WO2012110069A1 - Nockenwelle mit axial verschiebbaren nockenelementen - Google Patents
Nockenwelle mit axial verschiebbaren nockenelementen Download PDFInfo
- Publication number
- WO2012110069A1 WO2012110069A1 PCT/EP2011/006068 EP2011006068W WO2012110069A1 WO 2012110069 A1 WO2012110069 A1 WO 2012110069A1 EP 2011006068 W EP2011006068 W EP 2011006068W WO 2012110069 A1 WO2012110069 A1 WO 2012110069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching
- slide track
- internal combustion
- combustion engine
- drive device
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0036—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
- F01L2001/0471—Assembled camshafts
- F01L2001/0473—Composite camshafts, e.g. with cams or cam sleeve being able to move relative to the inner camshaft or a cam adjusting rod
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0036—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
- F01L2013/0052—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49293—Camshaft making
Definitions
- the invention relates to an internal combustion engine valve drive device for an internal combustion engine.
- the invention is in particular the object of providing a cost-effective Brennkraftmaschinenventiltriebvortechnischigan for an internal combustion engine with more than two independently switching cam elements. It is achieved according to the invention by the features of claim 1. Further embodiments emerge from the subclaims.
- the invention is based on an internal combustion engine valve drive device with two independently axially displaceable cam elements and with a shift gate for moving the cam elements.
- an internal combustion engine valve ebvoriques with at least three mutually independently axially displaceable cam elements and with a shift gate having at least one continuous slide track, which is intended to move the at least three cam elements sequentially proposed.
- a reversible valve train for an internal combustion engine can be provided which has at least three cylinders arranged in series with different valve operating times, such as in particular for a designed as a three-cylinder in-line engine and / or for a six-cylinder V engine engine designed internal combustion engine
- a "shift gate” should be understood to mean a shift unit for the axial adjustment of the at least three cam elements, which has at least one slide track, which is intended to provide a rotational movement. Move motion in an axial adjustment.
- the sliding track is preferably designed in the form of a web, in the form of a slot and / or in the form of a groove
- a “continuous slide track” should be understood to mean, in particular, a slide track through which the shift pin is always positively guided.
- a “cam element” is to be understood in particular as a carrier element for accommodating cams
- the cams are preferably formed integrally with the cam element, ie, the cam element forms the carrier element and the cams in one piece
- the term "provided” is to be understood in particular to be specially equipped and / or designed.
- sequential succession is to be understood in particular that the cam elements are moved in a switching operation successively in individual steps.
- the at least one slide track has at least three switching segments which are each assigned to one of the cam elements.
- a “switching segment” should be understood to mean, in particular, a segment of the slide track which has at least one axial oblique position a circular line about a main axis of rotation of the at least three cam elements axially deviates, whereby a rotational movement of a camshaft can be converted into an axially acting force.
- the main axis of rotation of the camshaft should be defined here as the reference for the directions “axial,” “in the circumferential direction,” and “radially.”
- association with a cam element is meant, in particular, that the switching segment is provided for switching the corresponding cam element.
- two of the cam elements each form part of the at least one slide track.
- the slide track can be made structurally particularly simple.
- forming is to be understood in this context in particular that the slide track is formed integrally with the cam member, in particular in the form of a groove which is introduced into the two cam elements. It is particularly advantageous if the cam elements, which each form part of the at least one slide track, occupy in each case an angular range of approximately 120 degrees camshaft angle, at least in one area of the shift gate. As a result, the slide track can be designed particularly advantageous.
- An "axial region of the camshaft having the at least one slide track” should be understood to mean an “area of the shift gate.”
- An “angular range” should be understood to mean, in particular, an extension of the cam element in the circumferential direction.
- a degree in “degree of camshaft angle” is to be understood in particular as referring to the camshaft degree specification, ie, a rotation of the camshaft corresponds to 360 degrees camshaft angle
- crankshaft angle degree is to be understood as referring to a crankshaft angle indication, in this angle one revolution of the camshaft corresponds to 720 degrees crankshaft angle.
- the slide track preferably has a length of at least 330 degrees camshaft angle.
- approximately Is meant in particular an accuracy of ⁇ 5 degrees camshaft angle, with ⁇ 2 degrees camshaft angle advantageous and ⁇ 1 degree camshaft angle are particularly advantageous.
- the at least one slide track has a length of at least 360 degrees camshaft angle. This allows a particularly advantageous extension of the switching segments can be achieved via the slide track. In particular, it is possible that all switching segments have a length of at least 90 degrees camshaft angle, with a length of at least 100 degrees camshaft angle advantageous and a length of about 110 degrees camshaft angle! is particularly advantageous.
- the internal combustion engine valve drive device comprises a link element which forms part of the at least one slide track.
- the third cam element which preferably has no slide track, can advantageously be actuated by means of the shift gate.
- the link element assumes an angular range of approximately 120 degrees, at least in the region of the shift gate.
- the link element can be inserted between the cam elements in a particularly advantageous manner.
- the gate element and the at least two cam elements adjoin one another directly, ie, they merge into one another in the circumferential direction almost without gaps.
- the engine valve drive device has a connection unit which couples one of the cam elements and the link element in terms of motion technology.
- the third cam element can be arranged spaced from the shift gate, whereby a structurally simple design of the shift gate is possible.
- Motion technology coupled is to be understood in particular rotationally fixed and axially fixed to each other.
- the at least one slide track has a Einspursegment that is at least partially formed integrally with at least one of the switching segments.
- a length of the slide track can be particularly short, so that the slide track can have at least three switching segments.
- a "single track segment” should be understood to mean, in particular, a segment of the slide track which has at least one radial oblique position a circle around the main axis of rotation of the at least three cam elements radially deviates, whereby a rotational movement of the camshaft can be converted into a radially acting force.
- the slide track on a changing depth and / or height, whereby the shift pin can be Immunspurt in the slide track.
- integral is to be understood in this context in particular that the slide track has at least in a partial region a radial inclination and an axial inclination, ie tilted with respect to the circumferential direction in the axial direction and in the radial direction, thereby still during a meshing of the Switching pins in the slide track an axial force acting on the corresponding cam member is exercisable.
- the at least one slide track may have a Ausspursegment that is at least partially formed integrally with at least one of the switching segments.
- the length of the slide track can be further shortened, whereby a particularly advantageous embodiment can be achieved.
- a "Ausspursegment" should be understood as another segment of the slide track, which has at least one radial inclination, whereby an engagement between the shift pin and the shift gate can be separated again.
- the engine valve drive device has a second slide track, which is arranged substantially out of phase with the first slide track.
- phase-shifted is to be understood in particular as meaning that the first slide track and the second slide track are offset from each other along a circumferential direction of the camshaft.
- a circumferential direction should be understood to mean a direction tangential to a circular arc about the main rotational axis of the camshaft in a direction the camshaft provided direction of rotation is oriented.
- the engine valve drive device comprises a switching unit having only one switching pin per switching direction, which is intended to move by means of the shift gate all cam elements in the corresponding switching direction.
- the internal combustion engine valve drive device can be configured in a particularly cost-effective manner since a number of components, in particular a number of actuators for the switching pins, can be kept small.
- FIG. 1 shows an internal combustion engine valve drive device according to the invention in a perspective plan view
- Fig. 5-9 a switching operation along a first switching direction
- Fig. 10 - 14 a switching operation along a second switching direction.
- FIGS. 1 to 14 show an internal combustion engine valve drive device according to the invention.
- the internal combustion engine valve drive apparatus is provided for an internal combustion engine having at least three cylinders in series having different valve operating times.
- the internal combustion engine valve drive device can be used for an internal combustion engine, in which only three cylinders are arranged in a row, such as in a three-cylinder inline engine or a six-cylinder V-engine.
- the internal combustion engine valve train However, direction can also be used for an internal combustion engine, are arranged in a row six cylinders each having the same or at least similar valve actuation times in pairs, such as in an in-line engine with six cylinders, in which adjacent cylinders have the same or at least similar valve actuation times.
- the internal combustion engine valve drive device comprises a camshaft 31 with three cam elements 10, 11, 12.
- the cam elements 10, 11, 12 are designed as cam carriers.
- the partial cams 33, 34 of one of the cams 32 are each arranged immediately adjacent.
- the cam elements 10, 1 1, 12 are axially displaceable. By an axial displacement of one of the cam elements 10, 11, 12, a partial cam 33 is switched over to the other part cam 34 within the cam 32.
- the cam elements 10, 11, 12 thus each have two discrete switching positions, in which a different valve lift is connected for the cylinder or cylinders associated with the corresponding cam element 10, 11, 12.
- the camshaft 31 comprises a drive shaft 35.
- the drive shaft 35 includes a crankshaft connection for connection to a crankshaft, not shown.
- the crankshaft connection can be formed by means of a camshaft adjuster, which is provided to set a phase position between the camshaft 31 and the crankshaft.
- the cam elements 10, 1 1, 12 are axially displaceable and rotatably mounted on the drive shaft 35.
- the drive shaft 35 has a straight toothing on its outer circumference.
- the cam elements 10, 11, 12 have on their inner circumference a corresponding straight toothing, which engages in the straight toothing of the drive shaft 35.
- the engine valve drive device comprises a shift gate 13.
- the shift gate 13 is provided to sequentially shift the three cam elements 10, 1 1, 12 in a switching operation sequentially.
- the shift gate 13 comprises two slide tracks 14, 15.
- the first slide track 14 is provided to move the cam elements 10, 1 1, 12 along a first shift direction from the first shift position to the second shift position (see Figures 5 to 9).
- the second slide track 15 is provided to the cam to move elements along a second switching direction of the second switching position in the first switching position (see Figures 10 to 14).
- the internal combustion engine valve drive device comprises a switching unit 28, the switching pins 29, 30 for engagement in the slide tracks 14, 15 has.
- the switching unit 28 has a stator housing 36 which is fixedly connected to an engine block of the internal combustion engine, not shown.
- the switching pins 29, 30 are arranged displaceably in the stator housing 36 along their main extension direction.
- the slide tracks 14, 15 are designed as grooves in which the switching pins 29, 30 can be positively driven on both sides at least partially. In a switching operation in the first switching direction of the first switching pin 29 is brought into engagement with the first slide track 14. In a switching operation in the second switching direction of the second shift pin 30 is brought into engagement with the second slide track 15.
- the slide tracks 14, 15 have a plurality of switching segments 16, 17, 18, 19, 20, 21.
- the first slide track 14 comprises the three switching segments 16, 17, 18, which are provided for switching the three cam elements 10, 11, 12 in the first switching direction.
- the switching segments 16, 17, 18 are each exactly one of the cam elements 10, 1 1, 12 assigned.
- the slide track 14 comprises a Einspursegment 24 and a Ausspursegment 26.
- the second slide track 15 is designed analogously.
- the second slide track 15 comprises the three shift segments 19, 20, 21, a one-track segment 25 and a breakaway segment 27.
- the switching segments 16, 17, 18, 19, 20, 21 each have an axial skew.
- the cam member 10, 1 1, 12, which is assigned to the corresponding switching segment 16, 17, 18, 19, 20, 21, shifted when the corresponding switching pin 29, 30 in engagement with the corresponding switching segment 16, 17th , 18, 19, 20, 21 stands.
- the Einspursegmente 24, 25 have a radial skew.
- the slide tracks 14, 15, which are formed as grooves, have in a region of the Einspursegmente 24, 25 a continuously increasing depth. In a region which lies between the engagement segment 24, 25 and the Ausspursegment 26, 27, the corresponding slide track 14, 15 has a substantially constant depth. In the region of the Ausspursegmente 26, 27, the corresponding slide track 14, 15 has a continuously decreasing depth.
- the two slide tracks 14, 15 are each continuous, that is, the on the corresponding Einspursegment 26, 27 with the slide track 14, 15 engaged Weg- Pin 29, 30 successively passes through the switching segments 16, 17, 18, 19, 20, 21 of the corresponding slide track 14, 15, before the shift pin 29, 30 by means of the Ausspursegments 26, 27 is released from the slide track 14, 15 again.
- the cam elements 10, 1 1, 12 are thereby sequentially switched sequentially. In a switching operation along the first switching direction, first the axially outer cam element 10, then the axially middle cam element 11 and finally the axially outer cam element 12 are switched. In a switching operation along the second switching direction, first the axially middle cam element 11, then the axially outer cam element 12 and finally the axially outer cam element 10 is displaced.
- the two switching operations are thus not symmetrical with respect to a switching order of the cam elements 10, 11, 12.
- the shift gate 13 is arranged in a region of the camshaft 31 in which the axially outer cam element 10 and the axially middle cam element 11 adjoin one another.
- the two cam elements 10, 1 occupy only an angular range of 120 degrees camshaft angle in this area.
- the internal combustion engine valve drive device has a gate element 22, which is arranged in the region of the camshaft 31, in which the cam elements 10, 1 1 adjoin one another.
- the link element 22 also assumes an angular range of 120 degrees camshaft angle. In the area of the shift gate 13, the two cam elements 10, 11 and the link element 22 thus assume an approximately equal angular range.
- the two cam elements 10, 11 and the link element 22 form the slide tracks 14, 15.
- the slide tracks 14, 15, which are formed as grooves, are inserted directly into the cam elements 10, 1 1 and the link element 22.
- the two cam elements 10, 11 and the link element 22 in each case form part of the slide track 14, 15.
- the Einspursegment 24 of the slide track 14 begins on the link element 22 and ends on the axially outer cam member 10.
- the first switching segment 16 of the slide track 14 is disposed on the axially outer cam member 10.
- the second switching segment 17 of the slide track 14 is arranged on the axially central cam element 11. net.
- the third switching segment 18 of the slide track 14 is arranged on the link element 22.
- the Ausspursegment 26 of the slide track 1 extends from the gate element 22 except for the axially outer cam member 10. The slide track 14 thus extends over an angle which is greater than 360 degrees camshaft angle.
- the Einspursegment 25 of the slide track 15 begins on the axially outer cam member 10 and terminates on the axially central cam member 1 1.
- the first switching segment 9 of the slide track 15 is disposed on the axially central cam member 1 1.
- Der Einspiebersegment 25 ist in Fig. 2 subjects.
- the second switching segment 20 of the slide track 15 is arranged on the link element 22.
- the third switching segment 21 of the slide track 15 is arranged on the axially outer cam member 10.
- the Ausspursegment 27 of the slide track 15 extends from the axially outer cam member 10 to the middle cam member 1 1.
- the slide track 15 thus also extends over an angle which is greater than 360 degrees camshaft angle.
- the link element 22 and the axially outer cam element 12 are coupled with each other in terms of motion (cf., FIG. 2).
- the drive shaft 35 is at least partially designed as a hollow shaft.
- the internal combustion engine valve drive device comprises a connection unit 23 which couples the link element 22 with the cam element 12.
- the connection unit 23 comprises a coupling rod 37, which is guided in the drive shaft 35.
- the drive shaft 35 includes a first opening through which the coupling rod 37 is coupled to the link element 22, and a second opening through which the coupling rod 37 is coupled to the cam member 12.
- the cam member 12 is thereby at least almost rigidly coupled to an axial movement of the link element 22.
- the cam member 12 and the link element 22 are rotatably connected to each other.
- the first slide track 14 is provided for an adjustment of the cam elements 10, 1 1, 12 in the first switching direction.
- the second slide track 15 is arranged in mirror image and out of phase to the first slide track 14.
- 15 is the axial inclination of the switching segments 19, 20, 21 of the second slide track 15 with respect to the axial inclination of the switching segments 16, 17, 18th the first slide track 14 directed in an opposite direction.
- a start of the second slide track 15 is phase-shifted with respect to a start of the first slide track 14. Due to the constructive similarities, the first slide track 14 will therefore be described below in particular, with a reference to FIG. Writing the first slide track 1, taking into account the phase offset basically analog to the second slide track 15 is transferable.
- the Einspursegment 24 of the slide track 14 and the first switching segment 16 are partially made in one piece.
- the slide track 14 has an axial Schrägsteliung and a radial oblique position.
- the Ausspursegment 26 and the switching segment 18 are partially made in one piece.
- the slide track 4 also has an axial inclination and a radial oblique position.
- the slide track 14 comprises an area which has only a radial inclination. In this area, in which the slide track 14 extends in the circumferential direction and has only an increasing radial depth, the engagement segment 24 is executed separately from the switching segment 16.
- the area in which the Einspursegment 24 and the switching segment 16 are carried out separately, is largely arranged on the link element 22.
- the region in which the switching segment 16 and the engagement segment 24 are made in one piece adjoins the region which has only the radial inclination.
- the switching segment 16 and thus also the region in which the engagement segment 24 and the switching segment 16 are made in one piece are arranged completely on the cam element 10.
- At this area includes an area of the slide track 14, in which the slide track 14 has only an axial inclination. In this area, the switching segment 6 and the Einspursegment 24 are executed separately again.
- the slide track 14 has an approximately constant depth in this area.
- the switching segment 16 is followed by a transition segment 38 in which the slide track 14 has neither a radial skew nor an axial skew.
- the transition segment 38 provides a transition from the cam member 10 to the cam member 11.
- the transition segment 38 is partially formed by the cam member 10.
- the transition segment 38 is arranged between the two switching segments 16, 17.
- the part of the slide track, which is arranged on the cam member 1, has a substantially constant depth.
- the cam member 11 forms another part of the transition segment 38.
- the switching segment 17 is disposed completely on the cam member 11.
- transition segment 39 For a transition between the switching segment 17 and the switching segment 18 summarizes the link path 14 another transition segment 39, which has neither a radial skew nor an axial inclination.
- the further transition segment 39 connects to the switching segment 7.
- the transition segment 39 is partially formed by the cam member 1 1 and partially by the link element 22.
- the slide track 14 initially only an axial skew.
- the switching segment 18 is initially carried out separately from the Ausspursegment 26.
- the slide track 14 again has a region with an axial skew pitch and a radial skew.
- the Ausspursegment 26 and the switching segment 18 are made in one piece.
- the slide track has a decreasing depth. This area is adjoined by a region in which the Ausspursegment 26 is carried out separately from the switching segment 18.
- the slide track 14 only has a radial skew. Much of the area in which the Ausspursegment 26 is carried out separately from the switching segment 18 is formed by the cam member 10.
- the switching pins 29, 30 of the switching unit 28 are each provided for one of the two switching directions, in which the cam elements 10, 11, 12 can be moved.
- the shift pin 29 is brought into engagement with the engagement segment 24 of the first slide track 14 (compare FIG. 5).
- the shift pin 29 initially spits partially into the slide track 14, without an axial force being exerted on one of the cam elements 10, 11, 12.
- the switching pin 29 engages in the switching segment 16 (see FIG.
- the shift pin 29 continues to engage the engagement segment 24.
- the rotational movement of the camshaft 31 thereby causes an axial force on the cam element 10, while the shift pin 29 continues to lunge into the slide track 1.
- the cam member 10 is moved from the first switching position to the second switching position.
- the cam member 10 After the switching pin 29 has completely passed through the switching segment 16, the cam member 10 is switched to the second switching position.
- the rotational movement of the camshaft 31 causes the shift pin 29 from the part of the slide track 14 which is arranged on the cam member 10, on the part of the slide track 14, the is placed on the cam member 1 1, is passed.
- the switching pin 29 engages with the switching segment 17, which is arranged on the cam element 11 (see FIG. 7).
- the rotational movement of the camshaft 31 and the engagement of the switching pin 29 in the switching segment 17 acts on the cam member 11, an axial force by which the cam member 11 is switched from the first switching position to the second switching position.
- the cam element 1 is switched to the second switching position.
- the switching pin 29 is transferred by the transitional segment 39 from the cam member 11 to the link element 22.
- the switching pin 29 is thereby engaged with the switching segment 18, which is arranged on the link element 22 and associated with the cam member 12.
- a switching operation in the second switching direction by means of the second slide track 15 is analogous.
- the shift pin 30 passes through the engagement segment 25 and the shift segment 19 (see FIG.
- the switching pin 30 is transferred by means of a transition segment 40 to the subsequent switching segment 20 (cf., FIG. 12).
- the switching pin 30 is transferred to the switching segment 21 (see Figure 13) and then spouted out again by means of the Ausspursegments 27 (see Figure 14).
- the Einspursegmente 24, 25 each occupy an angular range of about 1 10 degrees camshaft angle.
- the switching segments 16, 17, 18, 19, 20, 21 each occupy an angular range of likewise approximately 110 degrees camshaft angle.
- the transition segments 38, 39, 40, 41 each occupy an angle range of approximately 10 degrees camshaft angle.
- the Ausspursegmente 26, 27 each occupy an angular range of about 95 degrees camshaft angle.
- the Einspursegment 24 and the first switching segment 16 are made in one piece over an angular range of about 40 degrees camshaft angle.
- the last switching segment 18 and the Ausspursegment 26 are also made in one piece over an angular range of about 40 degrees camshaft angle.
- the second slide track 15 is analogous.
- the slide tracks 14, 15 thus each have a length of about 475 degrees camshaft angle.
- the Einspursegmente 24, 25 and the Ausspursegmente 26, 27 of the slide tracks 14, 15 are thus each partially arranged axially adjacent to each other.
- the internal combustion engine valve drive unit comprises a cover unit 42 (see FIG.
- the cover unit 42 is intended to cover unused parts of the slide tracks 14, 15.
- the cover unit 42 comprises a first cover element 43, which is fixedly connected to the cam element 10, which forms the Einspursegment 24.
- the cover 43 By the cover 43, the switching segment 17 of the second cam member 11 and the switching segment 18 of the link element 22 are covered in an operating state in which the cam elements 10, 1 1, 12 are arranged in one of the switching positions.
- the Einspursegment 24 and the switching segment 16 of the first cam member 10 are free.
- the cover member 43 By moving the first cam member 10 by means of the first switching segment 16, the cover member 43, which is coupled to the first cam member 10, the switching segment 17 of the second cam member 1 1 and the switching segment 18 of the link element 22 is free.
- the shift pin 29 can thereby only on the part of the slide track 14 which is arranged on the first cam member 10, in the parts of the slide track 14, which are arranged on the second cam member 1 1 and the link element 22, engage in the guide track 14.
- the cover unit 42 For partially covering the second slide track 15, the cover unit 42 comprises a second cover element 44.
- the second cover element 44 is executed analogously to the first cover element 43.
- Both cover members 43, 44 are designed in the form of a sleeve which encloses the parts of the shift gate 3 in the corresponding switching position and thus partially covers the slide tracks 14, 15.
- the cover members 43, 44 occupy an angular range of about 240 degrees camshaft angle.
- the Einspursegmente 24, 25 are partially incorporated in the cover 43, 44.
- the switching unit 28 is designed bistable.
- the two switching pins 29, 30 can remain in an unactuated state both in an extended switching position and in a retracted switching position.
- the switching pins 29, 30 have an unstable middle position. If one of the switching pins 29, 30 is in a position between the extended switching position and the middle position, the corresponding switching pin 29, 30 automatically switches to the extended switching position. If one of the switching pins 29, 30 in a position between the retracted switching position and the center position, the corresponding switching pin 29, 30 automatically switches to the retracted switching position.
- the switching unit 28 comprises an electric actuator unit, by means of which a force for extension can be exerted on the switching pins 29, 30.
- the switching pins 29, 30 are independently extendable.
- the actuator unit is provided only for extending the switching pins 29, 30.
- the shift gate 13 is provided for retracting the switching pins 29, 30, the shift gate 13 is provided.
- the Ausspuren the switching pins 29, 30 from the corresponding slide track 14, 15 are the Switching pins 29, 30 moved over the unstable center position and drive independently.
- the Ausspursegmente 26, 27 of the slide tracks 14, 15 are provided.
- the internal combustion engine valve drive device has a latching unit 45.
- the cam elements 10, 1 1, 12 each have two locking positions.
- the latching unit 45 comprises a plurality of latching recesses 46, 47, 48, which are attached to the inner sides of the cam elements 10, 1 1, 12 are mounted.
- the latching unit 45 comprises a plurality of pressure pieces 49, 50, 51, which are fixedly connected to the drive shaft 35. By means of the pressure pieces 49, 50, 51, the cam elements 10, 1 1, 12 are locked relative to the drive shaft 35.
- An order in which the switching pins 29, 30 come into engagement with the cam elements 10, 1 1 and the link element 22 when passing through the corresponding slide track 14, 15 can basically be configured as desired.
- the link element 22 has a Einspursegment, wherein subsequent to the link element 22, the cam member 11 is arranged and the cam member 10 has a Ausspursegment.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
Abstract
Erfindungsgemäß wird eine Brennkraftmaschinenventiltriebvorrichtung mit wenigstens drei voneinander unabhängig axial verschiebbaren Nockenelementen (10, 11, 12) und mit einer Schaltkulisse (13), die wenigstens eine durchgängige Kulissenbahn (14, 15) aufweist, die dazu vorgesehen ist, die wenigstens drei Nockenelemente (10, 11, 12) sequentiell nacheinander zu verschieben, vorgeschlagen.
Description
NOCKENWELLE MIT AXIAL VERSCHIEBBAREN NOCKENELEMENTEN
Die Erfindung betrifft eine Brennkraftmaschinenventiltriebvorrichtung für eine Brennkraftmaschine.
Aus der DE 10 2004 021 375 A1 ist bereits eine Brennkraftmaschinenventiltriebvorrich- tung mit voneinander unabhängig axial verschiebbaren Nockenelementen und mit einer Schaltkulisse zum Verschieben der Nockenelemente bekannt.
Der Erfindung liegt insbesondere die Aufgabe zugrunde, eine kostengünstige Brenn- kraftmaschinenventiltriebvorrichtung für eine Brennkraftmaschine mit mehr als zwei unabhängig zu schaltenden Nockenelementen bereitzustellen. Sie wird gemäß der Erfindung durch die Merkmale des Anspruchs 1 gelöst. Weitere Ausgestaltungen ergeben sich aus den Unteransprüchen.
Die Erfindung geht aus von einer Brennkraftmaschinenventiltriebvorrichtung mit zwei voneinander unabhängig axial verschiebbaren Nockenelementen und mit einer Schaltkulisse zum Verschieben der Nockenelemente.
Erfindungsgemäß wird eine Brennkraftmaschinenventilt ebvorrichtung mit wenigstens drei voneinander unabhängig axial verschiebbaren Nockenelementen und mit einer Schaltkulisse, die wenigstens eine durchgängige Kulissenbahn aufweist, die dazu vorgesehen ist, die wenigstens drei Nockenelemente sequentiell nacheinander zu verschieben, vorgeschlagen. Dadurch kann ein umschaltbarer Ventiltrieb für eine Brennkraftmaschine bereitgestellt werden, die zumindest drei in Reihe angeordnete Zylinder mit unterschiedlichen Ventilbetätigungszeiten aufweist, wie insbesondere für eine als Drei-Zylinder- Reihenmotor ausgebildete Brennkraftmaschine und/oder für eine als Sechs-Zylinder-V- Motor ausgebildete Brennkraftmaschine. Unter einer .Schaltkulisse" soll dabei eine Schalteinheit zum axialen Verstellen der zumindest drei Nockenelemente verstanden werden, die wenigstens eine Kulissenbahn aufweist, die dazu vorgesehen ist, eine Dreh-
bewegung in eine axiale Verstellkraft umzusetzen. Unter einer„Kulissenbahn" soll insbesondere eine Bahn zur ein- oder beidseitigen Zwangsführung eines Schaltpins verstanden werden. Die Kulissenbahn ist vorzugsweise in Form eines Stegs, in Form eines Schlitzes und/oder in Form einer Nut ausgebildet. Der Schaltpin ist vorzugsweise in Form eines den Steg umgreifenden Schaltschuhs, in Form eines in den Schlitz eingreifenden Pins und/oder in Form eines in der Nut geführten Pins ausgebildet. Unter einer„durchgängigen Kulissenbahn" soll insbesondere eine Kulissenbahn verstanden werden, durch die der Schaltpin stets zwangsgeführt ist. Unter einem„Nockenelement" soll insbesondere ein Trägerelement zur Aufnahme von Nocken verstanden werden. Die Nocken sind vorzugsweise einstückig mit dem Nockenelement ausgebildet, d.h., das Nockenelement bildet das Trägerelement und die Nocken einstückig aus. Grundsätzlich ist es aber auch denkbar, dass die Nocken getrennt von dem Trägerelement ausgeführt und fest mit dem Trägerelement verbunden sind. Unter„vorgesehen" soll insbesondere speziell ausgestattet und/oder ausgelegt verstanden werden. Unter„sequentiell nacheinander" soll insbesondere verstanden werden, dass die Nockenelemente in einem Schaltvorgang nacheinander in einzelnen Schritten verschoben werden.
Weiter wird vorgeschlagen, dass die zumindest eine Kulissenbahn zumindest drei Schaltsegmente aufweist, die jeweils einem der Nockenelemente zugeordnet sind. Dadurch kann die sequentielle Verschiebung der Nockenelemente besonders einfach realisiert werden. Unter einem„Schaltsegment" soll dabei insbesondere ein Segment der Kulissenbahn verstanden werden, das wenigstens eine axiale Schrägstellung aufweist. Unter einer„axialen Schrägstellung" soll insbesondere verstanden werden, dass die Kulissenbahn in diesem Segment eine Schrägstellung aufweist, durch die ein Verlauf der Kulissenbahn von einer Kreislinie um eine Hauptrotationsachse der zumindest drei Nockenelemente axial abweicht, wodurch eine Drehbewegung einer Nockenwelle in eine axial wirkende Kraft umgesetzt werden kann. Als Bezug für die Richtungsangaben„axial",„in Umfangsrichtung" und„radial" soll dabei hier und im Übrigen, sofern nicht anders angegeben, die Hauptrotationsachse der Nockenwelle festgelegt werden. Unter„einem Nockenelement zugeordnet" soll insbesondere verstanden werden, dass das Schaltsegment zur Schaltung des entsprechenden Nockenelements vorgesehen ist.
Vorzugsweise bilden zwei der Nockenelemente jeweils einen Teil der zumindest einen Kulissenbahn aus. Dadurch kann die Kulissenbahn konstruktiv besonders einfach ausgestaltet werden. Unter„ausbilden" soll in diesem Zusammenhang insbesondere verstanden werden, dass die Kulissenbahn einstückig mit dem Nockenelement ausgebildet ist, wie insbesondere in Form einer Nut, die in die zwei Nockenelemente eingebracht ist.
Besonders vorteilhaft ist es, wenn die Nockenelemente, die jeweils einen Teil der zumindest einen Kulissenbahn ausbilden, zumindest in einem Bereich der Schaltkulisse jeweils einen Winkelbereich von ca. 120 Grad Nockenwellenwinkel einnehmen. Dadurch kann die Kulissenbahn besonders vorteilhaft ausgestaltet werden. Unter einem„Bereich der Schaltkulisse" soll dabei insbesondere ein axialer Bereich der Nockenwelle, der die zumindest eine Kulissenbahn aufweist, verstanden werden. Unter einem„Winkelbereich" soll insbesondere eine Erstreckung des Nockenelements in Umfangsrichtung verstanden werden. Unter einer Gradangabe in„Grad Nockenwellenwinkel" soll insbesondere eine auf die Nockenwelle bezogene Gradangabe verstanden werden, d.h., ein Umlauf der Nockenwelle entspricht 360 Grad Nockenwellenwinkel. Demgegenüber soll unter„Grad Kurbelwellenwinkel" eine auf eine Kurbelwelle bezogene Winkelangabe verstanden werden, wobei in dieser Winkelangabe ein Umlauf der Nockenwelle 720 Grad Kurbelwellenwinkel entspricht. Die Kulissenbahn weist vorzugsweise eine Länge von zumindest 330 Grad Nockenwellenwinkel auf. Unter„ca." soll insbesondere eine Genauigkeit von ± 5 Grad Nockenwellenwinkel verstanden werden, wobei ± 2 Grad Nockenwellenwinkel vorteilhaft und ± 1 Grad Nockenwellenwinkel besonders vorteilhaft sind.
Weiter wird vorgeschlagen, dass die zumindest eine Kulissenbahn eine Länge von zumindest 360 Grad Nockenwellenwinkel aufweist. Dadurch kann eine besonders vorteilhafte Erstreckung der Schaltsegmente über die Kulissenbahn erreicht werden. Insbesondere ist es dadurch möglich, dass sämtliche Schaltsegmente eine Länge von zumindest 90 Grad Nockenwellenwinkel aufweisen, wobei eine Länge von zumindest 100 Grad Nockenwellenwinkel vorteilhaft und eine Länge von ca. 110 Grad Nockenwellenwinke! besonders vorteilhaft ist.
Weiter wird vorgeschlagen, dass die Brennkraftmaschinenventiltriebvorrichtung ein Kulissenelement, das einen Teil der zumindest einen Kulissenbahn ausbildet, aufweist. Dadurch kann das dritte Nockenelement, das vorzugsweise keine Kulissenbahn aufweist, vorteilhaft mittels der Schaltkulisse betätigt werden.
Besonders vorteilhaft nimmt das Kulissenelement zumindest im Bereich der Schaltkulisse einen Winkelbereich von in etwa 120 Grad ein. Dadurch kann das Kulissenelement besonders vorteilhaft zwischen die Nockenelemente eingefügt werden. Vorzugweise grenzen dabei das Kulissenelement und die zumindest zwei Nockenelemente unmittelbar aneinander, d.h. gehen in Umfangsrichtung nahezu spaltfrei ineinander über.
Weiter wird vorgeschlagen, dass die Brennkraftmaschinenventiltriebvorrichtung eine Verbindungseinheit aufweist, die eines der Nockenelemente und das Kulissenelement bewegungstechnisch miteinander koppelt. Dadurch kann das dritte Nockenelement beabstandet zu der Schaltkulisse angeordnet werden, wodurch eine konstruktiv einfache Ausgestaltung der Schaltkulisse möglich ist. Unter„bewegungstechnisch gekoppelt" soll dabei insbesondere drehfest und axial fest miteinander verbunden verstanden werden.
In einer besonders vorteilhaften Ausgestaltung der Erfindung wird vorgeschlagen, dass die zumindest eine Kulissenbahn ein Einspursegment aufweist, das zumindest teilweise einstückig mit zumindest einem der Schaltsegmente ausgebildet ist. Dadurch kann eine Länge der Kulissenbahn besonders kurz werden, wodurch die Kulissenbahn die zumindest drei Schaltsegmente aufweisen kann. Unter einem„Einspursegment" soll dabei insbesondere ein Segment der Kulissenbahn verstanden werden, das wenigstens eine radiale Schrägstellung aufweist. Unter einer„radialen Schrägstellung" soll insbesondere verstanden werden, dass die Kulissenbahn in diesem Segment eine Schrägstellung aufweist, durch die ein Verlauf der Kulissenbahn von einer Kreislinie um die Hauptrotationsachse der zumindest drei Nockenelemente radial abweicht, wodurch eine Drehbewegung der Nockenwelle in eine radial wirkende Kraft umgesetzt werden kann. In dem Einspursegment weist die Kulissenbahn eine sich ändernde Tiefe und/oder Höhe auf, wodurch der Schaltpin in die Kulissenbahn eingespurt werden kann. Unter„einstückig" soll in diesem Zusammenhang insbesondere verstanden werden, dass die Kulissenbahn wenigstens in einem Teilbereich eine radiale Schrägstellung und eine axiale Schrägstellung aufweist, d.h. in Bezug auf die Umfangsrichtung in axialer Richtung und in radialer Richtung verkippt ist, wodurch noch während einem Einspuren des Schaltpins in die Kulissenbahn eine axiale Krafteinwirkung auf das entsprechende Nockenelement ausübbar ist.
Alternativ und/oder zusätzlich kann die zumindest eine Kulissenbahn ein Ausspursegment aufweisen, das zumindest teilweise einstückig mit zumindest einem der Schaltsegmente ausgebildet ist. Dadurch kann die Länge der Kulissenbahn weiter verkürzt werden, wodurch eine besonders vorteilhafte Ausgestaltung erreicht werden kann. Unter einem „Ausspursegment" soll dabei ein weiteres Segment der Kulissenbahn verstanden werden, das wenigstens eine radiale Schrägstellung aufweist, wodurch ein Eingriff zwischen dem Schaltpin und der Schaltkulisse wieder getrennt werden kann.
Zudem wird vorgeschlagen, dass die Brennkraftmaschinenventiltriebvorrichtung eine zweite Kulissenbahn aufweist, die im Wesentlichen phasenverschoben zu der ersten Kulissenbahn angeordnet ist. Dadurch kann erreicht werden, dass die Schaltkulisse einen
besonders geringen Bauraumbedarf aufweist. Unter„phasenverschoben" soll dabei insbesondere verstanden werden, dass die erste Kulissenbahn und die zweite Kuiissenbahn entlang einer Umfangsrichtung der Nockenwelle gegeneinander versetzt sind. Unter einer Umfangsrichtung soll dabei eine Richtung verstanden werden, die tangential zu einem Kreisbogen um die Hauptrotationsachse der Nockenwelle in einer für die Nockenwelle vorgesehen Drehrichtung orientiert ist.
Außerdem wird vorgeschlagen, dass die Brennkraftmaschinenventiltriebvorrichtung eine Schalteinheit umfasst, die je Schaltrichtung lediglich einen Schaltpin aufweist, der dazu vorgesehen ist, mittels der Schaltkulisse sämtliche Nockenelemente in die entsprechende Schaltrichtung zu verschieben. Dadurch kann die Brennkraftmaschinenventiltriebvorrich- tung besonders kostengünstig ausgestaltet werden, da eine Anzahl von Bauteilen, insbesondere eine Anzahl von Aktuatoren für die Schaltpins, gering gehalten werden kann.
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
Dabei zeigen:
Fig. 1 eine erfindungsgemäße Brennkraftmaschinenventiltriebvorrichtung in einer perspektivischen Aufsicht,
Fig. 2 die Brennkraftmaschinenventiltriebvorrichtung teilweise längs geschnitten,
Fig. 3 eine Schaltkulisse der Brennkraftmaschinenventiltriebvorrichtung,
Fig. 4 eine Kulissenbahn der Schaltkulisse in einer schematischen Darstellung,
Fig. 5 - 9 einen Schaltvorgang entlang einer ersten Schaltrichtung und
Fig. 10 - 14 einen Schaltvorgang entlang einer zweiten Schaltrichtung.
Die Figuren 1 bis 14 zeigen eine erfindungsgemäße Brennkraftmaschinenventiltriebvor- richtung. Die Brennkraftmaschinenventiltriebvorrichtung ist für eine Brennkraftmaschine vorgesehen, die zumindest drei in Reihe angeordnete Zylinder aufweist, die unterschiedliche Ventilbetätigungszeiten aufweisen. Die Brennkraftmaschinenventiltriebvorrichtung kann dabei für eine Brennkraftmaschine verwendet werden, bei der in einer Reihe lediglich drei Zylinder angeordnet sind, wie beispielsweise bei einem Reihenmotor mit drei Zylindern oder einem V-Motor mit sechs Zylindern. Die Brennkraftmaschinenventiltriebvor-
richtung ist aber auch für eine Brennkraftmaschine verwendbar, bei der in einer Reihe sechs Zylinder angeordnet sind, die jeweils paarweise gleiche oder zumindest ähnliche Ventilbetätigungszeiten aufweisen, wie beispielsweise bei einem Reihenmotor mit sechs Zylindern, bei dem jeweils benachbarte Zylinder gleiche oder zumindest ähnliche Ventilbetätigungszeiten aufweisen.
Die Brennkraftmaschinenventiltriebvorrichtung umfasst eine Nockenwelle 31 mit drei Nockenelementen 10, 1 1 , 12. Die Nockenelemente 10, 1 1 , 12 sind als Nockenträger ausgebildet. Auf jedem der Nockenelemente 10, 11 , 12 ist wenigstens ein Nocken 32 angeordnet, der zwei Teilnocken 33, 34 mit unterschiedlichen Ventilbetätigungskurven aufweist. Die Teilnocken 33, 34 von einem der Nocken 32 sind jeweils unmittelbar benachbart angeordnet. Die Nockenelemente 10, 1 1 , 12 sind axial verschiebbar. Durch ein axiales Verschieben von einem der Nockenelemente 10, 1 1 , 12 wird innerhalb des Nockens 32 von dem einen Teilnocken 33 auf den anderen Teilnocken 34 umgeschaltet. Die Nockenelemente 10, 1 1 , 12 weisen damit jeweils zwei diskrete Schaltstellungen auf, in denen für den oder die Zylinder, die dem entsprechenden Nockenelement 10, 11 , 12 zugeordnet sind, ein unterschiedlicher Ventilhub geschaltet ist.
Zur Anordnung der Nockenelemente 10, 1 1 , 12 umfasst die Nockenwelle 31 eine Triebwelle 35. Die Triebwelle 35 umfasst eine Kurbelwellenanbindung zur Anbindung an eine nicht näher dargestellte Kurbelwelle. Die Kurbelwellenanbindung kann mittels eines No- ckenwellenverstellers, der dazu vorgesehen ist, eine Phasenlage zwischen der Nockenwelle 31 und der Kurbelwelle einzustellen, ausgebildet sein.
Die Nockenelemente 10, 1 1 , 12 sind axial verschiebbar und drehfest auf der Triebwelle 35 angeordnet. Die Triebwelle 35 weist an ihrem Außenumfang eine Geradverzahnung auf. Die Nockenelemente 10, 11 , 12 weisen an ihrem Innenumfang eine korrespondierende Geradverzahnung auf, die in die Geradverzahnung der Triebwelle 35 eingreift.
Weiter umfasst die Brennkraftmaschinenventiltriebvorrichtung eine Schaltkulisse 13. Die Schaltkulisse 13 ist dazu vorgesehen, die drei Nockenelemente 10, 1 1 , 12 in einem Schaltvorgang sequentiell nacheinander zu verschieben. Zum Verschieben der Nockenelemente 10, 11 , 12 umfasst die Schaltkulisse 13 zwei Kulissenbahnen 14, 15. Die erste Kulissenbahn 14 ist dazu vorgesehen, die Nockenelemente 10, 1 1 , 12 entlang einer ersten Schaltrichtung von der ersten Schaltstellung in die zweite Schaltstellung zu verschieben (vgl. Figuren 5 bis 9). Die zweite Kulissenbahn 15 ist dazu vorgesehen, die Nocken-
elemente entlang einer zweiten Schaltrichtung von der zweiten Schaltstellung in die erste Schaltstellung zu verschieben (vgl. Figuren 10 bis 14).
Weiter umfasst die Brennkraftmaschinenventiltriebvorrichtung eine Schalteinheit 28, die Schaltpins 29, 30 zum Eingriff in die Kulissenbahnen 14, 15 aufweist. Die Schalteinheit 28 weist ein Statorgehäuse 36 auf, das fest mit einem nicht näher dargestellten Motorblock der Brennkraftmaschine verbunden ist. Die Schaltpins 29, 30 sind entlang ihrer Haupt- erstreckungsrichtung verschiebbar in dem Statorgehäuse 36 angeordnet. Die Kulissenbahnen 14, 15 sind als Nuten ausgeführt, in denen die Schaltpins 29, 30 zumindest teilweise beidseitig zwangsgeführt werden können. Bei einem Schaltvorgang in die erste Schaltrichtung wird der erste Schaltpin 29 in Eingriff mit der ersten Kulissenbahn 14 gebracht. Bei einem Schaltvorgang in die zweite Schaltrichtung wird der zweite Schaltpin 30 in Eingriff mit der zweiten Kulissenbahn 15 gebracht.
Die Kulissenbahnen 14, 15 weisen eine Mehrzahl von Schaltsegmenten 16, 17, 18, 19, 20, 21 auf. Die erste Kulissenbahn 14 umfasst die drei Schaltsegmente 16, 17, 18, die zum Schalten der drei Nockenelemente 10, 11 , 12 in die erste Schaltrichtung vorgesehen sind. Die Schaltsegmente 16, 17, 18 sind dabei jeweils genau einem der Nockenelemente 10, 1 1 , 12 zugeordnet. Weiter umfasst die Kulissenbahn 14 ein Einspursegment 24 und ein Ausspursegment 26. Die zweite Kulissenbahn 15 ist analog ausgestaltet. Die zweite Kulissenbahn 15 umfasst die drei Schaltsegmente 19, 20, 21 , ein Einspursegment 25 und ein Ausspursegment 27.
Die Schaltsegmente 16, 17, 18, 19, 20, 21 weisen jeweils eine axiale Schrägstellung auf. Durch die axiale Schrägstellung wird das Nockenelement 10, 1 1 , 12, das dem entsprechenden Schaltsegment 16, 17, 18, 19, 20, 21 zugeordnet ist, verschoben, wenn der entsprechende Schaltpin 29, 30 in Eingriff mit dem entsprechenden Schaltsegment 16, 17, 18, 19, 20, 21 steht. Die Einspursegmente 24, 25 weisen eine radiale Schrägstellung auf. Die Kulissenbahnen 14, 15, die als Nuten ausgebildet sind, weisen in einem Bereich der Einspursegmente 24, 25 eine kontinuierlich zunehmende Tiefe auf. In einem Bereich, der zwischen dem Einspursegment 24, 25 und dem Ausspursegment 26, 27 liegt, weist die entsprechende Kulissenbahn 14, 15 eine im Wesentlichen konstante Tiefe auf. Im Bereich der Ausspursegmente 26, 27 weist die entsprechende Kulissenbahn 14, 15 eine kontinuierlich abnehmende Tiefe auf.
Die beiden Kulissenbahnen 14, 15 sind jeweils durchgängig, d.h., der über das entsprechende Einspursegment 26, 27 mit der Kulissenbahn 14, 15 in Eingriff gebrachte Schalt-
pin 29, 30 durchläuft nacheinander die Schaltsegmente 16, 17, 18, 19, 20, 21 der entsprechenden Kulissenbahn 14, 15, bevor der Schaltpin 29, 30 mittels des Ausspursegments 26, 27 wieder von der Kulissenbahn 14, 15 gelöst wird. Die Nockenelemente 10, 1 1 , 12 werden dadurch nacheinander sequentiell geschaltet. In einem Schaltvorgang entlang der ersten Schaltrichtung wird dabei zunächst das axial äußere Nockenelement 10, anschließend das axial mittlere Nockenelement 11 und zuletzt das axial äußere Nockenelement 12 geschaltet. In einem Schaltvorgang entlang der zweiten Schaltrichtung wird zunächst das axial mittlere Nockenelement 11 , anschließend das axial äußere Nockenelement 12 und zuletzt das axial äußere Nockenelement 10 verschoben. Die beiden Schaltvorgänge sind bezüglich einer Schaltreihenfolge der Nockenelemente 10, 11 , 12 somit nicht symmetrisch.
Die Schaltkulisse 13 ist in einem Bereich der Nockenwelle 31 angeordnet, in dem das axial äußere Nockenelement 10 und das axial mittlere Nockenelement 11 aneinander- grenzen. Die beiden Nockenelemente 10, 1 nehmen in diesem Bereich lediglich einen Winkelbereich von jeweils 120 Grad Nockenwellenwinkel ein. Weiter weist die Brenn- kraftmaschinenventiltriebvorrichtung ein Kulissenelement 22 auf, das in dem Bereich der Nockenwelle 31 , in dem die Nockenelemente 10, 1 1 aneinander grenzen, angeordnet ist. Das Kulissenelement 22 nimmt ebenfalls einen Winkelbereich von 120 Grad Nockenwellenwinkel ein. Im Bereich der Schaltkulisse 13 nehmen damit die zwei Nockenelemente 10, 11 und das Kulissenelement 22 einen in etwa gleich großen Winkelbereich ein. Bei einer Drehung der Nockenwelle 31 um 360 Grad Nockenwellenwinkel sind damit nacheinander das Nockenelement 10, das Nockenelement 1 1 und das Kulissenelement 22 der Schalteinheit 28 zugewandt.
Die zwei Nockenelemente 10, 11 und das Kulissenelement 22 bilden die Kulissenbahnen 14, 15 aus. Die Kulissenbahnen 14, 15, die als Nuten ausgebildet sind, sind direkt in die Nockenelemente 10, 1 1 und das Kulissenelement 22 eingebracht. Die zwei Nockenelemente 10, 11 und das Kulissenelement 22 bilden dabei jeweils einen Teil der Kulissenbahn 14, 15 aus. Grundsätzlich ist es aber auch denkbar, für die Schaltkulisse 13 anstelle der Nockenelemente 10, 1 1 weitere Kulissenelemente vorzusehen, die bewegungstechnisch mit den Nockenelementen 10, 11 gekoppelt sind.
Das Einspursegment 24 der Kulissenbahn 14 beginnt auf dem Kulissenelement 22 und endet auf dem axial äußeren Nockenelement 10. Das erste Schaltsegment 16 der Kulissenbahn 14 ist auf dem axial äußeren Nockenelement 10 angeordnet. Das zweite Schaltsegment 17 der Kulissenbahn 14 ist auf dem axial mittleren Nockenelement 1 1 angeord-
net. Das dritte Schaltsegment 18 der Kulissenbahn 14 ist auf dem Kulissenelement 22 angeordnet. Das Ausspursegment 26 der Kulissenbahn 1 erstreckt sich von dem Kulissenelement 22 bis auf das axial äußere Nockenelement 10. Die Kulissenbahn 14 erstreckt sich damit über einen Winkel, der größer ist als 360 Grad Nockenwellenwinkel.
Das Einspursegment 25 der Kulissenbahn 15 beginnt auf dem axial äußeren Nockenelement 10 und endet auf dem axial mittleren Nockenelement 1 1. Das erste Schaltsegment 9 der Kulissenbahn 15 ist auf dem axial mittleren Nockenelement 1 1 angeordnet. Das zweite Schaltsegment 20 der Kulissenbahn 15 ist auf dem Kulissenelement 22 angeordnet. Das dritte Schaltsegment 21 der Kulissenbahn 15 ist auf dem axial äußeren Nockenelement 10 angeordnet. Das Ausspursegment 27 der Kulissenbahn 15 erstreckt sich von dem axial äußeren Nockenelement 10 bis auf das mittlere Nockenelement 1 1. Die Kulissenbahn 15 erstreckt sich damit ebenfalls über einen Winkel, der größer ist als 360 Grad Nockenwellenwinkel.
Das Kulissenelement 22 und das axial äußere Nockenelement 12 sind bewegungstechnisch miteinander gekoppelt (vgl. Figur 2). Die Triebwelle 35 ist wenigstens teilweise als eine Hohlwelle ausgeführt. Die Brennkraftmaschinenventiltriebvorrichtung umfasst eine Verbindungseinheit 23, die das Kulissenelement 22 mit dem Nockenelement 12 koppelt. Die Verbindungseinheit 23 umfasst eine Koppelstange 37, die in der Triebwelle 35 geführt ist. Die Triebwelle 35 umfasst eine erste Öffnung, durch die hindurch die Koppelstange 37 mit dem Kulissenelement 22 gekoppelt ist, und eine zweite Öffnung, durch die hindurch die Koppelstange 37 mit dem Nockenelement 12 gekoppelt ist. Das Nockenelement 12 ist dadurch zumindest nahezu starr an eine axiale Bewegung des Kulissenelements 22 gekoppelt. Über die Triebwelle 35 sind das Nockenelement 12 und das Kulissenelement 22 drehfest miteinander verbunden.
Die erste Kulissenbahn 14 ist für eine Verstellung der Nockenelemente 10, 1 1 , 12 in die erste Schaltrichtung vorgesehen. Die zweite Kulissenbahn 15 ist spiegelbildlich und phasenversetzt zu der ersten Kulissenbahn 14 angeordnet. Konstruktiv entspricht damit die zweite Kulissenbahn 15 der ersten Kulissenbahn 14. Als ein Unterschied zwischen den beiden Kulissenbahnen 14, 15 ist die axiale Schrägstellung der Schaltsegmente 19, 20, 21 der zweiten Kulissenbahn 15 in Bezug auf die axiale Schrägstellung der Schaltsegmente 16, 17, 18 der ersten Kulissenbahn 14 in eine entgegengesetzte Richtung gerichtet. Zudem ist ein Beginn der zweiten Kulissenbahn 15 gegenüber einem Beginn der ersten Kulissenbahn 14 phasenversetzt. Aufgrund der konstruktiven Ähnlichkeiten wird daher im Folgenden insbesondere die erste Kulissenbahn 14 beschrieben, wobei eine Be-
Schreibung der ersten Kulissenbahn 1 unter Berücksichtigung des Phasenversatzes grundsätzlich analog auf die zweite Kulissenbahn 15 übertragbar ist.
Das Einspursegment 24 der Kulissenbahn 14 und das erste Schaltsegment 16 sind teilweise einstückig ausgeführt. In einem Bereich, in dem das Einspursegment 24 und das Schaltsegment 16 einstückig ausgeführt sind, weist die Kulissenbahn 14 eine axiale Schrägsteliung und eine radiale Schrägstellung auf. Weiter sind das Ausspursegment 26 und das Schaltsegment 18 teilweise einstückig ausgeführt. In einem Bereich, in dem das Ausspursegment 26 und das Schaltsegment 18 einstückig ausgeführt sind, weist die Kulissenbahn 4 ebenfalls eine axiale Schrägstellung und eine radiale Schrägstellung auf.
Das Einspursegment 24, die Schaltsegmente 16, 18 und das Ausspursegment 26 sind teilweise auch getrennt ausgeführt. Ausgehend von einem Beginn umfasst die Kulissenbahn 14 einen Bereich, der lediglich eine radiale Schrägstellung aufweist. In diesem Bereich, in dem die Kulissenbahn 14 in Umfangsrichtung verläuft und lediglich eine zunehmende radiale Tiefe aufweist, ist das Einspursegment 24 getrennt von dem Schaltsegment 16 ausgeführt. Der Bereich, im dem das Einspursegment 24 und das Schaltsegment 16 getrennt ausgeführt sind, ist größtenteils auf dem Kulissenelement 22 angeordnet.
An den Bereich, der lediglich die radiale Schrägstellung aufweist, schließt der Bereich an, in dem das Schaltsegment 16 und das Einspursegment 24 einstückig ausgeführt sind. Das Schaltsegment 16 und damit auch der Bereich, in dem das Einspursegment 24 und das Schaltsegment 16 einstückig ausgeführt sind, sind vollständig auf dem Nockenelement 10 angeordnet.
An diesen Bereich schließt ein Bereich der Kulissenbahn 14 an, in dem die Kulissenbahn 14 lediglich eine axiale Schrägstellung aufweist. In diesem Bereich sind das Schaltsegment 6 und das Einspursegment 24 wieder getrennt ausgeführt. Die Kulissenbahn 14 weist in diesem Bereich eine in etwa konstante Tiefe auf.
Auf das Schaltsegment 16 folgt ein Übergangssegment 38, in dem die Kulissenbahn 14 weder eine radiale Schrägstellung noch eine axiale Schrägstellung aufweist. Das Übergangssegment 38 stellt einen Übergang von dem Nockenelement 10 auf das Nockenelement 1 1 bereit. Das Übergangssegment 38 ist teilweise durch das Nockenelement 10 ausgebildet. Das Übergangssegment 38 ist zwischen den zwei Schaltsegmenten 16, 17 angeordnet.
Der Teil der Kulissenbahn, der auf dem Nockenelement 1 angeordnet ist, weist eine im Wesentlichen konstante Tiefe auf. Das Nockenelement 11 bildet einen weiteren Teil des Übergangssegments 38 aus. Zudem ist das Schaltsegment 17 vollständig auf dem Nockenelement 11 angeordnet.
Für einen Übergang zwischen dem Schaltsegment 17 und dem Schaltsegment 18 um- fasst die Kulissenbahn 14 ein weiteres Übergangssegment 39, das weder eine radiale Schrägstellung noch eine axiale Schrägstellung aufweist. Das weitere Übergangssegment 39 schließt an das Schaltsegment 7 an. Das Übergangssegment 39 ist teilweise durch das Nockenelement 1 1 und teilweise durch das Kulissenelement 22 ausgebildet.
Das Schaltsegment 18, das dem Nockenelement 12 zugeordnet ist, schließt an das Übergangssegment 39 an. In einem unmittelbar an das Übergangssegment 39 anschließenden Bereich weist die Kulissenbahn 14 dabei zunächst lediglich eine axiale Schrägstellung auf. Das Schaltsegment 18 ist zunächst getrennt von dem Ausspursegment 26 ausgeführt.
Im weiteren Verlauf weist die Kulissenbahn 14 wieder einen Bereich mit einer axialen Schrägsteilung und einer radialen Schrägstellung auf. In diesem Bereich sind das Ausspursegment 26 und das Schaltsegment 18 einstückig ausgeführt. In dem Bereich, in dem das Ausspursegment 26 und das Schaltsegment 18 einstückig ausgeführt sind, weist die Kulissenbahn eine abnehmende Tiefe auf. An diesen Bereich schließt ein Bereich an, in dem das Ausspursegment 26 getrennt von dem Schaltsegment 18 ausgeführt ist. In diesem letzten Bereich weist die Kulissenbahn 14 lediglich eine radiale Schrägstellung auf. Ein Großteil des Bereichs, in dem das Ausspursegment 26 getrennt von dem Schaltsegment 18 ausgeführt ist, ist durch das Nockenelement 10 ausgebildet.
Die Schaltpins 29, 30 der Schalteinheit 28 sind jeweils für eine der beiden Schaltrichtungen, in die die Nockenelemente 10, 11 , 12 verschoben werden können, vorgesehen. Zum Verschieben der Nockenelemente 10, 1 1 , 12 in die erste Richtung wird der Schaltpin 29, der für die erste Schaltrichtung vorgesehen ist, ausgefahren. Durch die Drehbewegung der Nockenwelle 31 wird der Schaltpin 29 in Eingriff mit dem Einspursegment 24 der ersten Kulissenbahn 14 gebracht (vgl. Figur 5). Bei einer weiteren Drehbewegung der Nockenwelle 31 spurt der Schaltpin 29 zunächst teilweise in die Kulissenbahn 14 ein, ohne dass eine axiale Kraft auf eines der Nockenelemente 10, 1 1 , 12 ausgeübt wird.
Durch die weitere Drehbewegung der Nockenwelle 31 greift der Schaltpin 29 in das Schaltsegment 16 ein (vgl. Figur 6). Durch die einstückige Ausbildung des Schaltsegments 16 mit dem Einspursegment 24 steht der Schaltpin 29 weiterhin in Eingriff mit dem Einspursegment 24. Die Drehbewegung der Nockenwelle 31 bewirkt dadurch eine axiale Kraft auf das Nockenelement 10, während der Schaltpin 29 weiter in die Kulissenbahn 1 einspurt. Durch den Eingriff des Schaltpins 29 in das Schaltsegment 16 und die Drehbewegung der Nockenwelle 31 wird das Nockenelement 10 von der ersten Schaltstellung in die zweite Schaltstellung verschoben.
Nachdem der Schaltpin 29 das Schaltsegment 16 vollständig durchlaufen hat, ist das Nockenelement 10 in die zweite Schaltstellung geschaltet. Durch die weitere Drehbewegung kommt der Schaltpin 29 in Eingriff mit dem ersten Übergangssegment 38. Die Drehbewegung der Nockenwelle 31 bewirkt, dass der Schaltpin 29 von dem Teil der Kulissenbahn 14, der auf dem Nockenelement 10 angeordnet ist, auf den Teil der Kulissenbahn 14, der auf dem Nockenelement 1 1 angeordnet ist, übergeben wird.
Durch die weitere Drehbewegung gelangt der Schaltpin 29 in Eingriff mit dem Schaltsegment 17, das auf dem Nockenelement 1 1 angeordnet ist (vgl. Figur 7). Durch die Drehbewegung der Nockenwelle 31 und den Eingriff des Schaltpins 29 in das Schaltsegment 17 wirkt auf das Nockenelement 11 eine axiale Kraft, durch die das Nockenelement 11 von der ersten Schaltstellung in die zweite Schaltstellung geschaltet wird. Nachdem der Schaltpin 29 das Schaltsegment 17 vollständig durchlaufen hat, ist das Nockenelement 1 in die zweite Schaltstellung geschaltet.
Mit einer weiteren Drehbewegung der Nockenwelle 31 wird der Schaltpin 29 durch das Übergangssegment 39 von dem Nockenelement 11 auf das Kulissenelement 22 übergeben. Der Schaltpin 29 gelangt dadurch in Eingriff mit dem Schaltsegment 18, das auf dem Kulissenelement 22 angeordnet und dem Nockenelement 12 zugeordnet ist.
Da das Schaltsegment 18 teilweise getrennt von dem Ausspursegment 26 ausgeführt ist, bewirken die Drehbewegung der Nockenwelle 31 und der Eingriff des Schaltpins 29 in die Kulissenbahn 14 zunächst lediglich eine axiale Kraft auf das Nockenelement 12. Durch die weitere Drehbewegung gelangt der Schaltpin 29 in den Bereich, in dem das Schaltsegment 18 und das Ausspursegment 26 einstückig ausgeführt sind (vgl. Figur 8). Der Schaltpin 29 wird dadurch bereits ausgespurt, während auf das Nockenelement 12 noch eine Kraft wirkt, durch die das Nockenelement 12 entlang der ersten Schaltrichtung verschoben wird.
Sobald der Schaltpin 29 das Schaltsegment 18 durchlaufen hat, ist auch das Nockenelement 2 in die zweite Schaltstellung geschaltet. Durch das im Weiteren getrennt von dem Schaltsegment 18 ausgeführte Ausspursegment 26 wird der Schaltpin 29 weiter ausgespurt (vgl. Figur 9). Während dem Ausspuren wird der Schaltpin 29 durch die Drehbewegung der Nockenwelle 31 und die radiale Schrägstellung der Kulissenbahn 14 in das Statorgehäuse 36 hingeschoben. Sobald der Schaltpin 29 das Ausspursegment 26 vollständig durchlaufen hat, ist der Schaltvorgang der Nockenelemente 10, 11 , 12 von der ersten Schaltstellung in die zweite Schaltstellung vollständig abgeschlossen.
Ein Schaltvorgang in die zweite Schaltrichtung mittels der zweiten Kulissenbahn 15 erfolgt analog. Nach einem Einspuren in das Einspursegment 25 der Kulissenbahn 15 (vgl. Figur 10) durchläuft der Schaltpin 30 das Einspursegment 25 und das Schaltsegment 19 (vgl. Figur 11). Anschließend wird der Schaltpin 30 mittels eines Übergangssegments 40 an das nachfolgende Schaltsegment 20 übergeben (vgl. Figur 12). Mittels eines Übergangssegments 41 wird der Schaltpin 30 an das Schaltsegment 21 übergeben (vgl. Figur 13) und anschließend mittels des Ausspursegments 27 wieder ausgespurt (vgl. Figur 14).
Die Einspursegmente 24, 25 nehmen jeweils einen Winkelbereich von ca. 1 10 Grad Nockenwellenwinkel ein. Die Schaltsegmente 16, 17, 18, 19, 20, 21 nehmen jeweils einen Winkelbereich von ebenfalls ca. 1 10 Grad Nockenwellenwinkel ein. Die Übergangssegmente 38, 39, 40, 41 nehmen jeweils einen Winkelbereich von ca. 10 Grad Nockenwellenwinkel ein. Die Ausspursegmente 26, 27 nehmen jeweils einen Winkelbereich von ca. 95 Grad Nockenwellenwinkel ein.
Das Einspursegment 24 und das erste Schaltsegment 16 sind über einen Winkelbereich von ca. 40 Grad Nockenwellenwinkel einstückig ausgeführt. Das letzte Schaltsegment 18 und das Ausspursegment 26 sind ebenfalls über einen Winkelbereich von ca. 40 Grad Nockenwellenwinkel einstückig ausgeführt. Die zweite Kulissenbahn 15 ist analog ausgeführt. Die Kulissenbahnen 14, 15 weisen damit jeweils eine Länge von ca. 475 Grad Nockenwellenwinkel auf. Die Einspursegmente 24, 25 und die Ausspursegmente 26, 27 der Kulissenbahnen 14, 15 sind damit jeweils teilweise axial nebeneinander angeordnet.
Um ein fehlerhaftes Einspuren der Schaltpins 29, 30 direkt in eines der Schaltsegmente 16, 17, 18, 19, 20 unter Auslassung des entsprechenden Einspursegments 24, 25 zu verhindern, umfasst die Brennkraftmaschinenventiltriebeinheit eine Abdeckeinheit 42 (vgl. Figur 3). Die Abdeckeinheit 42 ist dazu vorgesehen, ungenutzte Teile der Kulissenbahnen 14, 15 abzudecken.
Zur teilweisen Abdeckung der ersten Kulissenbahn 1 umfasst die Abdeckeinheit 42 ein erstes Abdeckelement 43, das fest mit dem Nockenelement 10, das das Einspursegment 24 ausbildet, verbunden ist. Durch das Abdeckelement 43 sind in einem Betriebszustand, in dem die Nockenelemente 10, 1 1 , 12 in einer der Schaltstellungen angeordnet sind, das Schaltsegment 17 des zweiten Nockenelements 11 und das Schaltsegment 18 des Kulissenelements 22 überdeckt. Das Einspursegment 24 und das Schaltsegment 16 des ersten Nockenelements 10 sind frei. Durch das Verschieben des ersten Nockenelements 10 mittels des ersten Schaltsegments 16 gibt das Abdeckelement 43, das mit dem ersten Nockenelement 10 gekoppelt ist, das Schaltsegment 17 des zweiten Nockenelements 1 1 und das Schaltsegment 18 des Kulissenelements 22 frei. Der Schaltpin 29 kann dadurch lediglich über den Teil der Kulissenbahn 14, der auf dem ersten Nockenelement 10 angeordnet ist, in die Teile der Kulissenbahn 14, die auf dem zweiten Nockenelement 1 1 und dem Kulissenelement 22 angeordnet sind, in die Kulissenbahn 14 einspuren.
Zur teilweisen Abdeckung der zweiten Kulissenbahn 15 umfasst die Abdeckeinheit 42 ein zweites Abdeckelement 44. Das zweite Abdeckelement 44 ist anlog zu dem ersten Abdeckelement 43 ausgeführt. Beide Abdeckelemente 43, 44 sind dabei in Form einer Hülse ausgeführt, die in der entsprechenden Schaltstellung die Teile der Schaltkulisse 3 umschließt und somit die Kulissenbahnen 14, 15 teilweise abdeckt. Die Abdeckelemente 43, 44 nehmen einen Winkelbereich von etwa 240 Grad Nockenwellenwinkel ein. Die Einspursegmente 24, 25 sind teilweise in die Abdeckelemente 43, 44 eingebracht.
Die Schalteinheit 28 ist bistabil ausgeführt. Die beiden Schaltpins 29, 30 können in einem unbetätigten Zustand sowohl in einer ausgefahrenen Schaltstellung als auch in einer eingefahrenen Schaltstellung verharren. Die Schaltpins 29, 30 weisen dabei eine instabile Mittelstellung auf. Ist einer der Schaltpins 29, 30 in einer Stellung zwischen der ausgefahrenen Schaltstellung und der Mittelstellung, schaltet der entsprechende Schaltpin 29, 30 selbstständig in die ausgefahrene Schaltstellung. Ist einer der Schaltpins 29, 30 in einer Stellung zwischen der eingefahrenen Schaltstellung und der Mittelstellung, schaltet der entsprechende Schaltpin 29, 30 selbstständig in die eingefahrene Schaltstellung.
Zum Ausfahren der Schaltpins 29, 30 umfasst die Schalteinheit 28 eine elektrische Aktua- toreinheit, mittels derer auf die Schaltpins 29, 30 eine Kraft zum Ausfahren ausgeübt werden kann. Die Schaltpins 29, 30 sind dabei unabhängig voneinander ausfahrbar. Die Aktuatoreinheit ist lediglich zum Ausfahren der Schaltpins 29, 30 vorgesehen. Zum Einfahren der Schaltpins 29, 30 ist die Schaltkulisse 13 vorgesehen. Während dem Ausspuren der Schaltpins 29, 30 aus der entsprechenden Kulissenbahn 14, 15 werden die
Schaltpins 29, 30 über die instabile Mittelstellung hinwegbewegt und fahren selbstständig ein. Zum Einfahren der Schaltpins 29, 30 sind somit die Ausspursegmente 26, 27 der Kulissenbahnen 14, 15 vorgesehen.
Zur Verrastung der Nockenelemente 10, 1 1 , 12 in den Schaltstellungen weist die Brenn- kraftmaschinenventiltriebvorrichtung eine Rasteinheit 45 auf. Die Nockenelemente 10, 1 1 , 12 weisen jeweils zwei Raststellungen auf. Die Rasteinheit 45 umfasst eine Mehrzahl von Rastausnehmungen 46, 47, 48, die an den Innenseiten der Nockenelemente 10, 1 1 , 12 angebracht sind. Zudem umfasst die Rasteinheit 45 eine Mehrzahl von Druckstücken 49, 50, 51 , die fest mit der Triebwelle 35 verbunden sind. Mittels der Druckstücke 49, 50, 51 sind die Nockenelemente 10, 1 1 , 12 gegenüber der Triebwelle 35 verrastet.
Eine Reihenfolge, in der die Schaltpins 29, 30 bei einem Durchlaufen der entsprechenden Kulissenbahn 14, 15 in Eingriff mit den Nockenelementen 10, 1 1 und dem Kulissenelement 22 kommen, kann grundsätzlich beliebig ausgestaltet werden. Beispielsweise ist es denkbar, dass das Kulissenelement 22 ein Einspursegment aufweist, wobei nachfolgend auf das Kulissenelement 22 das Nockenelement 11 angeordnet ist und das Nockenelement 10 ein Ausspursegment aufweist. Eine Reihenfolge, in der die Nockenelemente 10, 1 1 , 12 damit verschoben werden, ist grundsätzlich frei festlegbar.
Claims
1. Brennkraftmaschinenventiltriebvorrichtung mit wenigstens drei voneinander unabhängig axial verschiebbaren Nockenelementen ( 0, 1 1 , 12) und mit einer Schaltkulisse (13), die wenigstens eine durchgängige Kulissenbahn (14, 15) aufweist, die dazu vorgesehen ist, die wenigstens drei Nockenelemente (10, 1 1 , 12) sequentiell nacheinander zu verschieben.
2. Brennkraftmaschinenventiltriebvorrichtung nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die zumindest eine Kulissenbahn (14, 15) zumindest drei Schaltsegmente (16, 17, 18, 19, 20, 21 ) aufweist, die jeweils einem der Nockenelemente (10, 1 1 , 12) zugeordnet sind.
3. Brennkraftmaschinenventiltriebvorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
zwei der Nockenelemente (10, 11 ) jeweils einen Teil der zumindest einen Kulissenbahn (14, 15) ausbilden.
4. Brennkraftmaschinenventiltriebvorrichtung nach Anspruch 3,
dadurch gekennzeichnet, dass
die Nockenelemente (10, 11), die jeweils einen Teil der zumindest einen Kulissenbahn (14, 15) ausbilden, zumindest in einem Bereich der Schaltkulisse (13) jeweils einen Winkelbereich von ca. 120 Grad Nockenwellenwinkel einnehmen.
5. Brennkraftmaschinenventiltriebvorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die zumindest eine Kulissenbahn (14, 15) eine Länge von zumindest 360 Grad Nockenwellenwinkel aufweist.
6. Brennkraftmaschinenventiltriebvorrichtung nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
ein Kulissenelement (22), das einen Teil der zumindest einen Kulissenbahn (14, 15) ausbildet.
7. Brennkraftmaschinenventiltriebvorrichtung nach Anspruch 6,
dadurch gekennzeichnet, dass
das Kulissenelement (22) zumindest im Bereich der Schaltkulisse (13) einen Winkelbereich von in etwa 120 Grad einnimmt.
8. Brennkraftmaschinenventiltriebvorrichtung nach Anspruch 6 oder 7,
gekennzeichnet durch
eine Verbindungseinheit (23), die eines der Nockenelemente (12) und das Kulissenelement (22) bewegungstechnisch miteinander koppelt.
9. Brennkraftmaschinenventiltriebvorrichtung zumindest nach Anspruch 2,
dadurch gekennzeichnet, dass
die zumindest eine Kulissenbahn (14, 15) ein Einspursegment (24, 25) aufweist, das zumindest teilweise einstückig mit zumindest einem der Schaltsegmente (16, 19) ausgebildet ist.
10. Brennkraftmaschinenventiltriebvorrichtung zumindest nach Anspruch 2,
dadurch gekennzeichnet, dass
die zumindest eine Kulissenbahn (14, 15) ein Ausspursegment (26, 27) aufweist, das zumindest teilweise einstückig mit zumindest einem der Schaltsegmente (18, 21 ) ausgebildet ist.
1 1. Brennkraftmaschinenventiltriebvorrichtung nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
eine zweite Kulissenbahn (15), die phasenverschoben zu der ersten Kulissenbahn (14) angeordnet ist.
12. Brennkraftmaschinenventiltriebvorrichtung nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
eine Schalteinheit (28), die je Schaltrichtung lediglich einen Schaltpin (29, 30) aufweist, der dazu vorgesehen ist, mittels der Schaltkulisse (13) sämtliche Nockenelemente (10, 11 , 12) in die entsprechende Schaltrichtung zu verschieben.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11819085.9A EP2676015B1 (de) | 2011-02-17 | 2011-12-03 | Nockenwelle mit axial verschiebbaren nockenelementen |
JP2013553801A JP5684409B2 (ja) | 2011-02-17 | 2011-12-03 | 内燃機関バルブトレイン装置 |
CN201180067732.7A CN103370502B (zh) | 2011-02-17 | 2011-12-03 | 具有可轴向移动的凸轮件的凸轮轴 |
US13/952,634 US8997706B2 (en) | 2011-02-17 | 2013-07-28 | Internal combustion engine valve actuation control arrangement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011011456A DE102011011456A1 (de) | 2011-02-17 | 2011-02-17 | Brennkraftmaschinenventiltriebvorrichtung |
DE102011011456.4 | 2011-02-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/952,634 Continuation-In-Part US8997706B2 (en) | 2011-02-17 | 2013-07-28 | Internal combustion engine valve actuation control arrangement |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012110069A1 true WO2012110069A1 (de) | 2012-08-23 |
Family
ID=45688389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/006068 WO2012110069A1 (de) | 2011-02-17 | 2011-12-03 | Nockenwelle mit axial verschiebbaren nockenelementen |
Country Status (6)
Country | Link |
---|---|
US (1) | US8997706B2 (de) |
EP (1) | EP2676015B1 (de) |
JP (1) | JP5684409B2 (de) |
CN (1) | CN103370502B (de) |
DE (1) | DE102011011456A1 (de) |
WO (1) | WO2012110069A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104033203A (zh) * | 2013-03-08 | 2014-09-10 | 现代自动车株式会社 | 多级可变气门升程装置 |
US8863714B1 (en) | 2013-08-15 | 2014-10-21 | GM Global Technology Operations LLC | Camshaft assembly |
US9032922B2 (en) | 2013-10-21 | 2015-05-19 | GM Global Technology Operations LLC | Camshaft assembly |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011011457A1 (de) * | 2011-02-17 | 2012-08-23 | Daimler Ag | Brennkraftmaschinenventiltriebvorrichtung |
DE102011054218B4 (de) | 2011-10-06 | 2023-03-23 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Brennkraftmaschine und Ventiltrieb für eine Brennkraftmaschine |
DE102012112795A1 (de) * | 2012-12-20 | 2014-06-26 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Ventiltrieb für eine Brennkraftmaschine |
DE102013005803A1 (de) * | 2013-04-04 | 2014-10-09 | Daimler Ag | Ventiltriebvorrichtung für eine Brennkraftmaschine |
DE102013009757A1 (de) * | 2013-06-11 | 2014-12-11 | Daimler Ag | Ventiltriebvorrichtung für eine Brennkraftmaschine |
JP6145567B2 (ja) * | 2014-03-20 | 2017-06-14 | ヤマハ発動機株式会社 | 多気筒エンジンの動弁装置 |
DE102015219876A1 (de) * | 2015-10-14 | 2017-04-20 | Bayerische Motoren Werke Aktiengesellschaft | Auslassventilabschaltung |
WO2017079383A1 (en) | 2015-11-06 | 2017-05-11 | Borgwarner Inc. | Valve operating system providing variable valve lift and/or variable valve timing |
DE102016014872A1 (de) * | 2016-12-14 | 2018-06-14 | Daimler Ag | Ventiltriebvorrichtung |
DE102017214793A1 (de) * | 2017-08-24 | 2019-02-28 | Bayerische Motoren Werke Aktiengesellschaft | Ventiltrieb für eine Brennkraftmaschine |
USD902252S1 (en) * | 2018-06-04 | 2020-11-17 | Transportation IP Holdings, LLP | Modular cam shaft |
DE102019107626A1 (de) * | 2019-03-25 | 2020-10-01 | Thyssenkrupp Ag | Schiebenockensystem und Motor |
DE102020210259A1 (de) | 2020-08-12 | 2022-02-17 | Thyssenkrupp Ag | Schiebenockensystem |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004021375A1 (de) | 2004-04-30 | 2006-01-26 | Audi Ag | Ventiltrieb einer Brennkraftmaschine mit mindestens einer Nockenwelle |
DE102007052251A1 (de) * | 2007-11-02 | 2009-05-07 | Daimler Ag | Ventiltriebvorrichtung |
DE102007054977A1 (de) * | 2007-11-17 | 2009-05-20 | Daimler Ag | Ventiltriebvorrichtung |
JP2010096102A (ja) * | 2008-10-16 | 2010-04-30 | Otics Corp | 可変動弁機構 |
DE102008064340A1 (de) * | 2008-12-20 | 2010-06-24 | Audi Ag | Ventiltrieb mit radialer Nockenträgerführung auf zylindrischen Abschnitten einer Grundnockenwelle |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19611641C1 (de) * | 1996-03-25 | 1997-06-05 | Porsche Ag | Ventiltrieb einer Brennkraftmaschine |
DE102007037745A1 (de) * | 2007-08-10 | 2009-02-12 | Daimler Ag | Brennkraftmaschinenventiltriebumschaltvorrichtung |
DE102007037747B4 (de) * | 2007-08-10 | 2022-06-15 | Mercedes-Benz Group AG | Brennkraftmaschinenventiltriebumschaltvorrichtung |
DE102007056337A1 (de) * | 2007-11-22 | 2009-05-28 | Daimler Ag | Ventiltriebvorrichtung |
DE102008005639B4 (de) * | 2008-01-23 | 2021-10-21 | Daimler Ag | Ventiltriebvorrichtung |
DE102008050776A1 (de) * | 2008-10-08 | 2010-04-15 | Daimler Ag | Ventiltriebvorrichtung |
DE102009034990A1 (de) * | 2009-07-28 | 2011-02-03 | Daimler Ag | Ventiltriebvorrichtung |
-
2011
- 2011-02-17 DE DE102011011456A patent/DE102011011456A1/de not_active Withdrawn
- 2011-12-03 WO PCT/EP2011/006068 patent/WO2012110069A1/de active Application Filing
- 2011-12-03 EP EP11819085.9A patent/EP2676015B1/de not_active Not-in-force
- 2011-12-03 CN CN201180067732.7A patent/CN103370502B/zh not_active Expired - Fee Related
- 2011-12-03 JP JP2013553801A patent/JP5684409B2/ja not_active Expired - Fee Related
-
2013
- 2013-07-28 US US13/952,634 patent/US8997706B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004021375A1 (de) | 2004-04-30 | 2006-01-26 | Audi Ag | Ventiltrieb einer Brennkraftmaschine mit mindestens einer Nockenwelle |
DE102007052251A1 (de) * | 2007-11-02 | 2009-05-07 | Daimler Ag | Ventiltriebvorrichtung |
DE102007054977A1 (de) * | 2007-11-17 | 2009-05-20 | Daimler Ag | Ventiltriebvorrichtung |
JP2010096102A (ja) * | 2008-10-16 | 2010-04-30 | Otics Corp | 可変動弁機構 |
DE102008064340A1 (de) * | 2008-12-20 | 2010-06-24 | Audi Ag | Ventiltrieb mit radialer Nockenträgerführung auf zylindrischen Abschnitten einer Grundnockenwelle |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104033203A (zh) * | 2013-03-08 | 2014-09-10 | 现代自动车株式会社 | 多级可变气门升程装置 |
US20140251250A1 (en) * | 2013-03-08 | 2014-09-11 | Hyundai Motor Company | Multiple variable valve lift apparatus |
US9140147B2 (en) * | 2013-03-08 | 2015-09-22 | Hyundai Motor Company | Multiple variable valve lift apparatus |
US8863714B1 (en) | 2013-08-15 | 2014-10-21 | GM Global Technology Operations LLC | Camshaft assembly |
US9464545B2 (en) | 2013-08-15 | 2016-10-11 | GM Global Technology Operations LLC | Camshaft assembly |
CN104373167B (zh) * | 2013-08-15 | 2017-09-08 | 通用汽车环球科技运作有限责任公司 | 凸轮轴组件 |
US9032922B2 (en) | 2013-10-21 | 2015-05-19 | GM Global Technology Operations LLC | Camshaft assembly |
Also Published As
Publication number | Publication date |
---|---|
CN103370502B (zh) | 2015-11-25 |
CN103370502A (zh) | 2013-10-23 |
US8997706B2 (en) | 2015-04-07 |
DE102011011456A1 (de) | 2012-08-23 |
EP2676015A1 (de) | 2013-12-25 |
EP2676015B1 (de) | 2015-04-08 |
JP5684409B2 (ja) | 2015-03-11 |
JP2014505831A (ja) | 2014-03-06 |
US20130306014A1 (en) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2676015B1 (de) | Nockenwelle mit axial verschiebbaren nockenelementen | |
EP2676014B1 (de) | Brennkraftmaschinenventiltriebvorrichtung | |
EP2459849B1 (de) | Ventiltriebvorrichtung | |
DE102008024911A1 (de) | Ventiltrieb einer Brennkraftmaschine | |
WO2009065478A1 (de) | Ventiltriebvorrichtung | |
WO2011026562A1 (de) | Ventiltrieb für gaswechselventile einer brennkraftmaschine mit axial verschiebbaren nockeneinheiten | |
DE102010025100A1 (de) | Verstellbare Nockenwelle | |
EP2994625B1 (de) | Nockenwelle | |
DE102014012774B4 (de) | Ventiltrieb eines Motors und Verbrennungsmotor | |
WO2009065475A1 (de) | Ventiltriebvorrichtung | |
EP2859199A1 (de) | Vorrichtung für einen ventiltrieb zum umschalten des hubs von gaswechselventilen einer brennkraftmaschine | |
EP2823160B1 (de) | Brennkraftmaschinenventiltriebverstellvorrichtung | |
DE102010025099A1 (de) | Nockenwelle | |
DE102014012843A1 (de) | Ventiltrieb eines Motors und Verbrennungsmotors | |
DE102014217584B4 (de) | Ventiltriebvorrichtung sowie Schaltkulisse | |
DE102007062234A1 (de) | Ventiltriebvorrichtung | |
WO2016177479A1 (de) | Ventiltriebvorrichtung | |
DE102014014599B3 (de) | Vorrichtung für einen Ventiltrieb zum Umschalten des Hubs von Gaswechselventilen einer Brennkraftmaschine | |
EP2981688B1 (de) | Ventiltriebvorrichtung für eine brennkraftmaschine | |
DE102013005531A1 (de) | Ventiltriebvorrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs | |
WO2017063941A1 (de) | Auslassventilabschaltung | |
WO2013053416A1 (de) | Ventiltriebvorrichtung für eine brennkraftmaschine | |
WO1999017004A1 (de) | Stössel für einen ventiltrieb einer brennkraftmaschine | |
DE102014014600B3 (de) | Vorrichtung für einen Ventiltrieb zum Umschalten des Hubs von Gaswechselventilen einer Brennkraftmaschine | |
WO2022112525A1 (de) | Schiebenockenwellenanordnung für eine brennkraftmaschine, sowie verfahren zum schalten einer schiebenockenwellenanordnung für eine brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819085 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011819085 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013553801 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |