WO2012108365A1 - 照明装置、イチゴ栽培システムおよびイチゴ栽培方法 - Google Patents

照明装置、イチゴ栽培システムおよびイチゴ栽培方法 Download PDF

Info

Publication number
WO2012108365A1
WO2012108365A1 PCT/JP2012/052553 JP2012052553W WO2012108365A1 WO 2012108365 A1 WO2012108365 A1 WO 2012108365A1 JP 2012052553 W JP2012052553 W JP 2012052553W WO 2012108365 A1 WO2012108365 A1 WO 2012108365A1
Authority
WO
WIPO (PCT)
Prior art keywords
far
red light
light
cultivation
light source
Prior art date
Application number
PCT/JP2012/052553
Other languages
English (en)
French (fr)
Inventor
央子 大浦
坂本 勝
貴之 結城
藤 寛
太田 敏博
光生 和田
芳史 西浦
一 古川
Original Assignee
シャープ株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 公立大学法人大阪府立大学 filed Critical シャープ株式会社
Priority to CN2012800084415A priority Critical patent/CN103379822A/zh
Publication of WO2012108365A1 publication Critical patent/WO2012108365A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means

Definitions

  • the present invention relates to a lighting device, a cultivation system, and a cultivation method for cultivating strawberries using artificial light.
  • Strawberry is a crop that is in high demand throughout the year.
  • the seasonal strawberry that is on the market from winter to spring is a short-day plant, and the flower buds are differentiated from autumn to winter when the length of the day is shortened. On the contrary, it is not expensive in summer, so it is very expensive in Japan.
  • the plant factory can artificially control the light environment, it is possible to supply strawberries in the summer by constructing a light environment suitable for strawberry flower bud differentiation and performing year-round cultivation of strawberries in the plant factory.
  • it because it is not affected by climate change and there is little damage to pests, it can be stably cultivated without pesticides, and it can be harvested for a long time by continuing to grow under conditions suitable for strawberry flower bud differentiation. There is a merit that it is possible.
  • leaf vegetables are mainly cultivated, and there are few examples of fruit vegetables such as strawberries.
  • Strawberries in particular have a long cultivation period, and light intensity of about 300 ⁇ mol / m 2 / s or more is required in terms of photosynthetic photon flux density (PPFD). If we continue to provide this level of light, we can expect a certain amount of yield, but it is considered that it has not been implemented very much because energy costs are high and profits are not matched.
  • PPFD photosynthetic photon flux density
  • Patent Document 1 discloses a strawberry electric cultivation method that irradiates red light that has a peak wavelength in the range of 630 to 700 nm and does not substantially include light having a wavelength exceeding 700 nm. It is disclosed. In this document, light having a wavelength exceeding 700 nm has a function of canceling the illumination effect, and depending on the individual, the effect of long-day treatment may be offset and new leaf development may not occur. It is described that it is necessary to be substantially free of light.
  • JP 11-46575 A (published on Feb. 23, 1999)
  • Patent Document 1 is considered to be premised on outdoor cultivation or house cultivation, and is a cultivation method in which illumination is performed at night for the purpose of supplementary light.
  • illumination is performed at night for the purpose of supplementary light.
  • the knowledge described in Patent Document 1 cannot be used. Therefore, it is necessary to separately examine the light conditions for efficiently generating profits in plant factories and the like.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a lighting device, a strawberry cultivation system, and a strawberry cultivation method that can increase the yield of strawberries in strawberry cultivation using artificial light. It is to provide.
  • an illumination device is an illumination device for strawberry cultivation, and includes a main light source that emits light in a wavelength range necessary for photosynthesis, and far-red light. And a far-red light source that emits light.
  • the inventor of the present invention irradiates strawberries with far-red light (for example, light with a wavelength of 700 to 780 nm) in addition to light in a wavelength range necessary for photosynthesis (for example, light with a wavelength of 400 to 700 nm). It has been found that the yield of strawberries can be increased, and the present invention has been realized.
  • far-red light for example, light with a wavelength of 700 to 780 nm
  • a wavelength range necessary for photosynthesis for example, light with a wavelength of 400 to 700 nm
  • an illumination device is an illumination device for strawberry cultivation, and includes a far-red light source that emits far-red light.
  • the inventor of the present invention has found that the yield of strawberries can be increased by irradiating strawberries with far-red light in addition to light in the wavelength range necessary for photosynthesis, leading to the realization of the present invention. .
  • the present invention is used in combination with a light source that emits light in a wavelength range necessary for photosynthesis, and the above-described effects can be achieved by the combination.
  • the strawberry cultivation method according to an embodiment of the present invention is characterized by irradiating strawberry with far-red light in addition to light in a wavelength range necessary for photosynthesis in order to solve the above-described problems.
  • the yield of strawberries is obtained by irradiating far red light (for example, light having a wavelength of 700 to 780 nm) in addition to light in a wavelength range necessary for photosynthesis (for example, light having a wavelength of 400 to 700 nm). Can be increased.
  • far red light for example, light having a wavelength of 700 to 780 nm
  • a wavelength range necessary for photosynthesis for example, light having a wavelength of 400 to 700 nm.
  • the yield of strawberries can be increased in strawberry cultivation using artificial light.
  • the illuminating device is an illuminating device for strawberry cultivation, and a main light source that emits light in a wavelength range necessary for photosynthesis and a far red light that emits far red light. And a light source.
  • the illuminating device which concerns on one Embodiment of this invention is an illuminating device for strawberry cultivation, Comprising: It is the structure provided with the far red light source which radiate
  • the strawberry cultivation method according to an embodiment of the present invention is configured to irradiate strawberries with far-red light in addition to light in a wavelength range necessary for photosynthesis.
  • the yield of strawberry can be increased in strawberry cultivation using artificial light.
  • the strawberry cultivation system 10 of this embodiment is a cultivation system used, for example, in a closed artificial light utilization type plant factory.
  • This strawberry cultivation system 10 enlarges strawberry fruits by irradiating strawberries with far-red light (light with a wavelength of 700-780 nm) in addition to light in the wavelength range necessary for photosynthesis (light with a wavelength of 400-700 nm). To increase the yield.
  • this invention relates to the illuminating device, cultivation system, and cultivation method which are used in the cultivation facility (structure for plant cultivation) which grows a strawberry using artificial light as light for strawberry cultivation.
  • Cultivation using artificial light means cultivation in which artificial light is used for at least part of the light for cultivation, and does not mean cultivation using no sunlight.
  • the present invention can also be applied when cultivating a combination of sunlight and artificial light.
  • FIG. 2 is a diagram illustrating a schematic configuration of the strawberry cultivation system 10.
  • the strawberry cultivation system 10 includes a lighting device 1, an air conditioner 4, a cultivation container 5, and a control device 6, and is installed inside a cultivation room 7.
  • the lighting device 1 is a light source that emits light for growing the strawberry 20, and is disposed above the cultivation container 5. Details of the illumination device 1 will be described later. In FIG. 2, only one lighting device 1 is illustrated, but a plurality of lighting devices 1 may be provided as will be described later with reference to FIG.
  • the air conditioner 4 is an air conditioner that adjusts the temperature inside the cultivation room 7.
  • the air conditioner 4 also functions as a blower that circulates the air inside the cultivation room 7.
  • the cultivation container 5 may be a planter for putting culture soil or a solid medium for cultivation (such as rock wool, urethane, sponge, etc.), or a water tank that holds the strawberry 20 and stores a culture solution for hydroponics. It may be.
  • the control device 6 controls the illuminance of the lighting device 1 and the air conditioning temperature and air volume of the air conditioning device 4. Since strawberries are short-day plants, the control device 6 particularly realizes a light environment under short-day conditions by controlling the lighting device 1.
  • the air-conditioning temperature in each of the day / night cycle (the length of the light period and the dark period) and the light period and the dark period are not particularly limited, and known cultivation conditions suitable for strawberries may be used.
  • FIG. 1 is a diagram illustrating a schematic configuration of the illumination device 1.
  • FIG. 3 is a diagram illustrating a configuration of the main light source unit 2 a included in the lighting device 1.
  • the illumination device 1 includes a main illumination device 1a including a main light source unit (main light source) 2a and a far red light illumination device 1b including a far red light source unit (far red light source) 2b. It is out.
  • the main lighting device 1a is arranged above the cultivation container 5 (for example, about 30 cm above the cultivation container 5), and the far-red light lighting device 1b is near and below the main lighting device 1a (of the main light source unit 2a). It is arranged on the side facing the cultivation container 5.
  • the number of the far-red light illumination devices 1b to be provided may be set according to the desired amount of far-red light, for example, two.
  • the light emitted from the main light source unit 2a and the far red light source unit 2b is applied to the strawberries 20 cultivated in the cultivation container 5, respectively.
  • FIG. 3 is a diagram showing a configuration of a main light source unit 2a included in the main lighting device 1a.
  • the main light source unit 2 a includes a red LED (red light source) 22 and a blue LED (blue light source) 23 on a substrate 21.
  • the red LED 22 emits red light having a peak at 650 nm.
  • the blue LED 23 emits blue light having a peak at 470 nm.
  • the red LED 22 only needs to emit light having a wavelength of 640 to 690 nm, and the wavelength of the red light of the red LED 22 is not limited to 650 nm.
  • the blue LED 23 only needs to emit light having a wavelength of 420 to 500 nm (particularly 420 to 470 nm), and the wavelength of the blue light of the blue LED 23 is not limited to 470 nm.
  • the cooling plate 3 is disposed on the surface of the substrate 21 opposite to the surface on which the red LED 22 and the blue LED 23 are mounted.
  • the cooling plate 3 is a member for dissipating the heat generated by the red LED 22 and the blue LED 23, and is made of a material having high thermal conductivity such as metal (for example, iron, copper, aluminum).
  • the ratio of the number of red LEDs 22 and blue LEDs 23 is 4: 1, but is not limited to this.
  • the ratio of the amount of red light to blue light can be changed, and the number of red LEDs 22 and blue LEDs 23 may be changed as appropriate in order to irradiate the desired amount of red light and blue light. .
  • red LEDs 22 and the blue LEDs 23 are not limited to that shown in FIG. 3, and may be changed as appropriate.
  • a row of blue LEDs 23 may be arranged between the rows of red LEDs 22.
  • FIG. 4 is a diagram showing a configuration of a far-red light source unit 2b included in the far-red light illumination device 1b.
  • the far red light source unit 2 b includes a plurality of far red light LEDs 25 on the substrate 24.
  • the far-red light LED 25 emits far-red light having a peak at 730 nm (near 730 nm).
  • Phytochrome is known as a photoreceptor for far-red light, and this phytochrome mainly absorbs far-red light of 730 to 735 nm. Therefore, it is considered that the far red light irradiated on the strawberry 20 preferably has a peak in this range.
  • the wavelength of the far-red light of the far-red light LED 25 is not limited to 730 nm, and may be light in the wavelength range of 700 to 780 nm.
  • the far red light LEDs 25 are arranged in a row on the substrate 24, but the arrangement of the far red light LEDs 25 is not limited to this, and a plurality of rows of the far red light LEDs 25 may be formed. .
  • the number of far-red light LEDs 25 may be changed as appropriate, and the amount of far-red light may be adjusted by adjusting the power supplied to the far-red light LED 25.
  • the far-red light source unit 2b consumes less power, and the far-red light illumination device 1b is not provided with the cooling plate 3.
  • main light source unit 2a and the far red light source unit 2b may be physically connected to each other.
  • the red LED 22, the blue LED 23, and the far red light LED 25 may be mounted on one substrate. That is, as illustrated in FIG. 2, one light source unit (illumination device) including the red LED 22, the blue LED 23, and the far red light LED 25 may be provided.
  • the arrangement of each LED in this case is not particularly limited, and three kinds of LEDs may be arranged so that the light from each LED is evenly irradiated to the strawberry 20 with a desired light amount.
  • the red LED 22, the blue LED 23, and the far-red light LED 25 can be used.
  • the red LED 22, the blue LED 23, and the far-red light LED 25 can be used.
  • the main light source and the far red light source can be realized by one type of LED. That is, the lighting device 1 may include a light source that emits light in a wavelength range necessary for photosynthesis and emits far-red light.
  • a light source of the strawberry cultivation system 10 a light source other than an LED (light emitting diode), for example, a halogen lamp or a fluorescent lamp may be used.
  • the strawberry 20 is irradiated with red light from the red LED 22, blue light from the blue LED 23, and far red light from the far red LED 25, respectively.
  • the total photosynthesis photon flux density of red light and blue light is, for example, 100 to 400 ⁇ mol / m 2 / s, and the ratio of red light to blue light is, for example, 1: 0, 1: 1, 4: 1, etc. What is necessary is just to set suitably.
  • the photosynthetic photon flux density of far-red light is about 10 to 20 ⁇ mol / m 2 / s.
  • Strawberry is a short-day plant, so the cycle of day and night should be set to meet the short-day condition.
  • the control device 6 controls the light amounts of the main illumination device 1a and the far-red light illumination device 1b so as to realize a light environment under short-day conditions.
  • the day / night cycle is, for example, 12 hours of light period and 12 hours of dark period, but is not limited thereto.
  • the temperature inside the cultivation room 7 is also adjusted with the day / night cycle. This temperature adjustment is performed by the air conditioner 4 under the control of the control device 6.
  • the temperature inside the cultivation room 7 is set to, for example, a light period of 25 ° C. and a dark period of 10 ° C.
  • the main illumination device 1a and the far-red light illumination device 1b were turned on in a cycle of 12 hours light period and 12 hours dark period, and the temperature inside the cultivation room 7 was adjusted to 25 ° C. light period and 10 ° C. dark period.
  • the total photosynthetic photon flux density of red light and blue light is two steps of 120 ⁇ mol / m 2 / s and 370 ⁇ mol / m 2 / s, and the ratio of red light to blue light (R: B) is 1: 0. 4: 1, 1: 1, 5: 2.
  • the ratio of red light to blue light was set to 5: 2.
  • 4 strains of “Sachinoka” or “Tochiotome” were used for each cultivation area.
  • the ratio of the light intensity of the red light and the blue light was adjusted by changing the value of the current supplied to the red LED 22 and / or the blue LED 23.
  • the photosynthetic photon flux density of far-red light was set to about 10 to 20 ⁇ mol / m 2 / s.
  • a system using a fluorescent lamp as a light source was also prepared.
  • the photosynthetic photon flux density of the fluorescent lamp was also set to 120 ⁇ mol / m 2 / s.
  • the cultivation area which irradiated far red light (FR) and the cultivation area which did not irradiate far red light were provided.
  • the density of the photosynthetic photon flux of far red light was similarly set to about 10 to 20 ⁇ mol / m 2 / s.
  • FIG. 5 is a diagram showing the experimental results for “Sachinoka”.
  • the yield, the (total) number of fruits, the weight by size and the weight by shape in each cultivation area are the total of 4 strains, and the average value and ratio are values for 4 strains.
  • the acclimatization days shown in FIG. 5 are the days from the planting to the first fruit harvest date. All ratios are weight ratios.
  • the marketable fruit weight is the weight of the fruit that can be sold, and 6 g or more can be sold.
  • malformed fruits were made unsaleable (x), and the salesable fruits were classified into two stages: those with good shape ( ⁇ ) and those with good or bad shape ( ⁇ ).
  • the average yield is the yield per day and per share, and is a value calculated by the formula of (total yield) / (4 stocks) / (days from the harvest start date to the final harvest date). .
  • 6 to 8 represent a part of the numerical values shown in FIG. 5 as a graph.
  • FIG. 6 is a graph showing the average yield, which is the yield (g / day / strain) per day of “Sachinoka”. About each cultivation district, the numerical value about the whole harvested strawberry and the numerical value about a marketable fruit are each shown by the line graph.
  • FIG. 7 is a graph showing the yield and average weight of “Sachinoka”.
  • the total yield (g) (left vertical axis) in each cultivation area is shown by a bar graph. By dividing this bar graph, the distribution of the size of the harvested fruits is shown. Moreover, the average weight (g / fruit) (right vertical axis
  • FIG. 8 is a graph showing the total number of fruits and the result of shape evaluation of “Sachinoka”.
  • a bar graph indicates what level of shape (left vertical axis) occupies what level of fruit shape.
  • shaft) in each cultivation district is shown with the line graph.
  • FIG. 9 is a diagram showing experimental results for “Tochiotome”. Similarly to FIG. 5, the yield, the (total) number of fruits, the weight by size, and the weight by shape in each cultivation area are the total of 4 strains, and the average value and the ratio are values for 4 strains. The terms shown in FIG. 9 have the same meaning as shown in FIG.
  • FIG. 10 to 12 represent part of the numerical values shown in FIG. 9 as graphs.
  • FIG. 10 is a graph showing the average daily yield of “Tochiotome”.
  • FIG. 11 is a graph showing the yield and average weight of “Tochiotome”.
  • FIG. 12 is a graph showing the total number of fruits and the result of shape evaluation of “Tochiotome”. The way of viewing the graphs of FIGS. 10 to 12 is the same as that of FIGS.
  • FIG. 13 is a diagram for comparing the experimental results of “Sachinoka” and “Tochiotome”. The numerical values shown in FIG. 13 are the same as those shown in FIG. 5 and FIG.
  • FIG. 14 shows the integrated results of experiments with “Sachinoka” and “Tochiotome”. Average fruit weight (g / piece) (right vertical axis) is shown by a line graph, and total yield (g) (left vertical axis) is shown by a bar graph.
  • any cultivation section when the far red light (FR) is irradiated in addition to the red light and the blue light, compared to the case where the far red light is not irradiated.
  • the average yield, total yield, and average weight were significantly increased.
  • the effect of far-red light was also confirmed when a fluorescent lamp was used as the light source.
  • the reason why the number of fruits increased by irradiation with far-red light is considered to be that the number of fruit bunches increased, that is, flower bud differentiation was promoted.
  • flower bud differentiation may be delayed by irradiation with far-red light depending on the cultivation conditions and varieties.
  • the increase in the number of days of acclimatization does not mean that the differentiation of all flower buds is delayed, but it means that the differentiation of the first (first) flower buds is delayed. Therefore, when viewed as a collection of flower buds per strain, the effect of increasing the number of days of acclimatization is mitigated.
  • the average weight of the fruit increases and the total yield increases. Further, it is considered that the yield can be increased more effectively without delaying flower bud differentiation by changing the far-red light irradiation conditions.
  • FIG. 15 is a diagram showing energy costs for irradiation with far-red light per cultivation section.
  • the yield increased when far red light was irradiated not from above the strawberry strain but from below the cultivation container 5.
  • irradiation with far-red light from the bottom increased the total yield, the number of fruits, and the average weight of the fruits compared to the case of irradiation from above. From this, it may be possible that far-red light directly affects fruit enlargement.
  • the far-red light illumination device 1b is disposed on the side or the lower side of the cultivation container 5, and from the side or the lower side of the strawberry 20.
  • Far-red light may be irradiated.
  • the total yield and the average weight of fruits can be increased. This effect is independent of the variety of strawberry.
  • the far-red light source emits far-red light having a peak near 730 nm.
  • Phytochrome is known as a photoreceptor of far-red light in plants, and this phytochrome mainly absorbs far-red light of 730 to 735 nm.
  • the yield of strawberries can be increased more efficiently by irradiating far red light in the vicinity of 730 nm among far red light.
  • the main light source may include a red light source that emits red light, Furthermore, you may provide the blue light source which radiate
  • Photosynthesis can be promoted by irradiating plants with red light (light having a wavelength of 640 to 690 nm). Moreover, photomorphogenesis can be promoted by irradiating plants with blue light (wavelength 420 to 500 nm).
  • the main light source or the far red light source is preferably a light emitting diode.
  • a light emitting diode LED
  • the power consumption can be reduced, the life of the light source can be extended, and maintenance work can be saved.
  • emit the light of the wavelength suitable for plant cultivation can be utilized, and ready-made LED can be utilized suitably as a light source.
  • the said strawberry cultivation system is further equipped with the control apparatus which implement
  • strawberries are short-day plants, a light environment under short-day conditions can be realized by the above-described configuration, and strawberry flower bud differentiation can be promoted.
  • the present invention can be used as a lighting device and a cultivation system used when strawberry is cultivated with artificial illumination light such as a plant factory.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)

Abstract

 イチゴ栽培用の照明装置は、光合成に必要な波長範囲の光を出射する主光源ユニット(2a)と、遠赤色光を出射する遠赤色光光源ユニット(2b)とを備えている。

Description

照明装置、イチゴ栽培システムおよびイチゴ栽培方法
 本発明は、人工光を利用してイチゴを栽培するための照明装置、栽培システムおよび栽培方法に関するものである。
 イチゴは、そのまま生食するだけでなく、加工食品など、1年を通して需要が多い作物である。冬から春にかけて市場に出回る一季成りイチゴは、短日植物であり、昼の長さが短くなる秋から冬に花芽分化し、実をつける。逆に夏季には実がつかないため、日本では非常に高価となっている。
 一方、近年の植物工場ブームのため、植物工場ビジネスに参入する企業が急増している。発光ダイオード(LED)または蛍光灯などの人工光を利用する栽培方法では、光の量および質が植物の形態や栄養成分、収量等に大きな影響を与えることが知られており、様々な企業や研究機関で植物に適した光環境の検討がなされている。
 植物工場では光環境を人為的に制御できるため、植物工場においてイチゴの花芽分化に適した光環境を構築し、イチゴの周年栽培を行うことで、夏季にもイチゴを供給するが可能となる。また、気候変動に影響されず、病虫害の被害が少ないため、無農薬で安定的に栽培することができるとともに、イチゴの花芽分化に適した条件で栽培し続けることで、長期間収穫することが可能であるというメリットがある。
 しかし、現在実用化されている人工光利用型の植物工場では、主に葉菜類の栽培がほとんどであり、イチゴのような果菜類ではあまり例がない。
 一般的に植物工場では、露地栽培に比べコストがかかるため、収量を増加させたり、栄養成分を高めたりすることで利益を上げることが好ましい。人工光利用の植物工場をビジネスとして成功させるためには、高効率栽培を行うための光環境を構築することで収益を上げる仕組みが極めて重要である。
 特にイチゴは栽培期間が長く、光合成光量子束密度(PPFD)で300μmol/m/s程度以上の光量が必要とされている。このレベルの光を与え続ければ、ある程度の収量は見込めると考えられるが、エネルギーコストが高くなってしまい、収益が見合わないため、あまり実施されていないものと考えられる。
 人工光を用いたイチゴ栽培の例として、特許文献1には、630~700nmにピーク波長を持ち、実質的に700nmを超える波長の光を含まない赤色光を照射するイチゴの電照栽培方法が開示されている。この文献では、700nmを越える波長の光は電照効果を打ち消す作用を有し、個体によっては長日処理の効果が相殺されて、新葉展開が起こらない場合があるため、700nmを越える波長の光を実質的に含まないようにする必要があると記載されている。
日本国公開特許公報「特開平11-46575号公報(1999年2月23日公開)」
 特許文献1の発明は、露地栽培またはハウス栽培を前提としていると考えられ、補光を目的として夜間に電照を行う栽培方法である。昼間に人工光を利用してイチゴを栽培する場合には、栽培に適した光環境は異なってくるため、特許文献1に記載の知見は利用できない。それゆえ、植物工場等において効率的に収益を上げるための光条件を別途検討する必要がある。
 収益を上げるためのひとつの方策として、収量を増加させることが考えられる。しかし、上述のように、人工光を主に利用してイチゴを栽培したという実例自体がほとんどないため、人工光利用型の植物栽培施設でイチゴの収量を増加させる技術についての報告は見当たらない。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、人工光を利用したイチゴ栽培においてイチゴの収量を増加させることができる照明装置、イチゴ栽培システムおよびイチゴ栽培方法を提供することにある。
 本発明の一実施形態に係る照明装置は、上記の課題を解決するために、イチゴ栽培用の照明装置であって、光合成に必要な波長範囲の光を出射する主光源と、遠赤色光を出射する遠赤色光光源とを備えることを特徴としている。
 本発明の発明者は、光合成に必要な波長範囲の光(例えば、波長400~700nmの光)に加えて、遠赤色光(例えば、波長700~780nmの光)をイチゴに照射することにより、イチゴの収量を増加させることができることを見出し、本発明を実現するに至った。
 上記の構成によれば、光合成に必要な波長範囲の光が主光源から出射されるとともに、遠赤色光光源から遠赤色光が出射される。それゆえ、人工光を利用したイチゴ栽培においてイチゴの収量を増加させることができる。
 本発明の一実施形態に係る照明装置は、上記の課題を解決するために、イチゴ栽培用の照明装置であって、遠赤色光を出射する遠赤色光光源を備えることを特徴としている。
 本発明の発明者は、光合成に必要な波長範囲の光に加えて、遠赤色光をイチゴに照射することにより、イチゴの収量を増加させることができることを見出し、本発明を実現するに至った。
 上記の構成によれば、光合成に必要な波長範囲の光を既存の光源から出射した上で、遠赤色光光源から遠赤色光を出射することにより、人工光を利用したイチゴ栽培においてイチゴの収量を増加させることができる。すなわち、本発明は、光合成に必要な波長範囲の光を出射する光源と組み合わせて用いられるものであり、当該組み合わせにより、上述の効果を奏することができる。
 本発明の一実施形態に係るイチゴ栽培方法は、上記の課題を解決するために、光合成に必要な波長範囲の光に加え、遠赤色光をイチゴに照射することを特徴としている。
 上記の構成によれば、光合成に必要な波長範囲の光(例えば、400~700nmの光)に加えて、遠赤色光(例えば、波長700~780nmの光)を照射することにより、イチゴの収量を増加させることができる。この栽培方法の効果は、本発明の発明者によって実験的に確認されている。
 それゆえ、人工光を利用したイチゴ栽培において、イチゴの収量を増加させることができる。
 以上のように、本発明の一実施形態に係る照明装置は、イチゴ栽培用の照明装置であって、光合成に必要な波長範囲の光を出射する主光源と、遠赤色光を出射する遠赤色光光源とを備える構成である。
 また、本発明の一実施形態に係る照明装置は、イチゴ栽培用の照明装置であって、遠赤色光を出射する遠赤色光光源を備える構成である。
 また、本発明の一実施形態に係るイチゴ栽培方法は、光合成に必要な波長範囲の光に加え、遠赤色光をイチゴに照射する構成である。
 それゆえ、人工光を利用したイチゴ栽培においてイチゴの収量を増加させることができるという効果を奏する。
本発明の一実施形態に係る照明装置の概略構成を示す図である。 本発明の一実施形態に係るイチゴ栽培システムの概略構成を示す図である。 上記照明装置に含まれる主光源ユニットの構成を示す図である。 上記照明装置に含まれる遠赤色光光源ユニットの構成を示す図である。 「さちのか」についての栽培結果を示す図である。 「さちのか」の1日あたりかつ1株あたりの収量である平均収量を示すグラフである。 「さちのか」の収量および平均重量を示すグラフである。 「さちのか」の総果数および形状評価の結果を示すグラフである。 「とちおとめ」についての栽培結果を示す図である。 「とちおとめ」の1日あたりの1株あたりの収量である平均収量を示すグラフである。 「とちおとめ」の収量および平均重量を示すグラフである。 「とちおとめ」の総果数および形状評価の結果を示すグラフである。 「さちのか」と「とちおとめ」との栽培結果を比較するための図である。 「さちのか」と「とちおとめ」との栽培結果を統合して示したグラフである。 栽培区あたりの遠赤色光照射にかかるエネルギーコストを示す図である。 上記イチゴ栽培システムで栽培したイチゴの売り上げの概算を示す図である。
 本発明の実施の一形態について図1~図16に基づいて説明すれば、以下のとおりである。本実施形態のイチゴ栽培システム10は、例えば、閉鎖型の人口光利用型の植物工場で用いられる栽培システムである。このイチゴ栽培システム10は、光合成に必要な波長範囲の光(波長400~700nmの光)に加え、遠赤色光(波長700~780nmの光)をイチゴに照射することにより、イチゴの果実の肥大等を促進し、収量を増加させるものである。
 なお、本発明は、イチゴ栽培用の光として人工光を利用してイチゴを栽培する栽培施設(植物栽培用構造体)において用いられる照明装置、栽培システムおよび栽培方法に関するものである。人工光を利用した栽培とは、栽培のための光の少なくとも一部に人工光が用いられている栽培を意味し、太陽光を全く用いない栽培を意味するわけではない。太陽光と人工光とを組み合わせて栽培する場合にも本発明を適用可能である。
 (イチゴ栽培システム10の構成)
 図2は、イチゴ栽培システム10の概略構成を示す図である。図2に示すように、イチゴ栽培システム10は、照明装置1、空調装置4、栽培容器5および制御装置6を備えており、栽培室7の内部に設置されている。
 照明装置1は、イチゴ20を栽培するための光を出射する光源であり、栽培容器5の上方に配置されている。この照明装置1の詳細については後述する。なお、図2では、照明装置1については1つのみ図示しているが、図1を用いて後述するように、照明装置1を複数設けてもよい。
 空調装置4は、栽培室7の内部の温度を調節するエアコンある。また、空調装置4は、栽培室7の内部の空気を循環させる送風機としても機能する。
 栽培容器5は、培養土または栽培用の固形培地(ロックウール、ウレタン、スポンジなど)を入れるためのプランターであってもよいし、イチゴ20を保持するとともに水耕栽培用の培養液を貯める水槽であってもよい。
 制御装置6は、照明装置1の照度および空調装置4の空調温度および風量を制御する。イチゴは短日植物であるため、特に制御装置6は、照明装置1を制御することにより短日条件の光環境を実現する。昼夜のサイクル(明期および暗期の長さ)および、明期および暗期のそれぞれにおける空調温度は、特に限定されず、イチゴに適した公知の栽培条件を用いればよい。
 (照明装置1の詳細)
 図1は、照明装置1の概略構成を示す図である。図3は、照明装置1に含まれる主光源ユニット2aの構成を示す図である。
 図1に示すように、照明装置1は、主光源ユニット(主光源)2aを備える主照明装置1a、および遠赤色光光源ユニット(遠赤色光光源)2bを備える遠赤色光照明装置1bを含んでいる。
 主照明装置1aは、栽培容器5の上方(例えば、栽培容器5の上方約30cm)に配置されており、遠赤色光照明装置1bは、主照明装置1aの近傍かつ下方(主光源ユニット2aの栽培容器5と対向する側)に配置されている。遠赤色光照明装置1bを設ける個数は、所望される遠赤色光の光量に応じて設定されればよく、例えば2本である。
 主光源ユニット2aおよび遠赤色光光源ユニット2bから出射された光は、それぞれ栽培容器5で栽培されるイチゴ20に照射される。
 図3は、主照明装置1aに含まれる主光源ユニット2aの構成を示す図である。図3に示すように、主光源ユニット2aは、赤色LED(赤色光源)22および青色LED(青色光源)23を基板21上に備えている。赤色LED22は、650nmにピークを有する赤色光を出射する。青色LED23は、470nmにピークを有する青色光を出射する。
 ただし、赤色LED22は、波長640~690nmの光を出射するものであればよく、赤色LED22の赤色光の波長は650nmに限定されない。また、青色LED23は、波長420~500nm(特に、420~470nm)の光を出射するものであればよく、青色LED23の青色光の波長は470nmに限定されない。
 図1に示すように、基板21の、赤色LED22および青色LED23が搭載されている側の面とは反対側の面には、冷却板3が配設されている。冷却板3は、赤色LED22および青色LED23が発した熱を放散させるための部材であり、金属(例えば、鉄、銅、アルミニウム)など、熱伝導性の高い物質からなるものである。
 図3では、赤色LED22と青色LED23との個数の比は、4:1であるが、これに限定されない。後述するように、赤色光と青色光との光量の比率は、変更可能であり、所望の光量の赤色光および青色光を照射するために、赤色LED22および青色LED23の個数を適宜変更すればよい。なお、赤色光および青色光の光量の調整は、赤色LED22および青色LED23に供給する電力を調整することによって行ってもよい。
 また、赤色LED22および青色LED23の配置も図3に示したものに限定されず、適宜変更してもよい。例えば、赤色LED22の列の間に青色LED23の列を配置してもよい。
 図4は、遠赤色光照明装置1bに含まれる遠赤色光光源ユニット2bの構成を示す図である。図4に示すように、遠赤色光光源ユニット2bは、複数の遠赤色光LED25を基板24上に備えている。遠赤色光LED25は、730nmにピークを有する(730nm近傍の)遠赤色光を出射する。
 遠赤色光の光受容体としてフィトクロームが知られており、このフィトクロームは、730~735nmの遠赤色光を主に吸収する。それゆえ、イチゴ20に照射する遠赤色光は、この範囲にピークを有するものが好ましいと考えられる。ただし、遠赤色光LED25の遠赤色光の波長は、730nmに限定されず、700~780nmの波長範囲の光であってもよい。
 図4では、遠赤色光LED25は、基板24上に一列に配置されているが、遠赤色光LED25の配置は、これに限定されず、遠赤色光LED25の列が複数列形成されてもよい。また、遠赤色光LED25の個数も適宜変更されればよく、遠赤色光LED25に供給する電力を調整することによって遠赤色光の光量を調節してもよい。
 なお、遠赤色光光源ユニット2bは、消費電力が少ないため、遠赤色光照明装置1bには、冷却板3は設けられていない。
 また、主光源ユニット2aと遠赤色光光源ユニット2bとは互いに物理的に接続されていてもよい。
 また、1つの基板に赤色LED22、青色LED23および遠赤色光LED25が搭載されていてもよい。すなわち、図2に示すように、赤色LED22、青色LED23および遠赤色光LED25を備える光源ユニット(照明装置)を1つ設けてもよい。この場合の各LEDの配置も特に限定されず、イチゴ20に各LEDからの光が、所望の光量で均一に照射されるように3種類のLEDを配置すればよい。
 また、赤色LED22、青色LED23および遠赤色光LED25という3種類のLEDを用いる必要は必ずしもなく、複数の波長の光を照射できるLEDを1種類または複数種類用いることにより、赤色LED22、青色LED23および遠赤色光LED25の組み合わせと同様の波長の光を出射する光源を用いてもよい。この場合には、主光源と遠赤色光光源とを1種類のLEDによって実現することも可能である。すなわち、照明装置1は、光合成に必要な波長範囲の光を出射するとともに、遠赤色光を出射する光源を備えていてもよい。
 また、イチゴ栽培システム10の光源として、LED(発光ダイオード)以外の光源、例えばハロゲンランプまたは蛍光灯を用いてもよい。
 (栽培方法の概要)
 次にイチゴ栽培システム10を用いたイチゴ栽培方法の概要について説明する。当該イチゴ栽培方法では、人工光を利用する植物栽用の空間である栽培室7において、光合成に必要な波長範囲の光(波長400~700nmの光)に加え、遠赤色光(波長700~780nmの光)を定植後のイチゴ20に照射する。
 より具体的には、赤色LED22からの赤色光、青色LED23からの青色光および、遠赤色光LED25からの遠赤色光をそれぞれイチゴ20に照射する。
 赤色光および青色光の総光合成光量子束密度は、例えば、100~400μmol/m/sであり、赤色光と青色光との割合は、例えば1:0、1:1、4:1など、適宜設定されればよい。遠赤色光の光合成光量子束密度は、10~20μmol/m/s程度とする。
 イチゴは短日植物であるため、昼夜のサイクルは、短日条件になるように設定する。すなわち、短日条件の光環境を実現するように制御装置6によって主照明装置1aおよび遠赤色光照明装置1bの光量を制御する。昼夜のサイクルは、例えば、明期12時間、暗期12時間であるが、これに限定されない。
 昼夜のサイクルに伴って栽培室7の内部の温度も調節する。この温度調節は、制御装置6の制御下において空調装置4が行う。栽培室7の内部の温度は、例えば、明期25℃、暗期10℃に設定する。
 その他の栽培条件(培養土の組成、給肥条件など)については、公知の条件を用いればよい。
 (栽培方法の具体例)
 次にイチゴ栽培システム10におけるイチゴ栽培方法の一例について説明する。イチゴ20として「さちのか」および「とちおとめ」を栽培容器5の中に入れたロックウールに定植し、図1に示した主照明装置1aおよび遠赤色光照明装置1bの下方に設置した。イチゴ栽培用の培養液として園芸試験場処方を使用した。「さちのか」および「とちおとめ」は、イチゴの品種である。
 明期12時間、暗期12時間のサイクルで主照明装置1aおよび遠赤色光照明装置1bを点灯させ、栽培室7の内部の温度を、明期25℃、暗期10℃に調節した。
 比較実験のために、各栽培区(実験系)において照明光の質および量を変化させた。赤色光および青色光の総光合成光量子束密度は、120μmol/m/sと370μmol/m/sとの2段階とし、赤色光と青色光との割合(R:B)は、1:0、4:1、1:1、5:2に設定した。なお、赤色光および青色光の総光合成光量子束密度が、370μmol/m/sの場合に、赤色光と青色光との割合を5:2に設定した。また、各栽培区について「さちのか」または「とちおとめ」の4株を用いた。
 赤色光と青色光との光強度の割合は、赤色LED22および/または青色LED23に投入する電流値を変更することで調節した。
 そして、赤色光と青色光との光強度の割合が同じ2つの栽培区を設け、一方には遠赤色光(FR)を照射し、他方には遠赤色光を照射しなかった。遠赤色光の光合成光量子束密度は、10~20μmol/m/s程度とした。
 また、光源として蛍光灯を用いる系も用意した。蛍光灯の光合成光量子束密度も、120μmol/m/sとした。蛍光灯を用いた栽培区についても、遠赤色光(FR)を照射した栽培区と、遠赤色光を照射しなかった栽培区とを設けた。遠赤色光の光合成光量子束密度は、同様に10~20μmol/m/s程度とした。
 (実験結果)
 図5は、「さちのか」についての実験結果を示す図である。各栽培区における収量、(総)果数、大きさ別の重量および形状別の重量は、4株の合計であり、平均値および比率は4株についての値である。図5に示した順化日数は、定植から第一果の収穫日までの日数である。比率は、全て重量比率である。また、可販果重とは、販売可能な果実の重量であり、6g以上を販売可能とした。また、奇形の果実を販売不可(×)とし、可販果について形状が良いもの(○)と、形状が良くも悪くもないもの(△)との2段階に区別した。可販果についての総合判定は、6g以上で販売可能な形状のイチゴを用いて行った。また、平均収量とは、1日あたりかつ1株あたりの収量であり、(総収量)÷4(株)÷(収穫開始日から最終収穫日までの日数)という式によって算出される値である。
 図6~8は、図5に示した数値の一部を、グラフとして表現したものである。
 図6は、「さちのか」の1日あたりかつ1株あたりの収量(g/日/株)である平均収量を示すグラフである。各栽培区について、収穫したイチゴ全体についての数値と、可販果についての数値とをそれぞれ折れ線グラフで示している。
 図7は、「さちのか」の収量および平均重量を示すグラフである。各栽培区における総収量(g)(左縦軸)を棒グラフで示している。この棒グラフを区切ることによって、収穫された果実の大きさの分布を示している。また、各栽培区における平均重量(g/果)(右縦軸)を折れ線グラフで示している。
 図8は、「さちのか」の総果数および形状評価の結果を示すグラフである。各栽培区において、どのレベルの形状の果実がどの程度の割合(左縦軸)を占めているかを棒グラフで示している。また、各栽培区における総果数(右縦軸)を折れ線グラフで示している。
 また、図9は、「とちおとめ」についての実験結果を示す図である。図5と同様に、各栽培区における収量、(総)果数、大きさ別の重量および形状別の重量は、4株の合計であり、平均値および比率は4株についての値である。図9に示した用語は、図5に示したものと同じ意味を有するものである。
 図10~図12は、図9に示した数値の一部を、グラフとして表現したものである。図10は、「とちおとめ」の1日の平均収量を示すグラフである。図11は、「とちおとめ」の収量および平均重量を示すグラフである。図12は、「とちおとめ」の総果数および形状評価の結果を示すグラフである。図10~12のグラフの見方は、図6~8と同様である。
 また、図13は、「さちのか」と「とちおとめ」との実験結果を比較するための図である。図13に示す数値は、図5および図9に示したものと同じである。
 また、図14は、「さちのか」と「とちおとめ」との実験結果を統合して示したものである。果実の平均重量(g/個)(右縦軸)を折れ線グラフで示し、総収量(g)(左縦軸)を棒グラフで示している。
 図5~図14に示すように、いずれの栽培区でも、赤色光および青色光に加えて遠赤色光(FR)を照射した場合には、遠赤色光を照射しなかった場合と比較して、平均収量、総収量、平均重量が有意に増加した。また、光源として蛍光灯を用いた場合にも同様に遠赤色光の効果が確認された。
 また、図13に示すように、「さちのか」と「とちおとめ」との間では、ともに遠赤色光照射により総収量および果実の平均重量が増加するという効果が得られた。また、果数については、「さちのか」では、全ての栽培区において遠赤色光照射により果数が増加し、「とちおとめ」では、一部の栽培区において遠赤色光照射により果数が増加した。
 遠赤色光照射により果数が増加したのは、果房の数が増加したため、すなわち、花芽分化が促進されたためであると考えられる。
 これに対して、「とちおとめ」の一部の栽培区(RB比が4:1、1:1)では、遠赤色光の照射により順化日数が増加するとともに、果数が少なくなった。
 それゆえ、栽培条件および品種によっては、遠赤色光の照射により花芽分化が遅れる可能性がある。ただし、順化日数が増加したことは、全ての花芽の分化が遅れたことを意味しているわけではなく、最初(一番目)の花芽の分化が遅れたことを意味している。それゆえ、1株あたりの花芽の集合として見た場合には、順化日数が増加したことの影響は緩和される。また、花芽分化が遅れても果実の平均重量が増加し、総収量は増加するため、大きな問題にはならないと考えられる。また、遠赤色光の照射条件を変更することにより、花芽分化を遅らせることなく、より効果的に収量を増加させることが可能であると考えられる。
 また、図8および図12に示すように、果実の形状に対しても遠赤色光は、少なくとも顕著な悪影響は及ぼしておらず、形状が改善した栽培区が多かった。
 (遠赤色光の照射コストおよびイチゴの売り上げ)
 図15は、栽培区あたりの遠赤色光照射にかかるエネルギーコストを示す図である。図16は、イチゴ栽培システム10で栽培したイチゴの売り上げの概算を示す図である。図15に示すように、イチゴ栽培システム10における1栽培区において収穫期間を通して遠赤色光を照射するために必要な電気代は、約497円である。なお、電気代は、日本国における電力会社(10社)の平均単価に基づき、1kWh=22円で計算している。また、図16における「売上」とは、日本国内における露地栽培のイチゴの平均的な販売単価に基づいて算出した推定価格である。
 これに対して、遠赤色光の照射によるイチゴの売り上げの増加は、栽培区あたり31円から785円までばらつきがあったが、いずれの系でも売り上げは増加していた。また、「さちのか」のR:B=1:1の栽培区などでは、遠赤色光の照射コスト(約497円)を上回る売り上げの増加(785円)を記録した。
 それゆえ、特定の栽培条件下では、遠赤色光の照射は、イチゴ栽培の収益の増加に寄与することができることが示された。また、基本的な栽培条件(温度、湿度、給肥条件など)、赤色光と青色光との割合、遠赤色光の照射期間、遠赤色光の照射量、遠赤色光の波長など検討すべき条件は多く、これらの条件をより好ましいものに設定すれば、さらに収益の増加が見込めると予想される。また、図15に示すデータでは、固定費(初期設備投資費用)については考慮されていないが、継続的に栽培を行えば、固定費を回収可能であると考えられる。
 (遠赤色光照射による果実の肥大化および収量増加の原理)
 遠赤色光は、フィトクロームの反応を介して花芽分化に影響している可能性が考えられる。
 また、データとしては示していないが、遠赤色光の照射により葉柄および果梗の伸長が確認されており、葉が光源に近づいたため、または草冠部が広がり、受光体勢が向上したために、1株あたりの光合成速度が増加した可能性が考えられる。遠赤色光を照射していないイチゴでは、葉どうしによる相互遮蔽が生じており、これにより光合成が抑制されていると考えられる。
 また、個葉の葉面積も大きくなる傾向があることから、葉面積の増加により1株あたりの光合成速度が増加した可能性も考えられる。
 その一方で、図5~図14において「下方FR」のデータが示すように、遠赤色光をイチゴの株の上方からではなく、栽培容器5の下方から照射した場合にも収量が増加した。特に、「とちおとめ」では、下方から遠赤色光を照射することより、総収量、果数および果実の平均重量が上方から照射した場合よりも増加した。このことから、遠赤色光が果実肥大に直接影響した可能性も考えられる。
 それゆえ、遠赤色光照明装置1bを栽培容器5の上方に配する必要は必ずしもなく、遠赤色光照明装置1bを栽培容器5の側方または下方に配し、イチゴ20の側方または下方から遠赤色光を照射してもよい。
 下方から果実に対して遠赤色光を照射することにより、収量等の増加に加え、照射範囲を限定でき、消費電力を削減できるという効果が得られる可能性がある。
 また、上述の栽培実験では、定植から約7ヶ月後まで調査を行ったが、遠赤色光を照射しない栽培区では、実験の終盤でほぼ花芽分化が止まっており、果実がほとんどついていない状態であった。これに対し、遠赤色光照射区では、栽培実験の終了後も休むことなく花芽分化し続けていた。このことから、遠赤色光照射により収穫期間を延ばす効果もあると考えられる。
 (イチゴ栽培システム10の効果)
 上述したように、遠赤色光を照射することにより、「さちのか」および「とちおとめ」において総収量および果実の平均重量が増加した。「とちおとめ」においては、遠赤色光の照射により果数が減少する栽培区が見られたが、果実の平均重量が増加したため、最終的に総収量は増加した。一方、「さちのか」では、果数、果実の平均重量ともに増加した。
 それゆえ、遠赤色光の照射により、果数が増加するかどうかは、品種によって異なる可能性があるが、果実の平均重量は品種によらず増加し、総収量の増加に寄与すると考えられる。
 このように、イチゴ栽培システム10を用いてイチゴを栽培することで、総収量および果実の平均重量を増加させることができる。また、この効果はイチゴの品種に依存しないものである。
 (付記事項)
 本発明の一実施形態に係る発明は、次のようにも表現できる。
 上記遠赤色光光源は、730nm近傍にピークを有する遠赤色光を出射することが好ましい。
 植物における遠赤色光の光受容体としてフィトクロームが知られており、このフィトクロームは、730~735nmの遠赤色光を主に吸収する。
 それゆえ、遠赤色光の中でも730nm近傍の遠赤色光を照射することで、より効率的にイチゴの収量を増加させることができると考えられる。
 また、上記主光源は、赤色光を出射する赤色光源を備えていてもよいし、
さらに青色光を出射する青色光源を備えていてもよい。
 赤色光(波長640~690nmの光)を植物に照射することにより光合成を促進できる。また、青色光(波長420~500nm)を植物に照射することにより、光形態形成を促進できる。
 また、上記主光源または上記遠赤色光光源は、発光ダイオードであることが好ましい。
 光源として発光ダイオード(LED)を用いれば、低電力化が図れるとともに、光源の寿命を延ばすことができ、メンテナンスの手間を省くことができる。また、植物栽培に適した波長の光を出射する赤色LEDおよび青色LEDを利用することができ、既製のLEDを光源として好適に利用できる。
 また、上記照明装置を備えるイチゴ栽培システムも本発明の技術的範囲に含まれる。
 また、上記イチゴ栽培システムは、上記照明装置を制御することにより短日条件の光環境を実現する制御装置をさらに備えることが好ましい。
 イチゴは短日植物であるため、上記の構成により、短日条件の光環境を実現することができ、イチゴの花芽分化を促進することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、植物工場など、人工照明光によりイチゴを栽培するときに用いる照明装置および栽培システムとして利用することができる。
 1 照明装置
1a 主照明装置
1b 遠赤色光照明装置
2a 主光源ユニット(主光源)
2b 遠赤色光光源ユニット(遠赤色光光源)
 6 制御装置
10 イチゴ栽培システム
20 イチゴ

Claims (9)

  1.  イチゴ栽培用の照明装置であって、
     光合成に必要な波長範囲の光を出射する主光源と、
     遠赤色光を出射する遠赤色光光源とを備えることを特徴とする照明装置。
  2.  上記遠赤色光光源は、730nm近傍にピークを有する遠赤色光を出射することを特徴とする請求項1に記載の照明装置。
  3.  上記主光源は、赤色光を出射する赤色光源を備えることを特徴とする請求項1または2に記載の照明装置。
  4.  上記主光源は、青色光を出射する青色光源をさらに備えることを特徴とする請求項3に記載の照明装置。
  5.  上記主光源または上記遠赤色光光源は、発光ダイオードであることを特徴とする請求項1~4のいずれか1項に記載の照明装置。
  6.  イチゴ栽培用の照明装置であって、
     遠赤色光を出射する遠赤色光光源を備えることを特徴とする照明装置。
  7.  請求項1~6のいずれか1項に記載の照明装置を備えることを特徴とするイチゴ栽培システム。
  8.  上記照明装置を制御することにより短日条件の光環境を実現する制御装置をさらに備えることを特徴とする請求項7に記載のイチゴ栽培システム。
  9.  光合成に必要な波長範囲の光に加え、遠赤色光をイチゴに照射することを特徴とするイチゴ栽培方法。
PCT/JP2012/052553 2011-02-10 2012-02-03 照明装置、イチゴ栽培システムおよびイチゴ栽培方法 WO2012108365A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012800084415A CN103379822A (zh) 2011-02-10 2012-02-03 照明装置、草莓栽培系统及草莓栽培方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-027316 2011-02-10
JP2011027316A JP2012165665A (ja) 2011-02-10 2011-02-10 照明装置、イチゴ栽培システムおよびイチゴ栽培方法

Publications (1)

Publication Number Publication Date
WO2012108365A1 true WO2012108365A1 (ja) 2012-08-16

Family

ID=46638581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052553 WO2012108365A1 (ja) 2011-02-10 2012-02-03 照明装置、イチゴ栽培システムおよびイチゴ栽培方法

Country Status (3)

Country Link
JP (1) JP2012165665A (ja)
CN (1) CN103379822A (ja)
WO (1) WO2012108365A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526104A (ja) * 2012-09-04 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ 光により食用植物部分の栄養価を高める方法及びそのための照明装置
WO2016008638A3 (en) * 2014-07-17 2016-04-28 Philips Lighting Holding B.V. Horticultural lighting apparatus
US10149441B2 (en) * 2015-07-29 2018-12-11 Duk Ki EUN Strawberry growth method and system
JP2020145993A (ja) * 2019-03-14 2020-09-17 大和ハウス工業株式会社 白花蛇舌草の栽培方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156677B2 (ja) * 2012-07-26 2017-07-05 シャープライフサイエンス株式会社 照明装置、植物栽培システムおよび植物栽培方法
JP2014064479A (ja) * 2012-09-24 2014-04-17 Aomori Prefectural Industrial Technology Research Center Led光源を用いた植物の栽培方法および栽培装置
JP5723903B2 (ja) * 2013-02-04 2015-05-27 昭和電工株式会社 植物栽培方法
JP5779604B2 (ja) 2013-02-04 2015-09-16 昭和電工株式会社 植物栽培方法
JP6296596B2 (ja) * 2013-03-25 2018-03-20 国立大学法人東京農工大学 イチゴ栽培方法
JP6264151B2 (ja) * 2014-03-31 2018-01-24 信越半導体株式会社 植物育成用照明装置及び植物育成方法
WO2016117314A1 (ja) * 2015-01-19 2016-07-28 パナソニックIpマネジメント株式会社 農業用光源ユニット、農業用光源灯および農業用光源灯の配置方法
CN106211459A (zh) * 2016-07-28 2016-12-07 厦门桑奈特光电科技有限公司 一种高效大波段生物刺激装置
JP6761970B2 (ja) * 2016-08-18 2020-09-30 パナソニックIpマネジメント株式会社 病害虫防除装置
CN106718182A (zh) * 2016-12-01 2017-05-31 四川农业大学 一种对草莓果实进行着色的方法
JP6974740B2 (ja) * 2017-11-30 2021-12-01 日亜化学工業株式会社 発光装置、照明装置及び植物栽培方法
EP3492554B1 (en) 2017-11-30 2020-08-19 Nichia Corporation Light emitting device, illumination device and plant cultivation method
CN108464202B (zh) * 2018-03-23 2021-04-27 北京市林业果树科学研究院 一种草莓穴盘苗的南繁北育方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250507A (ja) * 1999-12-27 2001-09-14 Toshiba Lighting & Technology Corp 蛍光ランプおよび照明装置
JP2002199816A (ja) * 2000-08-31 2002-07-16 Toshiba Lighting & Technology Corp 発光装置および照明装置
JP2009125007A (ja) * 2007-11-25 2009-06-11 Seiichi Okazaki 育成方法、生産方法及び照明装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101810114B (zh) * 2010-04-28 2011-08-31 孙立省 草莓种植大棚

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250507A (ja) * 1999-12-27 2001-09-14 Toshiba Lighting & Technology Corp 蛍光ランプおよび照明装置
JP2002199816A (ja) * 2000-08-31 2002-07-16 Toshiba Lighting & Technology Corp 発光装置および照明装置
JP2009125007A (ja) * 2007-11-25 2009-06-11 Seiichi Okazaki 育成方法、生産方法及び照明装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526104A (ja) * 2012-09-04 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ 光により食用植物部分の栄養価を高める方法及びそのための照明装置
WO2016008638A3 (en) * 2014-07-17 2016-04-28 Philips Lighting Holding B.V. Horticultural lighting apparatus
RU2696965C2 (ru) * 2014-07-17 2019-08-07 Филипс Лайтинг Холдинг Б.В. Садоводческое осветительное устройство
US10806095B2 (en) 2014-07-17 2020-10-20 Signify Holding B.V. Horticultural lighting apparatus
US10149441B2 (en) * 2015-07-29 2018-12-11 Duk Ki EUN Strawberry growth method and system
JP2020145993A (ja) * 2019-03-14 2020-09-17 大和ハウス工業株式会社 白花蛇舌草の栽培方法

Also Published As

Publication number Publication date
JP2012165665A (ja) 2012-09-06
CN103379822A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2012108365A1 (ja) 照明装置、イチゴ栽培システムおよびイチゴ栽培方法
JP5971623B2 (ja) 光照射装置、イチゴ栽培システムおよびイチゴ栽培方法
RU2411715C2 (ru) Система с регулируемой средой и способ быстрого разведения семенного картофеля
Watanabe Light-controlled plant cultivation system in Japan-development of a vegetable factory using LEDs as a light source for plants
CN114208558A (zh) 一种基于热致发光材料的补光装置及方法
JP6156677B2 (ja) 照明装置、植物栽培システムおよび植物栽培方法
AU2013292640B2 (en) Method for stimulating plant growth, apparatus and methods for computing cumulative light quantity
KR102285707B1 (ko) 식물 재배용 광원을 이용한 식물 재배 장치 및 식물 재배 방법
Hao et al. A review on smart application of supplemental lighting in greenhouse fruiting vegetable production
JP2007289125A (ja) 植物栽培方法及び植物栽培装置
Lu et al. Supplemental lighting for greenhouse-grown fruiting vegetables
CN104813857A (zh) 一种基于无自然光条件下led植物灯的西瓜秧苗培育技术
JP5723901B2 (ja) 植物栽培方法
KR20130052306A (ko) 식물 조명장치
Moerkens et al. The added value of LED assimilation light in combination with high pressure sodium lamps in protected tomato crops in Belgium
JP2014176374A (ja) 電照栽培装置
JP2001258389A (ja) 植物栽培方法
Goto et al. Effects of using LED supplementary lighting to improve photosynthesis on growth and yield of strawberry forcing culture
CN103109702A (zh) 利用光谱调控水稻秧苗生长的方法及育秧光谱调节装置和设备
JP5376667B2 (ja) 花卉の育苗方法および育苗システム
JP2017046651A (ja) 植物栽培用照明装置及びそれを用いた植物栽培方法
JP2011188788A (ja) 植物栽培方法
Singh et al. Enhancing Plant Growth: Harnessing the Effectiveness of Artificial Light
JP4159485B2 (ja) アブラナ科植物の花芽誘導方法
KR101775778B1 (ko) Led를 이용한 소형 분화국화 재배 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744658

Country of ref document: EP

Kind code of ref document: A1