WO2012104306A1 - Procédé de fabrication d'acier à résistance élevée et acier fabriqué au moyen dudit procédé - Google Patents

Procédé de fabrication d'acier à résistance élevée et acier fabriqué au moyen dudit procédé Download PDF

Info

Publication number
WO2012104306A1
WO2012104306A1 PCT/EP2012/051566 EP2012051566W WO2012104306A1 WO 2012104306 A1 WO2012104306 A1 WO 2012104306A1 EP 2012051566 W EP2012051566 W EP 2012051566W WO 2012104306 A1 WO2012104306 A1 WO 2012104306A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
melt
strip
ppm
oxygen content
Prior art date
Application number
PCT/EP2012/051566
Other languages
English (en)
Inventor
Bernardus Johannes RICHARDS
Benno SCHAAR
Wouter Karel Tiekink
Original Assignee
Tata Steel Ijmuiden Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Steel Ijmuiden Bv filed Critical Tata Steel Ijmuiden Bv
Priority to EP12708776.5A priority Critical patent/EP2670870B1/fr
Priority to ES12708776.5T priority patent/ES2561090T3/es
Publication of WO2012104306A1 publication Critical patent/WO2012104306A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a process for producing a high strength steel and to steel produced thereby.
  • High strength steels generally rely on carbon in one or more strengthening mechanisms. These mechanisms vary from the formation of pearlite to increase the strength, to the transformation of carbon containing austenite into martensite or ba inite, e.g . in a heat treatment or ca rbon steels or the thermomechanical treatment of dual-phase, TRIP, complex phase steels, bainitic or martensitic steels, or to the formation of very fine carbide precipitates in HSLA steels possibly a lso resu lti ng in a very fine microstructu re as a resu lt of thermomecha n ica l rolling.
  • steel As the carbon content rises, steel has the ability to become harder and stronger through heat treating, but this also makes it less ductile. Regardless of the heat treatment, a higher carbon content reduces weldability.
  • Welding of steels which derive their strength from a transformation product such as dual-phase and TRIP steels may be awkwa rd as the heat input from the welding process may destroy the strength of the steel.
  • a process for producing a high strength steel comprising:
  • the treatment of the melt is obtained by measuring the actual oxygen content of the melt followed by adding a suitable amount of aluminium in a suitable form to the melt to bind oxygen wherein the target oxygen content of the melt at the end of the ladle treatment is at most 100 ppm;
  • a steel sla b or strip ca n be produced having very clea n grain boundaries.
  • the recrystallisation temperature of the steel is much lower than conventional ultra-low carbon steels. This phenomenon is attributed to the extremely low levels of silicon a nd acid soluble a lumi nium in the final steel strip or sheet and the presence of fi nely dispersed ma nga nese and/or iron oxide particles.
  • a s a result of the low recrystallisation temperature of the steel the annealing temperatures can be reduced as well, leading to a more economical process as well as a reduced tendency for grain growth in the product.
  • the reduced annealing temperatures also prevent sticking in batch annealing processes and reduce the risk of rupture in continuous annealing.
  • a further advantage of the very clean grain boundaries is the strongly reduced susceptibility to corrosion on the grain boundaries. This is especially relevant for the application of the steel in the prod uction of battery cases.
  • the coating systems used in the production of batteries may be leaner (e.g. thinner coating layers or fewer coating layers) when using a substrate with a better corrosion resistance.
  • the phosphoro us content shou ld be selected to be not g reater tha n 0.025wt%, prefera bly at most 0.020%.
  • a suitable maximum for silicon is 0.003%.
  • the manganese content is at least 0.15% to attain a minimum strength increase caused by ODS.
  • a preferable minimum value is 0.3% where the strength increase becomes significant.
  • the maximum content is not limited technically, only economically.
  • a suitable maximum value for the manganese content is 4%, but preferably the manganese content does not exceed 3%.
  • the essential difference with the conventional process for producing an ultra-low-carbon steel strip or sheet is that the ladle treatment of the melt during the vacuum-degassing step, e.g. in an RH-process, does not target a removal of the oxygen by killing it by adding excess aluminium to form alumina particles, but a process wherein the oxygen content of the melt is monitored and controlled, and a dedicated amount of aluminium is added so as to avoid the addition of excess aluminium to the melt which would be present in the final steel as acid soluble aluminium (i.e. in the form of metallic aluminium, not as alumina). It is therefore not an aluminium killed steel in the sense of EN10130.
  • the addition of the precise amount of aluminium ensures that all alumina formed in the ladle treatment is removed from the melt prior to solidification during continuous casting, so that the resulting steel contains hardly any or no aluminium oxide, but instead it contains very small particles which form during the solidification in the mould. These particles are believed to be MnO-MnS rich types. Very small nano- particles are created in the mould and the slab as well and these are believed to be Fe x Oy-particles combined with Mn x O y -S. The generation of these oxide- containing nanoparticles leads to the so-called oxide dispersed strengthening (ODS). There may also be a contribution of the nanoparticles to strength increase by a precipitation hardening mechanism.
  • ODS oxide dispersed strengthening
  • the degassing of the molten steel may be made by any conventional methods such as the RH method, the RH-OB method, or in a vacuum tank degasser.
  • the oxygen content of the liquid steel may be measured using expendable oxygen sensors to measure the melt's oxygen activity.
  • any other deoxidant may be used that can reach this window, i.e. 10 and 100 ppm oxygen activity at approximately 1600 °C, e.g. Ti, Zr, Ca, Sr, Ba etc.
  • the chemistry of the sla b or stri p resu lts i n the formation of fi nely d ispersed oxides, comprising main ly ma nga nese oxides.
  • relatively la rge size i ncl usions act as n uclei for the recrysta l l isation d uring annealing of cold-rolled steel, while relatively small size inclusions may act to become appropriate barriers with respect to grain coarsening caused after the recrystallisation to thereby control the grain size of the steel.
  • the carbon content of the steel melt is preferably limited to at most 0.02% beca use w hen a h ig her ca rbon content is used , the carbon forms carbon monoxide in the manufacturing stage during which the steel is molten, and that CO in tu rn rema ins as blow-hole defects in the solidified steel. Moreover, the boiling effect may cause operational problems during casting.
  • the silicon in the solidified steel may be present as silicon oxide and/or as metallic silicon. More preferably the carbon content is limited to 0.008%. Even more preferably the carbon content is limited to at most 0.0045% (i.e. 45 ppm).
  • a conventional process for producing an aluminium killed ultra-low-carbon steel strip or sheet results in an oxygen activity or dissolved oxygen content at the end of the ladle treatment of the melt, i.e. immediately prior to casting, of a bout 3 to 5 ppm.
  • the target oxygen content of the melt at the end of the ladle treatment of the melt is preferably at least 10, or even more preferably 20 ppm.
  • a preferable maximum target oxygen content of the melt at the end of the lad le treatment is 100, or even more preferably 80 ppm. It should be noted that the oxygen content of the melt may increase during the time between the end of the ladle treatment and the casting step.
  • the total oxygen content of the slab or strip may therefore be at most 150 ppm, preferably at most 120 and even more preferably at most 100 ppm.
  • the total oxygen content comprises oxides as well as oxygen in solution.
  • the target oxygen content of the melt at the end of the ladle treatment of the melt is at least 10 ppm. This minimum values ensures that sufficient manganese oxides are formed. To avoid too many large oxides and to avoid too much CO-formation, it is preferable that the target oxygen content is at most 100 ppm. The inventors found that a target oxygen content at the end of the ladle treatment between 10 a nd 70, provided a good compromise. A more preferable maximum value is at most 60 ppm or even at most 40 ppm. A suitable minimum target oxygen content of the melt at the end of the ladle treatment of the melt is at least 20 ppm. It is believed that the relatively high oxygen content of the steel melt prior to casting results in a low viscosity as a result of the high oxygen potential of the melt.
  • the strip or sheet of ultra-low- carbon steel produced according to the invention comprises at most 0.001% or even at most 0.0005% of acid soluble aluminium and/or at most 0.003% or even 0.002% silicon . Even more prefera ble the silicon content is at most 0.001 %. Ideally, there is no acid soluble aluminium and no silicon in the solidified steel.
  • This process produces a slab or strip suitable for producing a high strength .
  • the mechanical properties of the steel thus produced can be tailored.
  • norma l polygona l ferrite g ra ins form d u ring cooling from the austenite region such as on the run-out table of a hot strip mill or after a h ig h temperatu re a n nea l i ng treatment.
  • the oxides act as nucleation sites for the formation of ferrite leading to acicula r ferrite and/or intragranular polygonal ferrite.
  • This microstructure shows a significantly higher strength than the microstructure consisting of normal polygonal ferrite grains. This effect also occurs during the cooling after welding, and therefore the material to be welded together more easily retains its strength.
  • the acicular ferrite effect can be improved by adding elements such as Ti, Nb and V. Beside the known effects of precipitation hardening and retardation of the phase transformation, these elements will create additional oxides during solidification in the mould and slab. These oxides are small and stable.
  • Ti, Nb and V partly use the MnO-S oxides (in the ra nge of 0.5 to 1.2 ⁇ ) as a surface to grow on during solidification in the mould, thus changing the oxide surface of the original MnO into a surface which is very well suited for the acicular ferrite effect in the slab and hot strip mill.
  • Another way to make the acicular ferrite is to bring small nuclei in the liquid melt before the steel enters the tundish or add the nuclei in the tundish .
  • This is not done by the addition of oxides but by the addition of a "deoxidiser” which is known not to create clusters : e.g . Zr, Ca, Ba, Sr, Ti, Cr, a nd/or Si.
  • Cluster of oxides will float out of the steel and will make the process unstable in respect of the steel properties (e.g . alu mina cluster formation should be avoided) .
  • the nuclei will act as a promoter of particle-growth during the subsequent casting and solidification into 0.5 - 1.2 ⁇ sized particles, which can exhibit excellent acicular ferrite properties e.g. when Ba was used as the nuclei creating agent.
  • Calcium, Ba or Sr which are a vapour at steelmaking temperatures, can be injected by cored wire or by lance and the oxides that are formed are in the size of 0.1 to 1.2 ⁇ , but fine oxides ( ⁇ 100 nm) can be created as well in this operation.
  • the sulphur content in the steel is preferably at most 120 ppm, but it may be as low as 30 or even 20 ppm to create more pure oxides over oxy- sulphides during casting and solidification).
  • the deoxidiser is added in the liquid steel, preferably in a n RH(-OB) where the oxygen ca n be tuned easily to the required level and Ca, Ba or Sr can be added in the RH vessel with high precision or can be added in the lance ("KTB" lance), but a simple stirring station or a ladle fu rnace ca n be used a s wel l usi ng a la nce o r cored wi re as the i nj ectio n technique. It would even be possible to do the whole operation in a tundish but smoke, dirt a nd fumes may create health problems in the tundish area of the caster, so this method is not preferable.
  • Cr can act as an oxide creator (ODS) but does not help very much in the micro alloying effect to strength (Cr ⁇ 0.2 wt%) .
  • Ti a nd Zr also create some C a nd N micro alloying properties because traces stay dissolved in the steel. Boron can be used when needed but will hardly exhibit any ODS effects as the formation of nitrides takes precedence (BN).
  • a second deoxidiser is added after the oxygen activity at the end of the ladle treatment is set to the required value; this new deoxidiser creates fine particles and, in some cases a small amount of clusters, which will float from the steel to the slag : new deoxidisers such as Zr, Ce, Ti, Ba and even Si may be used to bring the dissolved oxygen to 10 ppm or even lower (e.g. for Zr contents of 50 ppm or lower, the required oxygen activity will in some cases be 3 ppm or lower at the ladle treatment facility.
  • new deoxidisers such as Zr, Ce, Ti, Ba and even Si may be used to bring the dissolved oxygen to 10 ppm or even lower (e.g. for Zr contents of 50 ppm or lower, the required oxygen activity will in some cases be 3 ppm or lower at the ladle treatment facility.
  • the fine oxides that were formed in the liquid steel will not float because they are too small to float, and CexOy ( in combi nation with CeO-s) has the adva ntage of the h ig h density inclusions density is approximately 6 kg/I, which will prevent flotation of 1 ⁇ sized particles during ladle treatment.
  • Zr will create ZrOy oxides with a density of about 4 to 5 kg/I and will show a lower tendency of flotation than e.g . alumina, titania or silica/manganese silicates.
  • Ba can be used also to create the nano-sized particles, but Ba exhibits a too high vapour pressure to be added to the steel in a standard way.
  • the second deoxidiser is added by injecting a cored wire under high stirring conditions in a stirring station or ladle furnace treatment.
  • the highly stirred melt in combination with the extra stirring supplied by the vaporizing alloy from the cored wire will create ideal circumstances to make very fine nano sized particles in the oxygen containing steels.
  • the method of the invention can be very well performed in conventional thick slab casting (slab thickness generally between 150 and 350 mm)
  • a thin slab caster is the preferred option to cast the high strength steels, because of the faster solidification and the temperature levelling after casting and before rolling will create optimal precipitates for strength .
  • a calcium treatment may be avoided because the high oxygen steels do not need any help to prevent clogging at a thin slab caster.
  • a strip caster (cast strip thickness ⁇ 10 mm) can be used and the advantage is here the controlled high solidification rate.
  • Table 1 Composition in 1/1000 wt.% except C, N and B in ppm, composition in mould, except Ot, Oact_RH and Oact.
  • Oact_RH oxygen activity after vacuum degassing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un acier à résistance élevée, qui comprend la production d'un acier en fusion dégazé sous vide. La teneur cible en oxygène du bain de fusion à la fin du traitement en poche de coulée est obtenue par mesure de la teneur instantanée en oxygène du bain de fusion et le niveau d'oxygène est ajusté par addition d'Al et/ou de Zr, un apport excessif d'Al devant être évité et la teneur cible en oxygène du bain de fusion à la fin du traitement en poche de coulée doit atteindre au plus 100 ppm. Après coulage de l'acier, un feuillard ou une brame d'acier ultra-bas carbone est obtenu(e), comprenant au plus 0,002% d'Al soluble dans l'acide et au plus 0,04% de Si et une teneur totale en oxygène atteignant au maximum 150 ppm.
PCT/EP2012/051566 2011-01-31 2012-01-31 Procédé de fabrication d'acier à résistance élevée et acier fabriqué au moyen dudit procédé WO2012104306A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12708776.5A EP2670870B1 (fr) 2011-01-31 2012-01-31 Procédé de fabrication d'acier à résistance élevée
ES12708776.5T ES2561090T3 (es) 2011-01-31 2012-01-31 Proceso para la producción de acero de alta resistencia, y un acero producido por el mismo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP11152816 2011-01-31
EP11152816.2 2011-01-31
EP11162332 2011-04-13
EP11162332.8 2011-04-13

Publications (1)

Publication Number Publication Date
WO2012104306A1 true WO2012104306A1 (fr) 2012-08-09

Family

ID=45833361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/051566 WO2012104306A1 (fr) 2011-01-31 2012-01-31 Procédé de fabrication d'acier à résistance élevée et acier fabriqué au moyen dudit procédé

Country Status (3)

Country Link
EP (1) EP2670870B1 (fr)
ES (1) ES2561090T3 (fr)
WO (1) WO2012104306A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526112A (zh) * 2013-10-18 2014-01-22 武汉钢铁(集团)公司 一种耐腐蚀桥梁管桩用钢及其生产方法
WO2015113937A1 (fr) * 2014-01-28 2015-08-06 Tata Steel Ijmuiden B.V. Procédé permettant de produire une brame, une bande ou une feuille d'acier à teneur en carbone extrafaible ou à teneur en carbone ultrafaible, et brame, bande ou feuille produites au moyen de ce dernier
CN112226578A (zh) * 2020-09-15 2021-01-15 包头钢铁(集团)有限责任公司 一种高强稀土大梁钢稀土加入控制方法
CN113774189A (zh) * 2021-08-25 2021-12-10 武汉钢铁有限公司 一种适用于csp产线生产高强钢的炼钢方法
CN115710674A (zh) * 2022-11-15 2023-02-24 沈阳工业大学 一种耐点蚀易焊接用管线钢及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699527B (zh) * 2019-10-18 2021-08-27 甘肃酒钢集团宏兴钢铁股份有限公司 热镀锌立式退火炉上下氧含量检测氮气联锁控制系统操作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505732A1 (fr) * 1991-02-22 1992-09-30 Sumitomo Metal Industries, Ltd. Acier faiblement allié et réfractaire, présentant des propriétés améliorées de résistance au fluage et de tenacité
EP0556834A2 (fr) * 1992-02-21 1993-08-25 Kawasaki Steel Corporation Procédé de fabrication de tôles en acier à résistance élevée pour des boîtes
JP2000144330A (ja) * 1998-10-30 2000-05-26 Nippon Steel Corp 介在物性欠陥の少ない薄鋼板用鋳片およびその製造方法
EP1323837A1 (fr) * 2001-12-24 2003-07-02 Usinor Produit sidérurgique en acier au carbone, notamment destiné à la galvanisation, et ses procédés de réalisation
EP1852514A1 (fr) * 2005-02-18 2007-11-07 Nippon Steel Corporation Procédé de fabrication d une feuille en acier à teneur extrêmement faible en carbone et objet moulé à teneur extrêmement faible en carbone présentant d excellentes propriétés de surface, d aptitude au façonnage et d'aptitude au
WO2011012242A1 (fr) * 2009-07-30 2011-02-03 Corus Staal Bv Procédé de production d’une brame, bande ou tôle d’acier extra-doux

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505732A1 (fr) * 1991-02-22 1992-09-30 Sumitomo Metal Industries, Ltd. Acier faiblement allié et réfractaire, présentant des propriétés améliorées de résistance au fluage et de tenacité
EP0556834A2 (fr) * 1992-02-21 1993-08-25 Kawasaki Steel Corporation Procédé de fabrication de tôles en acier à résistance élevée pour des boîtes
JP2000144330A (ja) * 1998-10-30 2000-05-26 Nippon Steel Corp 介在物性欠陥の少ない薄鋼板用鋳片およびその製造方法
EP1323837A1 (fr) * 2001-12-24 2003-07-02 Usinor Produit sidérurgique en acier au carbone, notamment destiné à la galvanisation, et ses procédés de réalisation
EP1852514A1 (fr) * 2005-02-18 2007-11-07 Nippon Steel Corporation Procédé de fabrication d une feuille en acier à teneur extrêmement faible en carbone et objet moulé à teneur extrêmement faible en carbone présentant d excellentes propriétés de surface, d aptitude au façonnage et d'aptitude au
WO2011012242A1 (fr) * 2009-07-30 2011-02-03 Corus Staal Bv Procédé de production d’une brame, bande ou tôle d’acier extra-doux

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526112A (zh) * 2013-10-18 2014-01-22 武汉钢铁(集团)公司 一种耐腐蚀桥梁管桩用钢及其生产方法
WO2015113937A1 (fr) * 2014-01-28 2015-08-06 Tata Steel Ijmuiden B.V. Procédé permettant de produire une brame, une bande ou une feuille d'acier à teneur en carbone extrafaible ou à teneur en carbone ultrafaible, et brame, bande ou feuille produites au moyen de ce dernier
CN112226578A (zh) * 2020-09-15 2021-01-15 包头钢铁(集团)有限责任公司 一种高强稀土大梁钢稀土加入控制方法
CN113774189A (zh) * 2021-08-25 2021-12-10 武汉钢铁有限公司 一种适用于csp产线生产高强钢的炼钢方法
CN115710674A (zh) * 2022-11-15 2023-02-24 沈阳工业大学 一种耐点蚀易焊接用管线钢及其制备方法
CN115710674B (zh) * 2022-11-15 2023-09-12 沈阳工业大学 一种耐点蚀易焊接用管线钢及其制备方法

Also Published As

Publication number Publication date
EP2670870B1 (fr) 2016-01-20
ES2561090T3 (es) 2016-02-24
EP2670870A1 (fr) 2013-12-11

Similar Documents

Publication Publication Date Title
CA2769447C (fr) Procede de production d`une brame, bande ou tole d`acier extra-doux
JP6872616B2 (ja) 耐水素誘起割れ性に優れた圧力容器用鋼材及びその製造方法
US5972129A (en) Process for smelting a titanium steel and steel obtained
JP6648270B2 (ja) 脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材及びその製造方法
CN109097680B (zh) 一种使用50t中频感应炉冶炼制得的高锰高铝无磁钢板的制造方法
EP2670870B1 (fr) Procédé de fabrication d'acier à résistance élevée
WO1994022606A1 (fr) Cylindre de laminage a chaud resistant a l'usure et au grippage
JP6648271B2 (ja) 脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材及びその製造方法
JP2001123245A (ja) 溶接部靱性に優れた高靱性高張力鋼とその製造方法
JP2021509446A (ja) 圧力容器用鋼材及びその製造方法
CN104364405A (zh) 焊接用超高张力钢板
JP2016180143A (ja) フェライト−マルテンサイト2相ステンレス鋼およびその製造方法
JP5708349B2 (ja) 溶接熱影響部靭性に優れた鋼材
US5759297A (en) Titanium-containing hot-rolled steel sheet with high strength and high drawability and its manufacturing processes
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
WO2015113937A1 (fr) Procédé permettant de produire une brame, une bande ou une feuille d'acier à teneur en carbone extrafaible ou à teneur en carbone ultrafaible, et brame, bande ou feuille produites au moyen de ce dernier
CN107083520A (zh) 一种低合金高强钢板及其生产方法
JP2003129134A (ja) 低温靱性に優れた高強度鋼板の製造方法
JP2008274329A (ja) リジング特性に優れた低炭フェライト系ステンレス鋼およびその製造方法
CN102517518A (zh) 一种低成本高性能x80管线钢及其生产方法
JP2003129183A (ja) 高強度鋼鋳片及びその鋳造方法
JP2022514019A (ja) 脆性亀裂開始抵抗性に優れた構造用極厚物鋼材及びその製造方法
JP2556411B2 (ja) 加工性および溶接性の良い高強度熱延鋼板の製造方法
JP3043517B2 (ja) 高強度熱延鋼板の製造方法
KR102508128B1 (ko) 용접 열영향부 저온 충격인성이 우수한 강재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12708776

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012708776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE