals. The leading end of the carrier tape is pulled out to the component supply unit 44, and different components are supplied for each carrier tape.
  • the component transfer device 5 is a so-called XY robot type device that can move in the X-axis direction and the Y-axis direction, and supplies components from the rear part (right rear side in FIG. 1) in the longitudinal direction of the component mounting machine 1 to the front part. It is arranged above the device 4.
  • the component transfer device 5 includes a pair of Y-axis rails 51A and 51B, a Y-axis slider 52, a Y-axis motor 53, an X-axis motor, a Z-axis motor, a component mounting head 54, and the like.
  • the pair of Y-axis rails 51 ⁇ / b> A and 51 ⁇ / b> B are juxtaposed in parallel to the Y-axis direction and extend above the board transfer device 3 and the component supply device 4.
  • a Y-axis slider 52 is movably suspended on the Y-axis rails 51A and 51B.
  • the Y-axis slider 52 is driven by a Y-axis motor 53 and moves on the Y-axis rails 51A and 51B in the Y-axis direction.
  • a component mounting head 54 is disposed on the Y-axis slider 52 so as to be movable in the X-axis direction.
  • the component mounting head 54 is driven by an unillustrated X-axis motor and moves in the X-axis direction.
  • a suction nozzle having a symbol is arranged downward from the component mounting head 54.
  • the suction nozzle is driven by a Z-axis motor (not shown) to move up and down (move in the Z-axis direction).
  • the suction nozzle has a suction mechanism capable of controlling the air pressure, and picks up and picks up components from the component supply device 4 using negative pressure. Then, after picking up an image of the component suction state by the imaging monitoring device 6 to acquire and correct the positional deviation between the suction nozzle and the center of the component, the suction nozzle mounts the component on the substrate 9.
  • the component transfer device 5 repeatedly executes a component mounting loop described later to mount a large number of components on the substrate 9.
  • the imaging monitoring device 6 is a device that determines the component suction state of the suction nozzle of the component transfer device 5 and the quality of the component, and is disposed in the vicinity of the component supply unit 44 of the component supply device 4.
  • the imaging monitoring device 6 includes an imaging unit that captures an image of a state in which the suction nozzle has attracted a component to obtain image data, a storage unit that stores image data, and a determination unit that determines pass / fail based on the image data. ing.
  • the determination unit determines that there is an abnormality when the component is displaced and sucked and it is difficult to correct the position, or when the component shape obtained from the image is different from the reference shape (image processing abnormality).
  • a disposal box 7 is disposed in the vicinity of the imaging monitoring device 6 on the base 2.
  • the disposal box 7 is a place where the components that are picked up by the component transfer device 5 are discarded when the imaging monitoring device 6 determines that the image processing is abnormal.
  • the substrate transfer device 3, the component supply device 4, the component transfer device 5, and the imaging monitoring device 6 operate according to instructions from the control computer while appropriately exchanging information with a control computer (not shown).
  • FIG. 2 is a diagram illustrating a component mounting flow in the component mounter 1 according to the first embodiment.
  • step S ⁇ b> 1 of the component mounting flow first, the board 9 is carried in and positioned by the board transfer device 3.
  • step S2 initial processing such as confirmation of the position of the substrate 9 and confirmation of reading of the substrate ID is performed.
  • step S3 a component mounting loop is started.
  • step S4 in the component mounting loop the component mounting head 54 of the component transfer device 5 moves to the component supply unit 44 of the component supply device 4, and the suction nozzle sucks the component.
  • step S5 the component mounting head 54 moves to the vicinity of the imaging monitoring device 6, and the imaging monitoring device 6 captures the state in which the suction nozzle sucks the component and obtains image data.
  • step S6 the imaging monitoring apparatus 6 performs predetermined image processing on the image data. For example, the position is corrected by obtaining the amount of deviation between the suction nozzle and the center of the component, the presence or absence of rotation or inclination of the component with respect to the suction nozzle, or the outer shape of the sucked component is confirmed.
  • the imaging monitoring apparatus 6 saves or deletes the image data according to a detailed flow described later.
  • step S8 the result of the image processing in step S6 is confirmed. If the image processing is abnormal, the process proceeds to step S9, and if normal, the process proceeds to step S10.
  • step S ⁇ b> 9 when the image processing is abnormal the component mounting head 54 moves above the disposal box 7, and the component adsorbed by the suction nozzle is discarded in the disposal box 7. Thereafter, the process returns to step S4, and the same part is retried.
  • step S10 the component mounting head 54 moves above the substrate 9 and the component sucked by the suction nozzle is mounted on the substrate 9.
  • step S11 it is confirmed whether or not all the necessary components are mounted on the substrate 9. If there are any unmounted components, the process returns to step S4 to move to the next component.
  • step S11 If all components have been mounted in step S11, the component mounting loop is terminated in step S12, and the process proceeds to step S13.
  • step S13 the board 9 is unloaded and the component mounting flow for one board 9 is completed. The component mounting flow in FIG. 2 is repeated by the number of boards 9 to be produced.
  • FIG. 3 is a diagram for explaining a storage condition management flow for determining whether image data is stored or deleted in the image storage processing in step S7 in the component mounting flow of FIG.
  • the storage condition management flow is performed in parallel with the component mounting flow of FIG.
  • Step S31 of the storage condition management flow in FIG. 3 is a state of waiting for a trigger for changing the necessity of image data storage.
  • the storage flag is set to ON in step S33. If an erase trigger occurs in step S34, the save flag is set to OFF in step S35.
  • the save flag is a parameter indicating whether the image data acquired at that time is the image data to be saved. After step S33 and step S35, the process returns to step S31 and waits for the next trigger.
  • the above save trigger and erase trigger are generated due to a cause event accompanying the progress of the component mounting flow of FIG.
  • the cause event means an event that causes a change in the operating status of the component supply device 4 or the component transfer device 5, as illustrated in FIG.
  • FIG. 4 is a table illustrating examples of cause events, storage trigger generation conditions, and deletion trigger generation conditions.
  • FIG. 4 firstly, as a cause event, a break of a part can be exemplified.
  • the old supply reel 43 is taken out from the cassette type feeder 41 and a new supply reel 43 is set.
  • the new supply reel 43 and the carrier tape are wrinkled or the setting method is bad, there is no possibility of causing a defective substrate or an apparatus abnormality. Therefore, before and after the reel replacement, the image data in which the suction nozzle sucks the specific component is stored as the storage target image data.
  • the time when the remaining number of parts on the old reel becomes A1 is set as a save trigger generation condition
  • the time when the number of used parts on the new reel becomes A2 is set as an erase trigger generation condition.
  • a method of sequentially managing the remaining number of parts can be used.
  • the timing at which the tray, which is a medium for supplying components, is changed can be a cause event.
  • the time when the remaining number of parts in the old tray becomes B1 is set as a save trigger generation condition, and the time when the number of used parts in the new tray becomes B2 is set as an erase trigger generation condition.
  • the timing when the part lot is changed is a cause event, the time when the remaining number of parts in the old lot becomes C1 is set as a storage trigger generation condition, and the number of parts used in the new lot becomes C2. It is possible to set the erase trigger as a condition for generating an erase trigger. Lot changes often overlap with reel and tray replacement.
  • periodic maintenance in the component transfer device 5 can be exemplified as a cause event.
  • the control computer sets the period of this regular maintenance based on the operation time from the end of the previous regular maintenance, and issues maintenance guidance to the operator. Accordingly, the D1 minute before the maintenance guide can be set as a storage trigger generation condition, and the erasure trigger generation condition can be set at the time when D2 minutes have elapsed after the maintenance is completed or when E substrates 9 are produced after the maintenance is completed. Furthermore, automatic cleaning of the suction nozzle of the component transfer device 5 can also be considered as a cause event.
  • the F1 minute before the scheduled cleaning time is set as the save trigger generation condition, and the F2 minute elapses after the cleaning ends or the time when G parts are mounted after the cleaning ends is set as the erasure trigger generation condition. it can.
  • the cause event described so far is a cause event whose occurrence timing can be predicted. Therefore, a storage trigger can be generated before the cause event occurs, and an erase trigger can be generated after the cause event to store the image data before and after the cause event. Note that the number of stored image data (for example, A1 and A2) may be the same or different before and after the cause event occurs.
  • examples of the cause event include switching the type of board to be produced.
  • Board type switching is a causal event that can be predicted when the target board number is set and the number of mounted boards is counted up.
  • a save trigger is generated before the causal event occurs. be able to.
  • image data storage is started with the storage trigger generation condition immediately after switching the substrate type. Then, an erasure trigger generation condition can be set when H minutes have elapsed after switching or when stable operation has been confirmed.
  • the failure of the component supply device 4 and the component transfer device 5 is also a cause event whose generation timing cannot be predicted.
  • the failure is usually recovered by replacing or re-adjusting the device constituent members (component units). Therefore, the storage trigger generation condition can be set immediately after failure recovery, and the erase trigger generation condition can be set when L minutes have elapsed after the failure recovery or when stable operation has been confirmed.
  • step S8 of the component mounting flow of FIG. 2 abnormal image processing
  • another state monitoring sensor provided in the component mounter 1 may determine an abnormality (state monitoring abnormality). For example, an abnormality in which a component cannot be mounted on the substrate 9 without being separated from the suction nozzle is detected by a sensor other than the imaging monitoring device 6.
  • the storage trigger generation condition can be immediately after the abnormality determination, and the erase trigger generation condition can be when J minutes or K minutes have elapsed after the abnormality determination or when stable operation has been confirmed.
  • a save trigger and an erase trigger are generated according to the cause event illustrated in FIG. 4, respectively, and the save flag is switched on and off as shown in FIG.
  • the storage flag is used for each cause event.
  • the number of storage flags equal to the number of supply reels 43 is used at the break of parts of the supply reel 43. Therefore, image data obtained by picking up the suction state of the part is a storage target at the break of the part, and image data of other parts that are not a cut is not a storage target. In the causal event other than the break of the parts, the image data of the parts of all types are stored.
  • Each storage flag is referred to in the image storage processing in step S7 of the component mounting flow in FIG.
  • FIG. 5 is a diagram for explaining a detailed flow of the image storage process in step S7 in the component mounting flow of FIG.
  • step S41 in FIG. 5 the state of the save flag is first confirmed.
  • the save flag is off, the image saving process ends immediately. That is, the image data acquired in step S5 of FIG. 2 and used by the determination unit in the determination of image processing abnormality in step S6 is determined not to be stored, and is erased without being stored in the storage unit.
  • the process proceeds to step S42 to check whether there is a save area in the storage unit. When there is no storage area, the process proceeds to step S43, and the image data with the lower priority among the stored areas is deleted to secure the storage area. In the first embodiment, it is set that the priority is lower as it is older in time series, and the image data is deleted in the oldest order.
  • the latest image data to be stored is stored in the storage unit in step S44.
  • the imaging monitoring apparatus 6 saves the image data when the save flag is on in the storage unit as the save target image data, and determines the image data when the save flag is off as the determination unit. Erase after using for judgment by. That is, only the image data before and after the occurrence of the predictable cause event in FIG. 4 and the image data after the occurrence of the unpredictable cause event are stored for a predetermined time or a predetermined number of ranges. Note that an alarm may be issued when the number of stored image data reaches a predetermined value, and the image data may be moved to a memory outside the apparatus to free up a storage area.
  • the component mounter 1 of the first embodiment only important image data before and after the causal event can be selected and stored within the limited storage capacity of the storage unit of the imaging monitoring apparatus 6, and all The storage period can be greatly extended compared to the case of storing the image data.
  • the stored image data it is possible to grasp the progress of the suction state of the suction nozzle components from before occurrence to after the occurrence of the predictable cause event, and the status of the suction status of the suction nozzle immediately after the occurrence of the unpredictable cause event. You can keep track of the progress. As a result, when a defective substrate occurs or when a device abnormality occurs, the event can be clarified and the cause can be efficiently investigated.
  • the image data before and after the cause event that is evidence can be compared and confirmed. Further, when the component suction state of the suction nozzle does not change before and after the cause event, the emphasis on the event elucidation and cause investigation can be put elsewhere.
  • the component mounter of the second embodiment has the same device configuration as that of the first embodiment, and is different in that image data corresponding to a predetermined time or a predetermined number before occurrence is stored even for a cause event whose generation timing cannot be predicted.
  • the component mounting flow of the component mounting machine of the second embodiment is substantially the same as the flow of the first embodiment shown in FIG. 2, but the contents of the image storage processing in step S7 are different, and the storage condition management flow is also different. .
  • the image saving process of the second embodiment a method is adopted in which all image data is temporarily saved in the storage unit of the imaging monitoring apparatus 6 and is deleted in order from the data with the lowest priority when the saving area is exhausted. (Details will be described later with reference to FIG. 7).
  • the cause event to be considered in the component mounter of the second embodiment is the same as the cause event shown in FIG. 4, and the same holds for setting the save flag on and off by the save trigger and the erase trigger.
  • a label indicating whether or not storage is necessary is assigned to each image data, and storage condition management and image storage processing shown in FIGS. 6 and 7 are performed.
  • FIG. 6 is a diagram illustrating a storage condition management flow for determining whether to store or delete image data in the second embodiment.
  • the storage condition management flow in FIG. 6 is performed in parallel with the component mounting flow in FIG. Step S51 in FIG. 6 is in a state of waiting for a trigger for changing the necessity of image data storage.
  • a save trigger is generated in step S52
  • a save flag is set on in step S53.
  • the imaging monitoring device 6 gives a label “deletable” to the image data if the storage flag is off, and if the storage flag is on.
  • a label “save target” is assigned to the image data.
  • step S54 when an erasure trigger is generated in step S54, lock target image data is set in step S55.
  • the causal event that generated the save trigger and the erase trigger is an event that can be predicted
  • the label of the image data acquired between the save trigger and the erase trigger is “Save Target”, and this is the “Lock”. Change to "Target”.
  • the cause event that generated the save trigger and the erase trigger is an unpredictable event
  • the save trigger occurs immediately after the cause event, so the label of the image data acquired before the cause event is “deletable”. ing. Therefore, the label of the latest image data corresponding to a predetermined time or a predetermined number before the cause event is changed from “deletable” to “lock target”.
  • the label of the image data acquired between the occurrence of the unpredictable cause event and the erasure trigger is “storage object”, and this is changed to “lock object”.
  • the label of the image data before and after the occurrence of the causal event becomes “lock target” regardless of whether or not the occurrence timing can be predicted.
  • the “lock target” image data is also a kind of storage target image data.
  • step S55 the save flag is set to OFF in step S56.
  • a label “deletable” is assigned to image data acquired thereafter.
  • FIG. 7 is a diagram illustrating a detailed flow of the image saving process in step S7 in the component mounting flow of FIG. 2 in the second embodiment.
  • step S61 in FIG. 7 it is first checked whether the storage area of the storage unit of the imaging monitoring apparatus 6 is full. When the storage area is empty, the process immediately proceeds to step S70, and the latest image data is stored regardless of the type of label. When the storage area is full, the process proceeds to step S62, and a deletion data determination loop is started.
  • step S63 in the deletion data determination loop the image data in the storage unit is selected one by one in the oldest order. Then, it is checked whether or not the label of the image data selected in step S64 is “lock target”, and whether or not the label of the image data is “save target” is checked in step S65. When the label is “lock target” or “save target”, the process proceeds to step S66 to check whether or not all image data has been selected. If unselected image data remains, the process returns to step S63 to select the next oldest image data, and steps S63 to S66 are repeated.
  • step S67 delete the image data
  • step S70 The image data to be deleted is the oldest image data with the label “deletable”.
  • step S63 to S66 are repeated and no image data with the “deletable” label is found, the process proceeds from step S66 to step S68 to end the deletion data determination loop.
  • step S69 the oldest image data among the labels to be “locked” is deleted.
  • step S67 or step S69 image data for any one data is deleted, and a storage area is secured. Therefore, the acquired latest image data can be stored in step S70.
  • the image data with the label “deletable” has a lower priority than the image data with the label “locked” or “saved”, and is preferentially deleted. Also, between image data to which the same kind of label is assigned, the new and old are prioritized and are deleted in order from the old image data.
  • the oldest “deletable” image data is deleted and replaced. This is equivalent to temporarily storing and sequentially updating image data corresponding to a predetermined time or more or a predetermined number or more. Further, for example, when the storage area is filled with image data with the label “lock target” or “storage target”, the oldest “lock target” image data is deleted. This is equivalent to deleting the image data to be saved in order of lower priority in accordance with a predetermined priority order.
  • the component mounter of the second embodiment temporarily stores and sequentially updates the image data with the label “deletable” for the cause event for which the occurrence timing cannot be predicted.
  • the label of the latest image data corresponding to a predetermined time or a predetermined number before the cause event is changed from “deletable” to “lock target”.
  • a feature image data by capturing a predetermined feature state different from the state in which the suction nozzle sucks the component, and save the feature image data before and after the cause event occurs as the save target image data.
  • the tip state of the suction nozzle that is not picking up the component can be imaged as the characteristic state.
  • the image data to be stored may be one data before and after the automatic cleaning. It is also possible to set another feature state and take an image.
  • the imaging monitoring device 6 has a storage unit that stores image data.
  • a storage unit of an control computer or an external storage device may be used in combination.
  • the present invention can be variously applied and modified.
  • the present invention can be used for a component mounter for mounting electronic components on a substrate.
  • Component mounter 2 Base 3: Board transfer device 31: First transfer device 32: Second transfer device 4: Component supply device 41: Cassette feeder 42: Main body 43: Supply reel 44: Component supply unit 5: Component transfer device 51A, 51B: Y-axis rail 52: Y-axis slider 53: Y-axis motor 54: Component mounting head 6: Imaging monitoring device 7: Waste box 9: Substrate

Abstract

This component-mounting machine is equipped with: a substrate transport device; a component supply device; a component transfer device; and an imaging/monitoring device, which has an imaging unit that obtains image data by capturing an image when a suction nozzle has picked up a component, a storage unit that saves the image data, and a determination unit that determines the state of the suction nozzle with respect to the picking up of a component and determines component defects on the basis of the image data. When an event that causes a change in the operating state of the component supply device or the component transfer device occurs (Yes in S41), the imaging/monitoring device saves the image data for a prescribed period of time before and after the causal event, or a prescribed quantity of image data, as the image data to be saved in the storage unit (S44), and deletes image data other than the image data to be saved after this other data has been used by the determination unit to make a determination (No in S41). Thus, only the image data before and after the occurrence of an event that causes a change in the operating state of the component supply device or the component transfer device is selected and saved for a long period of time, which enables efficient clarification of the event and efficient diagnosis of the cause when a defective substrate occurs or an equipment error occurs.

Description

部品実装機Component mounter
 本発明は、電子部品などを基板に実装する部品実装機に関し、より詳細には、吸着ノズルの部品吸着状態を撮像して良否を判定する撮像監視装置を備えた部品実装機に関する。 The present invention relates to a component mounter for mounting an electronic component or the like on a substrate, and more particularly, to a component mounter provided with an imaging monitoring device that images a component suction state of a suction nozzle to determine pass / fail.
 多数の部品が実装された基板を生産する設備として、スクリーン印刷機、部品実装機、リフロー機などを搬送装置で連結して基板生産ラインを構築することが一般的になっている。このうち部品実装機は、基板搬送装置、部品供給装置、部品移載装置、および撮像監視装置を備えて構成される。部品移載装置は、部品実装ロボットとも呼ばれ、部品装着ヘッドおよびヘッド駆動機構を有している。部品装着ヘッドは、空気圧を制御可能な吸着機構をもつ吸着ノズルを有し、負圧を利用して部品供給装置から部品を吸着採取し、基板上の所定位置に当該部品を装着するものである。部品装着ヘッドは、例えば直交2方向への移動を可能とするヘッド駆動機構により駆動されるようになっている。 As a facility for producing a board on which a large number of components are mounted, it is common to construct a board production line by connecting a screen printing machine, a component mounting machine, a reflow machine, etc. with a transport device. Among these components, the component mounter is configured to include a substrate transfer device, a component supply device, a component transfer device, and an imaging monitoring device. The component transfer device is also called a component mounting robot, and has a component mounting head and a head driving mechanism. The component mounting head has a suction nozzle having a suction mechanism capable of controlling air pressure, sucks and collects a component from the component supply device using negative pressure, and mounts the component at a predetermined position on the board. . The component mounting head is driven by, for example, a head drive mechanism that enables movement in two orthogonal directions.
 吸着ノズルが部品を正しい状態で吸着していることを確認する用途に、撮像監視装置が用いられる。撮像監視装置は、吸着ノズルの部品吸着状態を撮像して画像データを得る撮像部(撮像カメラ)と、画像データを保存する記憶部と、画像データを基にして吸着ノズルの部品吸着状態および部品の良否を判定する判定部を有するのが一般的である。撮像監視装置で得られる画像データは、上述の用途の他に、不良基板が発生したときや部品実装機内で装置異常が発生したときに事象解明や原因究明などを行う際の重要な手掛かりとして参照される場合が多い。 An imaging monitoring device is used for the purpose of confirming that the suction nozzle is picking up components in the correct state. The imaging monitoring device includes an imaging unit (imaging camera) that captures an image of a component suction state of the suction nozzle to obtain image data, a storage unit that stores image data, and a component suction state and components of the suction nozzle based on the image data It is common to have a determination unit that determines whether or not the quality is good. In addition to the above-mentioned applications, the image data obtained by the imaging monitoring device can be used as an important clue when elucidating an event or investigating the cause when a defective board occurs or a device abnormality occurs in a component mounter. Often done.
 この種の撮像監視装置を備える部品実装機の一例が特許文献1に開示されている。特許文献1の部品装着装置は、吸着ノズルの吸着するチップ部品を撮像カメラで撮像して画像により該部品の位置を認識するものであり、部品の位置を認識できなかった場合に該画像を記憶する記憶手段と、記憶した画像を表示する表示手段とを設けている。これにより、部品の装着不可となった撮像カメラによる撮像画像を見ることができ、その時の吸着状態を知ることができる、とされている。 An example of a component mounter equipped with this type of imaging monitoring apparatus is disclosed in Patent Document 1. The component mounting apparatus disclosed in Patent Document 1 captures a chip component sucked by a suction nozzle with an imaging camera and recognizes the position of the component from an image, and stores the image when the position of the component cannot be recognized. Storage means for displaying, and display means for displaying the stored image. Thereby, it is supposed that a picked-up image by the picking-up camera in which parts cannot be mounted can be seen, and the suction state at that time can be known.
 また、本願出願人は、部品実装機に組み込むことができる画像処理検証システムを特許文献2に開示している。この画像処理検証システムは、画像処理を再現可能なデータをデータベース化して保存する手段と、前記データを取得し画像処理を再現して検証する手段と、を備えている。これにより、不良基板発生時や装置異常発生時の検証作業に際してトライ・アンド・エラー方式で実際に生産工程を繰り返す必要がなくなり、正確な検証作業を容易に実施できる。また、請求項4では、指定された条件に合致した画像のデータとその画像処理に必要なパラメータを保存するようにしており、実生産中に自動的にデータベースに蓄積することができる利点がある。指定する条件としては、基板および部品の種類のほか、実装機側の作動条件、例えば部品を供給する媒体(フィーダやトレイ)のデバイス番号、吸着ノズルの種類や画像処理アルゴリズムなどを組み合わせて予め設定する。 Also, the applicant of the present application discloses an image processing verification system that can be incorporated into a component mounter in Patent Document 2. The image processing verification system includes means for storing data that can reproduce image processing in a database, and means for acquiring the data and reproducing and verifying image processing. This eliminates the need to actually repeat the production process using a trial-and-error method when a defective substrate occurs or when a device abnormality occurs, so that accurate verification can be easily performed. According to the fourth aspect of the present invention, the image data meeting the specified conditions and the parameters necessary for the image processing are stored, and there is an advantage that the data can be automatically stored in the database during actual production. . The conditions to be specified are set in advance by combining the operation conditions on the mounting machine side, for example, the device number of the medium (feeder or tray) that supplies the components, the type of suction nozzle, the image processing algorithm, etc. To do.
特許第2698258号公報Japanese Patent No. 2698258 特開2008-197772号公報JP 2008-197772 A
 ところで、特許文献1の装置は、部品の位置を認識できなかった場合に画像を記憶する方式であり、換言すれば不良発生時のデータを記憶する方式である。しかしながら、不良や異常の検証作業では、不良や異常が発生する以前の正常に作動している状態からの経過を把握することで検証精度は格段に向上する。これを行うために全ての画像データを保存しようとしても、画像データはデータサイズが大きいので保存場所および保存領域が不足する。結果的に、旧い画像データは削除されてしまい、効率的な検証作業が行えないという問題点が発生する。 By the way, the device of Patent Document 1 is a method of storing an image when the position of a component cannot be recognized, in other words, a method of storing data when a failure occurs. However, in the verification work of defects and abnormalities, the verification accuracy is remarkably improved by grasping the progress from the normal operation state before the occurrence of the defects and abnormalities. Even if all the image data is to be stored for this purpose, the image data has a large data size, so that the storage location and storage area are insufficient. As a result, old image data is deleted, and there is a problem that efficient verification work cannot be performed.
 また、特許文献2では、条件を指定することにより保存する画像データを限定して保存領域を節約できるが、旧い画像データが時間の経過とともに削除される点は変わらない。また、指定した条件以外で不良や異常が発生すると画像データが残らない。 Further, in Patent Document 2, the image data to be stored can be saved by specifying the conditions to save the storage area, but the old image data is deleted as time passes. In addition, no image data remains if a defect or abnormality occurs under conditions other than the specified conditions.
 実際の生産ラインでは、生産する基板の種類の切替えや部品の切れ目、装置のメンテナンスなどが原因事象となり、その直後に基板不良や装置異常が発生しがちである。したがって、原因事象の直前および直後の画像データは、良好な作動状態が継続しているときの画像データよりも重要度が高い。また撮像監視装置による吸着ノズルの部品吸着状態の異常判定(画像処理異常)やその他の状態監視センサによる異常判定が行われたとき、その前後の画像データは特に重要性が高い。このように、不良や異常の原因となり得る原因事象を想定し、その発生前後の重要な画像データを選択的に保存することは、従来の部品実装機では行われていなかった。 In an actual production line, switching of the type of board to be produced, parts breaks, equipment maintenance, etc. are the causative events, and board defects and equipment abnormalities tend to occur immediately after that. Therefore, the image data immediately before and immediately after the causal event is more important than the image data when a good operating state continues. Further, when an abnormality determination (image processing abnormality) of the component suction state of the suction nozzle by the imaging monitoring device or an abnormality determination by other state monitoring sensors is performed, the image data before and after that is particularly important. In this way, assuming a causal event that may cause a defect or abnormality and selectively saving important image data before and after the occurrence has not been performed by conventional component mounters.
 本発明は、上記背景技術の問題点に鑑みてなされたもので、部品供給装置または前記部品移載装置の作動状況が変化し得る原因事象の発生前後の画像データのみを選択して長期間保存し、不良基板発生時や装置異常発生時に事象解明や原因究明を効率的に行えるようにした部品実装機を提供することを解決すべき課題とする。 The present invention has been made in view of the above problems of the background art, and selects only image data before and after the occurrence of a causal event that can change the operating status of the component supply device or the component transfer device, and stores it for a long period of time. Therefore, it is an object to be solved to provide a component mounting machine that can efficiently clarify an event and investigate the cause when a defective board occurs or when an apparatus abnormality occurs.
 上記課題を解決する請求項1に係る部品実装機の発明は、基板を部品実装位置に搬入し位置決めし搬出する基板搬送装置と、複数種類の部品を供給する部品供給装置と、前記部品供給装置から供給される前記部品を吸着して位置決めされた前記基板上に装着する吸着ノズルを有する部品移載装置と、前記吸着ノズルが前記部品を吸着した状態を撮像して画像データを得る撮像部、および前記画像データを保存する記憶部、および前記画像データを基にして前記吸着ノズルの部品吸着状態および前記部品の良否を判定する判定部を有する撮像監視装置と、を備える部品実装機であって、前記撮像監視装置は、前記部品供給装置または前記部品移載装置の作動状況が変化し得る原因事象が発生したときに、前記原因事象の前後の所定時間または所定数の前記画像データを保存対象画像データとして前記記憶部に保存し、前記保存対象画像データ以外の画像データを前記判定部による判定に用いた後に消去することを特徴とする。 The invention of a component mounting machine according to claim 1 for solving the above-described problems includes a substrate carrying device that carries a substrate into a component mounting position, positions and carries it out, a component supply device that supplies a plurality of types of components, and the component supply device. A component transfer device having a suction nozzle that is mounted on the substrate that is positioned by sucking and positioning the component supplied from the image pickup unit, and an imaging unit that captures an image of a state in which the suction nozzle sucks the component and obtains image data; And a storage unit that stores the image data, and an imaging monitoring device that includes a determination unit that determines a component suction state of the suction nozzle and the quality of the component based on the image data. The imaging monitoring device is configured to perform a predetermined time before or after the causal event when a causal event that may change an operating state of the component feeding device or the component transfer device occurs. Stored in the storage unit the image data as a storage object image data of a constant, characterized by erasing the image data other than the store target image data after used for the determination by the determining unit.
 請求項2に係る発明は、請求項1において、前記撮像監視装置は、発生タイミングを予測できる原因事象に関して、予測した前記発生タイミングの前記所定時間前または前記所定数前から前記原因事象の発生後に前記所定時間または前記所定数が経過するまでの前記画像データを前記保存対象画像データとして保存することを特徴とする。 According to a second aspect of the present invention, the imaging monitoring apparatus according to the first aspect of the present invention relates to a causal event whose occurrence timing can be predicted, after the occurrence of the causal event from the predetermined time or the predetermined number before the predicted occurrence timing. The image data until the predetermined time or the predetermined number elapses is stored as the storage target image data.
 請求項3に係る発明は、請求項2において、前記発生タイミングを予測できる原因事象は、前記部品供給装置における前記部品の切れ目および前記部品を供給する媒体の交換、ならびに前記部品移載装置における定期メンテナンスおよび前記吸着ノズルの自動清掃、ならびに前記基板の種類切替えの少なくとも一事象を含むことを特徴とする。 According to a third aspect of the present invention, in the second aspect of the present invention, the cause event that can predict the occurrence timing includes a break of the part in the part supply device and a replacement of a medium for supplying the part, and a periodicity in the part transfer device It includes at least one event of maintenance, automatic cleaning of the suction nozzle, and switching of the type of the substrate.
 請求項4に係る発明は、請求項1~3のいずれか一項において、前記撮像監視装置は、発生タイミングを予測できない原因事象に関して、前記所定時間以上または前記所定数以上に相当する画像データを一時的に記憶して逐次更新し、前記原因事象が発生すると一時的に記憶していたなかで前記所定時間または前記所定数に相当する最新の画像データを前記保存対象画像データとして前記記憶部に保存するとともに、前記原因事象の発生後に前記所定時間または前記所定数が経過するまでの画像データを前記保存対象画像データとして保存することを特徴とする。 According to a fourth aspect of the present invention, the imaging monitoring apparatus according to any one of the first to third aspects, wherein the imaging monitoring device receives image data corresponding to the predetermined time or more or the predetermined number or more with respect to a cause event whose generation timing cannot be predicted. Temporarily stored and updated sequentially, and the latest image data corresponding to the predetermined time or the predetermined number is stored in the storage unit as the storage target image data in the temporary storage when the cause event occurs In addition, image data until the predetermined time or the predetermined number elapses after the occurrence of the cause event is stored as the storage target image data.
 請求項5に係る発明は、請求項4において、発生タイミングを予測できない原因事象は、前記部品供給装置または前記部品移載装置の故障を復旧するための装置構成部材の交換および再調整、ならびに前記撮像監視装置による前記吸着ノズルの作動状態の異常判定、ならびに前記部品供給装置または前記部品移載装置または撮像監視装置に設けられた状態監視センサによる異常判定、ならびに前記基板の種類切替えの少なくとも一事象を含むことを特徴とする。 According to a fifth aspect of the present invention, in the fourth aspect, the cause event in which the occurrence timing cannot be predicted is the replacement and readjustment of the device constituent members for recovering the failure of the component supply device or the component transfer device, and the An abnormality determination of the operation state of the suction nozzle by the imaging monitoring device, an abnormality determination by a state monitoring sensor provided in the component supply device, the component transfer device, or the imaging monitoring device, and at least one event of the substrate type switching It is characterized by including.
 請求項6に係る発明は、請求項1~5のいずれか一項において、前記撮像監視装置は、前記記憶部が前記保存対象画像データで満杯になったとき、所定の優先順位付けにしたがい優先順位の低い保存対象画像データから順番に削除することを特徴とする。 According to a sixth aspect of the present invention, the imaging monitoring apparatus according to any one of the first to fifth aspects, wherein the storage unit is prioritized according to a predetermined priority order when the storage unit is full of the storage target image data. It is characterized in that the image data to be saved is deleted in order from the lowest priority.
 請求項7に係る発明は、請求項1~6のいずれか一項において、前記撮像監視装置は、前記吸着ノズルが前記部品を吸着した状態とは異なる所定の特徴状態を撮像して特徴画像データを得、前記原因事象が発生した前後の前記特徴画像データを保存対象画像データとして保存することを特徴とする。 According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the imaging monitoring device captures a predetermined characteristic state different from a state in which the suction nozzle sucks the part, and features image data And the feature image data before and after the occurrence of the causal event is stored as storage target image data.
 請求項1に係る部品実装機の発明では、部品実装機の撮像監視装置は、部品供給装置または部品移載装置の作動状況が変化し得る原因事象が発生したときに、原因事象の前後の所定時間または所定数の画像データを保存対象画像データとして記憶部に保存し、保存対象画像データ以外の画像データを判定部による判定に用いた後に消去する。したがって、記憶部の限られた保存容量の範囲内で原因事象の前後の重要な画像データのみを選択して長期間保存できる。また、保存した画像データを参照することで、原因事象の発生前から発生後に至る吸着ノズルの部品吸着状態の経過を把握することができるので、不良基板発生時や装置異常発生時に事象解明や原因究明を効率的に行える。 In the invention of the component mounter according to the first aspect, the imaging monitoring device of the component mounter is configured to perform a predetermined process before and after the cause event when a cause event that may change the operation status of the component supply device or the component transfer device occurs. Time or a predetermined number of pieces of image data are stored as storage target image data in the storage unit, and image data other than the storage target image data is used for determination by the determination unit and then deleted. Therefore, only important image data before and after the causal event can be selected and stored for a long time within the limited storage capacity of the storage unit. In addition, by referring to the stored image data, it is possible to grasp the progress of the component suction state of the suction nozzle from before the occurrence of the cause event to after it has occurred. Research can be done efficiently.
 請求項2に係る発明では、発生タイミングを予測できる原因事象に関して、予測した発生タイミングの前後の所定時間または所定数の画像データを保存対象画像データとして保存する。さらに、請求項3に係る発明では、発生タイミングを予測できる原因事象は、部品供給装置における部品の切れ目および部品を供給する媒体の交換、ならびに部品移載装置における定期メンテナンスおよび吸着ノズルの自動清掃、ならびに基板の種類切替えの少なくとも一事象を含むこととしている。これらの発生タイミングを予測できる原因事象に関しては、発生タイミングの前後の画像データのみを保存することにより、全ての画像データを保存する場合よりも大幅に保存期間を長期化できる。 In the invention according to claim 2, with respect to the cause event for which the occurrence timing can be predicted, a predetermined time or a predetermined number of image data before and after the predicted occurrence timing is stored as the image data to be stored. Further, in the invention according to claim 3, the cause event that can predict the occurrence timing includes parts breakage in the parts supply device and replacement of the medium for supplying the parts, and periodic maintenance in the parts transfer device and automatic cleaning of the suction nozzle, In addition, at least one event of substrate type switching is included. With respect to the causal events for which the occurrence timing can be predicted, by storing only the image data before and after the occurrence timing, the storage period can be significantly prolonged as compared with the case of storing all the image data.
 請求項4に係る発明では、発生タイミングを予測できない原因事象に関して、所定時間以上または所定数以上に相当する画像データを一時的に記憶して逐次更新し、原因事象が発生すると一時的に記憶していたなかで所定時間または所定数に相当する最新の画像データを保存するとともに、原因事象の発生後の所定時間または所定数の画像データを保存する。さらに、請求項5に係る発明では、発生タイミングを予測できない原因事象は、部品供給装置または部品移載装置の故障を復旧するための装置構成部材の交換および再調整、ならびに撮像監視装置による吸着ノズルの作動状態の異常判定、ならびに部品供給装置または部品移載装置または撮像監視装置に設けられた状態監視センサによる異常判定、ならびに基板の種類切替えの少なくとも一事象を含むこととしている。これらの発生タイミングを予測できない原因事象に関しては、原因事象が発生した時点でその直前の所定時間または所定数の画像データが記憶部に一時的に記憶されている。したがって、発生タイミングを予測できない原因事象であっても、原因事象が発生する以前の画像データを選択して保存できる。また、発生タイミングの前後の画像データのみを保存することにより、全ての画像データを保存する場合よりも大幅に保存期間を長期化できる。 In the invention according to claim 4, with respect to a cause event whose occurrence timing cannot be predicted, image data corresponding to a predetermined time or more or a predetermined number or more is temporarily stored and sequentially updated, and temporarily stored when the cause event occurs. The latest image data corresponding to a predetermined time or a predetermined number is stored, and a predetermined time or a predetermined number of image data after the occurrence of the causal event is stored. Further, in the invention according to claim 5, the cause event for which the generation timing cannot be predicted is the replacement and readjustment of the device constituent members for recovering the failure of the component supply device or the component transfer device, and the suction nozzle by the imaging monitoring device And at least one event of abnormality determination by a state monitoring sensor provided in a component supply device, a component transfer device, or an imaging monitoring device, and a substrate type switching. Regarding the causal events whose generation timing cannot be predicted, a predetermined time or a predetermined number of image data immediately before the causal event is temporarily stored in the storage unit. Therefore, even if the cause event cannot be predicted, the image data before the cause event can be selected and stored. Also, by storing only the image data before and after the generation timing, the storage period can be extended significantly compared to when all the image data is stored.
 請求項6に係る発明では、記憶部が保存対象画像データで満杯になったとき、所定の優先順位付けにしたがい優先順位の低い保存対象画像データから順番に削除する。記憶部が保存対象画像データで満杯になったときには、優先順位の低い保存対象画像データを削除することにより、最新の保存対象画像データを保存することができる。なお、優先順位付けとしては、時系列的に旧い保存対象画像データの優先順位を低く設定する方法や、原因事象の種類別に優先順位を設定する方法、などがある。 In the invention according to claim 6, when the storage unit is full of the storage target image data, the storage target image data is deleted in order from a lower priority according to a predetermined priority order. When the storage unit is full of storage target image data, the latest storage target image data can be stored by deleting the storage target image data having a low priority. As prioritization, there are a method of setting the priority of the old image data to be saved low in time series, a method of setting the priority for each type of cause event, and the like.
 請求項7に係る発明では、吸着ノズルが部品を吸着した状態とは異なる所定の特徴状態を撮像して特徴画像データを得、原因事象が発生した前後の特徴画像データを保存対象画像データとして保存する。これにより、原因事象の発生前後の画像データの種類が増えて多面的になるので、不良基板発生時や装置異常発生時に事象解明や原因究明を一層効率的に行える。 In the invention according to claim 7, the feature image data is obtained by imaging a predetermined feature state different from the state in which the suction nozzle sucks the component, and the feature image data before and after the cause event is generated is saved as the save target image data. To do. As a result, the types of image data before and after the occurrence of the causal event increase and become multifaceted. Therefore, when a defective substrate occurs or when an apparatus abnormality occurs, event elucidation and cause investigation can be performed more efficiently.
第1実施形態の部品実装機の装置構成を示す斜視図である。It is a perspective view which shows the apparatus structure of the component mounting machine of 1st Embodiment. 第1実施形態の部品実装機における部品実装フローを説明する図である。It is a figure explaining the component mounting flow in the component mounting machine of 1st Embodiment. 図2の部品実装フロー中のステップS7の画像保存処理で画像データを保存するか消去するかを決める保存条件管理フローを説明する図である。It is a figure explaining the preservation | save condition management flow which determines whether image data is preserve | saved by the image preservation | save process of step S7 in the component mounting flow of FIG. 原因事象、保存トリガ発生条件、および消去トリガ発生条件を例示説明する一覧表の図である。It is a figure of the list explaining the cause event, the preservation trigger generation condition, and the deletion trigger generation condition by way of example. 図2の部品実装フロー中のステップS7の画像保存処理の詳細フローを説明する図である。It is a figure explaining the detailed flow of the image preservation | save process of step S7 in the component mounting flow of FIG. 第2実施形態で、画像データを保存するか消去するかを決める保存条件管理フローを説明する図である。It is a figure explaining the storage condition management flow which determines whether image data is preserve | saved or deleted in 2nd Embodiment. 第2実施形態で、図2の部品実装フロー中のステップS7の画像保存処理の詳細フローを説明する図である。It is a figure explaining the detailed flow of the image preservation | save process of step S7 in 2nd Embodiment in the component mounting flow of FIG.
 本発明の第1実施形態の部品実装機を図1~図5を参考にして説明する。図1は、第1実施形態の部品実装機1の装置構成を示す斜視図である。部品実装機1は、基板搬送装置3、部品供給装置4、部品移載装置5、および撮像監視装置6を基台2に組み付けるとともに、各装置3~6を図略の制御コンピュータから制御するようにして構成する。また、図1中のXYZ座標軸に示されるように、部品実装機1の水平幅方向(図1の紙面左上から右下に向かう方向)をX軸方向、部品実装機1の水平長手方向(図1の紙面右上から左下に向かう方向)をY軸方向、鉛直高さ方向をZ軸方向とする。 The component mounter according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a device configuration of a component mounter 1 according to the first embodiment. The component mounter 1 assembles the board transfer device 3, the component supply device 4, the component transfer device 5, and the imaging monitoring device 6 on the base 2, and controls each device 3 to 6 from a control computer (not shown). Configure. Further, as indicated by the XYZ coordinate axes in FIG. 1, the horizontal width direction of the component mounter 1 (the direction from the upper left to the lower right in FIG. 1) is the X axis direction, and the horizontal longitudinal direction of the component mounter 1 (see FIG. 1). 1 is a Y-axis direction, and a vertical height direction is a Z-axis direction.
 基板搬送装置3は、部品実装機1の長手方向の中間辺りに設けられている。基板搬送装置3は、第1搬送装置31および第2搬送装置32が並設された、いわゆるダブルコンベアタイプの装置であり、2枚の基板9を並行操作してX軸方向に搬入し位置決めし搬出する。第1搬送装置31は、基台2上にX軸方向に平行に並設された一対のガイドレール31A、31B、およびガイドレール31A、31Bにそれぞれ案内され基板9を載置して搬送する一対のコンベアベルト(図示省略)などにより構成されている。また、第1搬送装置31には、部品実装位置まで搬送された基板9を基台2側から押し上げて位置決めするクランプ装置(図示省略)が設けられている。第2搬送装置32も、第1搬送装置31と同様に構成されている。 The board transfer device 3 is provided in the middle of the component mounting machine 1 in the longitudinal direction. The substrate transfer device 3 is a so-called double conveyor type device in which the first transfer device 31 and the second transfer device 32 are arranged in parallel, and the two substrates 9 are operated in parallel to carry in and position in the X-axis direction. Take it out. The first transport device 31 is guided by a pair of guide rails 31A and 31B and guide rails 31A and 31B arranged in parallel on the base 2 in the X-axis direction, and a pair of substrates 9 is placed and transported. Conveyor belt (not shown) or the like. In addition, the first transport device 31 is provided with a clamp device (not shown) that pushes up and positions the substrate 9 transported to the component mounting position from the base 2 side. The second transport device 32 is configured in the same manner as the first transport device 31.
 部品供給装置4は、フィーダ方式の装置であり、部品実装機1の長手方向の前部(図1の左前側)に設けられている。部品供給装置4は、基台2上に複数のカセット式フィーダ41が並設されて構成されている。各カセット式フィーダ41は、基台2に離脱可能に取り付けられた本体42と、本体42の後部に回転可能かつ着脱可能に装着された供給リール43と、本体42の先端に設けられた部品供給部44とを備えている。供給リール43は部品を供給する媒体であり、所定個数の部品を一定の間隔で保持したキャリアテープ(図示省略)が巻回されている。このキャリアテープの先端が部品供給部44まで引き出され、キャリアテープごとに異なる部品が供給される。 The component supply device 4 is a feeder-type device, and is provided at the front portion in the longitudinal direction of the component mounter 1 (left front side in FIG. 1). The component supply device 4 is configured by arranging a plurality of cassette type feeders 41 in parallel on the base 2. Each cassette-type feeder 41 includes a main body 42 that is detachably attached to the base 2, a supply reel 43 that is rotatably and detachably attached to a rear portion of the main body 42, and a component supply that is provided at the tip of the main body 42. Part 44. The supply reel 43 is a medium for supplying parts, and is wound with a carrier tape (not shown) holding a predetermined number of parts at regular intervals. The leading end of the carrier tape is pulled out to the component supply unit 44, and different components are supplied for each carrier tape.
 部品移載装置5は、X軸方向およびY軸方向に移動可能ないわゆるXYロボットタイプの装置であり、部品実装機1の長手方向の後部(図1の右奥側)から前部の部品供給装置4の上方にかけて配設されている。部品移載装置5は、一対のY軸レール51A、51B、Y軸スライダ52、Y軸モータ53、X軸モータ、Z軸モータ、および部品装着ヘッド54などにより構成されている。一対のY軸レール51A、51Bは、Y軸方向に平行に並設されて、基板搬送装置3および部品供給装置4の上方に延在している。Y軸レール51A、51BにはY軸スライダ52が移動可能に懸架されている。Y軸スライダ52は、Y軸モータ53に駆動されて、Y軸レール51A、51B上をY軸方向に移動するようになっている。Y軸スライダ52には、X軸方向に移動可能に部品装着ヘッド54が配設されている。部品装着ヘッド54は、図略のX軸モータに駆動されてX軸方向に移動するようになっている。 The component transfer device 5 is a so-called XY robot type device that can move in the X-axis direction and the Y-axis direction, and supplies components from the rear part (right rear side in FIG. 1) in the longitudinal direction of the component mounting machine 1 to the front part. It is arranged above the device 4. The component transfer device 5 includes a pair of Y- axis rails 51A and 51B, a Y-axis slider 52, a Y-axis motor 53, an X-axis motor, a Z-axis motor, a component mounting head 54, and the like. The pair of Y-axis rails 51 </ b> A and 51 </ b> B are juxtaposed in parallel to the Y-axis direction and extend above the board transfer device 3 and the component supply device 4. A Y-axis slider 52 is movably suspended on the Y- axis rails 51A and 51B. The Y-axis slider 52 is driven by a Y-axis motor 53 and moves on the Y- axis rails 51A and 51B in the Y-axis direction. A component mounting head 54 is disposed on the Y-axis slider 52 so as to be movable in the X-axis direction. The component mounting head 54 is driven by an unillustrated X-axis motor and moves in the X-axis direction.
 部品装着ヘッド54から下向きに符号略の吸着ノズルが配設されている。吸着ノズルは、図略のZ軸モータに駆動されて昇降(Z軸方向の移動)するようになっている。また、吸着ノズルは、空気圧を制御可能な吸着機構をもち、負圧を利用して部品供給装置4から部品を吸着採取する。そして、撮像監視装置6で部品吸着状態を撮像して、吸着ノズルと部品の中心の位置ずれを取得しこれを補正した後に、吸着ノズルは基板9上に当該部品を装着する。通常、部品移載装置5は、後述する部品装着ループを繰り返し実行して、多数の部品を基板9に実装する。 A suction nozzle having a symbol is arranged downward from the component mounting head 54. The suction nozzle is driven by a Z-axis motor (not shown) to move up and down (move in the Z-axis direction). Further, the suction nozzle has a suction mechanism capable of controlling the air pressure, and picks up and picks up components from the component supply device 4 using negative pressure. Then, after picking up an image of the component suction state by the imaging monitoring device 6 to acquire and correct the positional deviation between the suction nozzle and the center of the component, the suction nozzle mounts the component on the substrate 9. Usually, the component transfer device 5 repeatedly executes a component mounting loop described later to mount a large number of components on the substrate 9.
 撮像監視装置6は、部品移載装置5の吸着ノズルの部品吸着状態および部品の良否を判定する装置であり、部品供給装置4の部品供給部44付近に配設されている。撮像監視装置6は、吸着ノズルが部品を吸着した状態を撮像して画像データを得る撮像部、および画像データを保存する記憶部、および画像データを基にして良否を判定する判定部を有している。判定部は、例えば、部品がずれて吸着され位置の補正が困難なときや、画像から求められる部品形状が基準形状と異なっているときに異常と判定する(画像処理異常)。 The imaging monitoring device 6 is a device that determines the component suction state of the suction nozzle of the component transfer device 5 and the quality of the component, and is disposed in the vicinity of the component supply unit 44 of the component supply device 4. The imaging monitoring device 6 includes an imaging unit that captures an image of a state in which the suction nozzle has attracted a component to obtain image data, a storage unit that stores image data, and a determination unit that determines pass / fail based on the image data. ing. For example, the determination unit determines that there is an abnormality when the component is displaced and sucked and it is difficult to correct the position, or when the component shape obtained from the image is different from the reference shape (image processing abnormality).
 基台2上の撮像監視装置6の近傍には、廃棄箱7が配設されている。廃棄箱7は、撮像監視装置6が画像処理異常と判定したときに、部品移載装置5が吸着している部品を廃棄する場所である。 A disposal box 7 is disposed in the vicinity of the imaging monitoring device 6 on the base 2. The disposal box 7 is a place where the components that are picked up by the component transfer device 5 are discarded when the imaging monitoring device 6 determines that the image processing is abnormal.
 基板搬送装置3、部品供給装置4、部品移載装置5、および撮像監視装置6は、図略の制御コンピュータと適宜情報を交換して連携しつつ、制御コンピュータからの指令にしたがって作動する。 The substrate transfer device 3, the component supply device 4, the component transfer device 5, and the imaging monitoring device 6 operate according to instructions from the control computer while appropriately exchanging information with a control computer (not shown).
 次に、上述のように構成された第1実施形態の部品実装機1の作動について説明する。図2は、第1実施形態の部品実装機1における部品実装フローを説明する図である。部品実装フローのステップS1に示されるように、まず、基板搬送装置3により基板9が搬入および位置決めされる。次にステップS2で、基板9の位置確認や基板IDの読み取り確認などのイニシャル処理が実施される。次にステップS3で、部品装着ループが開始される。 Next, the operation of the component mounter 1 according to the first embodiment configured as described above will be described. FIG. 2 is a diagram illustrating a component mounting flow in the component mounter 1 according to the first embodiment. As shown in step S <b> 1 of the component mounting flow, first, the board 9 is carried in and positioned by the board transfer device 3. Next, in step S2, initial processing such as confirmation of the position of the substrate 9 and confirmation of reading of the substrate ID is performed. Next, in step S3, a component mounting loop is started.
 部品装着ループ中のステップS4で、部品移載装置5の部品装着ヘッド54が部品供給装置4の部品供給部44に移動し、吸着ノズルが部品を吸着する。次にステップS5で、部品装着ヘッド54が撮像監視装置6の近傍に移動し、撮像監視装置6は吸着ノズルが部品を吸着した状態を撮像して画像データを得る。次にステップS6で、撮像監視装置6は画像データに対して所定の画像処理を施す。例えば、吸着ノズルと部品の中心間のずれ量を求めて位置を補正したり、吸着ノズルに対する部品の回転や傾きの有無を確認したり、吸着された部品の外形形状を確認したりする。これにより、吸着ノズルの部品吸着状態が異常のときや部品形状自体が異常のときに、画像処理異常と判定する。次に、ステップS7の画像保存処理で、撮像監視装置6は後述する詳細フローにしたがって画像データを保存または消去する。 In step S4 in the component mounting loop, the component mounting head 54 of the component transfer device 5 moves to the component supply unit 44 of the component supply device 4, and the suction nozzle sucks the component. Next, in step S5, the component mounting head 54 moves to the vicinity of the imaging monitoring device 6, and the imaging monitoring device 6 captures the state in which the suction nozzle sucks the component and obtains image data. In step S6, the imaging monitoring apparatus 6 performs predetermined image processing on the image data. For example, the position is corrected by obtaining the amount of deviation between the suction nozzle and the center of the component, the presence or absence of rotation or inclination of the component with respect to the suction nozzle, or the outer shape of the sucked component is confirmed. Thereby, when the component suction state of the suction nozzle is abnormal or when the component shape itself is abnormal, it is determined that the image processing is abnormal. Next, in the image saving process in step S7, the imaging monitoring apparatus 6 saves or deletes the image data according to a detailed flow described later.
 次のステップS8で、ステップS6の画像処理の結果を確認し、画像処理異常のときはステップS9に進み、正常のときはステップS10に進む。画像処理異常時のステップS9では、部品装着ヘッド54が廃棄箱7の上方に移動し、吸着ノズルが吸着している部品を廃棄箱7に廃棄する。この後、ステップS4に戻り、同じ部品に対してリトライする。正常時のステップS10では、部品装着ヘッド54が基板9の上方に移動し、吸着ノズルが吸着している部品を基板9上に装着する。次に、ステップS11で、基板9に必要な全部品が実装されたか否か確認し、未実装の部品が残っていれば、ステップS4に戻って次の部品に移る。ステップS11で全部品が実装済みであれば、ステップS12で部品装着ループを終了してステップS13に進む。ステップS13では基板9を搬出し、1枚の基板9に対する部品実装フローが終了する。図2の部品実装フローは、生産する基板9の枚数だけ繰返される。 In the next step S8, the result of the image processing in step S6 is confirmed. If the image processing is abnormal, the process proceeds to step S9, and if normal, the process proceeds to step S10. In step S <b> 9 when the image processing is abnormal, the component mounting head 54 moves above the disposal box 7, and the component adsorbed by the suction nozzle is discarded in the disposal box 7. Thereafter, the process returns to step S4, and the same part is retried. In the normal step S10, the component mounting head 54 moves above the substrate 9 and the component sucked by the suction nozzle is mounted on the substrate 9. Next, in step S11, it is confirmed whether or not all the necessary components are mounted on the substrate 9. If there are any unmounted components, the process returns to step S4 to move to the next component. If all components have been mounted in step S11, the component mounting loop is terminated in step S12, and the process proceeds to step S13. In step S13, the board 9 is unloaded and the component mounting flow for one board 9 is completed. The component mounting flow in FIG. 2 is repeated by the number of boards 9 to be produced.
 図3は、図2の部品実装フロー中のステップS7の画像保存処理で画像データを保存するか消去するかを決める保存条件管理フローを説明する図である。保存条件管理フローは、図2の部品実装フローと並行して実施される。図3の保存条件管理フローのステップS31は、画像データ保存の要否を変更するトリガを待つ状態である。そして、ステップS32で保存トリガが発生すると、ステップS33で保存フラグをオンにセットする。また、ステップS34で消去トリガが発生すると、ステップS35で保存フラグをオフにセットする。保存フラグは、その時点に取得した画像データが保存対象画像データであるか否かを示すパラメータである。ステップS33およびステップS35の後は、ステップS31に戻り次のトリガを待つ。 FIG. 3 is a diagram for explaining a storage condition management flow for determining whether image data is stored or deleted in the image storage processing in step S7 in the component mounting flow of FIG. The storage condition management flow is performed in parallel with the component mounting flow of FIG. Step S31 of the storage condition management flow in FIG. 3 is a state of waiting for a trigger for changing the necessity of image data storage. When a storage trigger is generated in step S32, the storage flag is set to ON in step S33. If an erase trigger occurs in step S34, the save flag is set to OFF in step S35. The save flag is a parameter indicating whether the image data acquired at that time is the image data to be saved. After step S33 and step S35, the process returns to step S31 and waits for the next trigger.
 上述の保存トリガおよび消去トリガは、図2の部品実装フローの進行に伴う原因事象に起因して発生する。原因事象とは、図4に例示されるように、部品供給装置4または部品移載装置5の作動状況が変化し得る原因となる事象を意味する。図4は、原因事象、保存トリガ発生条件、および消去トリガ発生条件を例示説明する一覧表の図である。 The above save trigger and erase trigger are generated due to a cause event accompanying the progress of the component mounting flow of FIG. The cause event means an event that causes a change in the operating status of the component supply device 4 or the component transfer device 5, as illustrated in FIG. FIG. 4 is a table illustrating examples of cause events, storage trigger generation conditions, and deletion trigger generation conditions.
 図4で、原因事象として、まず部品の切れ目を例示できる。基板9の生産が進んで部品供給装置4の或る供給リール43の特定部品がなくなると、カセット式フィーダ41から旧い供給リール43が取り出されて新しい供給リール43がセットされる。ここで、新しい供給リール43およびキャリアテープに瑕疵があったり、セット方法が悪かったりすると、不良基板発生や装置異常発生の原因になる可能性が皆無ではない。したがって、リール交換の前後で、吸着ノズルが特定部品を吸着した画像データを保存対象画像データとして保存する。例えば、旧リールの部品残数がA1個になった時点を保存トリガ発生条件とし、新リールの部品使用数がA2個になった時点を消去トリガ発生条件として、この間の画像データを保存対象とする。旧リールの部品残数の確認方法としては、新旧の供給リール43のキャリアテープを継いだスプライス位置を検出して部品残数に換算する方法や、供給リール43から部品を採取する都度カウントダウンして部品残数を逐次管理する方法を用いることができる。 In FIG. 4, firstly, as a cause event, a break of a part can be exemplified. When the production of the substrate 9 progresses and there is no specific part of a certain supply reel 43 of the component supply device 4, the old supply reel 43 is taken out from the cassette type feeder 41 and a new supply reel 43 is set. Here, if the new supply reel 43 and the carrier tape are wrinkled or the setting method is bad, there is no possibility of causing a defective substrate or an apparatus abnormality. Therefore, before and after the reel replacement, the image data in which the suction nozzle sucks the specific component is stored as the storage target image data. For example, the time when the remaining number of parts on the old reel becomes A1 is set as a save trigger generation condition, and the time when the number of used parts on the new reel becomes A2 is set as an erase trigger generation condition. To do. To check the remaining number of parts on the old reel, you can detect the splice position of the old and new supply reel 43 with the carrier tape and convert it to the remaining number of parts, or count down each time you collect parts from the supply reel 43. A method of sequentially managing the remaining number of parts can be used.
 また、第1実施形態の部品実装機1でなくトレイ方式の部品供給装置を備える部品実装機では、部品を供給する媒体であるトレイが変更になるタイミングを原因事象とすることができる。そして、旧トレイの部品残数がB1個になった時点を保存トリガ発生条件とし、新トレイの部品使用数がB2個になった時点を消去トリガ発生条件とする。さらに、類似する概念として部品のロットが変更になるタイミングを原因事象とし、旧ロットの部品残数がC1個になった時点を保存トリガ発生条件とし、新ロットの部品使用数がC2個になった時点を消去トリガ発生条件とすることができる。ロットの変更は、実際にはリールやトレイの交換と重なる場合が多い。 Further, in the component mounter provided with the tray type component supply device instead of the component mounter 1 of the first embodiment, the timing at which the tray, which is a medium for supplying components, is changed can be a cause event. The time when the remaining number of parts in the old tray becomes B1 is set as a save trigger generation condition, and the time when the number of used parts in the new tray becomes B2 is set as an erase trigger generation condition. Furthermore, as a similar concept, the timing when the part lot is changed is a cause event, the time when the remaining number of parts in the old lot becomes C1 is set as a storage trigger generation condition, and the number of parts used in the new lot becomes C2. It is possible to set the erase trigger as a condition for generating an erase trigger. Lot changes often overlap with reel and tray replacement.
 次に、原因事象として、部品移載装置5における定期メンテナンスを例示できる。制御コンピュータは、前回の定期メンテナンス終了からの稼働時間を基にして今回の定期メンテナンスの時期を設定し、オペレータにメンテナンス案内を発する。したがって、メンテナンス案内のD1分前を保存トリガ発生条件とし、メンテナンス終了後D2分経過またはメンテナンス終了後に基板9をE枚生産した時点を消去トリガ発生条件とすることができる。さらに、部品移載装置5の吸着ノズルの自動清掃も原因事象と考えることができる。吸着ノズルの自動清掃に対しては、清掃予定時刻のF1分前を保存トリガ発生条件とし、清掃終了後F2分経過または清掃終了後に部品をG個装着した時点を消去トリガ発生条件とすることができる。 Next, periodic maintenance in the component transfer device 5 can be exemplified as a cause event. The control computer sets the period of this regular maintenance based on the operation time from the end of the previous regular maintenance, and issues maintenance guidance to the operator. Accordingly, the D1 minute before the maintenance guide can be set as a storage trigger generation condition, and the erasure trigger generation condition can be set at the time when D2 minutes have elapsed after the maintenance is completed or when E substrates 9 are produced after the maintenance is completed. Furthermore, automatic cleaning of the suction nozzle of the component transfer device 5 can also be considered as a cause event. For automatic cleaning of the suction nozzle, the F1 minute before the scheduled cleaning time is set as the save trigger generation condition, and the F2 minute elapses after the cleaning ends or the time when G parts are mounted after the cleaning ends is set as the erasure trigger generation condition. it can.
 ここまでに説明した原因事象は、発生タイミングを予測できる原因事象である。したがって、原因事象が発生する以前に保存トリガを発生し、発生した以降に消去トリガを発生して、原因事象の前後の画像データを保存することができる。なお、画像データの保存数(例えば上記A1個およびA2個)は、原因事象が発生する前後で同じ個数でもよいし、異なる個数でもよい。 The cause event described so far is a cause event whose occurrence timing can be predicted. Therefore, a storage trigger can be generated before the cause event occurs, and an erase trigger can be generated after the cause event to store the image data before and after the cause event. Note that the number of stored image data (for example, A1 and A2) may be the same or different before and after the cause event occurs.
 次に、原因事象として、生産する基板の種類切替えを例示できる。基板の種類切替えは、生産目標基板数を設定して実装済基板数をカウントアップしている場合には予測できる原因事象であり、前述のように原因事象が発生する以前に保存トリガを発生することができる。しかしながら、発生タイミングの予測が困難な生産形態もあり、この場合には基板の種類の切替え直後を保存トリガ発生条件として画像データの保存を開始する。そして、切替え後H分経過あるいは安定作動が確認できたときを消去トリガ発生条件とすることができる。 Next, examples of the cause event include switching the type of board to be produced. Board type switching is a causal event that can be predicted when the target board number is set and the number of mounted boards is counted up. As described above, a save trigger is generated before the causal event occurs. be able to. However, there is also a production form in which it is difficult to predict the generation timing. In this case, image data storage is started with the storage trigger generation condition immediately after switching the substrate type. Then, an erasure trigger generation condition can be set when H minutes have elapsed after switching or when stable operation has been confirmed.
 さらに、部品供給装置4や部品移載装置5の故障も発生タイミングを予測できない原因事象である。この場合、普通は装置構成部材(構成ユニット)の交換や再調整などにより故障を復旧する。したがって、故障復旧直後を保存トリガ発生条件とし、故障復旧後L分経過あるいは安定作動が確認できたときを消去トリガ発生条件とすることができる。 Furthermore, the failure of the component supply device 4 and the component transfer device 5 is also a cause event whose generation timing cannot be predicted. In this case, the failure is usually recovered by replacing or re-adjusting the device constituent members (component units). Therefore, the storage trigger generation condition can be set immediately after failure recovery, and the erase trigger generation condition can be set when L minutes have elapsed after the failure recovery or when stable operation has been confirmed.
 また、図2の部品実装フローのステップS8において、画像処理結果が異常と判定されれば(画像処理異常)当然原因事象となる。加えて、部品実装機1に設けられた他の状態監視センサが異常を判定する場合もある(状態監視異常)。例えば、部品が吸着ノズルから離れず基板9上に装着できない異常は、撮像監視装置6以外のセンサで検出される。画像処理異常や状態監視異常では、異常判定直後を保存トリガ発生条件とし、異常判定後J分またはK分経過あるいは安定作動が確認できたときを消去トリガ発生条件とすることができる。 Further, if it is determined that the image processing result is abnormal in step S8 of the component mounting flow of FIG. 2 (abnormal image processing), it naturally becomes a cause event. In addition, another state monitoring sensor provided in the component mounter 1 may determine an abnormality (state monitoring abnormality). For example, an abnormality in which a component cannot be mounted on the substrate 9 without being separated from the suction nozzle is detected by a sensor other than the imaging monitoring device 6. For image processing abnormalities and state monitoring abnormalities, the storage trigger generation condition can be immediately after the abnormality determination, and the erase trigger generation condition can be when J minutes or K minutes have elapsed after the abnormality determination or when stable operation has been confirmed.
 図4に例示される原因事象に応じてそれぞれ保存トリガおよび消去トリガが発生し、図3に示されるように保存フラグのオンとオフが切り替えられる。保存フラグは、原因事象ごとにそれぞれ用いられ、例えば、供給リール43の部品の切れ目では、供給リール43の数量に等しい個数の保存フラグが用いられる。したがって、部品の切れ目では当該部品の吸着状態を撮像した画像データが保存対象になり、切れ目でない他の部品の画像データは保存対象にならない。部品の切れ目以外の原因事象では、全品種の部品の画像データが保存対象になる。各保存フラグは、図2の部品実装フローのステップS7の画像保存処理で参照される。図5は、図2の部品実装フロー中のステップS7の画像保存処理の詳細フローを説明する図である。 4. A save trigger and an erase trigger are generated according to the cause event illustrated in FIG. 4, respectively, and the save flag is switched on and off as shown in FIG. The storage flag is used for each cause event. For example, the number of storage flags equal to the number of supply reels 43 is used at the break of parts of the supply reel 43. Therefore, image data obtained by picking up the suction state of the part is a storage target at the break of the part, and image data of other parts that are not a cut is not a storage target. In the causal event other than the break of the parts, the image data of the parts of all types are stored. Each storage flag is referred to in the image storage processing in step S7 of the component mounting flow in FIG. FIG. 5 is a diagram for explaining a detailed flow of the image storage process in step S7 in the component mounting flow of FIG.
 図5中のステップS41で、まず保存フラグの状態が確認される。保存フラグがオフのとき、画像保存処理は直ちに終了する。つまり、図2のステップS5で取得しステップS6で判定部が画像処理異常の判定に用いた画像データは保存対象でないと判断され、記憶部に保存されることなく消去される。保存フラグがオンのときステップS42に進み、記憶部に保存領域があるか否かを調査する。保存領域がないときステップS43に進み、保存されているうちで優先順位の低い画像データを削除して保存領域を確保する。本第1実施形態では、時系列的に旧いほど優先順位が低いと設定して、画像データを旧い順番に削除する。ステップS42で保存領域があるとき、ならびにステップS43で保存領域を確保した後に、ステップS44で保存対象となっている最新の画像データを記憶部に保存する。 In step S41 in FIG. 5, the state of the save flag is first confirmed. When the save flag is off, the image saving process ends immediately. That is, the image data acquired in step S5 of FIG. 2 and used by the determination unit in the determination of image processing abnormality in step S6 is determined not to be stored, and is erased without being stored in the storage unit. When the save flag is on, the process proceeds to step S42 to check whether there is a save area in the storage unit. When there is no storage area, the process proceeds to step S43, and the image data with the lower priority among the stored areas is deleted to secure the storage area. In the first embodiment, it is set that the priority is lower as it is older in time series, and the image data is deleted in the oldest order. When there is a storage area in step S42 and after securing the storage area in step S43, the latest image data to be stored is stored in the storage unit in step S44.
 上述のように、撮像監視装置6は、保存フラグがオンになっているときの画像データを保存対象画像データとして記憶部に保存し、保存フラグがオフになっているときの画像データを判定部による判定に用いた後に消去する。つまり、図4の予測できる原因事象の発生前後の画像データ、および予測できない原因事象の発生後の画像データのみを所定時間または所定数の範囲で保存する。なお、画像データの保存数が所定の値に達したときに警報を発し、装置外のメモリに画像データを移動して保存領域を空けるようにしてもよい。 As described above, the imaging monitoring apparatus 6 saves the image data when the save flag is on in the storage unit as the save target image data, and determines the image data when the save flag is off as the determination unit. Erase after using for judgment by. That is, only the image data before and after the occurrence of the predictable cause event in FIG. 4 and the image data after the occurrence of the unpredictable cause event are stored for a predetermined time or a predetermined number of ranges. Note that an alarm may be issued when the number of stored image data reaches a predetermined value, and the image data may be moved to a memory outside the apparatus to free up a storage area.
 したがって、第1実施形態の部品実装機1によれば、撮像監視装置6の記憶部の限られた保存容量の範囲内で原因事象の前後の重要な画像データのみを選択して保存でき、全ての画像データを保存する場合よりも大幅に保存期間を長期化できる。また、保存した画像データを参照することで、予測できる原因事象に関して発生前から発生後に至る吸着ノズルの部品吸着状態の経過を把握でき、予測できない原因事象に関して発生直後の吸着ノズルの部品吸着状態の経過を把握できる。これにより、不良基板発生時や装置異常発生時に事象解明や原因究明を効率的に行える。例えば、不良や異常の発生時に吸着ノズルの部品吸着状態が原因と想定される場合、その証拠となる原因事象の前後の画像データを比較して確認することができる。また、原因事象の前後で吸着ノズルの部品吸着状態が変化していない場合には、事象解明や原因究明の重点を他に向けられる。 Therefore, according to the component mounter 1 of the first embodiment, only important image data before and after the causal event can be selected and stored within the limited storage capacity of the storage unit of the imaging monitoring apparatus 6, and all The storage period can be greatly extended compared to the case of storing the image data. In addition, by referring to the stored image data, it is possible to grasp the progress of the suction state of the suction nozzle components from before occurrence to after the occurrence of the predictable cause event, and the status of the suction status of the suction nozzle immediately after the occurrence of the unpredictable cause event. You can keep track of the progress. As a result, when a defective substrate occurs or when a device abnormality occurs, the event can be clarified and the cause can be efficiently investigated. For example, when it is assumed that the component suction state of the suction nozzle is the cause when a defect or abnormality occurs, the image data before and after the cause event that is evidence can be compared and confirmed. Further, when the component suction state of the suction nozzle does not change before and after the cause event, the emphasis on the event elucidation and cause investigation can be put elsewhere.
 次に、第2実施形態の部品実装機について説明する。第2実施形態の部品実装機は、第1実施形態と同じ装置構成であり、発生タイミングを予測できない原因事象に関しても発生以前の所定時間または所定数に相当する画像データを保存する点が異なる。第2実施形態の部品実装機の部品実装フローは、図2に示された第1実施形態のフローと概ね一致するが、ステップS7の画像保存処理の内容が異なり、また保存条件管理フローも異なる。 Next, the component mounter of the second embodiment will be described. The component mounter of the second embodiment has the same device configuration as that of the first embodiment, and is different in that image data corresponding to a predetermined time or a predetermined number before occurrence is stored even for a cause event whose generation timing cannot be predicted. The component mounting flow of the component mounting machine of the second embodiment is substantially the same as the flow of the first embodiment shown in FIG. 2, but the contents of the image storage processing in step S7 are different, and the storage condition management flow is also different. .
 第2実施形態の画像保存処理では、撮像監視装置6の記憶部に一時的に全ての画像データを保存し、保存領域がなくなると優先順位の低いデータから順番に削除する方法を採用している(後に図7を参考にして詳述)。第2実施形態の部品実装機で考慮する原因事象は、図4に示された原因事象と同一であり、保存トリガおよび消去トリガにより保存フラグをオンおよびオフにセットすることも同様である。第2実施形態の部品実装機では、保存の要否を示すラベルを各画像データに付与し、図6および図7に示される保存条件管理および画像保存処理を行う。 In the image saving process of the second embodiment, a method is adopted in which all image data is temporarily saved in the storage unit of the imaging monitoring apparatus 6 and is deleted in order from the data with the lowest priority when the saving area is exhausted. (Details will be described later with reference to FIG. 7). The cause event to be considered in the component mounter of the second embodiment is the same as the cause event shown in FIG. 4, and the same holds for setting the save flag on and off by the save trigger and the erase trigger. In the component mounter of the second embodiment, a label indicating whether or not storage is necessary is assigned to each image data, and storage condition management and image storage processing shown in FIGS. 6 and 7 are performed.
 図6は、第2実施形態で、画像データを保存するか消去するかを決める保存条件管理フローを説明する図である。図6の保存条件管理フローは、図2の部品実装フローと並行して実施される。図6中のステップS51は、画像データ保存の要否を変更するトリガを待つ状態である。そして、ステップS52で保存トリガが発生すると、ステップS53で保存フラグをオンにセットする。図2の部品実装フローのステップS5で画像データを取得したとき、撮像監視装置6は、保存フラグがオフであれば画像データに「削除可」のラベルを付与し、保存フラグがオンであれば画像データに「保存対象」のラベルを付与する。 FIG. 6 is a diagram illustrating a storage condition management flow for determining whether to store or delete image data in the second embodiment. The storage condition management flow in FIG. 6 is performed in parallel with the component mounting flow in FIG. Step S51 in FIG. 6 is in a state of waiting for a trigger for changing the necessity of image data storage. When a save trigger is generated in step S52, a save flag is set on in step S53. When the image data is acquired in step S5 of the component mounting flow in FIG. 2, the imaging monitoring device 6 gives a label “deletable” to the image data if the storage flag is off, and if the storage flag is on. A label “save target” is assigned to the image data.
 次に、ステップS54で消去トリガが発生すると、ステップS55でロック対象画像データの設定を行う。つまり、保存トリガおよび消去トリガを発生させた原因事象が予測できる事象であるとき、保存トリガと消去トリガの間に取得された画像データのラベルは「保存対象」になっており、これを「ロック対象」に変更する。一方、保存トリガおよび消去トリガを発生させた原因事象が予測できない事象であるとき、保存トリガは原因事象の直後に発生するので原因事象以前に取得された画像データのラベルは「削除可」になっている。そこで、原因事象以前の所定時間または所定数に相当する最新の画像データのラベルを「削除可」から「ロック対象」に変更する。また、予測できない原因事象の発生と消去トリガの間に取得された画像データのラベルは「保存対象」になっており、これを「ロック対象」に変更する。上述の設定により、発生タイミングを予測できるか否かに関わらず、原因事象の発生前後の画像データのラベルは「ロック対象」になる。「ロック対象」の画像データも、保存対象画像データの一種である。 Next, when an erasure trigger is generated in step S54, lock target image data is set in step S55. In other words, when the causal event that generated the save trigger and the erase trigger is an event that can be predicted, the label of the image data acquired between the save trigger and the erase trigger is “Save Target”, and this is the “Lock”. Change to "Target". On the other hand, when the cause event that generated the save trigger and the erase trigger is an unpredictable event, the save trigger occurs immediately after the cause event, so the label of the image data acquired before the cause event is “deletable”. ing. Therefore, the label of the latest image data corresponding to a predetermined time or a predetermined number before the cause event is changed from “deletable” to “lock target”. Further, the label of the image data acquired between the occurrence of the unpredictable cause event and the erasure trigger is “storage object”, and this is changed to “lock object”. With the above setting, the label of the image data before and after the occurrence of the causal event becomes “lock target” regardless of whether or not the occurrence timing can be predicted. The “lock target” image data is also a kind of storage target image data.
 ステップS55に続き、ステップS56で保存フラグをオフにセットする。これにより、以降に取得される画像データには「削除可」のラベルが付与される。ステップS53およびステップS56の後は、ステップS51に戻り次のトリガを待つ。 Following step S55, the save flag is set to OFF in step S56. As a result, a label “deletable” is assigned to image data acquired thereafter. After step S53 and step S56, the process returns to step S51 and waits for the next trigger.
 図7は、第2実施形態で、図2の部品実装フロー中のステップS7の画像保存処理の詳細フローを説明する図である。図7中のステップS61で、まず撮像監視装置6の記憶部の保存領域が満杯か否かの確認が行われる。保存領域に空きが有るとき直ちにステップS70に進み、ラベルの種類に関係なく最新の画像データを保存する。保存領域が満杯のときステップS62に進み、削除データ決定ループが開始される。 FIG. 7 is a diagram illustrating a detailed flow of the image saving process in step S7 in the component mounting flow of FIG. 2 in the second embodiment. In step S61 in FIG. 7, it is first checked whether the storage area of the storage unit of the imaging monitoring apparatus 6 is full. When the storage area is empty, the process immediately proceeds to step S70, and the latest image data is stored regardless of the type of label. When the storage area is full, the process proceeds to step S62, and a deletion data determination loop is started.
 削除データ決定ループ中のステップS63で、記憶部内の画像データを旧い順番に1データずつ選択する。そして、ステップS64で選択した画像データのラベルが「ロック対象」であるか否か調査し、ステップS65で画像データのラベルが「保存対象」であるか否か調査する。ラベルが「ロック対象」または「保存対象」であるとき、ステップS66に進み、全ての画像データを選択したか否か調査する。選択されていない画像データが残っているとき、ステップS63に戻って次に旧い画像データを選択し、ステップS63~S66を繰返す。 In step S63 in the deletion data determination loop, the image data in the storage unit is selected one by one in the oldest order. Then, it is checked whether or not the label of the image data selected in step S64 is “lock target”, and whether or not the label of the image data is “save target” is checked in step S65. When the label is “lock target” or “save target”, the process proceeds to step S66 to check whether or not all image data has been selected. If unselected image data remains, the process returns to step S63 to select the next oldest image data, and steps S63 to S66 are repeated.
 繰り返しの途中で、「ロック対象」でも「保存対象」でもない、換言すれば「削除可」のラベルが付与されている画像データが見つかったときには、ステップS67に進んで当該画像データを削除し、ステップS70に進む。削除される画像データは、「削除可」のラベルが付与されているうちで最旧の画像データである。 In the middle of repetition, when image data that is neither “locking object” nor “storing object”, in other words, “deletable” label is found, the process proceeds to step S67 to delete the image data, Proceed to step S70. The image data to be deleted is the oldest image data with the label “deletable”.
 全ての画像データを選択してステップS63~S66を繰返しても「削除可」のラベルが付与されている画像データが見つからないときには、ステップS66からステップS68に進んで削除データ決定ループを終了する。次いで、ステップS69で、「ロック対象」のラベルが付与されているうちで最旧の画像データを削除する。ステップS67またはステップS69で、いずれか1データ分の画像データが削除されて、保存領域が確保される。したがって、ステップS70で、取得した最新の画像データを保存できる。 If all the image data is selected and step S63 to S66 are repeated and no image data with the “deletable” label is found, the process proceeds from step S66 to step S68 to end the deletion data determination loop. Next, in step S69, the oldest image data among the labels to be “locked” is deleted. In step S67 or step S69, image data for any one data is deleted, and a storage area is secured. Therefore, the acquired latest image data can be stored in step S70.
 第2実施形態では、記憶部に保存領域がある間は、ラベルの種類に関係なく全ての画像データが保存される。そして、記憶部の保存領域が画像データで満杯になったとき、優先順位の低い画像データが順番に削除される。ここで、「削除可」のラベルが付与された画像データは、「ロック対象」または「保存対象」のラベルが付与された画像データよりも優先順位が低く、優先的に削除される。また、同種のラベルが付与された画像データの間では、その新旧が優先順位となって、旧い画像データから順番に削除される。 In the second embodiment, as long as there is a storage area in the storage unit, all image data is stored regardless of the type of label. Then, when the storage area of the storage unit is filled with image data, the image data with lower priority is deleted in order. Here, the image data with the label “deletable” has a lower priority than the image data with the label “locked” or “saved”, and is preferentially deleted. Also, between image data to which the same kind of label is assigned, the new and old are prioritized and are deleted in order from the old image data.
 例えば、保存領域が満杯でかつ取得した最新の画像データが「削除可」であるとき、最旧の「削除可」の画像データが削除されて置き換えられる。これは、所定時間以上または所定数以上に相当する画像データを一時的に記憶して逐次更新することに相当する。また、例えば、保存領域が「ロック対象」または「保存対象」のラベルが付与された画像データで満杯になったとき、最旧の「ロック対象」の画像データが削除される。これは、所定の優先順位付けにしたがい優先順位の低い保存対象画像データから順番に削除することに相当する。 For example, when the storage area is full and the acquired latest image data is “deletable”, the oldest “deletable” image data is deleted and replaced. This is equivalent to temporarily storing and sequentially updating image data corresponding to a predetermined time or more or a predetermined number or more. Further, for example, when the storage area is filled with image data with the label “lock target” or “storage target”, the oldest “lock target” image data is deleted. This is equivalent to deleting the image data to be saved in order of lower priority in accordance with a predetermined priority order.
 第2実施形態の部品実装機では、発生タイミングを予測できない原因事象に関して、「削除可」のラベルを付与した画像データを一時的に記憶して逐次更新する。そして、当該の予測できない原因事象が発生したときに、原因事象以前の所定時間または所定数に相当する最新の画像データのラベルを「削除可」から「ロック対象」に変更する。これにより、発生タイミングを予測できない原因事象であっても、発生以前の画像データを保存対象画像データとして保存できる。したがって、予測の可否に関わらずに原因事象の前後の重要な画像データのみを選択して保存でき、全ての画像データを保存する場合よりも大幅に保存期間を長期化できる。また、保存した画像データを参照することで、発生タイミングを予測できない原因事象であっても発生前から発生後に至る吸着ノズルの部品吸着状態の経過を把握することができるので、不良基板発生時や装置異常発生時に事象解明や原因究明を一層効率的に行える。 The component mounter of the second embodiment temporarily stores and sequentially updates the image data with the label “deletable” for the cause event for which the occurrence timing cannot be predicted. When the unpredictable cause event occurs, the label of the latest image data corresponding to a predetermined time or a predetermined number before the cause event is changed from “deletable” to “lock target”. Thereby, even if it is a cause event which cannot predict generation | occurrence | production timing, the image data before generation | occurrence | production can be preserve | saved as preservation | save object image data. Therefore, it is possible to select and store only important image data before and after the causal event regardless of whether prediction is possible or not, and the storage period can be greatly prolonged compared to the case of storing all image data. In addition, by referring to the stored image data, it is possible to grasp the progress of the component suction state of the suction nozzle from before occurrence to after occurrence even if it is a cause event whose occurrence timing cannot be predicted. Elucidation of the event and investigation of the cause can be performed more efficiently when a device abnormality occurs.
 なお、吸着ノズルが部品を吸着した状態とは異なる所定の特徴状態を撮像して特徴画像データを得、原因事象が発生した前後の特徴画像データを保存対象画像データとして保存することもできる。例えば、特徴状態として、部品を吸着していない吸着ノズルの先端状態を撮像することができる。これにより、仮に吸着ノズルの自動清掃の終了後に部品装着不良が発生したとき、吸着ノズルに起因するかまたは他に起因するかを多面的に確認できる。この場合、保存対象画像データは自動清掃の前後各1データとしてもよい。また、その他の特徴状態を設定して撮像することもできる。 It should be noted that it is also possible to obtain a feature image data by capturing a predetermined feature state different from the state in which the suction nozzle sucks the component, and save the feature image data before and after the cause event occurs as the save target image data. For example, the tip state of the suction nozzle that is not picking up the component can be imaged as the characteristic state. Thereby, when a component mounting defect occurs after the end of the automatic cleaning of the suction nozzle, it can be confirmed in a multifaceted manner whether it is caused by the suction nozzle or others. In this case, the image data to be stored may be one data before and after the automatic cleaning. It is also possible to set another feature state and take an image.
 さらに、図4に例示した以外の原因事象を対象とすることもできる。また、第1および第2実施形態では、画像データを保存する記憶部は撮像監視装置6が有するものとしたが、制御コンピュータの記憶部や外部記憶装置を併用するようにしてもよい。その他、本発明は様々な応用や変形が可能である。 Furthermore, it is also possible to target causal events other than those illustrated in FIG. In the first and second embodiments, the imaging monitoring device 6 has a storage unit that stores image data. However, a storage unit of an control computer or an external storage device may be used in combination. In addition, the present invention can be variously applied and modified.
 本発明は、電子部品などを基板に実装する部品実装機に利用できる。 The present invention can be used for a component mounter for mounting electronic components on a substrate.
 1:部品実装機
 2:基台
 3:基板搬送装置  31:第1搬送装置  32:第2搬送装置
 4:部品供給装置
    41:カセット式フィーダ  42:本体  43:供給リール
    44:部品供給部
 5:部品移載装置
    51A、51B:Y軸レール  52:Y軸スライダ  53:Y軸モータ
    54:部品装着ヘッド
 6:撮像監視装置
 7:廃棄箱
 9:基板
1: Component mounter 2: Base 3: Board transfer device 31: First transfer device 32: Second transfer device 4: Component supply device 41: Cassette feeder 42: Main body 43: Supply reel 44: Component supply unit 5: Component transfer device 51A, 51B: Y-axis rail 52: Y-axis slider 53: Y-axis motor 54: Component mounting head 6: Imaging monitoring device 7: Waste box 9: Substrate

Claims (7)

  1.  基板を部品実装位置に搬入し位置決めし搬出する基板搬送装置と、複数種類の部品を供給する部品供給装置と、前記部品供給装置から供給される前記部品を吸着して位置決めされた前記基板上に装着する吸着ノズルを有する部品移載装置と、前記吸着ノズルが前記部品を吸着した状態を撮像して画像データを得る撮像部、および前記画像データを保存する記憶部、および前記画像データを基にして前記吸着ノズルの部品吸着状態および前記部品の良否を判定する判定部を有する撮像監視装置と、を備える部品実装機であって、
     前記撮像監視装置は、
     前記部品供給装置または前記部品移載装置の作動状況が変化し得る原因事象が発生したときに、前記原因事象の前後の所定時間または所定数の前記画像データを保存対象画像データとして前記記憶部に保存し、
     前記保存対象画像データ以外の画像データを前記判定部による判定に用いた後に消去することを特徴とする部品実装機。
    A substrate transport device that carries a substrate into a component mounting position, positions and unloads the component, a component supply device that supplies a plurality of types of components, and the component that is supplied from the component supply device by suction and is positioned on the substrate Based on a component transfer device having a suction nozzle to be mounted, an imaging unit that captures an image of a state in which the suction nozzle sucks the component and obtains image data, a storage unit that stores the image data, and the image data An imaging monitoring device having a determination unit that determines the component suction state of the suction nozzle and the quality of the component, and a component mounting machine comprising:
    The imaging monitoring device includes:
    When a cause event that may change the operation status of the component supply device or the component transfer device occurs, a predetermined time before or after the cause event or a predetermined number of the image data is stored in the storage unit as image data to be stored. Save and
    A component mounting machine, wherein image data other than the image data to be stored is erased after being used for determination by the determination unit.
  2.  請求項1において、前記撮像監視装置は、発生タイミングを予測できる原因事象に関して、予測した前記発生タイミングの前記所定時間前または前記所定数前から前記原因事象の発生後に前記所定時間または前記所定数が経過するまでの前記画像データを前記保存対象画像データとして保存することを特徴とする部品実装機。 2. The imaging monitoring apparatus according to claim 1, wherein the predetermined time or the predetermined number after the occurrence of the causal event from the predetermined time or the predetermined number before the predicted generation timing is related to the cause event for which the generation timing can be predicted. The component mounting machine, wherein the image data until the lapse of time is stored as the storage target image data.
  3.  請求項2において、前記発生タイミングを予測できる原因事象は、前記部品供給装置における前記部品の切れ目および前記部品を供給する媒体の交換、ならびに前記部品移載装置における定期メンテナンスおよび前記吸着ノズルの自動清掃、ならびに前記基板の種類切替えの少なくとも一事象を含むことを特徴とする部品実装機。 In Claim 2, the cause event which can predict the generation | occurrence | production timing is the replacement | exchange of the said component cut | interruption in the said component supply apparatus and the medium which supplies the said component, the regular maintenance in the said component transfer apparatus, and the automatic cleaning of the said suction nozzle , And at least one event of switching the type of the board.
  4.  請求項1~3のいずれか一項において、前記撮像監視装置は、発生タイミングを予測できない原因事象に関して、前記所定時間以上または前記所定数以上に相当する画像データを一時的に記憶して逐次更新し、前記原因事象が発生すると一時的に記憶していたなかで前記所定時間または前記所定数に相当する最新の画像データを前記保存対象画像データとして前記記憶部に保存するとともに、前記原因事象の発生後に前記所定時間または前記所定数が経過するまでの画像データを前記保存対象画像データとして保存することを特徴とする部品実装機。 4. The imaging monitoring apparatus according to claim 1, wherein the imaging monitoring apparatus temporarily stores and sequentially updates image data corresponding to the predetermined time or the predetermined number or more with respect to a cause event whose generation timing cannot be predicted. And storing the latest image data corresponding to the predetermined time or the predetermined number in the storage unit as the storage target image data while temporarily storing the cause event, and generating the cause event A component mounting machine that stores image data until the predetermined time or the predetermined number later as the image data to be stored.
  5.  請求項4において、発生タイミングを予測できない原因事象は、前記部品供給装置または前記部品移載装置の故障を復旧するための装置構成部材の交換および再調整、ならびに前記撮像監視装置による前記吸着ノズルの作動状態の異常判定、ならびに前記部品供給装置または前記部品移載装置または撮像監視装置に設けられた状態監視センサによる異常判定、ならびに前記基板の種類切替えの少なくとも一事象を含むことを特徴とする部品実装機。 5. The cause event in which the occurrence timing cannot be predicted is the replacement and readjustment of the apparatus constituent members for recovering the failure of the component supply apparatus or the component transfer apparatus, and the suction nozzle by the imaging monitoring apparatus. A component including at least one event of abnormality determination of an operating state, abnormality determination by a state monitoring sensor provided in the component supply device, the component transfer device, or the imaging monitoring device, and switching of the type of the substrate Mounting machine.
  6.  請求項1~5のいずれか一項において、前記撮像監視装置は、前記記憶部が前記保存対象画像データで満杯になったとき、所定の優先順位付けにしたがい優先順位の低い保存対象画像データから順番に削除することを特徴とする部品実装機。 6. The imaging monitoring apparatus according to claim 1, wherein when the storage unit is full of the storage target image data, the imaging monitoring apparatus starts from the storage target image data having a low priority according to a predetermined priority order. A component mounter that is deleted in order.
  7.  請求項1~6のいずれか一項において、前記撮像監視装置は、前記吸着ノズルが前記部品を吸着した状態とは異なる所定の特徴状態を撮像して特徴画像データを得、前記原因事象が発生した前後の前記特徴画像データを保存対象画像データとして保存することを特徴とする部品実装機。 7. The imaging monitoring device according to claim 1, wherein the imaging monitoring device captures a predetermined feature state different from a state in which the suction nozzle sucks the component to obtain feature image data, and the cause event occurs. A component mounting machine, wherein the feature image data before and after the storage is stored as storage target image data.
PCT/JP2011/076092 2011-02-14 2011-11-11 Component-mounting machine WO2012111202A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180064653.0A CN103314657B (en) 2011-02-14 2011-11-11 Component mounter
DE112011104888T DE112011104888T5 (en) 2011-02-14 2011-11-11 Components assembly machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011028132A JP5737989B2 (en) 2011-02-14 2011-02-14 Component mounter
JP2011-028132 2011-12-05

Publications (1)

Publication Number Publication Date
WO2012111202A1 true WO2012111202A1 (en) 2012-08-23

Family

ID=46672152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076092 WO2012111202A1 (en) 2011-02-14 2011-11-11 Component-mounting machine

Country Status (4)

Country Link
JP (1) JP5737989B2 (en)
CN (1) CN103314657B (en)
DE (1) DE112011104888T5 (en)
WO (1) WO2012111202A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014076755A1 (en) * 2012-11-13 2016-09-08 富士機械製造株式会社 Board production status monitoring device
WO2017216950A1 (en) * 2016-06-17 2017-12-21 富士機械製造株式会社 Component-mounting device and component-mounting system
CN108462871A (en) * 2017-01-12 2018-08-28 发那科株式会社 The abnormal cause estimating system of visual sensor
WO2020079753A1 (en) 2018-10-16 2020-04-23 株式会社Fuji Data management device and data management method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139753A1 (en) * 2015-03-03 2016-09-09 富士機械製造株式会社 Component mounting machine
WO2017017788A1 (en) * 2015-07-28 2017-02-02 富士機械製造株式会社 Component mounting machine
JP6788606B2 (en) * 2015-11-17 2020-11-25 株式会社Fuji Implementation processing method
JP6723373B2 (en) * 2016-11-14 2020-07-15 株式会社Fuji Storage image reclassification system and reclassification method
JP6884632B2 (en) * 2017-04-28 2021-06-09 株式会社Fuji Assembly machine
CN110622632B (en) * 2017-06-01 2021-04-13 雅马哈发动机株式会社 Inspection result reporting method, inspection result reporting device, and component mounting system
EP3678464B1 (en) * 2017-08-31 2023-04-05 Fuji Corporation Component mounting machine and component mounting method
JP7011441B2 (en) * 2017-10-12 2022-01-26 Juki株式会社 Mounting device and mounting method
EP3735121A4 (en) * 2017-12-28 2020-12-23 Fuji Corporation Tracing device
CN111727672B (en) * 2018-03-09 2021-09-03 株式会社富士 Component mounting machine
DE112018007439T5 (en) * 2018-04-06 2020-12-31 Yamaha Hatsudoki Kabushiki Kaisha Component mounting system, component mounting device, and component mounting method
EP3843519B1 (en) * 2018-08-24 2023-09-06 Fuji Corporation Component mounting machine and component collection method
JP2020095379A (en) * 2018-12-11 2020-06-18 株式会社ディスコ Log data creation device
EP4007479A4 (en) * 2019-07-23 2022-08-03 Fuji Corporation Data management device
WO2024023996A1 (en) * 2022-07-27 2024-02-01 ヤマハ発動機株式会社 Component mounting management device, component mounting system, and component mounting management method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013120A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Defect cause investigating system
JP2006202934A (en) * 2005-01-20 2006-08-03 Hitachi High-Tech Instruments Co Ltd Electronic component mounter
JP2007147354A (en) * 2005-11-25 2007-06-14 I-Pulse Co Ltd Inspection machine, inspection method and mounting line
JP2008085559A (en) * 2006-09-27 2008-04-10 Omron Corp Method of storing image for visual inspection, and image storing processing apparatus
JP2008218737A (en) * 2007-03-05 2008-09-18 Denso Corp Image processing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698258B2 (en) 1991-11-26 1998-01-19 三洋電機株式会社 Component mounting device
JP4455260B2 (en) * 2004-10-12 2010-04-21 ヤマハ発動機株式会社 Component conveying device, surface mounter and component testing device
CN1842269B (en) * 2005-03-30 2010-08-04 雅马哈发动机株式会社 Component moving and loading device, surface mounting machine, component detection device and disorder decision method
JP4896655B2 (en) * 2006-10-17 2012-03-14 ヤマハ発動機株式会社 Mounting fault cause identification method and mounting board manufacturing apparatus
JP5147255B2 (en) 2007-02-09 2013-02-20 富士機械製造株式会社 Image processing verification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013120A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Defect cause investigating system
JP2006202934A (en) * 2005-01-20 2006-08-03 Hitachi High-Tech Instruments Co Ltd Electronic component mounter
JP2007147354A (en) * 2005-11-25 2007-06-14 I-Pulse Co Ltd Inspection machine, inspection method and mounting line
JP2008085559A (en) * 2006-09-27 2008-04-10 Omron Corp Method of storing image for visual inspection, and image storing processing apparatus
JP2008218737A (en) * 2007-03-05 2008-09-18 Denso Corp Image processing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014076755A1 (en) * 2012-11-13 2016-09-08 富士機械製造株式会社 Board production status monitoring device
WO2017216950A1 (en) * 2016-06-17 2017-12-21 富士機械製造株式会社 Component-mounting device and component-mounting system
JPWO2017216950A1 (en) * 2016-06-17 2019-04-04 株式会社Fuji Component mounting apparatus and component mounting system
CN108462871A (en) * 2017-01-12 2018-08-28 发那科株式会社 The abnormal cause estimating system of visual sensor
CN108462871B (en) * 2017-01-12 2019-04-09 发那科株式会社 The abnormal cause estimating system of visual sensor
US10497146B2 (en) 2017-01-12 2019-12-03 Fanuc Corporation Visual sensor abnormality cause estimation system
WO2020079753A1 (en) 2018-10-16 2020-04-23 株式会社Fuji Data management device and data management method
CN112823577A (en) * 2018-10-16 2021-05-18 株式会社富士 Data management device and data management method
JPWO2020079753A1 (en) * 2018-10-16 2021-09-02 株式会社Fuji Data management device and data management method
JP7002671B2 (en) 2018-10-16 2022-02-10 株式会社Fuji Data management device and data management method

Also Published As

Publication number Publication date
CN103314657B (en) 2016-05-11
CN103314657A (en) 2013-09-18
DE112011104888T5 (en) 2013-11-07
JP5737989B2 (en) 2015-06-17
JP2012169394A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5737989B2 (en) Component mounter
JP4813444B2 (en) Component supply method, surface mounter, feeder and cart
WO2014049766A1 (en) Recognition device for substrate processing machine
JP2008066404A (en) Mounting machine, and component managing device and component management method thereof
JP5822819B2 (en) Electronic component mounting method and surface mounter
JP2005159164A (en) Surface-mounter and component preparation method thereof
JP5808160B2 (en) Electronic component mounting equipment
JP4813445B2 (en) Component supply method, surface mounter, feeder and cart
JP2004140162A (en) Method for maintenance of electronic circuit component mounting device, method for monitoring operation state of electronic circuit component mounting device, and electronic circuit manufacturing support system
JP4932683B2 (en) Component supply method, surface mounter and cart
JP2009123902A (en) Part mounting condition determination method, part mounting condition determination device and program
JP2008147313A (en) Mounting condition determining method
JP2022161896A (en) Component management device and component management method
JP7197705B2 (en) Mounting equipment, mounting system, and inspection mounting method
JP7257533B2 (en) Feeders and mounters
JP2006332090A (en) Electronic component packaging equipment and method for managing component information in electronic component packaging equipment
US11943872B2 (en) Mounting device, mounting system, and inspection/mounting method
WO2023067647A1 (en) Used feeder recovery method and management device, and feeder replacement apparatus
WO2023139789A1 (en) Preparation device, mounting device, mounting system, and information processing method
JP2023100538A (en) Component mounting device and component mounting system
WO2019163044A1 (en) Component mounting system
JP7407347B2 (en) Component mounting equipment
JP7474862B2 (en) Component Mounting System
JP7061703B2 (en) Production control method
EP4243587A1 (en) Component mounting system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180064653.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011104888

Country of ref document: DE

Ref document number: 1120111048882

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858988

Country of ref document: EP

Kind code of ref document: A1