WO2012105675A1 - 無線電力供給システム - Google Patents

無線電力供給システム Download PDF

Info

Publication number
WO2012105675A1
WO2012105675A1 PCT/JP2012/052449 JP2012052449W WO2012105675A1 WO 2012105675 A1 WO2012105675 A1 WO 2012105675A1 JP 2012052449 W JP2012052449 W JP 2012052449W WO 2012105675 A1 WO2012105675 A1 WO 2012105675A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
coil
resonator
resonance
Prior art date
Application number
PCT/JP2012/052449
Other languages
English (en)
French (fr)
Inventor
畑中 武蔵
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020137023263A priority Critical patent/KR20140051140A/ko
Priority to US13/983,085 priority patent/US9461506B2/en
Priority to EP12741907.5A priority patent/EP2672607A4/en
Priority to CN2012800076103A priority patent/CN103370850A/zh
Publication of WO2012105675A1 publication Critical patent/WO2012105675A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a wireless power supply system that transmits power in a contactless manner by creating a magnetic resonance state.
  • the power supply technology using this magnetic field resonance state (also called magnetic resonance, magnetic field resonance, or magnetic field resonance) enables transmission of energy (electric power) by coupling a magnetic field between two resonating resonators.
  • the wireless power supply technology using such a magnetic field resonance state the transmission distance of energy (electric power) can be increased as compared with the wireless power supply technology using electromagnetic induction.
  • Patent Document 1 discloses that even when the distance between the power transmission resonance coil and the power reception resonance coil varies, the power transmission resonance coil and the power reception power are changed by changing the resonance frequency of the power transmission resonance coil and the resonance frequency of the power reception resonance coil.
  • a wireless power supply system that can prevent a decrease in power transmission efficiency of power from a power transmission device to a power reception device by sequentially changing a coupling strength with a resonance coil to maintain a resonance state.
  • Patent Document 2 discloses a wireless power device capable of increasing the power transmission efficiency of the entire device by changing the coupling strength between the power transmission coil and the power reception coil.
  • Patent Document 3 a power supply system that supplies power in a contactless manner by providing a power supply side resonance coil and a power reception side resonance coil between the power supply coil and the power supply coil, the power supply side resonance coil and the power reception side resonance coil are provided.
  • a power feeding system that can maintain or improve power supply efficiency even when the distance changes is disclosed.
  • an object of the present invention is to provide a wireless power supply system using a magnetic resonance state from a completely different viewpoint from the conventional one.
  • One of the inventions for solving the above-mentioned problems is that the power feeding resonator and the power receiving resonator in which the power transmitted as magnetic field energy exceeds a predetermined effective power by resonating the power feeding resonator and the power receiving resonator.
  • the wireless power supply system is characterized in that the positional relationship between and is a power supply range.
  • the positional relationship between the power feeding resonator and the power receiving resonator is set so that the power transmitted as magnetic field energy is greater than or equal to the predetermined effective power by resonating the power feeding resonator and the power receiving resonator.
  • predetermined active power can be transmitted as a power supply range only when the power feeding resonator and the power receiving resonator are placed in the above positional relationship.
  • One of the inventions for solving the above-mentioned problems is a power supply unit that supplies power, a power supply resonator that transmits the power supplied from the power supply unit as magnetic field energy, and the power supply resonator.
  • a power receiving resonator that receives the magnetic field energy transmitted from the power feeding resonator as power, and the power received by the power receiving resonator is output, and the power is predetermined active power.
  • a wireless power supply system including a power receiving unit that operates when the above is true, and the positional relationship between the power feeding resonator and the power receiving resonator is the same as that of the power feeding resonator in the resonance frequency band.
  • the ratio of the power output to the power receiving unit with respect to the supplied power is set to be equal to or higher than the active power.
  • the power supplied from the power supply unit is created by tuning the power feeding resonator and the power receiving resonator at the resonance frequency to create a magnetic field resonance state between the power feeding resonator and the power receiving resonator.
  • the power receiving unit can operate when the transmitted power is equal to or greater than a predetermined active power.
  • the positional relationship between the power feeding resonator and the power receiving resonator is set so that the ratio of the power output to the power receiving unit to the power supplied to the power feeding resonator is greater than or equal to the active power in the resonance frequency band.
  • the power receiving resonator can receive active power with high efficiency in the positional relationship.
  • the power receiving efficiency of the power receiving resonator is reduced, and predetermined active power cannot be received. By doing this, only when the power feeding resonator and the power receiving resonator are placed in the above positional relationship, effective power necessary for the power receiving unit to operate is output to the power receiving unit.
  • the power supply resonator includes a power supply coil and a power supply resonance coil connected to the power supply unit, and the power reception resonance
  • the device includes a power receiving coil and a power receiving resonance coil connected to the power receiving unit.
  • electric power can be transmitted from the power supply coil to the power supply resonance coil by using electromagnetic induction between the power supply coil and the power supply resonance coil without creating a magnetic field resonance state.
  • electric power can be transmitted from the power reception resonance coil to the power reception coil by using electromagnetic induction between the power reception resonance coil and the power reception coil without creating a magnetic field resonance state. This eliminates the need for tuning at the resonance frequency between the power supply coil and the power supply resonance coil and between the power reception resonance coil and the power reception coil, thereby simplifying the design.
  • One of the inventions for solving the above problems is that in the wireless power supply system, a first distance between the power supply coil and the power supply resonance coil, and the power reception resonance coil and the power reception coil. It is characterized in that at least one of the second distances can be freely set.
  • the resonance frequency band it is possible to freely set a position where the ratio of the power output to the power receiving unit to the power supplied to the power supply resonance coil is equal to or greater than the effective power.
  • one of the inventions for solving the above problems is that the power feeding resonator and the power receiving power in which the power transmitted as magnetic field energy is greater than or equal to a predetermined effective power by resonating the power feeding resonator and the power receiving resonator.
  • the wireless power supply method is characterized in that the positional relationship with the resonator is a power supply range.
  • the positional relationship between the power feeding resonator and the power receiving resonator is set so that the power transmitted as magnetic field energy becomes greater than or equal to the predetermined effective power by resonating the power feeding resonator and the power receiving resonator.
  • predetermined active power can be transmitted as a power supply range only when the power feeding resonator and the power receiving resonator are placed in the above positional relationship.
  • FIG. 1 is a schematic configuration diagram of a wireless power supply system according to a first embodiment. It is the figure which showed the measurement result of the insertion loss at the time of changing the distance C between a feeding resonance coil and a receiving resonance coil. It is explanatory drawing explaining the power transmission efficiency at the time of changing the distance C between a feeding resonance coil and a receiving resonance coil with the light emission condition of blue LED. It is explanatory drawing of the wireless power supply system which concerns on Embodiment 1.
  • FIG. It is a schematic block diagram of the wireless power supply system which concerns on Example 2.
  • FIG. 1 It is explanatory drawing explaining the distance C from which the power transmission efficiency becomes the maximum when changing the distance A between a feeding coil and a feeding resonance coil, and the distance B between a receiving resonance coil and a receiving coil. It is explanatory drawing of the wireless power supply system which concerns on Embodiment 2. FIG. It is explanatory drawing of the wireless power supply system which concerns on Embodiment 3. FIG.
  • the wireless power supply system 101 resonates the power feeding resonator 102 and the power receiving resonator 103 so that the power transmitted as magnetic field energy is equal to or higher than a predetermined effective power.
  • the positional relationship (distance C) between the resonator 102 and the power receiving resonator 103 is a power supply range F.
  • the power feeding resonator 102 and the power receiving resonator 103 are, for example, a resonator using a coil, and examples thereof include spiral type, solenoid type, and loop type coils.
  • Resonance means that the power feeding resonator 102 and the power receiving resonator 103 are tuned at the resonance frequency (for example, power from the AC power source 106 has the same frequency as the resonance frequency of the power feeding resonator 102 and the power receiving resonator 103. Is realized by output).
  • the predetermined active power refers to power required on the power receiving resonator 103 side, and is a value set by desired power (for example, power required to move the power receiving unit 109).
  • the positional relationship between the power feeding resonator 102 and the power receiving resonator 103 is set so that the coil surface of the coil used in the power feeding resonator 102 and the coil surface of the coil used in the power receiving resonator 103 are not orthogonal to each other. This is the linear distance between the coil surfaces in this case (indicated by the distance C in FIG. 1).
  • the power supply range F is a range in which power greater than a predetermined active power is transmitted (in FIG. 1, a range where the distance C satisfies Y to Y ′).
  • the positional relationship between the power feeding resonator 102 and the power receiving resonator 103 is set so that the power transmitted as magnetic field energy is greater than or equal to a predetermined effective power by resonating the power feeding resonator 102 and the power receiving resonator 103.
  • predetermined active power can be transmitted only to the power supply range F that holds the positional relationship.
  • the power receiving resonator 103 is out of the power supply range F, no power is transmitted.
  • a wireless power supply system 1 shown in FIG. 2 is a system including a power feeding resonator 2 and a power receiving resonator 3, and transmits power from the power feeding resonator 2 to the power receiving resonator 3 as magnetic field energy.
  • the power supply resonator 2 includes a power supply coil 4 and a power supply resonance coil 5 therein.
  • the feeding coil 4 is connected to an AC power source 6 (power supply unit).
  • the power receiving resonator 3 includes a power receiving coil 7 and a power receiving resonance coil 8 therein. And the receiving coil 7 is connected to blue LED9 (electric power receiving part).
  • the AC power supply 6 outputs power at 16 MHz, which is the same frequency as the resonance frequency of the power supply resonance coil 5 and the power reception resonance coil 8. Therefore, the power supply resonance coil 5 and the power reception resonance coil 8 resonate at a resonance frequency of 16 MHz. In this embodiment, 0.5 W of electric power is output from the AC power source 6.
  • the blue LED 9 is a diode that emits blue light mainly made of gallium nitride.
  • the blue LED 9 emits blue light when power of 0.35 W or more, which is effective power necessary for light emission, is input.
  • the blue LED 9 is configured not to emit light when a power less than an effective power of 0.35 W is input.
  • the power supply coil 4 plays a role of supplying electric power obtained from the AC power source 6 to the power supply resonance coil 5 by electromagnetic induction.
  • the power supply coil 4 is formed of a coil having a coil diameter of 80 mm ⁇ in which a rectangular copper wire (with an insulating coating) having a side of 2 mm is wound once.
  • the power receiving coil 7 plays a role of outputting electric power transmitted as magnetic field energy from the power supply resonance coil 5 to the power reception resonance coil 8 to the blue LED 9 by electromagnetic induction. Similar to the power supply coil 4, the power receiving coil 7 is formed by a coil having a coil diameter of 80 mm ⁇ formed by winding a rectangular copper wire (with an insulating film) having a side of 2 mm once.
  • the power receiving coil 7 is electrically connected to the blue LED 9, and the energy moved to the power receiving coil 7 by electromagnetic induction is output to the blue LED 9 as electric power.
  • the power supply resonance coil 5 and the power reception resonance coil 8 are each an LC resonance circuit and play a role of creating a magnetic field resonance state.
  • the capacitor component of the LC resonance circuit is realized by an element, but may be realized by a stray capacitance with both ends of the coil being opened.
  • the power supply resonance coil 5 and the power reception resonance coil 8 are both formed of a coil having a coil inner diameter of 100 mm ⁇ and a coil outer diameter of 124 mm ⁇ obtained by winding a rectangular copper wire (with an insulating film) with a side of 2 mm three times. Further, since the power supply resonance coil 5 and the power reception resonance coil 8 need to have the same resonance frequency f determined by (Equation 1), the resonance frequency is set to 16 MHz. In addition, in order to make the resonance frequency the same, it does not necessarily need to be the same shape.
  • the distance between the inner diameter of the feeding coil 4 and the inner diameter of the feeding resonance coil 5 is set to 10 mm, and the printed resonator is arranged as the feeding resonator 2 on the same plane substrate.
  • the arrangement of the feeding coil 4 and the feeding resonance coil 5 may be any distance and arrangement that can generate electromagnetic induction.
  • the distance between the inner diameter of the power receiving coil 7 and the inner diameter of the power receiving resonance coil 8 is set to 10 mm, and the power receiving resonator 3 is printed on the same plane substrate.
  • the arrangement with the resonance coil 8 may be any distance and arrangement that can generate electromagnetic induction.
  • a magnetic field resonance state can be created between the power supply resonance coil 5 and the power reception resonance coil 8. .
  • electric power can be transmitted from the power supply resonance coil 5 to the power reception resonance coil 8 as magnetic field energy.
  • the distance between the power supply resonance coil 5 and the power reception resonance coil 8 is C, and the positional relationship between the power supply resonance coil 5 of the power supply resonator 2 and the power reception resonance coil 8 of the power reception resonator 3 is expressed as follows. It arrange
  • the reason why the distance C between the power supply resonance coil 5 and the power reception resonance coil 8 is set to 100 mm will be described below.
  • the power supply coil 4 and the feeding resonance coil 5 are fixed to the same substrate, and the receiving resonance coil 8 and the receiving coil 7 are fixed to the same substrate.
  • a change in power transmission efficiency when the distance C between the power supply resonance coil 5 and the power reception resonance coil 8 varies will be described.
  • the power supply coil 4 is connected to the output terminal of a network analyzer (manufactured by Agilent Technologies) instead of the AC power supply 6, and the power receiving coil 7 is connected to the network instead of the blue LED 9.
  • the horizontal axis is the transmission frequency
  • the vertical axis is the insertion loss “S21”.
  • the horizontal axis of the graph is described as distance C
  • the vertical axis is described as power transmission efficiency.
  • the transmission efficiency refers to the ratio of the power output to the power receiving unit to the power supplied to the power feeding resonator. That is, energy transfer efficiency when electric power is transmitted from the power supply resonator to the power reception resonator.
  • the insertion loss “S21” represents a signal that passes through the input terminal when the signal is input from the output terminal, and is displayed in decibels. The larger the numerical value, the higher the power transmission efficiency. That is, the higher the insertion loss “S21”, the higher the ratio (power transmission efficiency) of the power output to the blue LED 9 as the power receiving unit to the power supplied to the power feeding resonator 2.
  • FIG. 3A shows the measurement result of the insertion loss “S21” when the distance C is 37 mm.
  • FIG. 3C shows the measurement result of the insertion loss “S21” when the distance C is 70 mm.
  • FIG. 3E shows the measurement result of the insertion loss “S21” when the distance C is 150 mm.
  • the transmission frequency at which the transmitted magnetic field energy reaches a peak is near the resonance frequency (in this embodiment, 16 MHz).
  • the resonance frequency in this embodiment, 16 MHz.
  • C 37 mm, 50 mm, 70 mm
  • “S21” Separation is confirmed at the transmission frequency having the maximum value, and the value of “S21” becomes low near the resonance frequency. That is, it can be seen that when the distance C between the power supply resonance coil 5 and the power reception resonance coil 8 is reduced to some extent, the power transmission efficiency is reduced in the resonance frequency band as shown in FIG.
  • the distance C between the power supply resonance coil 5 and the power reception resonance coil 8 is set to 100 mm in the resonance frequency (16 MHz) band between the power supply resonance coil 5 and the power reception resonance coil 8. This is to maximize the power transmission efficiency so that the effective power necessary for the light emission of the blue LED 9 is sufficiently transmitted.
  • the distance C is set to 100 mm.
  • the distance C is a distance where the power transmission efficiency is 70% or more. Good.
  • the distance C between 88 mm and 105 mm is referred to as a power supply range in which effective power of 0.35 W or more necessary for light emission of the blue LED 9 can be transmitted.
  • the power (0.5 W) supplied from the AC power source 6 to the power feeding coil 4 is fed through the electromagnetic induction between the power feeding coil 4 and the power feeding resonance coil 5.
  • Power is transmitted with a power transmission efficiency of 74% using the magnetic field resonance state between the resonance coil 5 and the power reception resonance coil 8, and the blue LED 9 emits light through electromagnetic induction between the power reception resonance coil 8 and the power reception coil 7.
  • the required effective power is output with a value of 0.35 W or more.
  • blue LED9 which acquired effective electric power light-emits blue.
  • the change in power transmission efficiency when the distance C between the power supply resonance coil 5 and the power reception resonance coil 8 is changed is expressed as the light emission condition of the blue LED 9 ( The operation will be described in comparison.
  • the AC power supply 6 outputs 0.5 W of power at 16 MHz, which is the same frequency as the resonance frequency of the power supply resonance coil 5 and the power reception resonance coil 8.
  • the power transmission efficiency needs to be 70% or more. When the power transmission efficiency is less than 70%, no light is emitted.
  • the transmission efficiency is 70% or more (effective power 0) in the resonance frequency (16 MHz) band.
  • the power transmission efficiency is less than 70% (effective power less than 0.35 W), and the blue LED 9 does not emit light. That is, it can be seen that there is actually a power supply range that is a range in which power greater than or equal to a predetermined active power is transmitted, and the present invention can be sufficiently realized by the existence of the power supply range.
  • the power feeding resonator 2 and the power receiving resonator 3 are tuned at a resonance frequency of 16 MHz, and magnetic resonance occurs between the power feeding resonator 2 and the power receiving resonator 3.
  • the power (0.5 W) supplied from the AC power source 6 can be wirelessly transmitted from the power feeding resonator 2 to the power receiving resonator 3 as magnetic field energy.
  • the blue LED 9 emits blue light when power of 0.35 W or more, which is effective power necessary for light emission, is input, and does not emit light when power less than 0.35 W is input. It is configured.
  • the distance C between the power supply resonance coil 5 of the power supply resonator 2 and the power reception resonance coil 8 of the power reception resonator 3 is output to the blue LED 9 for the power supplied to the power supply resonator 2 in the band of the resonance frequency of 16 MHz.
  • the power ratio (power transmission efficiency) is 70% or more, that is, 100 mm, which is between 88 mm and 105 mm, so that 0.35 W or more, which is effective power necessary for light emission of the blue LED 9, is output. It is set.
  • the power receiving resonator 3 receives an effective power of 0.35 W or more and outputs the effective power to the blue LED 9 to emit light. be able to.
  • the blue LED 9 emits light only when the power supply resonance coil 5 of the power supply resonator 2 and the power reception resonance coil 8 of the power reception resonator 3 are in a positional relationship, that is, when the distance C is set between 88 mm and 105 mm.
  • the blue LED 9 can be made to emit light by outputting the effective power necessary for the above.
  • the positional relationship between the power supply resonance coil 5 of the power supply resonator 2 and the power reception resonance coil 8 of the power reception resonator 3 so that the distance C is set between 88 mm and 105 mm By making the power receiving resonance coil 8 resonate, the electric power transmitted as the magnetic field energy can be made effective power (0.35 W) or more. For this reason, active power can be transmitted as the power supply range only when the power feeding resonator 2 and the power receiving resonator 3 are placed in the above positional relationship.
  • electric power is transmitted from the feed coil 4 to the feed resonance coil 5 by using electromagnetic induction between the feed coil 4 and the feed resonance coil 5 without creating a magnetic resonance state. be able to.
  • electric power can be transmitted from the power receiving resonance coil 8 to the power receiving coil 7 by using electromagnetic induction between the power receiving resonance coil 8 and the power receiving coil 7 without creating a magnetic field resonance state. This eliminates the need for tuning at the resonance frequency between the power supply coil 4 and the power supply resonance coil 5 and between the power reception resonance coil 8 and the power reception coil 7, thereby simplifying the design.
  • the transmission efficiency decreases when the distance between the power feeding resonator and the power receiving resonator is greater than the peak point.
  • the power transmission efficiency refers to the ratio of the power output from the power receiving resonator to the power supplied to the power feeding resonator.
  • the wireless power supply system 201 is a wireless power supply system that utilizes a change in power transmission efficiency when the positional relationship between the power feeding resonator and the power receiving resonator is changed.
  • FIG. 5 is an explanatory diagram of the wireless power supply system 201 according to the first embodiment.
  • a wireless power supply system 201 illustrated in FIG. 5 includes a power transmission device 210 hung on a wall of an office 220 and a power reception device such as a mobile phone 212 placed on a desk 221.
  • the power transmission device 210 includes an AC power supply 206 and a power supply resonator 202, and the power supply resonator 202 includes a power supply coil 204 and a power supply resonance coil 205 connected to the AC power supply 206.
  • the power receiving device such as the mobile phone 212 includes a power receiving unit 209 and a power receiving resonator 203, and the power receiving resonator 203 includes a power receiving coil 207 and a power receiving resonant coil 208 connected to the power receiving unit 209.
  • the mobile phone 212 is placed on the desk 221 separated from the power transmission apparatus 210 by a distance X ′′ from the power transmission apparatus 210 and separated from the power transmission apparatus 210 by a distance X ′. It will be described as being moved to a state.
  • the feeding coil 204 plays a role of supplying power obtained from the AC power source 206 to the feeding resonance coil 205 by electromagnetic induction.
  • A be the distance between the feeding coil 204 and the feeding resonance coil 205.
  • the arrangement of the power feeding coil 204 and the power feeding resonance coil 205 may be any distance and arrangement that can generate electromagnetic induction.
  • the power receiving coil 207 plays a role of outputting the power transmitted as magnetic field energy from the power supply resonance coil 205 to the power reception resonance coil 208 to the power reception unit 209 by electromagnetic induction.
  • B is a distance between the power receiving resonance coil 208 and the power receiving coil 207.
  • positioning of the receiving coil 207 and the receiving resonance coil 208 should just be the distance and arrangement
  • the power receiving coil 207 is electrically connected to the power receiving unit 209, and the energy moved to the power receiving coil 207 by electromagnetic induction is output to the power receiving unit 209 as electric power.
  • the power supply resonance coil 205 and the power reception resonance coil 208 are each an LC resonance circuit and play a role of creating a magnetic field resonance state.
  • the capacitor component of the LC resonance circuit is realized by an element, but may be realized by a stray capacitance with both ends of the coil being opened.
  • f determined by (Equation 1) is the resonance frequency.
  • the power supply resonance coil 205 and the power reception resonance coil 208 need to have the same resonance frequency f determined by (Equation 1).
  • the resonance frequency f it does not necessarily need to be the same shape.
  • a magnetic field resonance state can be created between the power supply resonance coil 205 and the power reception resonance coil 208.
  • a magnetic field resonance state is created in a state where the power supply resonance coil 205 resonates, power can be transmitted from the power supply resonance coil 205 to the power reception resonance coil 208 as magnetic field energy.
  • the distance between the power supply resonance coil 205 of the power transmission apparatus 210 and the power reception resonance coil 208 of the mobile phone 212 is C, as shown in FIG.
  • the mobile phone 212 (power receiving resonance coil 208) moved onto the desk 221 is located at a position separated from the power transmission device 210 (power feeding resonance coil 205) by a distance X ′′. ) At a distance X ′ apart.
  • the AC power source 206 outputs power at the same frequency as the resonance frequency of the power supply resonance coil 205 and the power reception resonance coil 208.
  • the power receiving unit 209 includes a rectifier circuit connected to the power receiving coil 207, a charge control device connected to the rectifier circuit, and a battery connected to the charge control device.
  • the power receiving unit 209 plays a role of storing the power transmitted from the power receiving coil 207 in the battery via the rectifier circuit and the charging control device.
  • Examples of the battery include a nickel metal hydride battery, a lithium ion battery, and other secondary batteries.
  • the charging control device plays a role of controlling charging when active power necessary for charging the battery is input. Therefore, the battery is configured not to be charged when power less than the effective power is input.
  • the ratio (power transmission efficiency) of the power output from the power receiving resonator 203 to the power supplied to the power feeding resonator 202 is 70% or more, the effective power necessary for charging the battery is input ( (See FIG. 5).
  • the power supplied from the AC power source 206 is electromagnetic induction between the power supply coil 204 and the power supply resonance coil 205, and between the power supply resonance coil 205 and the power reception resonance coil 208.
  • the distance C between the power supply resonance coil 205 and the power reception resonance coil 208 of the power transmission device 210 becomes X ′ through power transmission using the magnetic field resonance state and electromagnetic induction between the power reception resonance coil 208 and the power reception coil 207.
  • the power is received by the power receiving unit 209 of the mobile phone 212 placed on the desk 221.
  • the person 226 holds the power C so that the distance C between the power supply resonance coil 205 and the power reception resonance coil 208 of the power transmission device 210 is X ′′, no power is supplied to the mobile phone 212.
  • the battery of the power receiving unit 209 of the mobile phone 212 placed on the desk 221 is charged in this way because the distance C between the power supply resonance coil 205 and the power reception resonance coil 208 of the power transmission device 210 is This is because, in the resonance frequency band, the distance X ′ is set to a power transmission efficiency of 70% or more so that the effective power necessary for charging the battery of the mobile phone 212 can be secured.
  • the distance C X ′, but the distance C may be a distance at which the power transmission efficiency is 70% or more.
  • the distance C between Y and Y ′ is referred to as a power supply range F in which effective power necessary for charging the battery of the power receiving unit 209 can be transmitted.
  • the battery of the power receiving unit 209 of the mobile phone 212 is not charged because the power supply resonance coil 205 of the power transmission device 210 and the power reception resonance coil of the mobile phone 212 are not charged.
  • the distance C to 208 is set to a distance X ′′ in which the effective power necessary for charging the battery of the power receiving unit 209 of the mobile phone 212 cannot be secured (the transmission efficiency is less than 70%) in the resonance frequency band. That is, when the person 226 has the mobile phone 212 as shown in Fig. 5, since the mobile phone 212 is outside the power supply range F, the battery of the mobile phone 212 is Is not charged.
  • charging cannot be performed when the mobile phone 212 is outside the power supply range F, but charging is possible when the mobile phone 212 is brought into the power supply range F. That is, the battery of the mobile phone 212 can be charged only in a limited range (power supply range F).
  • the power supply range F is set to the effective power necessary for charging the battery of the mobile phone 212 in the resonance frequency band.
  • the distance is set within the range of Y to Y ′ so that the power transmission efficiency that can secure power is 70% or more.
  • the mobile phone 212 is placed so that the distance C between the power supply resonance coil 205 of the power transmission device 210 and the power reception resonance coil 208 of the mobile phone 212 falls within the range of the distances Y to Y ′ (power supply range F). 221 is moved over.
  • the power supplied from the AC power supply 206 is transmitted and received using the electromagnetic induction between the power supply coil 204 and the power supply resonance coil 205 and the magnetic resonance state between the power supply resonance coil 205 and the power reception resonance coil 208.
  • the electric power transmitted from the power receiving coil 207 via the electromagnetic induction between the coil 208 and the power receiving coil 207 is supplied to the battery as effective power necessary for charging the battery via the rectifier circuit and the charging control device provided in the power receiving unit 209. It is charged.
  • the battery provided in the power receiving unit 209 can be charged only when a power receiving device such as the mobile phone 212 is placed in the power supply range F shown in FIG.
  • Example 2 Hereinafter, a wireless power supply system 301 according to the second embodiment will be described with reference to FIGS. 6 and 7.
  • the distance A between the power supply coil 304 and the power supply resonance coil 305 and the distance B between the power reception resonance coil 308 and the power reception coil 307 in the wireless power supply system 301 can be freely set by changing at least one of the above.
  • a wireless power supply system 301 shown in FIG. 6 is a system including a power feeding resonator 302 and a power receiving resonator 303, and transmits power from the power feeding resonator 302 to the power receiving resonator 303 as magnetic field energy.
  • the power feeding resonator 302 includes a power feeding coil 304 and a power feeding resonance coil 305.
  • the power receiving resonator 303 includes a power receiving coil 307 and a power receiving resonance coil 308 therein.
  • the power feeding coil 304 and the power receiving coil 307 are formed by a coil having a coil diameter of 100 mm ⁇ obtained by winding a circular copper wire (with an insulating coating) having a wire diameter of 1 mm ⁇ once.
  • the power supply coil 304 is connected to an output terminal 341 of a network analyzer 340 (manufactured by Agilent Technologies) instead of the AC power supply, and the power receiving coil 307 is connected to an input terminal 342 of the network analyzer.
  • the network analyzer 340 can output AC power from the output terminal 341 to the feeding coil 304 at an arbitrary frequency. Further, the network analyzer 340 can measure the power input from the power receiving coil 307 to the input terminal 342. Furthermore, the network analyzer 340 can measure power transmission efficiency as shown in FIG.
  • the power supply resonance coil 305 and the power reception resonance coil 308 are each an LC resonance circuit, and the power supply resonance coil 305 and the power reception resonance coil 308 are made by winding a circular copper wire (with an insulating film) with a wire diameter of 1 mm ⁇ three times in a solenoid shape Formed by a coil having a diameter of 100 mm. Further, since the power supply resonance coil 305 and the power reception resonance coil 308 need to have the same resonance frequency f determined by (Equation 1), the resonance frequency is set to 15 MHz.
  • the distance A between the power feeding coil 304 and the power feeding resonance coil 305 is the distance between the coil surfaces when the coil surface of the power feeding coil 304 and the coil surface of the power feeding resonance coil 305 are arranged so as not to be orthogonal to each other. It means the straight line distance.
  • the distance B between the power receiving resonance coil 308 and the power receiving coil 307 is the distance between the coil surfaces when the coil surface of the power receiving coil 307 and the coil surface of the power receiving resonance coil 308 are arranged so as not to be orthogonal to each other. This means the linear distance.
  • the distance C between the power supply resonance coil 305 and the power reception resonance coil 308 is the distance between the coil surfaces when the coil surface of the power supply resonance coil 305 and the coil surface of the power reception resonance coil 308 are arranged so as not to be orthogonal to each other.
  • the straight line distance between the power supply resonance coil 305 and the power reception resonance coil 308 is the distance between the coil surfaces when the coil surface of the power supply resonance coil 305 and the coil surface of the power reception resonance coil 308 are arranged so as not to be orthogonal to each other.
  • the wireless power supply system 301 when the wireless power supply system 301 is used and the distance A between the power supply coil 304 and the power supply resonance coil 305 and the distance B between the power reception resonance coil 308 and the power reception coil 307 are changed.
  • a measurement result of the network analyzer 340 for the distance C between the power supply resonance coil 305 and the power reception resonance coil 308 that maximizes the power transmission efficiency will be described with reference to FIG.
  • the horizontal axis is distance C
  • the vertical axis is power transmission efficiency.
  • the power supply resonance coil 305 and the power reception resonance that maximize power transmission efficiency are changed. It can be seen that the distance C between the coil 308 changes.
  • the wireless power supply system 401 according to Embodiment 2 changes at least one of the distance A between the power supply coil 404 and the power supply resonance coil 405 and the distance B between the power reception resonance coil 408 and the power reception coil 407.
  • the wireless power supply system utilizes the fact that the distance C between the power supply resonance coil 405 and the power reception resonance coil 408 that maximizes the power transmission efficiency can be set freely.
  • the description of the same configuration as that of the first embodiment is omitted.
  • FIG. 8 is an explanatory diagram of the wireless power supply system 401 according to the second embodiment.
  • a wireless power supply system 401 illustrated in FIG. 8 includes a power transmission device 410 hung on the wall of an office 420 and a power receiving device such as a mobile phone 412 placed on a desk 421, as in the first embodiment.
  • the power transmission device 410 includes an AC power source 406, a power feeding resonator 402, and a regulator 418.
  • the power feeding resonator 402 includes a power feeding coil 404 and a power feeding resonance coil 405 connected to the AC power source 406.
  • the adjuster 418 can variably adjust the distance A between the power supply coil 404 and the power supply resonance coil 405.
  • the mobile phone 412 includes a power receiving unit 409 and a power receiving resonator 403, and the power receiving resonator 403 includes a power receiving coil 407 and a power receiving resonant coil 408 connected to the power receiving unit 409.
  • the distance B is fixed to a constant value.
  • distance B is fixed to a constant value.
  • the wireless power supply system 401 If the wireless power supply system 401 is used, at least one of the distance A between the power supply coil 404 and the power supply resonance coil 405 and the distance B between the power reception resonance coil 408 and the power reception coil 407 can be freely set.
  • a power supply range for example, power supply range G, power supply range H, power supply range I
  • the chargeable power supply range can be set freely.
  • a wireless power supply system 601 may be employed in a non-contact type IC card for entering an office.
  • a card reader 610 including a power supply resonator 602 connected to an AC power source 606 is installed on the side wall of the door 631 of the office 630, and power reception resonance connected to an IC chip 609 for personal identification.
  • An IC card 611 provided with a device 603 is prepared. Then, as shown in FIG. 9, the power supply range P in which the power transmission efficiency is equal to or higher than the effective power necessary for reading the IC chip 609 is set near the front of the door 631.
  • the wireless power supply system according to the present invention can be applied to a power supply device such as a work robot or an electric vehicle.
  • a power supply device such as a work robot or an electric vehicle.
  • the power supply range that is equal to or greater than the effective power necessary for the operation of the work robot is determined as the work area, so that the operation when the work robot leaves the work area can be stopped. Thereby, even if the work robot is out of the work area for some reason, the power supply to the work robot can be stopped and the operation can be stopped, so that the safety of the work robot can be improved.
  • the resonance frequency of the power supply resonance coil 205 on the power transmission device 210 side and the resonance frequency of the power reception resonance coil 208 on the mobile phone 212 side are set to the same value, the power supply resonance coil 205 to the mobile phone 212
  • power can be transmitted to the power receiving resonance coil 208 as magnetic field energy, the present invention is not limited to this.
  • the resonance frequency of the power reception resonance coil included in the mobile phone is set to 15 MHz
  • the resonance frequency of the power reception resonance coil included in the personal computer is set to 16 MHz
  • the resonance frequency of the power reception resonance coil included in the tablet PC is set to 14 MHz.
  • a power supply resonance coil having resonance frequencies of 14 MHz, 15 MHz, and 16 MHz is prepared on the power transmission device side, and the power transmission frequency of the AC power transmitted from the AC power supply to the power supply resonance coil is freely converted to 14 MHz, 15 MHz, or 16 MHz.
  • power may be individually transmitted as magnetic field energy via the power supply resonance coil and the power reception resonance coil that resonate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 従来とは全く異なる視点に立った磁界共鳴状態を利用した無線電力供給システムを提供することを目的とし、無線電力供給システム101において、給電共振器102と受電共振器103とを共振させることにより磁界エネルギーとして送電された電力が所定の有効電力以上となる給電共振器102と受電共振器103との位置関係(距離C)を電力供給範囲Fとしている。こうすることで、上記位置関係を保持した電力供給範囲Fだけに所定の有効電力を送電することができる。一方、受電共振器103が当該電力供給範囲Fを外れた場合には、電力は送電されない。

Description

無線電力供給システム
 本発明は、磁界共鳴状態を創出することにより非接触で電力を送電する無線電力供給システムに関する。
 従来、無線による電力供給技術としては、電磁誘導を利用した技術、電波を利用した技術が知られている。これに加えて、近年、磁界共鳴状態を利用した無線電力供給技術が提案されている。
 この磁界共鳴状態(磁気共鳴、磁場共鳴、磁界共振とも言われる)を利用した電力供給技術は、共振する2つの共振器間で磁場を結合させることにより、エネルギー(電力)の送電を可能とする技術である。このような磁界共鳴状態を利用した無線電力供給技術によれば、電磁誘導を利用した無線電力供給技術に比べて、エネルギー(電力)の送電距離を長くすることができる。
 例えば、特許文献1には、送電共振コイルと受電共振コイルとの間の距離が変動した場合でも、送電共振コイルの共振周波数及び受電共振コイルの共振周波数を変更することにより、送電共振コイルと受電共振コイルとの間の結合強度を逐次変更して共鳴状態を維持することで送電装置から受電装置への電力の送電効率の低下を防止することができる無線電力供給システムが開示されている。また、特許文献2には、送電コイルと受電コイルとの結合強度を変化させることによって、装置全体の送電効率を高めることができる無線電力装置が開示されている。さらに、特許文献3には、給電コイルと給電コイルの間に給電側共鳴コイルと受電側共鳴コイルとを設けて非接触で電力を供給する給電システムにおいて、給電側共鳴コイルと受電側共鳴コイルの距離が変化しても電力供給効率を維持あるいは向上できる給電システムが開示されている。
特開2010-239769 特開2010-239777 特開2010-124522
 このように、近年において、各文献1~3においても開示されているように、磁界共鳴状態を利用した無線電力供給技術が注目されており、この磁界共鳴状態を利用したさらなる電力供給システムが要望されている。
 そこで、本発明の目的は、従来とは全く異なる視点に立った磁界共鳴状態を利用した無線電力供給システムを提供することにある。
 上記課題を解決するための発明の一つは、給電共振器と受電共振器とを共振させることにより磁界エネルギーとして送電された電力が所定の有効電力以上となる前記給電共振器と前記受電共振器との位置関係を電力供給範囲としたことを特徴とする無線電力供給システムである。
 上記の構成によれば、給電共振器と受電共振器との位置関係を、給電共振器と受電共振器とを共振させることにより磁界エネルギーとして送電された電力が所定の有効電力以上となるように設定することにより、給電共振器と受電共振器とが上記位置関係に置かれたときにだけ、電力供給範囲として所定の有効電力を送電することができる。
 また、上記課題を解決するための発明の一つは、電力を供給する電力供給部と、前記電力供給部から供給された前記電力を、磁界エネルギーとして送電する給電共振器と、前記給電共振器と同一の共振周波数を有し、前記給電共振器から送電された前記磁界エネルギーを電力として受電する受電共振器と、前記受電共振器が受電した前記電力が出力され、当該電力が所定の有効電力以上であるときに作動する電力受給部と、を備えた無線電力供給システムであって、前記給電共振器と前記受電共振器との位置関係は、前記共振周波数の帯域において、前記給電共振器に供給される電力に対する前記電力受給部に出力される電力の比率が前記有効電力以上となるように設定されていることを特徴としている。
 上記の構成によれば、給電共振器及び受電共振器を共振周波数において同調させて、給電共振器と受電共振器との間に磁界共鳴状態を創出することによって、電力供給部から供給された電力を磁界エネルギーとして給電共振器から受電共振器へ無線により送電することができる。そして、電力受給部は、その送電された電力が所定の有効電力以上であるときに作動することができる。
 そして、給電共振器と受電共振器との位置関係を、共振周波数の帯域において、給電共振器に供給される電力に対する電力受給部に出力される電力の比率が有効電力以上となるように設定することにより、当該位置関係では受電共振器は高効率で有効電力を受電することができる。一方で、受電共振器が当該位置関係を外れた位置に置かれた場合、受電共振器の受電効率は低下して所定の有効電力を受電することができない。こうすることにより、給電共振器と受電共振器とが上記位置関係に置かれたときにだけ、電力受給部が作動するのに必要な有効電力が当該電力受給部に出力されることになる。
 また、上記課題を解決するための発明の一つは、上記無線電力供給システムにおいて、前記給電共振器は、前記電力供給部に接続された給電コイルと給電共振コイルとを有し、前記受電共振器は、前記電力受給部に接続された受電コイルと受電共振コイルとを有することを特徴としている。
 上記の構成によれば、給電コイルと給電共振コイルとの間において、磁界共鳴状態を創出することなく電磁誘導を用いることにより、給電コイルから給電共振コイルに電力を送電することができる。また、同様に、受電共振コイルと受電コイルとの間において、磁界共鳴状態を創出することなく電磁誘導を用いることにより、受電共振コイルから受電コイルに電力を送電することができる。これにより、給電コイルと給電共振コイルとの間、及び、受電共振コイルと受電コイルとの間において共振周波数で同調させる必要がなくなるので設計の簡易化が図れる。
 また、上記課題を解決するための発明の一つは、上記無線電力供給システムにおいて、前記給電コイルと前記給電共振コイルとの間の第1距離、及び、前記受電共振コイルと前記受電コイルとの間の第2距離の少なくとも一つを自由に設定可能なことを特徴としている。
 上記の構成によれば、給電コイルと給電共振コイルとの間の第1距離、及び、受電共振コイルと受電コイルとの間の第2距離の少なくとも一つを所望の値に設定することにより、共振周波数の帯域において、給電共振コイルに供給される電力に対する電力受給部に出力される電力の比率が有効電力以上となる位置を自由に設定することができる。
 また、上記課題を解決するための発明の一つは、給電共振器と受電共振器とを共振させることにより磁界エネルギーとして送電された電力が所定の有効電力以上となる前記給電共振器と前記受電共振器との位置関係を電力供給範囲としたことを特徴とする無線電力供給方法である。
 上記の方法によれば、給電共振器と受電共振器との位置関係を、給電共振器と受電共振器とを共振させることにより磁界エネルギーとして送電された電力が所定の有効電力以上となるように設定することにより、給電共振器と受電共振器とが上記位置関係に置かれたときにだけ、電力供給範囲として所定の有効電力を送電することができる。
 従来とは全く異なる視点に立った磁界共鳴状態を利用した無線電力供給システムを提供することができる。
本発明に係る無線電力供給システムの説明図である。 実施例1に係る無線電力供給システムの概略構成図である。 給電共振コイルと受電共振コイルとの間の距離Cを変動させた場合における挿入損失の測定結果を示した図である。 給電共振コイルと受電共振コイルとの間の距離Cを変動させた場合の送電効率を、青色LEDの発光具合により説明した説明図である。 実施形態1に係る無線電力供給システムの説明図である。 実施例2に係る無線電力供給システムの概略構成図である。 給電コイルと給電共振コイルとの間の距離A、及び、受電共振コイルと受電コイルとの間の距離Bを変えた場合における送電効率が最大となる距離Cについて説明した説明図である。 実施形態2に係る無線電力供給システムの説明図である。 実施形態3に係る無線電力供給システムの説明図である。
 まず、以下に本発明に係る無線電力供給システム及び無線電力供給方法の概要を図1に基づいて説明する。
 本発明に係る無線電力供給システム101は、図1に示すように、給電共振器102と受電共振器103とを共振させることにより磁界エネルギーとして送電された電力が所定の有効電力以上となる前記給電共振器102と前記受電共振器103との位置関係(距離C)を電力供給範囲Fとしている。
 ここで、給電共振器102及び受電共振器103とは、例えば、コイルを使用した共振器で、スパイラル型やソレノイド型やループ型などのコイルが挙げられる。共振とは、給電共振器102及び受電共振器103が共振周波数において同調することをいう(例えば、交流電源106から、給電共振器102及び受電共振器103が有する共振周波数と同一の周波数の電力が出力されることにより実現される)。所定の有効電力とは、受電共振器103側で必要な電力のことをいい、要望の電力によって設定される値である(例えば、電力受給部109の可動に必要な電力)。給電共振器102と受電共振器103との位置関係とは、給電共振器102に使用されたコイルのコイル面と受電共振器103に使用されたコイルのコイル面同士が直交しないように対向配置した場合のコイル面同士の間の直線距離のことをいう(図1では、距離Cで表記)。電力供給範囲Fとは、所定の有効電力以上の電力が送電される範囲である(図1では、距離CがY~Y´を満たす範囲)。
 これにより、給電共振器102と受電共振器103との位置関係を、給電共振器102と受電共振器103とを共振させることにより磁界エネルギーとして送電された電力が所定の有効電力以上となるように設定することにより、上記位置関係を保持した電力供給範囲Fだけに所定の有効電力を送電することができる。一方、受電共振器103が当該電力供給範囲Fを外れた場合には、電力は送電されない。
 (実施例1)
 次に、上記で説明した無線電力供給システム101を簡易な構成で実現した無線電力供給システム1について説明する。図2に示した無線電力供給システム1は、給電共振器2と受電共振器3とを含むシステムであり、給電共振器2から受電共振器3に電力を磁界エネルギーとして送電する。給電共振器2は、図2に示すように、その内部に給電コイル4と、給電共振コイル5とを有する。そして、給電コイル4は交流電源6(電力供給部)に接続されている。また、受電共振器3は、その内部に受電コイル7と、受電共振コイル8とを有する。そして、受電コイル7は青色LED9(電力受給部)に接続されている。
 交流電源6は、給電共振コイル5及び受電共振コイル8の共振周波数と同一の周波数である16MHzで電力を出力する。そのため、給電共振コイル5及び受電共振コイル8は、共振周波数である16MHzで共振する。なお、本実施形態では、交流電源6から0.5Wの電力を出力する。
 青色LED9は、主に窒化ガリウムを材料とする、青色の光を発光するダイオードである。この青色LED9は、発光に必要な有効電力である0.35W以上の電力が入力された場合に青色に発光する。一方で、この青色LED9は、有効電力0.35Wよりも少ない電力が入力された場合には発光しないように構成されている。
 給電コイル4は、交流電源6から得られた電力を電磁誘導によって給電共振コイル5に供給する役割を果たす。この給電コイル4は、一辺2mmの角形タイプの銅線材(絶縁被膜付)を1回巻にしたコイル径80mmφのコイルによって形成されている。
 このように、給電コイル4を介し、電磁誘導によって給電共振コイル5に電力を送電させることにより、給電共振コイル5と他の回路との電気的な接続が不要となり、給電共振コイル5を任意に、かつ、高精度に設計することができるようになる。
 受電コイル7は、給電共振コイル5から受電共振コイル8に磁界エネルギーとして送電された電力を電磁誘導によって青色LED9に出力する役割を果たす。この受電コイル7は、給電コイル4と同様に、一辺2mmの角形タイプの銅線材(絶縁被膜付)を1回巻にしたコイル径80mmφのコイルによって形成されている。
 そして、磁界共鳴状態下で受電共振コイル8に送電された電力は、受電共振コイル8から受電コイル7に電磁誘導によってエネルギーが移動する。受電コイル7は、青色LED9に電気的に接続されており、電磁誘導によって受電コイル7に移動したエネルギーは電力として青色LED9に出力される。
 このように受電コイル7を介し、電磁誘導によって受電共振コイル8から青色LED9に電力を送電することで、受電共振コイル8と他の回路との電気的な接続が不要となり、受電共振コイル8を任意に、かつ、高精度に設計することができるようになる。
 給電共振コイル5及び受電共振コイル8は、図2に示すように、それぞれLC共振回路であり、磁界共鳴状態を創出する役割を果たす。なお、本実施形態では、LC共振回路のコンデンサ成分については素子によって実現しているが、コイルの両端を開放し、浮遊容量によって実現してもよい。このLC共振回路では、インダクタンスをL、コンデンサ容量をCとすると、(式1)によって定まるfが共振周波数となる。
       f=1/(2π√(LC))・・・(式1)
 また、給電共振コイル5及び受電共振コイル8は、双方とも一辺2mmの角形タイプの銅線材(絶縁被膜付)を3回巻にしたコイル内径100mmφ、コイル外径124mmφのコイルによって形成されている。また、給電共振コイル5及び受電共振コイル8は、(式1)によって定まる共振周波数fを同一とする必要があるため、共振周波数を16MHzとしている。なお、共振周波数を同一とするためには、必ずしも同一の形状である必要はない。
 そして、本実施形態では、図2に示すように、給電コイル4の内径と給電共振コイル5の内径との間の距離を10mmとしたうえで同一の平面基板に給電共振器2としてプリント配置しているが、給電コイル4と給電共振コイル5との配置は、電磁誘導が発生可能な距離および配置であればよい。また、同様に、受電コイル7の内径と受電共振コイル8の内径との間の距離を10mmとしたうえで同一の平面基板に受電共振器3としてプリント配置しているが、受電コイル7と受電共振コイル8との配置は、電磁誘導が発生可能な距離および配置であればよい。
 上記のように、給電共振コイル5の共振周波数と受電共振コイル8の共振周波数とを同一値とした場合、給電共振コイル5と受電共振コイル8との間に磁界共鳴状態を創出することができる。給電共振コイル5が共振した状態で磁界共鳴状態が創出されると、給電共振コイル5から受電共振コイル8に電力を磁界エネルギーとして送電することができる。
 また、給電共振コイル5と受電共振コイル8との間の距離をCとして、給電共振器2の給電共振コイル5と受電共振器3の受電共振コイル8との位置関係を、給電共振コイル5と受電共振コイル8との間の距離Cが、100mmとなるように配置している。
 ここで、給電共振コイル5と受電共振コイル8との間の距離Cを、100mmとしている理由を以下に説明する。まず、図3及び図4を参照して、無線電力供給システム1において、給電コイル4と給電共振コイル5とを同一基板に固定し、受電共振コイル8と受電コイル7とを同一基板に固定したうえで、給電共振コイル5と受電共振コイル8との間の距離Cが変動した場合における送電効率の変化について説明する。なお、送電効率を計測するにあたって、給電コイル4には、交流電源6の代わりにネットワークアナライザ(アジレント・テクノロジー株式会社製)の出力端子を接続し、受電コイル7には、青色LED9の代わりにネットワークアナライザの入力端子を接続して、図3では、横軸を伝送周波数とし、縦軸を挿入損失『S21』として測定した。また、図4では、グラフの横軸を距離Cとし、縦軸を送電効率として説明する。
 ここで、送電効率とは、給電共振器に供給される電力に対する電力受給部に出力される電力の比率のことをいう。即ち、電力が、給電共振器から受電共振器に電送される際のエネルギー転送効率のことである。挿入損失『S21』とは、出力端子から信号を入力したときの入力端子を通過する信号を表しており、デシベル表示され、数値が大きいほど送電効率が高いことを表す。即ち、挿入損失『S21』が高いほど、給電共振器2に供給される電力に対する電力受給部としての青色LED9に出力される電力の比率(送電効率)が高くなることを意味する。
 以下に、図3及び図4を参照して、給電共振コイル5と受電共振コイル8との間の距離Cを変動させた場合における挿入損失『S21』及び送電効率の測定結果について説明する。図3(a)は、距離C=37mmとした場合の挿入損失『S21』の測定結果である。図3(b)は、距離C=50mmとした場合の挿入損失『S21』の測定結果である。図3(c)は、距離C=70mmとした場合の挿入損失『S21』の測定結果である。図3(d)は、距離C=100mmとした場合の挿入損失『S21』の測定結果である。図3(e)は、距離C=150mmとした場合の挿入損失『S21』の測定結果である。図3(f)は、距離C=200mmとした場合の挿入損失『S21』の測定結果である。
 給電共振コイル5と受電共振コイル8との間の磁界共鳴状態において、伝送される磁界エネルギーがピークとなる伝送周波数(送電効率が最大となる伝送周波数)は、共振周波数近傍(本実施形態では16MHz)である。しかしながら、図3の(a)~(c)が示すように、給電共振コイル5と受電共振コイル8との間の距離Cがある程度近くなると(C=37mm、50mm、70mm)、『S21』の値が最大となる伝送周波数に分離が確認され、共振周波数近傍では『S21』の値が低くなる。即ち、給電共振コイル5と受電共振コイル8との間の距離Cがある程度近くなると、図4に示すように、共振周波数帯域では、送電効率が低下することがわかる。
 一方、図3の(d)が示すように、給電共振コイル5と受電共振コイル8との間の距離Cを100mmに設定すると(本実施形態)、共振周波数近傍で『S21』の値が最大となる。即ち、給電共振コイル5と受電共振コイル8との間の距離Cを100mmに設定すると、図4に示すように、共振周波数(16MHz)帯域で、送電効率が最大となることがわかる(送電効率74%)。
 また、図3の(e)(f)が示すように、給電共振コイル5と受電共振コイル8との間の距離Cがある程度遠くなると(C=150mm、200mm)、『S21』の値が最大となる伝送周波数に分離こそ見られないが、共振周波数近傍では『S21』の値が低くなる。即ち、給電共振コイル5と受電共振コイル8との間の距離Cがある程度遠くなると、図4に示すように、共振周波数帯域では、送電効率が低下することがわかる。
 以上のように、給電共振コイル5と受電共振コイル8との間の距離Cを100mmに設定しているのは、共振周波数(16MHz)の帯域において、給電共振コイル5と受電共振コイル8との間を青色LED9の発光に必要な有効電力が十分に送電されるように、送電効率を最大にするためである。
 なお、本実施例では、距離Cを100mmに設定しているが、青色LED9の発光に必要な有効電力が0.35Wであるため、距離Cは送電効率が70%以上となる距離であればよい。具体的には、図4に示すように、距離Cが88mm~105mmの間に設定されれば、共振周波数(16MHz)帯域において、送電効率が70%以上となり青色LED9の発光に必要な0.35W以上の有効電力が送電される。ここで、距離Cが88mm~105mmの間を、青色LED9の発光に必要な0.35W以上の有効電力が送電可能な電力供給範囲という。
 (動作)
 このように構成された無線電力供給システム1では、交流電源6から給電コイル4に供給された電力(0.5W)は、給電コイル4と給電共振コイル5との間の電磁誘導を経て、給電共振コイル5と受電共振コイル8との間の磁界共鳴状態を利用して送電効率74%で送電されて、受電共振コイル8と受電コイル7との間の電磁誘導を経て、青色LED9の発光に必要な有効電力0.35W以上の値で出力される。そして、有効電力を得た青色LED9は青色に発光する。
 次に、図4を参照して、無線電力供給システム1において、給電共振コイル5と受電共振コイル8との間の距離Cを変動させた場合の送電効率の変化を、青色LED9の発光具合(動作)により比較して説明する。
 なお、本実施例では、交流電源6は、給電共振コイル5及び受電共振コイル8の共振周波数と同一の周波数である16MHzで0.5Wの電力を出力する。また、交流電源6から出力される電力が0.5Wであるため、有効電力0.35W以上の青色LED9が青色に発光するためには、送電効率が70%以上であることが必要であり、送電効率が70%よりも少ない場合には発光しない。
 (比較例1)
 図4(a)に示すように、距離Cを20mmとすると、共振周波数(16MHz)帯域において、送電効率は約4%となり極めて低く、青色LED9は発光しない。
 (比較例2)
 次に、図4(b)に示すように、距離Cを50mmとすると、共振周波数(16MHz)帯域において、送電効率は約39%となるが、青色LED9の発光に必要な有効電力には達しないため発光しない。
 (本実施例)
 次に、図4(c)に示すように、距離Cを100mmとすると、共振周波数(16MHz)帯域において、送電効率は約74%と高くなり、青色LED9の発光に必要な有効電力に達したため、青色LED9が発光する。
 (比較例3)
 次に、図4(d)に示すように、距離Cを150mmとすると、共振周波数(16MHz)帯域において、送電効率は約27%と低下して、青色LED9は発光しない。
 このように図4のグラフを参照すると、距離Cが88mm~105mmの間に設定された場合には(電力供給範囲)、共振周波数(16MHz)帯域において、送電効率が70%以上(有効電力0.35W以上)となり青色LED9が発光し、それ以外の値に距離Cが設定された場合には、送電効率が70%未満(有効電力0.35W未満)となり青色LED9は発光しないことがわかる。即ち、所定の有効電力以上の電力が送電される範囲である電力供給範囲が現実に存在し、その電力供給範囲の存在により本発明が十分に実現できることがわかる。
 上記の無線電力供給システム1(無線電力供給方法)によれば、給電共振器2及び受電共振器3を共振周波数16MHzにおいて同調させて、給電共振器2と受電共振器3との間に磁界共鳴状態を創出することによって、交流電源6から供給された電力(0.5W)を磁界エネルギーとして給電共振器2から受電共振器3へ無線により送電することができる。そして、青色LED9は、発光に必要な有効電力である0.35W以上の電力が入力された場合に青色に発光し、有効電力0.35Wよりも少ない電力が入力された場合には発光しないように構成されている。
 そして、給電共振器2の給電共振コイル5と受電共振器3の受電共振コイル8との間の距離Cを、共振周波数16MHzの帯域において、給電共振器2に供給される電力に対する青色LED9に出力される電力の比率(送電効率)が70%以上、即ち、青色LED9の発光に必要な有効電力である0.35W以上が出力される状態になるように、88mm~105mmの間である100mmに設定している。こうすることにより、距離Cが約88mm~約105mmの間に設定されている場合には、受電共振器3は有効電力0.35W以上を受電して青色LED9に有効電力を出力して発光させることができる。一方で、距離Cが88mm~105mmの間を外れた場合には、受電共振器3が受電する電力の送電効率は低下して青色LED9の発光に必要な有効電力を受電することができなくなる。このため、給電共振器2の給電共振コイル5と受電共振器3の受電共振コイル8とが位置関係、即ち、距離Cが88mm~105mmの間に設定されたときにだけ、青色LED9が発光するのに必要な有効電力を出力させて青色LED9を発光させることができる。
 即ち、給電共振器2の給電共振コイル5と受電共振器3の受電共振コイル8との位置関係を距離Cが88mm~105mmの間に設定されるように配置することにより、給電共振コイル5と受電共振コイル8とを共振させることにより磁界エネルギーとして送電される電力を有効電力(0.35W)以上とすることができる。このため、給電共振器2と受電共振器3とが上記位置関係に置かれたときにだけ、電力供給範囲として有効電力を送電することができる。
 また、上記の構成によれば、給電コイル4と給電共振コイル5との間において、磁界共鳴状態を創出することなく電磁誘導を用いることにより、給電コイル4から給電共振コイル5に電力を送電することができる。また、同様に、受電共振コイル8と受電コイル7との間において、磁界共鳴状態を創出することなく電磁誘導を用いることにより、受電共振コイル8から受電コイル7に電力を送電することができる。これにより、給電コイル4と給電共振コイル5との間、及び、受電共振コイル8と受電コイル7との間において共振周波数で同調させる必要がなくなるので設計の簡易化が図れる。
 (実施形態1)
 具体例として、上記実施例1で説明した本発明に係る無線電力供給システムを実施形態1に係る無線電力供給システム201にあてはめて説明する。
 図1及び図4に示すグラフより、給電共振器及び受電共振器を共振周波数において同調させて給電共振器と受電共振器との間が磁界共鳴状態にある場合において、給電共振器と受電共振器との間の距離を変化させた場合の送電効率を測定した場合、ピーク点を有する山なりの線を描くことがわかっている。即ち、給電共振器と受電共振器との間の距離をピーク点の位置に配置すると、送電効率が最大となる。また、給電共振器と受電共振器との間の距離がピーク点よりも近くなると、送電効率が低下することがわかる。また、給電共振器と受電共振器との間の距離がピーク点よりも離れると、送電効率が低下することがわかる。ここで、送電効率とは、給電共振器に供給される電力に対する受電共振器から出力される電力の比率のことをいう。
 そして、実施形態1に係る無線電力供給システム201は、給電共振器と受電共振器との位置関係を変化させた場合に送電効率が変化することを利用した無線電力供給システムである。
 (無線電力供給システム201の構成)
 図5は、実施形態1に係る無線電力供給システム201の説明図である。図5に示した無線電力供給システム201は、オフィス220の壁に掛けられた送電装置210と、机221に置かれた携帯電話212などの受電装置から構成される。送電装置210は、交流電源206と給電共振器202を備え、給電共振器202は、交流電源206に接続された給電コイル204と給電共振コイル205から構成されている。また、携帯電話212などの受電装置は、電力受給部209と受電共振器203を備え、受電共振器203は電力受給部209に接続された受電コイル207と受電共振コイル208から構成されている。なお、図5に示すように、携帯電話212は、送電装置210から距離X”分離れて人間226が所持した状態から、送電装置210から距離X´分離れて机221の上に置かれた状態に移動されるものとして説明する。
 給電コイル204は、交流電源206から得られた電力を電磁誘導によって給電共振コイル205に供給する役割を果たす。ここで、給電コイル204と給電共振コイル205との間の距離をAとする。なお、給電コイル204と給電共振コイル205との配置は、電磁誘導が発生可能な距離および配置であればよい。
 このように、給電コイル204を介し、電磁誘導によって給電共振コイル205に電力を送電させることにより、給電共振コイル205と他の回路との電気的な接続が不要となり、給電共振コイル205を任意に、かつ、高精度に設計することができるようになる。
 受電コイル207は、給電共振コイル205から受電共振コイル208に磁界エネルギーとして送電された電力を電磁誘導によって電力受給部209に出力する役割を果たす。ここで、受電共振コイル208と受電コイル207との間の距離をBとする。なお、受電コイル207と受電共振コイル208との配置は、電磁誘導が発生可能な距離および配置であればよい。
 そして、磁界共鳴状態下で受電共振コイル208に送電された電力は、受電共振コイル208から受電コイル207に電磁誘導によってエネルギーが移動する。受電コイル207は、電力受給部209に電気的に接続されており、電磁誘導によって受電コイル207に移動したエネルギーは電力として電力受給部209に出力される。
 このように受電コイル207を介し、電磁誘導によって受電共振コイル208から電力受給部209に電力を送電することで、受電共振コイル208と他の回路との電気的な接続が不要となり、受電共振コイル208を任意に、かつ、高精度に設計することができるようになる。
 給電共振コイル205及び受電共振コイル208は、それぞれLC共振回路であり、磁界共鳴状態を創出する役割を果たす。なお、本実施形態では、LC共振回路のコンデンサ成分については素子によって実現しているが、コイルの両端を開放し、浮遊容量によって実現してもよい。このLC共振回路では、インダクタンスをL、コンデンサ容量をCとすると、(式1)によって定まるfが共振周波数となる。
 また、給電共振コイル205及び受電共振コイル208は、(式1)によって定まる共振周波数fを同一とする必要がある。なお、共振周波数fを同一とするためには、必ずしも同一の形状である必要はない。
 上記のように、給電共振コイル205の共振周波数と受電共振コイル208の共振周波数とを同一値とした場合、給電共振コイル205と受電共振コイル208との間に磁界共鳴状態を創出することができる。給電共振コイル205が共振した状態で磁界共鳴状態が創出されると、給電共振コイル205から受電共振コイル208に電力を磁界エネルギーとして送電することができる。
 また、送電装置210の給電共振コイル205と携帯電話212の受電共振コイル208との間の距離をCとして、図5に示すように、人間226が所持した携帯電話212(受電共振コイル208)は、送電装置210(給電共振コイル205)から距離X”分離れた位置にある。そして、机221の上に移動された携帯電話212(受電共振コイル208)は、送電装置210(給電共振コイル205)から距離X´分離れた位置にある。
 交流電源206は、給電共振コイル205及び受電共振コイル208の共振周波数と同一の周波数で電力を出力する。
 電力受給部209は、受電コイル207に接続された整流回路と、整流回路に接続された充電制御装置と、充電制御装置に接続されたバッテリを備えている。電力受給部209は、受電コイル207から送電された電力を整流回路及び充電制御装置を介してバッテリに蓄電する役割を果たす。なお、バッテリとしては、例えば、ニッケル水素電池やリチウムイオン電池やその他の二次電池が挙げられる。また、充電制御装置は、バッテリの充電に必要な有効電力が入力された場合に充電するように制御する役割を果たす。故に、有効電力よりも少ない電力が入力された場合にはバッテリには充電されないように構成されている。なお、給電共振器202に供給される電力に対する受電共振器203から出力される電力の比率(送電効率)が70%以上であればバッテリの充電に必要な有効電力が入力されるものとする(図5参照)。
 (動作)
 このように構成された無線電力供給システム201では、交流電源206から供給される電力が、給電コイル204と給電共振コイル205との間の電磁誘導、給電共振コイル205と受電共振コイル208との間の磁界共鳴状態を利用した送電、受電共振コイル208と受電コイル207との間の電磁誘導を経て、送電装置210の給電共振コイル205と受電共振コイル208との間の距離CがX’となるように机221の上に置かれた携帯電話212の電力受給部209に供給される。一方、送電装置210の給電共振コイル205と受電共振コイル208との間の距離CがX”となるように人間226が所持している場合は、携帯電話212には電力は供給されない。
 このように机221の上に置かれた携帯電話212の電力受給部209のバッテリに充電がなされるのは、送電装置210の給電共振コイル205と受電共振コイル208との間の距離Cが、共振周波数の帯域において、携帯電話212のバッテリの充電に必要な有効電力を確保できるように送電効率70%以上となる距離X’に設定されていることによるものである。なお、本実施形態では、距離C=X’としているが、距離Cは送電効率が70%以上となる距離であればよい。具体的には、図5に示すように、距離CがY~Y’の間に設定されれば、共振周波数帯域において、送電効率が70%以上となり携帯電話のバッテリの充電に必要な有効電力が送電される。ここで、距離CがY~Y’の間を、電力受給部209のバッテリの充電に必要な有効電力が送電可能な電力供給範囲Fという。
 一方、人間226が携帯電話212を所持している場合に、携帯電話212の電力受給部209のバッテリに充電がなされないのは、送電装置210の給電共振コイル205と携帯電話212の受電共振コイル208との間の距離Cが、共振周波数の帯域において、携帯電話212の電力受給部209のバッテリの充電に必要な有効電力を確保できない(送電効率70%未満となる)距離X”に設定されていることによるものである。即ち、図5に示すように人間226が携帯電話212を所持している場合には、携帯電話212が電力供給範囲Fの外にあるので、携帯電話212のバッテリには充電がなされない。
 これにより、携帯電話212が電力供給範囲F外にある場合は充電ができないが、携帯電話212が電力供給範囲F内に持ち込まれた場合には充電可能とすることができる。即ち、限られた範囲(電力供給範囲F)においてのみ携帯電話212のバッテリに充電ができることになる。
 (無線電力供給方法)
 これを、無線電力供給方法として説明すると、まず、送電装置210がオフィス220の壁に固定されているとして、電力供給範囲Fを、共振周波数の帯域において携帯電話212のバッテリの充電に必要な有効電力を確保できる送電効率70%以上となるように距離Y~Y’の範囲に設定する。そして、携帯電話212を、送電装置210の給電共振コイル205と携帯電話212の受電共振コイル208との間の距離Cが距離Y~Y’の範囲(電力供給範囲F)内に入るように机221の上に移動させる。すると、交流電源206から供給される電力が、給電コイル204と給電共振コイル205との間の電磁誘導、給電共振コイル205と受電共振コイル208との間の磁界共鳴状態を利用した送電、受電共振コイル208と受電コイル207との間の電磁誘導を経て、受電コイル207から送電された電力が電力受給部209が備える整流回路及び充電制御装置を介してバッテリの充電に必要な有効電力としてバッテリに蓄電される。
 上記の構成によれば、図5に示す電力供給範囲Fに携帯電話212などの受電装置が置かれた場合にだけ、電力受給部209が備えるバッテリに充電ができる。
 (実施例2)
 以下に、図6及び図7を参照して、実施例2に係る無線電力供給システム301を説明する。
 ここでは、図6及び図7を参照して、無線電力供給システム301において給電コイル304と給電共振コイル305との間の距離A、及び、受電共振コイル308と受電コイル307との間の距離Bの少なくとも一つを変えることにより、送電効率が最大となる給電共振コイル305と受電共振コイル308との間の距離Cを自由に設定することができることを説明する。
 (無線電力供給システム301の構成)
 図6に示した無線電力供給システム301は、給電共振器302と受電共振器303とを含むシステムであり、給電共振器302から受電共振器303に電力を磁界エネルギーとして送電する。給電共振器302は、図6に示すように、その内部に給電コイル304と、給電共振コイル305とを有する。また、受電共振器303は、その内部に受電コイル307と、受電共振コイル308とを有する。
 給電コイル304及び受電コイル307は、線径1mmφの円形の銅線材(絶縁被膜付)を1回巻にしたコイル径100mmφのコイルによって形成している。そして、給電コイル304には、交流電源の代わりにネットワークアナライザ340(アジレント・テクノロジー株式会社製)の出力端子341を接続し、受電コイル307には、ネットワークアナライザの入力端子342を接続している。
 ネットワークアナライザ340は、任意の周波数で交流電力を出力端子341から給電コイル304に出力可能としている。また、ネットワークアナライザ340は、受電コイル307から入力端子342に入力された電力を測定可能としている。更に、ネットワークアナライザ340は、図7に示すような送電効率を測定可能としている。
 給電共振コイル305及び受電共振コイル308は、それぞれLC共振回路であり、給電共振コイル305及び受電共振コイル308は、線径1mmφの円形の銅線材(絶縁被膜付)をソレノイド状に3回巻にしたコイル径100mmφのコイルによって形成されている。また、給電共振コイル305及び受電共振コイル308は、(式1)によって定まる共振周波数fを同一とする必要があるため、共振周波数を15MHzとしている。
 また、給電コイル304と給電共振コイル305との間の距離Aとは、給電コイル304のコイル面と給電共振コイル305のコイル面同士が直交しないように対向配置した場合のコイル面同士の間の直線距離のことをいう。同様に、受電共振コイル308と受電コイル307との間の距離Bとは、受電コイル307のコイル面と受電共振コイル308のコイル面同士が直交しないように対向配置した場合のコイル面同士の間の直線距離のことをいう。また、給電共振コイル305と受電共振コイル308との間の距離Cとは、給電共振コイル305のコイル面と受電共振コイル308のコイル面同士が直交しないように対向配置した場合のコイル面同士の間の直線距離のことをいう
 次に、上記無線電力供給システム301を使用して、給電コイル304と給電共振コイル305との間の距離A、及び、受電共振コイル308と受電コイル307との間の距離Bを変えた場合における送電効率が最大となる給電共振コイル305と受電共振コイル308との間の距離Cについてのネットワークアナライザ340での測定結果を、図7を参照して説明する。なお、図7のグラフでは、横軸を距離Cとし、縦軸を送電効率としている。
 図7のグラフに示す設計Iの折れ線は、給電コイル304と給電共振コイル305との間の距離A、及び、受電共振コイル308と受電コイル307との間の距離Bをともに1mm(A=B=1mm)に設定した場合において、給電共振コイル305と受電共振コイル308との間の距離Cを変動させた場合の送電効率をプロットしたものである。これによると、距離Cが20mmに設定された場合に送電効率が最大となることがわかる。
 次に、設計IIの折れ線は、給電コイル304と給電共振コイル305との間の距離A、及び、受電共振コイル308と受電コイル307との間の距離Bをともに7mm(A=B=7mm)に設定した場合において、給電共振コイル305と受電共振コイル308との間の距離Cを変動させた場合の送電効率をプロットしたものである。これによると、距離Cが50mmに設定された場合に送電効率が最大となることがわかる。
 次に、設計IIIの折れ線は、給電コイル304と給電共振コイル305との間の距離A、及び、受電共振コイル308と受電コイル307との間の距離Bをともに17mm(A=B=17mm)に設定した場合において、給電共振コイル305と受電共振コイル308との間の距離Cを変動させた場合の送電効率をプロットしたものである。これによると、距離Cが100mmに設定された場合に送電効率が最大となることがわかる。
 以上により、給電コイル304と給電共振コイル305との間の距離Aや受電共振コイル308と受電コイル307との間の距離Bを変えることにより、送電効率が最大となる給電共振コイル305と受電共振コイル308との間の距離Cが変わることがわかる。
 (実施形態2)
 上記実施例2に係る測定結果を踏まえて、実施形態2に係る無線電力供給システム401について説明する。実施形態2に係る無線電力供給システム401は、給電コイル404と給電共振コイル405との間の距離A、及び、受電共振コイル408と受電コイル407との間の距離Bの少なくとも一つを変えることにより、送電効率が最大となる給電共振コイル405と受電共振コイル408との間の距離Cを自由に設定することができることを利用した無線電力供給システムである。なお、実施形態1と同様の構成は説明を省略する。
 (無線電力供給システム401の構成)
 図8は、実施形態2に係る無線電力供給システム401の説明図である。図8に示した無線電力供給システム401は、実施形態1同様に、オフィス420の壁に掛けられた送電装置410と、机421に置かれた携帯電話412などの受電装置から構成される。送電装置410は、交流電源406と給電共振器402と調整器418とを備え、給電共振器402は、交流電源406と接続された給電コイル404と給電共振コイル405を備えている。調整器418は、給電コイル404と給電共振コイル405との間の距離Aを可変調整することが可能である。また、携帯電話412は、電力受給部409と受電共振器403を備え、受電共振器403は電力受給部409と接続された受電コイル407と受電共振コイル408から構成されている。
 まず、図8(a)に示すように、給電共振器402と受電共振器403との位置関係を、調整器418により距離A=aに可変調整して(距離Bは一定の値に固定されている)、送電効率が最大となる距離C=cに設定した場合、図8に示す電力供給範囲Gでは、送電効率が携帯電話412の電力受給部409が備えるバッテリの充電に必要な有効電力以上となる。
 上記の設定によれば、図8に示す電力供給範囲Gに携帯電話412などの受電装置が置かれた場合には、バッテリの充電が実効される。一方で、図8に示す電力供給範囲G以外の領域に携帯電話412などの受電装置が置かれた場合には、バッテリの充電は実行されない。
 次に、図8(b)に示すように、給電共振器402と受電共振器403との位置関係を、調整器418により距離A=a´に可変調整して(距離Bは一定の値に固定されている)、送電効率が最大となる距離C=c´に設定した場合、図8に示す電力供給範囲Hでは、送電効率が携帯電話412の電力受給部409が備えるバッテリの充電に必要な有効電力以上となる。
 上記の設定によれば、図8に示す電力供給範囲Hに携帯電話412などの受電装置が置かれた場合には、バッテリの充電が実効される。一方で、図8に示す電力供給範囲H以外の領域に携帯電話412などの受電装置が置かれた場合には、バッテリの充電は実行されない。
 更に、図8(c)に示すように、給電共振器402と受電共振器403との位置関係を、調整器418により距離A=a”に可変調整して(距離Bは一定の値に固定されている)、送電効率が最大となる距離C=c”に設定した場合、図8に示す電力供給範囲Iでは、送電効率が携帯電話412の電力受給部409が備えるバッテリの充電に必要な有効電力以上となる。
 上記の設定によれば、図8に示す電力供給範囲Iに携帯電話412などの受電装置が置かれた場合には、バッテリの充電が実効される。一方で、図8に示す電力供給範囲I以外の領域に携帯電話412などの受電装置が置かれた場合には、バッテリの充電は実行されない。
 上記の無線電力供給システム401を使用すれば、給電コイル404と給電共振コイル405との間の距離A、及び、受電共振コイル408と受電コイル407との間の距離Bの少なくとも一つを自由に設定することにより、共振周波数帯域において、送電効率がバッテリの充電に必要な有効電力以上となる電力供給範囲(例えば、電力供給範囲G、電力供給範囲H、電力供給範囲I)を自由に設定することができる。即ち、充電可能な電力供給範囲を自由に設定することができるようになる。
 (実施形態3)
 また、図9に示すように、オフィスに入場するための非接触型ICカードに本発明に係る無線電力供給システム601を採用してもよい。具体的には、オフィス630のドア631の脇の壁にカードリーダ610(交流電源606に接続された給電共振器602を備える)を設置し、個人識別用のICチップ609に接続された受電共振器603を備えたICカード611を用意する。そして、図9に示すように、送電効率がICチップ609の読み取りに必要な有効電力以上となる電力供給範囲Pを、ドア631の手前付近に設定する。
 上記構成によれば、ICカード611をポケット650に入れたままの人が、電力供給範囲Pを通過した場合、ICチップの読み取りが実効され、個人識別が完了したらドア631が自動的に開くようにすることができる。
 (その他の実施形態)
 また、例えば、本発明に係る無線電力供給システムは、作業ロボットや電気自動車等の電力供給装置に適用することも可能である。作業ロボットに適用した場合、当該作業ロボットの作動に必要な有効電力以上となる電力供給範囲を作業領域と定めることにより、作業ロボットが当該作業領域を外れた場合の動作をストップさせることができる。これにより、作業ロボットが何らかの理由により作業領域を外れたとしても作業ロボットへの給電を止めて動作をストップさせることができるため、作業ロボットの安全性を高めることができる。
 また、実施形態1では、送電装置210側の給電共振コイル205の共振周波数と携帯電話212側の受電共振コイル208の共振周波数とを同一値とした場合に、給電共振コイル205から携帯電話212の受電共振コイル208に電力を磁界エネルギーとして送電することができるようにしているが、これに限らない。
 例えば、携帯電話が備える受電共振コイルの共振周波数を15MHzとし、パーソナルコンピュータが備える受電共振コイルの共振周波数を16MHzとし、タブレット方PCが備える受電共振コイルの共振周波数を14MHzとしてそれぞれ電力供給範囲Fに置く。そして、送電装置側には共振周波数が14MHz、15MHz、16MHzの給電共振コイルを用意して、交流電源から給電共振コイルに送電される交流電源の送電周波数を14MHz、15MHz又は16MHzに自由に変換することで、それぞれ共振する給電共振コイル及び受電共振コイルを介して個別に電力を磁界エネルギーとして送電することができるようにしてもよい。即ち、交流電源の送電周波数を14MHzに設定して、共振周波数が14MHzの給電共振コイルに電力を供給することで、共振周波数が14MHzのタブレット方PCが備える受電共振コイルにだけ電力が送電されることになる(共振周波数が一致しない携帯電話が備える受電共振コイルやパーソナルコンピュータが備える受電共振コイルには電力が送電されない)。同様に、交流電源の送電周波数を15MHzに設定して、共振周波数が15MHzの給電共振コイルに電力を供給することで、共振周波数が15MHzの携帯電話が備える受電共振コイルにだけ電力が送電されることになる(共振周波数が一致しないパーソナルコンピュータが備える受電共振コイルやタブレットPCが備える受電共振コイルには電力が送電されない)。同様に、交流電源の送電周波数を16MHzに設定して、共振周波数が16MHzの給電共振コイルに電力を供給することで、共振周波数が16MHzのパーソナルコンピュータが備える受電共振コイルにだけ電力が送電されることになる(共振周波数が一致しない携帯電話が備える受電共振コイルやタブレットPCが備える受電共振コイルには電力が送電されない)。
 この場合、送電装置側の送電周波数を変換することによって、電力供給範囲Fに置かれた携帯電話やパーソナルコンピュータやタブレットPCのうち所望のものに電力供給が可能となる。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態に限定されず、その他の実施形態にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 1 無線電力供給システム
 2 給電共振器
 3 受電共振器
 4 給電コイル
 5 給電共振コイル
 6 交流電源
 7 受電コイル
 8 受電共振コイル
 9 青色LED

Claims (5)

  1.  給電共振器と受電共振器とを共振させることにより磁界エネルギーとして送電された電力が所定の有効電力以上となる前記給電共振器と前記受電共振器との位置関係を電力供給範囲としたことを特徴とする無線電力供給システム。
  2.  電力を供給する電力供給部と、
     前記電力供給部から供給された前記電力を、磁界エネルギーとして送電する前記給電共振器と、
     前記給電共振器と同一の共振周波数を有し、前記給電共振器から送電された前記磁界エネルギーを電力として受電する前記受電共振器と、
     前記受電共振器が受電した前記電力が出力され、当該電力が所定の有効電力以上であるときに作動する電力受給部と、
    を備え、
     前記給電共振器と前記受電共振器との位置関係は、前記共振周波数の帯域において、前記給電共振器に供給される電力に対する前記電力受給部に出力される電力の比率が前記有効電力以上となるように設定されていることを特徴とする請求項1に記載の無線電力供給システム。
  3.  前記給電共振器は、前記電力供給部に接続された給電コイルと給電共振コイルとを有し、
     前記受電共振器は、前記電力受給部に接続された受電コイルと受電共振コイルとを有することを特徴とする請求項2に記載の無線電力供給システム。
  4.  前記給電コイルと前記給電共振コイルとの間の第1距離、及び、前記受電共振コイルと前記受電コイルとの間の第2距離の少なくとも一つを自由に設定可能なことを特徴とする請求項3に記載の無線電力供給システム。
  5.  給電共振器と受電共振器とを共振させることにより電力を磁界エネルギーとして送電された電力が所定の有効電力以上となる前記給電共振器と前記受電共振器との位置関係を電力供給範囲とすることを特徴とする無線電力供給方法。
PCT/JP2012/052449 2011-02-04 2012-02-03 無線電力供給システム WO2012105675A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137023263A KR20140051140A (ko) 2011-02-04 2012-02-03 무선 전력 공급 시스템
US13/983,085 US9461506B2 (en) 2011-02-04 2012-02-03 Wireless power-supply system
EP12741907.5A EP2672607A4 (en) 2011-02-04 2012-02-03 WIRELESS POWER SUPPLY SYSTEM
CN2012800076103A CN103370850A (zh) 2011-02-04 2012-02-03 无线电力供给系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-022920 2011-02-04
JP2011022920A JP2012165527A (ja) 2011-02-04 2011-02-04 無線電力供給システム

Publications (1)

Publication Number Publication Date
WO2012105675A1 true WO2012105675A1 (ja) 2012-08-09

Family

ID=46602875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052449 WO2012105675A1 (ja) 2011-02-04 2012-02-03 無線電力供給システム

Country Status (7)

Country Link
US (1) US9461506B2 (ja)
EP (1) EP2672607A4 (ja)
JP (2) JP2012165527A (ja)
KR (1) KR20140051140A (ja)
CN (1) CN103370850A (ja)
TW (1) TW201244320A (ja)
WO (1) WO2012105675A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985861A4 (en) * 2013-02-28 2017-01-11 Nitto Denko Corporation Wireless power transmission apparatus, supply power control method for wireless power transmission apparatus, and manufacturing method for wireless power transmission apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968596B2 (ja) * 2011-04-11 2016-08-10 日東電工株式会社 無線電力供給システム
JP6144176B2 (ja) * 2013-10-15 2017-06-07 日東電工株式会社 磁界空間を形成可能な無線電力伝送装置及びその形成方法
JP6094531B2 (ja) * 2014-06-02 2017-03-15 中国電力株式会社 仮想画像を利用した作業支援システム
US10084343B2 (en) 2014-06-13 2018-09-25 Empire Technology Development Llc Frequency changing encoded resonant power transfer
US10320228B2 (en) * 2014-09-08 2019-06-11 Empire Technology Development Llc Power coupling device
US10069324B2 (en) 2014-09-08 2018-09-04 Empire Technology Development Llc Systems and methods for coupling power to devices
CN106300471A (zh) * 2015-05-29 2017-01-04 青岛众海汇智能源科技有限责任公司 一种无线充电方法及无线发射端
JP6663250B2 (ja) * 2016-02-26 2020-03-11 株式会社ジャパンディスプレイ 表示装置
CN107104517A (zh) * 2017-06-05 2017-08-29 三峡大学 一种能实现稳定电压输出的mcr‑wpt电路及其控制方法
US10283952B2 (en) 2017-06-22 2019-05-07 Bretford Manufacturing, Inc. Rapidly deployable floor power system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104868A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp 車両用充電装置、電気機器及び車両用非接触充電システム
JP2010124522A (ja) 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc 給電システム
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP2010239777A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力装置、無線電力受信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197507A (zh) * 2006-12-06 2008-06-11 北京中电华大电子设计有限责任公司 无线电源装置及电路
US20090160261A1 (en) * 2007-12-19 2009-06-25 Nokia Corporation Wireless energy transfer
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
JP4743244B2 (ja) * 2008-09-18 2011-08-10 トヨタ自動車株式会社 非接触受電装置
JP2010183813A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP5262785B2 (ja) 2009-02-09 2013-08-14 株式会社豊田自動織機 非接触電力伝送装置
JP2010233394A (ja) * 2009-03-27 2010-10-14 Aisin Aw Co Ltd 受電支援装置、受電支援方法、及び受電支援プログラム
JP5515368B2 (ja) * 2009-03-31 2014-06-11 富士通株式会社 無線電力供給方法及び無線電力供給システム
JP2010246348A (ja) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd 受電装置、及び送電装置
JP4865001B2 (ja) 2009-04-13 2012-02-01 株式会社日本自動車部品総合研究所 非接触給電設備、非接触受電装置および非接触給電システム
TW201039528A (en) * 2009-04-24 2010-11-01 Darfon Electronics Corp Energy transferring system and energy transferring side device
TWM381217U (en) 2009-12-14 2010-05-21 Micro Star Int Co Ltd Inductive charging system capable of chagring automatically

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104868A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp 車両用充電装置、電気機器及び車両用非接触充電システム
JP2010124522A (ja) 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc 給電システム
JP2010239769A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力供給システム
JP2010239777A (ja) 2009-03-31 2010-10-21 Fujitsu Ltd 無線電力装置、無線電力受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672607A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985861A4 (en) * 2013-02-28 2017-01-11 Nitto Denko Corporation Wireless power transmission apparatus, supply power control method for wireless power transmission apparatus, and manufacturing method for wireless power transmission apparatus

Also Published As

Publication number Publication date
JP2012165527A (ja) 2012-08-30
KR20140051140A (ko) 2014-04-30
US9461506B2 (en) 2016-10-04
JP2015122956A (ja) 2015-07-02
CN103370850A (zh) 2013-10-23
TW201244320A (en) 2012-11-01
JP6025893B2 (ja) 2016-11-16
US20140035385A1 (en) 2014-02-06
EP2672607A4 (en) 2016-03-30
EP2672607A1 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP6025893B2 (ja) 無線電力供給システム
US10523276B2 (en) Wireless power receiver with multiple receiver coils
JP5968596B2 (ja) 無線電力供給システム
US11349345B2 (en) Wireless power transmission device
JP2012143091A (ja) 遠隔無線駆動充電装置
US11722010B2 (en) Wireless power transmission device
TW201421848A (zh) 無線電力傳送裝置
JP2013240263A (ja) 磁界空間の形成方法
US9590454B2 (en) Power transmitter, repeater, power receiver, and wireless power transmission system
KR20210129618A (ko) 무선 전력 송수신 장치
US10879736B2 (en) Wireless power transfer systems and methods using non-resonant power receiver
JP2015213428A (ja) 無線電力供給システム
JP2013070491A (ja) 無線空間給電システム
CN110521081B (zh) 使用非谐振电能接收器的无线电能传输系统和方法
KR101883655B1 (ko) 무선 전력 수신기 및 그 제어 방법
JP2018143064A (ja) 送電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012741907

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137023263

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983085

Country of ref document: US