WO2012103830A2 - 天线系统、基站系统和通信系统 - Google Patents

天线系统、基站系统和通信系统 Download PDF

Info

Publication number
WO2012103830A2
WO2012103830A2 PCT/CN2012/072604 CN2012072604W WO2012103830A2 WO 2012103830 A2 WO2012103830 A2 WO 2012103830A2 CN 2012072604 W CN2012072604 W CN 2012072604W WO 2012103830 A2 WO2012103830 A2 WO 2012103830A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signals
signal
frequency band
unit group
Prior art date
Application number
PCT/CN2012/072604
Other languages
English (en)
French (fr)
Other versions
WO2012103830A3 (zh
Inventor
刘德正
蒲涛
孙伟华
覃佐君
何平华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12741651.9A priority Critical patent/EP2814115B1/en
Priority to PCT/CN2012/072604 priority patent/WO2012103830A2/zh
Priority to JP2015500731A priority patent/JP5866701B2/ja
Priority to CN201280000818.2A priority patent/CN103329355B/zh
Priority to CA2867894A priority patent/CA2867894C/en
Publication of WO2012103830A2 publication Critical patent/WO2012103830A2/zh
Priority to US13/718,976 priority patent/US8588856B2/en
Publication of WO2012103830A3 publication Critical patent/WO2012103830A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • Antenna system base station system and communication system
  • the present invention relates to the field of communications technologies, and in particular, to an antenna system, a base station system, and a communication system.
  • a wireless distributed base station system can be connected to a passive antenna by using a radio remote unit (RRU).
  • RRU radio remote unit
  • the current evolution trend of the wireless distributed base station system is that the radio unit is integrated with the antenna, that is, the radio unit is integrated.
  • the Active Antenna System (AAS) architecture is an integrated antenna architecture.
  • the antenna system in the prior art is shown in FIG. 1 , which includes two columns of antenna unit groups, two columns of antenna unit groups are transmitting and receiving resonators, and one column of antenna unit groups 1 is connected with an active device transceiver (Transceiver) 2 .
  • the source antenna architecture implements two transmissions and two receptions (2T2R), and the other antenna antenna unit group 3 is connected to the RRU, which is a passive antenna.
  • the prior art can support the receiving performance benefit of two channels, that is, the receiving performance benefit of 2R, and the network performance gain is poor.
  • the technical solution of the present invention provides an antenna system, a base station system, and a communication system to improve network performance gains.
  • the present invention provides an antenna system comprising:
  • a first antenna device at least one second antenna device, and at least one pair of receiving channels
  • the first antenna device includes: a first antenna unit group, a first combining splitter, and an active module; and the second antenna device includes: a second antenna unit group and a second combining splitter;
  • the first antenna unit group and the second antenna unit group each include a plurality of antenna elements, and the first combining splitter is configured to receive the plurality of antenna elements in the first antenna unit group. Signaling is combined in the two different polarization directions;
  • the active module is configured to receive the two different polarizations through the first combiner a signal that is combined in the direction, and performs frequency conversion processing on the signal that is combined by the first combining splitter to obtain a baseband signal;
  • the second combining splitter is configured to combine signals received by the plurality of antenna elements in the second antenna element group in the two different polarization directions;
  • Each of the second antenna devices further corresponds to the at least one pair of receiving channels, and the at least one pair of receiving channels are respectively configured to receive the two different polarization directions through the second combining splitter Signal of the road;
  • the active module is further configured to perform frequency conversion processing on the signals received by the at least one pair of receiving channels to obtain a baseband signal.
  • the present invention also provides a base station system, including: an antenna system;
  • the antenna system includes: a first antenna device, at least one second antenna device, and at least one pair of receiving channels;
  • the first antenna device includes: a first antenna unit group, a first combining splitter, and an active module; and the second antenna device includes: a second antenna unit group and a second combining splitter;
  • the first antenna unit group and the second antenna unit group each include a plurality of antenna elements, and the first combining splitter is configured to receive the plurality of antenna elements in the first antenna unit group. Signaling is combined in the two different polarization directions;
  • the active module is configured to receive a signal that is combined in the two different polarization directions by the first combining splitter, and perform a signal that is combined by the first combining splitter Frequency conversion processing to obtain a baseband signal;
  • the second combining splitter is configured to combine signals received by the plurality of antenna elements in the second antenna element group in the two different polarization directions;
  • Each of the second antenna devices further corresponds to the at least one pair of receiving channels, and the at least one pair of receiving channels are respectively configured to receive the two different polarization directions through the second combining splitter Signal of the road;
  • the active module is further configured to perform frequency conversion processing on the signals received by the at least one pair of receiving channels to obtain a baseband signal.
  • the present invention further provides a communication system, including: a base station system, where the base station system includes an antenna system;
  • the antenna system includes: a first antenna device, at least one second antenna device, and at least one pair of receiving channels;
  • the first antenna device includes: a first antenna unit group, a first combining splitter, and an active module; and the second antenna device includes: a second antenna unit group and a second combining splitter;
  • the first antenna unit group and the second antenna unit group each include a plurality of antenna elements, and the first combining splitter is configured to receive the plurality of antenna elements in the first antenna unit group. Signaling is combined in the two different polarization directions;
  • the active module is configured to receive a signal that is combined in the two different polarization directions by the first combining splitter, and perform a signal that is combined by the first combining splitter Frequency conversion processing to obtain a baseband signal;
  • the second combining splitter is configured to combine signals received by the plurality of antenna elements in the second antenna element group in the two different polarization directions;
  • Each of the second antenna devices further corresponds to the at least one pair of receiving channels, and the at least one pair of receiving channels are respectively configured to receive the two different polarization directions through the second combining splitter Signal of the road;
  • the active module is further configured to perform frequency conversion processing on the signals received by the at least one pair of receiving channels to obtain a baseband signal.
  • An antenna system, a base station system, and a communication system provided by the technical solution of the present invention, in an antenna system composed of an active antenna unit group and a passive antenna unit group, in a polarization direction of a passive antenna unit group by a splitter After the received signals are combined, at least one pair of receiving channels are used for receiving, and then the signals received by the receiving channels are subjected to frequency conversion processing to obtain a baseband signal. Since the antenna system realizes receiving and frequency-converting signals in different polarization directions in the passive antenna unit group, the antenna system composed of the active antenna unit group and the passive antenna unit group in the antenna system can be realized.
  • FIG. 1 is a schematic structural view of a conventional antenna system
  • FIG. 2 is a schematic structural diagram of an embodiment of an antenna system provided by the present invention.
  • FIG. 3 is a schematic structural diagram of a first antenna device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another embodiment of an antenna system according to the present invention.
  • FIG. 5 is a schematic structural diagram of another embodiment of an antenna system according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • the base station system can be a system including an antenna and a base station.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolved Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB or e-NodeB, evolved Node B evolved Node B
  • the antenna system includes: a first antenna device, at least one second antenna device, and at least one pair of receiving channels 3;
  • the first antenna device includes: a first antenna unit group 11, a first combining splitter 12, and an active module 13;
  • the second antenna device includes: a second antenna unit group 21 and a second combining splitter 22;
  • the first antenna unit group 11 and the second antenna unit group 21 each include a plurality of antenna elements, and an antenna
  • the vibrator is used to transmit and receive signals in two different polarization directions;
  • a first combining splitter 12 configured to combine signals received by multiple antenna elements in the first antenna unit group 11 in two different polarization directions;
  • the active module 13 is configured to receive signals that are combined in two different polarization directions by the first combining splitter 12, and perform frequency conversion processing on the signals that are combined by the first combining splitter 12 to obtain a baseband signal. ;
  • a second combining splitter 22 configured to combine signals received by the plurality of antenna elements in the second antenna unit group 21 in two different polarization directions;
  • Each of the second antenna devices further corresponds to at least one pair of receiving channels 3, and at least one pair of receiving channels 3 are respectively configured to receive signals that are combined in two different polarization directions by the second combining splitter 22;
  • the active module 13 is further configured to frequency-convert the signals received by the at least one pair of receiving channels 3 to obtain a baseband signal.
  • the first antenna element group 11 and the second antenna element group 21 each include a plurality of antenna elements (each antenna element, that is, one of the antenna element groups), and the number of antenna elements included in the first antenna unit 11
  • the number of antenna elements included in the second antenna unit group 21 may be the same or different.
  • Each antenna element transmits and receives signals in two different polarization directions.
  • Each antenna element in the first antenna unit 11 has the same two polarization directions, and each antenna element in the second antenna unit 21 also has the same two. The direction of polarization.
  • each antenna element in the first antenna unit 11 can transmit and receive signals in two transmitting and receiving directions of positive 45 degrees and negative 45 degrees with the horizontal plane; likewise, each antenna element in the second antenna unit 21 can be The horizontal plane transmits and receives signals in two transmission and reception directions of positive 45 degrees and negative 45 degrees.
  • each antenna element involved in the embodiment of the present invention can be used for both receiving signals and transmitting signals. That is, both the first antenna unit group 11 and the second antenna unit group 21 in the embodiment of the present invention can adopt a transceiving resonator structure.
  • the first antenna device formed by the first antenna unit group 11, the first combining splitter 12 and the active module 13 is an active antenna architecture, for example: the first antenna device may be an AAS active antenna architecture, or may be There are other active antenna architectures.
  • the active antenna architecture can achieve 2-channel receive performance gains, that is, achieve 2R receive performance gains, as follows:
  • the embodiment of the present invention provides a feasible structure of the first antenna device, as shown in FIG. 3, where:
  • the first antenna unit group 11 includes: b antenna elements.
  • the first combiner 12 can be used to combine the 2b signals received by the b antenna elements in the first antenna unit group 11 into the 2a channel signal, and the b channel signal and the 2a channel signal in the 2b channel signal.
  • One a-channel signal corresponds to one polarization direction of b antenna elements, and the other b-channel signal and the other a-channel signal correspond to another polarization direction of b antenna elements, wherein b and a are both greater than 1
  • the integer, a is less than or equal to b;
  • the active module 13 may specifically include: a pair of transceiver channels 131 and a signal processor 132; wherein: a pair of transceiver channels 131, two pairs of signals in each of the pair of transceiver channels 131 and 2a signals in two different polarization directions Correspondingly, each pair of transceiver channels 131 is configured to receive two signals in two different polarization directions of the 2a channel signals;
  • the signal processor 132 is configured to perform frequency conversion processing on the signals received by the a pair of transceiver channels 131 and the signals received by at least one pair of receiving channels.
  • the first combining splitter 12 may be composed of an existing two a-drive b-shunt network or a 2a-drive 2b split-route network.
  • the signal received by each of the antenna elements in the first antenna unit group 11 in one polarization direction can be input as a signal to the first combining splitter 12, that is, the second antenna unit group 11 has a total of 2b channels.
  • the signal is input to the first combiner 12, one of the 2b signals corresponds to one polarization direction of the b antenna elements, and the other b signal corresponds to the other polarization direction of the b antenna elements.
  • the first combining splitter 12 can combine the b channel signals in one polarization direction of the 2b channel signal into one channel signal output, and the 2b channel signal is located at the other pole.
  • the b-way signal combination in the direction of the direction is the output of the other a-way signal. That is, among the 2a signals obtained after the first combining splitter 12 is combined, one a signal corresponds to one polarization direction of the b antenna elements, and the other a signal corresponds to the other polarization direction of the b antenna elements. .
  • a and b are integers greater than 1, a is less than or equal to b, and the ratio of a and b is not a fixed value, which may be determined by the performance index of the antenna (eg, coverage performance, gain, etc.) and the implementation cost.
  • each transceiver channel 131 can be set, and each transceiver channel 131 is configured to receive one of the signals of the 2a channel. Therefore, the transceiver channel 131 needs to be set in pairs, and each pair of transceiver channels 131 and 2a are located in two different signals. Corresponding to two signals in the polarization direction, each pair of transceiver channels 131 is used to receive two signals in two different polarization directions of the 2a channel signals.
  • a pair of transceiver channels 131, a pair of transceiver channels 131 in each of the transceiver channels 131 may be provided, including a transceiver channel TRX M in the M polarization direction and a transceiver channel in the D polarization direction.
  • TRX_D wherein the M polarization direction and the D polarization direction are two different polarization directions of each antenna element receiving signal in the first antenna element group 11.
  • a pair of transceiver channels 131 can be: TRX-M1 and TRX-D1, TRX-M2 and TRX-D2, TRX_Ma and TRX_Da, respectively.
  • the transceiver channel 131 may be an existing transceiver channel, and the existing transceiver channel 131 may perform analog-to-digital conversion and down-conversion processing on the received signal to obtain an intermediate frequency signal.
  • the signal input to the signal processor 132 by the transceiver channel 131 may be an intermediate frequency signal.
  • the signal processor 132 can further convert the received intermediate frequency signal to obtain a baseband signal.
  • the signal processor 132 finally obtains two baseband signals in the M polarization direction and the D polarization direction.
  • the a pair of the transceiver modules 131 in the active module 13 in the first antenna device can receive the signals of the b antenna elements in the two polarization directions, and the signal processor 132 can pair the transceiver channels 131.
  • the output signal is processed to obtain two baseband signals in two polarization directions.
  • the receive performance gain achieved by the first antenna unit group 11, the first combiner 12, and the active module 13 to the transceiver channel 131 and the signal processor 132 can be regarded as 2 channels (each channel corresponds to The receiving performance gain of a polarization direction of the b antenna elements, that is, the a pair of the first antenna unit group 11, the first combining splitter 12, and the active module 13 can implement the pair of transceiver channels 131 and the signal processor 132.
  • Receive performance gains for 2R Receive Among them, the receiving performance gain can be reflected by the terminal's transmit power, system coverage, system capacity, and / or system signal-to-noise ratio performance indicators.
  • the second antenna unit group 21 and the second combining splitter 22 in the second antenna device form a passive antenna architecture, and the second combining splitter is disposed in the second antenna device. 22.
  • the second antenna device is correspondingly provided with at least one pair of receiving channels 3, and each pair of receiving channels 3 can be respectively used to receive the second in two different polarization directions.
  • the signal split by the splitter 22 is input to the active module 13 in the first antenna device for frequency conversion processing to obtain a baseband signal, and the second antenna unit group 21 can be received through at least one pair of receiving channels 3.
  • the signals of the plurality of antenna elements in the two polarization directions, the active module 13 can process the signals output by the at least one pair of receiving channels 3 to obtain two paths in two polarization directions Baseband signal. Therefore, the receiving performance gain achieved by the second antenna unit group 21, the second combining splitter 22, and the at least one pair of receiving channels 3 and the active module 13 can be regarded as 2 channels (each channel corresponds to the second antenna unit group)
  • the receiving performance benefit of one polarization direction of the plurality of antenna elements in 21, that is, the second antenna unit group 21, the second combining splitter 22, and the at least one pair of receiving channels 3 and the active module 13 can implement 2R ( Receive performance gains from Receive ).
  • the first antenna unit group 11, the first combining splitter 12, and the active module 13 in the first antenna device can realize the receiving performance benefit of 2 channels.
  • the second antenna unit group 21 and the second combining splitter 22 in each of the second antenna devices, the at least one pair of receiving channels 3, and the active module 13 in the first antenna device are capable of achieving a 2-channel reception performance benefit. Therefore, the antenna system provided by the embodiment of the present invention can achieve a 4-channel reception performance gain or a reception performance gain of 4 channels or more, that is, a reception performance gain of 4R or more.
  • the multiple paths have mutual interference. Assuming that the signal received by the antenna system has 4 paths, if only the first antenna device in the antenna system can realize 2 channels (one polarization direction of each channel corresponding to b antenna elements), then each of the first antenna devices The channels correspond to the signals of the two paths, and there is interference between the signals of the two paths, so that the performance index such as the signal-to-noise ratio of the system is poor.
  • the second antenna unit group 21 and the second combining splitter 22 in the second antenna device and at least one pair of receiving channels are provided on the basis that the first antenna device can realize 2-channel reception. 3 and the active module 13 in the first antenna device can realize reception of two channels (each channel corresponds to one polarization direction of a plurality of antenna elements in the second antenna element group 21).
  • each channel implemented by the first antenna device, the second antenna device, the at least one pair of receiving channels 3, and each channel implemented by the active module 13 in the first antenna device only need to correspond to the signal of one path, therefore, improve the signal-to-noise ratio and other performance indicators of the system. It can be seen that the more channels the antenna system implements, the better the reception performance of the system.
  • the above is only taking the signal-to-noise ratio of the system as an example, and the performance gain of the four-channel or more-channel reception implemented by the embodiment of the present invention is compared with the existing two-channel reception.
  • the reception of 4 channels or more and the reception of 2 channels can realize the terminal to transmit less power, the system has better coverage and realizes the system with larger capacity, which is not described here.
  • the second combiner 22 can be used for existing passive days.
  • the combined split network of the line which is commonly referred to as a passive split network.
  • the passive multiplexer network can combine signals received by the plurality of antenna elements in the second antenna unit group 21 into two signals, each signal corresponding to one pole of the plurality of antenna elements in the second antenna unit group 21.
  • the second combination splitter 22 can set the second antenna element group 21
  • the signals received by the antennas in the antennas in the direction of the positive polarization of 45 degrees with respect to the horizontal plane are combined into one signal, and all the antenna elements in the second antenna unit group 21 are located at a negative polarization of 45 degrees with the horizontal plane.
  • the signals received by the antenna are combined into another signal.
  • each of the second antenna devices may be correspondingly provided with a pair of receiving channels 3, and one of the pair of receiving channels 3 may be configured to receive the combined signals obtained by the second combining splitter 22 a signal, which may be, for example, a signal obtained by combining signals received by an antenna located in a polarization direction of a positive 45 degree with respect to a horizontal plane in all antenna elements of the second antenna unit group 21; another receiving channel 3 may be used to receive another signal obtained by combining the second combining splitter 22, and the path signal may be, for example: all of the antenna elements in the second antenna unit group 21 are located at a negative 45 degree polarization with the horizontal plane.
  • a signal obtained after the signals received by the antennas are combined.
  • the pair of receiving channels 3 can input the received signals into the active module 13 in the first antenna device for frequency conversion processing to obtain two baseband signals, thereby implementing the second antenna unit group in each of the second antenna devices.
  • the 21 and second combiner 22, the at least one pair of receive channels 3, and the active module 13 of the first antenna device are capable of achieving a 2-channel receive performance benefit, i.e., 2R receive performance gain.
  • the receiving channel 3 may be an existing receiving channel, and the existing receiving channel 3 may perform analog-to-digital conversion and down-conversion processing on the received signal to obtain an intermediate frequency signal.
  • the signal input to the active module 13 by the receiving channel 3 may be an intermediate frequency signal.
  • the signal processing portion of the active module 13, such as the signal processor 132 shown in Fig. 3, can further convert the intermediate frequency signal input to the receiving channel 3 to obtain a baseband signal.
  • the second antenna device can be configured by providing a passive splitting network (ie, a conventional splitting network applied to the passive antenna), and each second antenna device corresponds to Providing a pair of receiving channels 3, realizing the second antenna unit group 21 in each second antenna device, the passive combining branch network, the pair of receiving channels 3, and the active modules 13 in the first antenna device, Now 2 channels of receiving performance gains.
  • a passive splitting network ie, a conventional splitting network applied to the passive antenna
  • each second antenna device corresponds to Providing a pair of receiving channels 3, realizing the second antenna unit group 21 in each second antenna device, the passive combining branch network, the pair of receiving channels 3, and the active modules 13 in the first antenna device, Now 2 channels of receiving performance gains.
  • one or more second antenna devices may be disposed, so that at least one second antenna device and the first antenna device can achieve 4 channels of receiving performance gain or more than 4 channels of receiving performance gains. That is, the reception performance gain of 4R and above is achieved.
  • the second combiner 22 can employ a shunt device similar to the first combiner 12 of the first antenna device.
  • the second combiner 22 can be composed of two existing m-drive n-shunt networks or a 2m-drive 2n-split network.
  • the signal received by each antenna element can be input as a signal to the second combining splitter 22, that is, the second antenna unit group 21 has a total of 2n signals.
  • one of the 2n signals corresponds to one polarization direction of the n antenna elements, and the other n signal corresponds to the other polarization direction of the n antenna elements.
  • the second combining splitter 22 After receiving the 2n signal, the second combining splitter 22 combines the n signals in one polarization direction of the 2n signal into m signals, and combines the n signals in the other polarization direction.
  • the m-channel signal output that is, one m-channel signal of the 2m road signal obtained after the second combining splitter 22 is combined corresponds to one polarization direction of the n antenna elements, and the other m-channel signal corresponds to n antenna elements.
  • Another polarization direction where m and n are integers greater than 1, m is less than equal to n, and the ratio of m to n is not a fixed value, which may be determined by the performance index of the antenna (eg, coverage performance, gain, etc.) and the implementation cost.
  • n and b are generally equal, m and a may be the same or different.
  • each receiving channel 3 is configured to receive one of the 2m signals. Therefore, the receiving channels 3 need to be arranged in pairs, and each pair of receiving channels 3 and 2m signals are located in two different polarization directions. Corresponding to the two signals, each pair of receiving channels 3 is used to receive two signals in two different polarization directions of the 2m channel signals. Therefore, m pairs of receiving channels 3 can be correspondingly arranged in each of the second antenna devices.
  • Each pair of receiving channels 3 in the pair of receiving channels 3 includes a receiving channel RX_M in the M polarization direction and a receiving channel RX_D in the D polarization direction, and the m pair receiving channels 3 can be: RX_M1 and RX_D1, respectively. RX_M2 and RX_D2, ...
  • the receiving channel 3 can be an existing receiving channel, and the existing receiving channel 3 can perform analog-to-digital conversion and down-conversion processing on the received signal to obtain an intermediate frequency signal. Therefore, in the embodiment of the present invention, the receiving channel 3 is input.
  • the signal to the active module 13 can be an intermediate frequency signal.
  • the signal processing portion of the active module 13, such as the signal processor 132 shown in FIG. 3, can further convert the intermediate frequency signal input to the receiving channel 3 to obtain two paths in the M polarization direction and the D polarization direction. Baseband signal.
  • the active module 13 is further configured to: perform beamforming on the signals of the first combining splitter 12 and the at least one pair of receiving and receiving signals.
  • the active module 13 can beamform the signals combined by the first combining splitter 12 and the signals received by the at least one pair of receiving channels by various methods, for example: beamforming can be performed in the analog domain. , beamforming can also be performed in the digital domain.
  • each second antenna device can be correspondingly disposed with the second combiner 22 (may be composed of two m-drive n-shared networks, or a 2m-driven 2n-split network) And m to the receiving channel 3, the second antenna unit group 21, the m-drive n-shunt network, the m-pair receiving channel 3, and the active module 13 in the first antenna device in each of the second antenna devices can be realized 2 channel receive performance gains.
  • one or more second antenna devices may be disposed, so that at least one second antenna device and the first antenna device can achieve 4 channels of receiving performance gain or more than 4 channels of receiving performance gains. That is, the reception performance gain of 4R and above is achieved.
  • the antenna system in the antenna system formed by the active antenna unit group and the passive antenna unit group, after the signals received by the passive antenna unit groups in different polarization directions are combined by the splitter, At least one pair of receiving channels is used for receiving, and then the signal received by the receiving channel is subjected to frequency conversion processing to obtain a baseband signal. Since the antenna system realizes receiving and frequency-converting signals in different polarization directions in the passive antenna unit group, the antenna system composed of the active antenna unit group and the passive antenna unit group in the antenna system can be realized.
  • FIG. 4 is a schematic structural diagram of still another embodiment of an antenna system according to the present invention.
  • a conventional split-circuit network applied to a passive antenna is disposed in a second antenna device, that is, a source-splitting and shunting network, and a pair of receiving channels corresponding to each of the second antenna devices, each implementing The second antenna unit group 21, the passive shunt network, the pair of receiving channels 3, and the active module 13 in the first antenna device in the second antenna device are capable of achieving 2-channel reception performance gain.
  • the specific instructions are as follows:
  • the second combining splitter 22 is specifically configured to: combine signals received by multiple antenna elements in the second antenna unit group 21 into two signals, and each signal corresponds to the second antenna unit group 21 a polarization direction of a plurality of antenna elements in the medium;
  • each of the second antenna devices corresponds to a pair of receiving channels 3 for receiving two signals obtained after the second combining device 22 is combined.
  • the second combiner 22 can be an existing passive shunt network, and the passive shunt network can combine signals received by multiple antenna elements in the second antenna unit group 21 into two paths.
  • the signal, each signal corresponds to a polarization direction of the plurality of antenna elements in the second antenna unit group 21.
  • the second combining splitter 22 can polarize all the antenna elements in the second antenna element group 21 at M.
  • the signals received in the direction are combined into one signal, and the signals received by all the antenna elements in the second antenna unit group 21 in the D polarization direction are combined into another signal.
  • the second antenna device may be correspondingly provided with a pair of receiving channels 3, and one of the pair of receiving channels 3 may be configured to receive a signal obtained by combining the second combining splitter 22
  • the path signal may be, for example, a signal obtained by combining the signals received by the antenna elements in the second antenna unit group 21 in the M polarization direction; and another receiving channel 3 may be used for receiving the
  • the other signal obtained by combining the two-way splitter 22 may be, for example, a path obtained by combining the signals received by the antenna elements corresponding to the antenna elements in the second antenna unit group 21 in the D polarization direction. signal.
  • the pair of receiving channels 3 can be an existing receiving channel, and can perform analog-to-digital conversion and down-conversion processing on the received signals to obtain an intermediate frequency signal. Therefore, the signal input to the active module 13 of the receiving channel 3 can be an intermediate frequency signal.
  • the signal processing part in the active module 13, such as the signal processor 132 shown in FIG. 3, can further convert the intermediate frequency signal input to the receiving channel 3 to obtain two baseband signals, thereby implementing each second antenna device.
  • the second antenna unit group 21, the passive shunt network, the pair of receiving channels 3, and the active module 13 in the first antenna device can achieve a 2-channel reception performance gain.
  • the second antenna device can be used as a passive antenna to connect with a module such as an RRU.
  • signals received by multiple antenna elements in the first antenna unit group 11 may be set to a first frequency band
  • signals received by multiple antenna elements in the second antenna unit group 21 may be set as a second frequency band, wherein the second frequency band includes the first frequency band and the second frequency band is greater than the first frequency band;
  • the signal frequency band received by the second antenna unit group 21 includes the signal frequency band received by the first antenna unit group 11, the first frequency band of the two signals obtained after passing through the second combining splitter 22 can be filtered. And outputted to a pair of receiving channels 3 to achieve 2R reception in the two polarization directions of the second antenna element group 21. Among the two signals obtained by combining the output through the second combining splitter 22, the remaining signals except the first frequency band are output to the RRU and other modules, so that the second antenna device is used as a passive antenna.
  • At least one first filter 23 may be disposed in the second antenna device, and at least one first filter 23 may be disposed in the second combiner 22 Between the pair of transceiver channels 3, the first frequency band of the two signals obtained after the second combining splitter 22 is combined can be filtered out and output to a pair of receiving channels corresponding to the second antenna device.
  • a first filter 23 may be disposed, and each of the first filters 23 may be provided with two input ports and two output ports, and each input port is received after being combined by the second combining splitter 22. One signal, each output port is used to input the filtered one signal into one receiving channel 3.
  • each of the first filters 23 may be provided with an input port and an output port for receiving a path obtained after the second combining splitter 22 is combined.
  • the signal, the filtered one signal is input to a receiving channel 3.
  • the at least one first filter 23 may further output all or part of the two signals except the first frequency band to the RRU and the RRU module among the two signals obtained after the second combining splitter 22 is combined. Or in a non-distributed base station, thereby implementing the use of the second antenna device as a passive antenna.
  • At least one second filter may be disposed between the second antenna unit group 21 and the second combining splitter 22 for the first of the signals received by the n antenna elements.
  • a frequency band is filtered out and output to the second combiner 22 .
  • the second filter can be an existing resonant sub-filter.
  • the number of the second filters may be the same as the number of antenna elements, that is, n second filters are set, and each second filter may be configured with two input ports and two output ports, for Receiving a signal received by one antenna element of the second antenna unit 21 in two polarization directions, and filtering out the first frequency band of the received signal and outputting to the second combining splitter 22, and then The second combiner 22 performs a combined process.
  • each of the second filters is provided with an input port and an output port, and each second filter is configured to receive one antenna element in the second antenna unit 21 in one
  • the signal in the polarization direction filters out the first frequency band of the received signal and outputs it to the second combining splitter 22, and then combines the processing by the second combining splitter 22.
  • a second filter may be further disposed, and 2n input ports and 2n output ports are disposed on the second filter for receiving signals of n antenna elements in two polarization directions, and The first frequency band of the received signal is filtered out and outputted to the second combining splitter 22, and then combined by the second combining splitter 22.
  • the at least one second filter may also output all or part of the received signals other than the first frequency band to implement the second antenna device for use as a passive antenna.
  • a third combining splitter may be further disposed in the second antenna device, where the third combined splitter may be an existing passive combined split network, and the third combined splitter may Combining all or part of the remaining signals of the second filter output except the first frequency band into two signals, wherein each signal can correspond to one polarization direction of the n antenna elements, the third combination
  • the splitter can output the two signals obtained after the combination to the RRU, the RRU module or the non-distributed base station, thereby realizing the use of the second antenna device as a passive antenna.
  • the antenna system further includes: a radio remote unit module (not shown), where the radio remote unit module can be used to receive two outputs of the first filter 23 or the third splitter output. All or part of the remaining signals except the first frequency band, and the two received signals are subjected to frequency conversion processing to obtain two baseband signals, and then sent to the baseband unit through the digital interface.
  • the antenna system provided in this embodiment implements two poles in the second antenna unit group by providing a passive combining branch network in each second antenna device, and correspondingly setting a pair of receiving channels for each second antenna device.
  • the 2R reception in the direction of the realization achieves the reception performance gain of the antenna system of 4R or more.
  • the signals received by the plurality of antenna elements in the first antenna unit group are set to the first frequency band
  • the signals received by the plurality of antenna elements in the second antenna unit group are set to the second frequency band, so that the second The frequency band includes the first frequency band and the second frequency band has a larger range than the first frequency band.
  • the first frequency band of the two signals obtained after the second combining splitter is combined is filtered out by setting at least one first filter between the second combining splitter and the pair of receiving channels, and outputting to In a pair of receiving channels, 2R reception on a first frequency band in two polarization directions of the second antenna element group is achieved.
  • the remaining signals except the first frequency band may be all or partially outputted to the RRU or the non-distributed base station, so that the second antenna device is used as the The source antenna is used.
  • the remaining signals of the signals output by the plurality of antenna elements except the first frequency band may be outputted in whole or in part.
  • the third combined splitter is combined into two signals to be output to the RRU or the non-distributed base station, so that the second antenna device is used as a passive antenna.
  • FIG. 5 is a schematic structural diagram of another embodiment of an antenna system according to the present invention.
  • an m-drive n-shunt network is disposed in the second antenna device, and each second antenna device can be configured with m.
  • the active module 13 in the first antenna device can realize the benefit of the 2-channel reception performance as an example.
  • the second combiner 22 can be specifically configured to: combine the 2n signals received by the n antenna elements in the second antenna unit group 21 into a 2m signal, and one of the 2n signals.
  • One of the road signal and the 2m signal corresponds to one polarization direction of the n antenna elements, and the other n signal and the other m signal correspond to the other polarization direction of the n antenna elements, n and m Is an integer greater than 1, m is less than or equal to n;
  • each second antenna device can be configured with m pairs of receiving channels 3, each pair of receiving channels 3 corresponding to two signals in two different polarization directions of the 2m road signals, each pair of receiving channels 3 for receiving Two signals in the two different polarization directions in the 2m road signal.
  • the second combiner 22 can be used with the first combiner 12 in the first antenna device. A similar splitter device.
  • the second combiner 22 can be composed of two existing m-drive n-share shunt networks, or can be composed of a conventional 2m-drive 2n shunt network. It is assumed that the second antenna element group 21 includes n antenna elements, and the signal received by each antenna element in one polarization direction can be input as one signal to the second combination splitter 22, that is, the second antenna unit group.
  • a total of 2n signals are input to the second combining splitter 22, one of the 2n signals corresponds to one polarization direction of the n antenna elements, and the other n signal corresponds to the other of the n antenna elements. Polarization direction.
  • the second combining splitter 22 After receiving the 2n signal, the second combining splitter 22 combines the n signals in one polarization direction into m signal outputs, and combines the n signals in the other polarization direction into m signal outputs. .
  • m and n are integers greater than 1, m is less than or equal to n, and the ratio of m and n is not a fixed value, which can be determined by the performance index of the antenna and the implementation cost.
  • Each receiving channel 3 is configured to receive one of the 2m signals. Therefore, the receiving channels 3 are arranged in pairs, and each pair of receiving channels 3 and 2m signals correspond to two signals in two different polarization directions, and each The receiving channel 3 is respectively used to receive two signals in two different polarization directions among the 2m road signals. Therefore, m pairs of receiving channels 3 can be correspondingly arranged in each of the second antenna devices.
  • Each pair of receiving channels 3 in the pair of receiving channels 3 includes a receiving channel RX_M in the M polarization direction and a receiving channel RX_D in the D polarization direction, m to the receiving channel 3 are: RX_M1 and RX_D1, RX_M2 And RX_D2, ... RX_Mm and RX_Dm.
  • each pair of receiving channels in the receiving channel 3 is an existing receiving channel, and the received signal can be subjected to analog-to-digital conversion and down-conversion processing to obtain an intermediate frequency signal. Therefore, the signal input to the active module 13 by the receiving channel 3 can be It is an intermediate frequency signal.
  • the signal processing portion of the active module 13, such as the signal processor 132 shown in Fig. 3, can further convert the intermediate frequency signal input to the receiving channel 3 to obtain two baseband signals.
  • two m-drive n-share split networks or a 2m-drive 2n split-segment network are correspondingly disposed by each second antenna device, and each second antenna device correspondingly sets m to receive channels 3 to implement 2R reception in the two polarization directions of the second antenna element group 21.
  • the second antenna unit group 21, the m-drive n-shunt network, the m-pair receiving channel 3, and the active module 13 in the first antenna device in each of the second antenna devices can achieve a 2-channel reception performance gain.
  • the second antenna device can also be used as a passive antenna, such as a RRU or a non-distributed base station.
  • multiple antenna elements in the first antenna unit group 11 may be used.
  • the received signal is set to the first frequency band
  • the signal received by the plurality of antenna elements in the second antenna unit group 21 is set to the second frequency band, wherein the second frequency band includes the first frequency band and the second frequency band is greater than the first frequency band; Since the signal band received by the second antenna unit group 21 includes the signal band received by the first antenna unit group 11, the first frequency band of the signal output by each antenna element in the second antenna unit group 21 can be filtered out.
  • the 2n signals input to the second combining splitter 22 are all located in the first frequency band, so that the 2m signals obtained after the second combining splitter 22 are combined are also located.
  • the first frequency band is to achieve 2R reception in the two polarization directions of the second antenna element group 21. Further, all or part of the signals output by each antenna element in the second antenna unit group 21 except the first frequency band may be output to the RRU, the RRU module, or the non-distributed base station to implement the second antenna.
  • the device is used as a passive antenna.
  • At least one second filter 24 may be disposed in the second antenna device for filtering out the first frequency band of the signals received by the n antenna elements. And output to the second combiner 22 .
  • the second filter 24 can be an existing resonator filter.
  • the number of the second filters 24 may be equal to the number of antenna elements in the second antenna unit group 21, that is, n second filters 24 are disposed; wherein, each The second filter 24 may be provided with two input ports and two output ports for receiving signals received by one antenna element of the second antenna unit 21 in two polarization directions, and the first of the received signals The frequency band is filtered out and outputted to the second combiner 22, and the second combiner 22 performs a combined process.
  • each of the second filters 24 may be disposed, and each of the second filters 24 may be provided with an input port and an output port, and each of the second filters 24 may be configured to receive the second antenna unit 21 a signal of an antenna element in a polarization direction, and filtering out a first frequency band of the received signal and outputting it to the second combining splitter 22, and then combining by the second combining splitter 22 Road processing.
  • a second filter 24 may be further disposed, and 2n input ports and 2n output ports may be disposed on the second filter 24 for receiving signals of the n antenna elements in two polarization directions. And filtering out the first frequency band of the received signal and outputting it to the second combining splitter 22, and then performing the combining processing by the second combining splitter 22.
  • the at least one second filter 24 is further configured to: output all or part of the received signals except the first frequency band.
  • a second combining device 25 can be further disposed in the second antenna device, where the third combining splitter 25 can be used to remove the first frequency band from the signal output by the at least one second filter 24. All or part of the remaining signals are combined into two signals for outputting to the RRU, the RRU module or the non-distributed base station, wherein each signal corresponds to one polarization direction of the n antenna elements, thereby implementing the second antenna
  • the device is used as a passive antenna.
  • At least one second filter 24 may be disposed in the second antenna device, and may be used for the first frequency band of the 2m channel signals obtained after combining the second combining splitter 22 Filter out and output to m to receive channel 3.
  • the number of the second filters 24 may be m, wherein each of the second filters 24 may be configured with two input ports and two output ports for receiving the second combining splitter 22 after combining Two signals of different 2m road signals in different polarization directions are obtained, and the first frequency band of the received signals is filtered out and outputted to m pair of receiving channels 3 in the receiving channel 3.
  • each second filter 24 may be provided with one input port and one output port for receiving the 2m path obtained after the second combining splitter 22 is combined.
  • a second filter 24 may be further disposed, and 2m input ports and 2m output ports may be disposed on the second filter 24 for receiving 2m obtained after the second combining splitter 22 is combined.
  • the road signal is filtered out and outputted to the m-pair receiving channel 3 by the first frequency band of the received signal.
  • the at least one second filter 24 may be further configured to: output the 2m channel signals obtained after the second combiner 22 is combined, among the remaining signals except the first frequency band All or part.
  • the second antenna device 25 can further be disposed in the second antenna device, and the third combining splitter 25 can be used to remove the 2m channel signal output by the at least one second filter 24. All or part of the remaining signals outside the first frequency band are combined into two signals for output to the RRU, In the RRU module or non-distributed base station, the second antenna device is used as a passive antenna.
  • the antenna system further includes: a radio remote unit module (not shown in the figure), where the radio remote unit module can be used to receive the two signals output by the third combiner 25 All or part of the remaining signals outside the first frequency band, and the two received signals are subjected to frequency conversion processing to obtain two baseband signals, and then sent to the baseband unit through the digital interface.
  • each second antenna device is correspondingly configured with m-pair receive channels
  • the reception in the two polarization directions of the second antenna element group is realized, and the reception performance gain of 4R or more of the antenna system is achieved.
  • the signals received by the plurality of antenna elements in the first antenna unit group are set to the first frequency band
  • the signals received by the plurality of antenna elements in the second antenna unit group are set to the second frequency band, so that the second The frequency band includes the first frequency band and the second frequency band has a larger range than the first frequency band.
  • At least one second filter may be disposed between the second combiner and the receive channel, and the second The first frequency band of the signal received by each antenna element in the antenna unit group or the signal output by the second combination splitter is filtered out to achieve the first frequency band in the two polarization directions of the second antenna element group. 2R reception.
  • the signal received by the at least one second filter may be outputted to the RRU, the RRU module, or the signal output of the remaining frequency bands except the first frequency band and obtained by combining the signals through the third combined splitter.
  • the second antenna device is implemented for use as a passive antenna.
  • FIG. 2 to FIG. 5 are each a case where the antenna system includes a second antenna device.
  • the structure and function of each of the second antenna devices See the description in the above embodiment.
  • the embodiment of the present invention further provides a base station system, where the base station system includes: an antenna system, where the antenna system includes: a first antenna device, at least one second antenna device, and at least one pair of receiving channels; the first antenna device includes: a first antenna unit group, a first combining splitter and an active module; the second antenna device comprises: a second antenna unit group and a second combining splitter;
  • the first antenna unit group and the second antenna unit group each include a plurality of antenna elements, and the antenna elements are used for transmitting and receiving signals in two different polarization directions;
  • a first combining splitter configured to combine signals received by multiple antenna elements in the first antenna unit group in two different polarization directions
  • An active module configured to receive a signal that is combined by the first combining splitter, and perform frequency conversion processing on a signal that is combined in two different polarization directions by the first combining splitter to obtain a baseband signal
  • a second combining splitter configured to combine signals received by the plurality of antenna elements in the second antenna element group in two different polarization directions
  • Each of the second antenna devices further corresponds to at least one pair of receiving channels, and at least one pair of receiving channels are respectively configured to receive signals that are combined in two different polarization directions by the second combining splitter;
  • the active module is further configured to perform frequency conversion processing on signals received by at least one pair of receiving channels to obtain a baseband signal.
  • the second combiner can combine the 2n signals received by the n antenna elements in the second antenna unit group into two signals, and one of the 2n signals corresponds to one signal.
  • the other n-channel signal corresponds to another polarization direction, and each of the two signals corresponds to one polarization direction, and n is an integer greater than one;
  • Each of the second antenna devices may correspond to a pair of receiving channels for receiving two signals obtained after the second combining splitter is combined.
  • the signals received by the multiple antenna elements in the first antenna unit group may be located in the first frequency band, and the signals received by the multiple antenna elements in the second antenna unit group are located in the second frequency band, where the second frequency band includes the first frequency band and The range of the second frequency band is larger than the first frequency band;
  • At least one first filter may be disposed in the second antenna device, where the at least one first filter may filter out the first frequency band of the two signals obtained after the second combining splitter is combined. And outputting to a pair of receiving channels corresponding to the second antenna device.
  • the at least one first filter may further output all or part of the remaining signals except the first frequency band among the two signals obtained after the second combining splitter is combined.
  • the base station system provided by the embodiment of the present invention may further include:
  • the radio remote unit may be configured to receive all or part of the two signals output by the at least one first filter in the antenna system, and perform frequency conversion processing on the received two signals to obtain two baseband signals, and then pass through the digital interface. Send to the baseband unit.
  • the base station system provided by the embodiment of the present invention may further include:
  • the non-distributed base station may be configured to receive all or part of the two signals output by the at least one first filter in the antenna system, and perform frequency conversion processing on the received two signals to obtain two baseband signals, and then pass the digital The interface is sent to the baseband unit.
  • the second combining splitter may be further configured to: combine the 2n signals received by the n antenna elements in the second antenna unit group into a 2m road signal, and one of the 2n road signals The road signal corresponds to one polarization direction, and the other n signal corresponds to the other polarization direction.
  • One of the 2m signals corresponds to one polarization direction, and the other m signal corresponds to the other polarization direction, n and m.
  • Each of the second antenna devices corresponds to m pairs of receiving channels, and each pair of receiving channels can correspond to two signals in two different polarization directions of the 2m channel signals, and each pair of receiving channels is used for receiving 2m signals. Two signals in two different polarization directions.
  • the signals received by the multiple antenna elements in the first antenna unit group may be located in the first frequency band, and the signals received by the multiple antenna elements in the second antenna unit group are located in the second frequency band, where the second frequency band includes the first frequency band and The range of the second frequency band is larger than the first frequency band;
  • the second antenna device may further be provided with at least one second filter for filtering out the first frequency band of the signals received by the n antenna elements and outputting to the second combining splitter.
  • the second antenna device may further be provided with at least one second filter for filtering out the first frequency band of the 2m signal obtained after the second combiner is combined, and outputting to the m pair receiving channel.
  • the at least one second filter may also output all or part of the received signals other than the first frequency band.
  • the second antenna device is further configured to: a third combining splitter, configured to combine all or part of the remaining signals of the at least one second filter output signal except the first frequency band to Two signals, each signal corresponding to one polarization direction.
  • a third combining splitter configured to combine all or part of the remaining signals of the at least one second filter output signal except the first frequency band to Two signals, each signal corresponding to one polarization direction.
  • the radio remote unit provided in the base station system may also be used to receive all or part of the two signals output by the third combining splitter in the antenna system, except for the first frequency band. Two signals obtained after all or part of the road is combined.
  • the non-distributed base station provided in the base station system can also be used to receive all or part of the two signals output by the third combining splitter, and perform frequency conversion processing on the received two signals. After the two baseband signals are sent to the baseband unit through the digital interface.
  • the specific structure and function of the antenna system provided by the embodiment of the present invention can be referred to the antenna system embodiment provided by the present invention.
  • the specific connection manner between the antenna system and the radio remote unit RRU can also be seen in the antenna system embodiment. The related description will not be repeated here.
  • the base station system provided in this embodiment is composed of an active antenna unit group and a passive antenna unit group.
  • the antenna system after the signals received by the passive antenna unit group are combined by the splitter, the signals after the road are used, and the signals received by the receiving channel are subjected to frequency conversion processing to obtain a baseband signal. Due to the frequency processing, the antenna system composed of the active antenna unit group and the passive antenna unit group in the base station system can achieve 4 channels of reception performance gain or 4 channels or more of reception performance gain, that is, 4R and 4R or more are realized. Receive performance gains that improve system receive performance gains. Further, the passive antenna unit group can also be used as a passive antenna to meet different application scenarios.
  • the embodiment of the present invention may further provide a communication system, including any one of the base station systems described above.
  • the above-mentioned 4-channel or more-channel receiving in the embodiment of the present invention utilizes the signal splitting function of the first filter or the second filter, and the second splitting circuit
  • the split function of the device, or the combined function of the third combiner may include changing the corresponding receive channel to the transceiver channel, using the signal of the first filter or the second filter
  • the road function utilizes the combined function of the second combiner and/or the split function of the third combiner.
  • the deformation can also have other forms. Since the transmitting process and the receiving process are usually reverse processes, the structure and implementation can also be used for reference. Therefore, no explanation is given here.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the devices and/or devices mentioned in the embodiments of the present invention may be physically set independently or integrated.
  • the second combiner and the first filter may be physically implemented by the same split network.
  • the second filter and the second combiner are physically implemented by the same split network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

天线系统、 基站系统和通信系统
技术领域 本发明实施例涉及通信技术领域, 特别涉及一种天线系统、 基站系统和 通信系统。 背景技术 无线分布式基站系统, 可以采用射频拉远单元(Radio Remote Unit, RRU ) 与无源天线连接, 目前无线分布式基站系统的演进趋势是射频单元与 天线一体化集成,即,将射频单元与天线做成一个整体,有源天线系统(Active Antenna System, AAS ) 架构即为一体化天线架构。
现有技术中的天线系统如图 1所示, 其中包括两列天线单元组, 两列天 线单元组均是收发共振子, 一列天线单元组 1 与有源器件收发机 ( Transceiver ) 2连接构成有源天线架构, 实现两发两收( 2T2R ), 另一列 天线单元组 3与 RRU连接, 为无源天线。 现有技术能够支持两通道的接收 性能收益, 即 2R的接收性能收益, 网络性能收益较差。 发明内容 本发明的技术方案提供一种天线系统、 基站系统和通信系统, 以提高网 络性能收益。
一方面, 本发明提供了一种天线系统, 包括:
第一天线装置、 至少一个第二天线装置和至少一对接收通道;
所述第一天线装置中包括: 第一天线单元组、 第一合分路器和有源模块; 所述第二天线装置中包括: 第二天线单元组和第二合分路器;
所述第一天线单元组和所述第二天线单元组中均包括多个天线振子, 所 所述第一合分路器, 用于对所述第一天线单元组中多个天线振子接收的 信号在所述两个不同的极化方向上进行合路;
所述有源模块, 用于接收经过所述第一合分路器在所述两个不同的极化 方向上合路的信号, 并对经过所述第一合分路器合路的信号进行变频处理得 到基带信号;
所述第二合分路器, 用于对所述第二天线单元组中的多个天线振子接收 的信号在所述两个不同的极化方向上进行合路;
每个所述第二天线装置还对应所述至少一对接收通道, 所述至少一对接 收通道分别用于接收经过所述第二合分路器在所述两个不同的极化方向上合 路的信号;
所述有源模块, 还用于对所述至少一对接收通道接收的信号进行变频处 理得到基带信号。
另一方面, 本发明还提供一种基站系统, 包括: 天线系统;
所述天线系统包括: 第一天线装置、 至少一个第二天线装置和至少一对 接收通道;
所述第一天线装置中包括: 第一天线单元组、 第一合分路器和有源模块; 所述第二天线装置中包括: 第二天线单元组和第二合分路器;
所述第一天线单元组和所述第二天线单元组中均包括多个天线振子, 所 所述第一合分路器, 用于对所述第一天线单元组中多个天线振子接收的 信号在所述两个不同的极化方向上进行合路;
所述有源模块, 用于接收经过所述第一合分路器在所述两个不同的极化 方向上合路的信号, 并对经过所述第一合分路器合路的信号进行变频处理得 到基带信号;
所述第二合分路器, 用于对所述第二天线单元组中的多个天线振子接收 的信号在所述两个不同的极化方向上进行合路;
每个所述第二天线装置还对应所述至少一对接收通道, 所述至少一对接 收通道分别用于接收经过所述第二合分路器在所述两个不同的极化方向上合 路的信号;
所述有源模块, 还用于对所述至少一对接收通道接收的信号进行变频处 理得到基带信号。
再一方面, 本发明还提供一种通信系统, 包括: 基站系统, 所述基站系 统包括天线系统; 所述天线系统包括: 第一天线装置、 至少一个第二天线装置和至少一对 接收通道;
所述第一天线装置中包括: 第一天线单元组、 第一合分路器和有源模块; 所述第二天线装置中包括: 第二天线单元组和第二合分路器;
所述第一天线单元组和所述第二天线单元组中均包括多个天线振子, 所 所述第一合分路器, 用于对所述第一天线单元组中多个天线振子接收的 信号在所述两个不同的极化方向上进行合路;
所述有源模块, 用于接收经过所述第一合分路器在所述两个不同的极化 方向上合路的信号, 并对经过所述第一合分路器合路的信号进行变频处理得 到基带信号;
所述第二合分路器, 用于对所述第二天线单元组中的多个天线振子接收 的信号在所述两个不同的极化方向上进行合路;
每个所述第二天线装置还对应所述至少一对接收通道, 所述至少一对接 收通道分别用于接收经过所述第二合分路器在所述两个不同的极化方向上合 路的信号;
所述有源模块, 还用于对所述至少一对接收通道接收的信号进行变频处 理得到基带信号。
本发明技术方案提供的天线系统、 基站系统和通信系统, 在有源天线单 元组和无源天线单元组构成的天线系统中, 通过合分路器对无源天线单元组 不同的极化方向上接收的信号进行合路后,采用至少一对接收通道进行接收, 再对接收通道接收的信号进行变频处理得到基带信号。 由于该天线系统实现 了对无源天线单元组中不同的极化方向上的信号进行接收和变频处理, 使得 天线系统中的有源天线单元组和无源天线单元组构成的天线系统, 能够实现 4通道的接收性能收益或 4通道以上的接收性能收益, 即, 实现 4R以及 4R 以上的接收性能收益, 提高了系统的接收性能收益。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有的天线系统的结构示意图;
图 2为本发明提供的天线系统一个实施例的结构示意图;
图 3为本发明实施例提供的第一天线装置的结构示意图;
图 4为本发明提供的天线系统又一个实施例的结构示意图;
图 5为本发明提供的天线系统另一个实施例的结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通信系 统( Global System of Mobile communication, GSM ), 码分多址 ( CDMA, Code Division Multiple Access )系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ), 通用分组无线业务 ( GPRS, General Packet Radio Service ) , 全球微波互联接入 ( Worldwide Interoperability for Microwave Access, WiMAX ),长期演进( LTE, Long Term Evolution )等。
基站系统,可以为包括天线和基站的系统。基站,可以是 GSM或 CDMA 中的基站(BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站 ( NodeB ),还可以是 LTE中的演进型基站( eNB或 e-NodeB, evolved Node B ), 本发明并不限定。
图 2为本发明提供的天线系统一个实施例的结构示意图, 如图 2所示, 该天线系统包括: 第一天线装置、 至少一个第二天线装置和至少一对接收通 道 3;
第一天线装置中包括: 第一天线单元组 11、 第一合分路器 12和有源模 块 13; 第二天线装置中包括: 第二天线单元组 21和第二合分路器 22;
第一天线单元组 11和第二天线单元组 21 中均包括多个天线振子, 天线 振子用于在两个不同的极化方向上收发信号;
第一合分路器 12, 用于对第一天线单元组 11 中多个天线振子接收的信 号在两个不同的极化方向上进行合路;
有源模块 13, 用于接收经过第一合分路器 12在两个不同的极化方向上 合路的信号,并对经过第一合分路器 12合路的信号进行变频处理得到基带信 号;
第二合分路器 22, 用于对第二天线单元组 21 中的多个天线振子接收的 信号在两个不同的极化方向上进行合路;
每个第二天线装置还对应至少一对接收通道 3, 至少一对接收通道 3分 别用于接收经过第二合分路器 22在两个不同的极化方向上合路的信号;
有源模块 13,还用于对至少一对接收通道 3接收的信号进行变频处理得 到基带信号。
其中, 第一天线单元组 11和第二天线单元组 21 中都包括多个天线振子 (每个天线振子即天线单元组中的一个天线单元), 第一天线单元 11 中包括 的天线振子个数与第二天线单元组 21 中包括的天线振子个数可以相同,也可 以不同。 每一个天线振子在两个不同的极化方向上收发信号, 第一天线单元 11 中的各个天线振子具有相同的两个极化方向, 第二天线单元 21 中的各个 天线振子也具有相同的两个极化方向。 例如: 第一天线单元 11 中的每个天线 振子都可以在与水平面呈正 45度和负 45度两个收发方向上收发信号;同样, 第二天线单元 21 中的每个天线振子都可以在与水平面呈正 45度和负 45度 两个收发方向上收发信号。 另外, 需要说明的是, 本发明实施例中涉及的每 一个天线振子既可以用于接收信号, 又可以用于发送信号。 即, 本发明实施 例中的第一天线单元组 11和第二天线单元组 21均可以采用收发共振子结构。
第一天线单元组 11、第一合分路器 12和有源模块 13所构成的第一天线 装置为有源天线架构, 例如: 第一天线装置可以是 AAS有源天线架构, 还可 以是现有的其他有源天线架构。 该有源天线架构能够实现 2通道的接收性能 收益, 即, 实现 2R的接收性能收益, 具体如下:
作为一种可行的实施方式, 本发明实施例提供了第一天线装置的一种可 行的结构, 如图 3所示, 其中:
第一天线单元组 11包括: b个天线振子。 第一合分路器 12, 可以用于将第一天线单元组 11 中的 b个天线振子接 收的 2b路信号合路为 2a路信号, 2b路信号中的一个 b路信号和 2a路信 号中的一个 a路信号均对应 b个天线振子的一个极化方向, 另一个 b路信号 和另一个 a路信号均对应 b个天线振子的另一个极化方向, 其中, b和 a均 为大于 1的整数, a小于等于 b;
有源模块 13可以具体包括: a对收发通道 131和信号处理器 132;其中: a对收发通道 131 ,每对收发通道 131与 2a路信号中位于两个不同的极 化方向上的两路信号对应, 每对收发通道 131 用于接收 2a路信号中位于两 个不同的极化方向上的两路信号;
信号处理器 132, 用于对 a对收发通道 131接收的信号, 以及至少一对 接收通道接收的信号进行变频处理。
具体的, 第一合分路器 12可以由现有的 2个 a驱 b合分路网络构成, 或者由一个 2a驱 2b合分路网络构成。 第一天线单元组 11 中的每一个天线 振子在一个极化方向上接收到的信号, 可以作为一路信号输入到第一合分路 器 12中, 即, 第一天线单元组 11 中共有 2b路信号输入到第一合分路器 12 中, 2b路信号中的一个 b路信号对应 b个天线振子的一个极化方向, 另一个 b路信号对应 b个天线振子的另一个极化方向。 第一合分路器 12接收到 2b 路信号后,可以将该 2b路信号中位于一个极化方向上的 b路信号合路为一个 a路信号输出,将该 2b路信号中位于另一个极化方向上的 b路信号合路为另 一个 a路信号输出。 即, 第一合分路器 12合路后得到的 2a路信号中, 一个 a路信号对应 b个天线振子的一个极化方向, 另一个 a路信号对应 b个天线 振子的另一个极化方向。 其中, a和 b均为大于 1的整数, a小于等于 b, a 和 b的比值不是定值, 具体可以由天线的性能指标(例如覆盖性能、 增益等) 与实现代价来权衡确定。
据此, 可以设置 a对收发通道 131 , 每个收发通道 131用于接收 2a路 信号中一路信号, 因此, 收发通道 131需要成对设置, 每对收发通道 131与 2a路信号中位于两个不同的极化方向上的两路信号对应, 每对收发通道 131 用于接收 2a路信号中位于两个不同的极化方向上的两路信号。 因此, 可以设 置 a对收发通道 131 , a对收发通道 131 中的每一对收发通道 131 , 包括一 个 M 极化方向上的收发通道 TRX M 和一个 D 极化方向上的收发通道 TRX_D, 其中, M极化方向和 D极化方向为第一天线单元组 11 中每个天线 振子接收信号的两个不同的极化方向。 则 a对收发通道 131 可以分别为: TRX—M1和 TRX—D1 , TRX—M2和 TRX—D2, ... ... TRX_Ma和 TRX_Da。
a对收发通道 131 中的每对收发通道 131分别接收到经过第一合分路器 12合路后的两路信号后,输入至信号处理器 132中进行变频处理后得到基带 信号。 需要说明的是, 本发明实施例涉及的收发通道 131可以为现有的收发 通道, 而现有的收发通道 131可以对接收到的信号进行模数转换和下变频处 理得到中频信号, 因此, 本发明实施例中, 收发通道 131输入至信号处理器 132中的信号可以是中频信号。 该信号处理器 132可以对接收到的中频信号 进行进一步变频处理得到基带信号。信号处理器 132处理后最终得到 M极化 方向和 D极化方向上的两路基带信号。
综上可以看出, 第一天线装置中的有源模块 13中的 a对收发通道 131 能够接收 b个天线振子在两个极化方向上的信号, 信号处理器 132可以对 a 对收发通道 131输出的信号进行处理,得到两个极化方向上的两路基带信号。 因此, 第一天线单元组 11、 第一合分路器 12以及有源模块 13中的 a对收发 通道 131和信号处理器 132实现的接收性能收益, 可以看作是 2通道(每个 通道对应 b个天线振子的一个极化方向) 的接收性能收益, 即, 第一天线单 元组 11、 第一合分路器 12以及有源模块 13中的 a对收发通道 131和信号 处理器 132可以实现 2R ( Receive ) 的接收性能收益。 其中, 接收性能收益 可以体现为终端的发射功率, 系统的覆盖性, 系统的容量, 和 /或系统的信噪 比等性能指标。
本发明实施例提供的天线系统中, 第二天线装置中的第二天线单元组 21 和第二合分路器 22构成无源天线架构,通过在第二天线装置中设置第二合分 路器 22, 将第二天线单元组 21 中的多个天线振子接收的信号进行合路。 本 发明实施例中, 在天线系统中每个第二天线装置对应设置至少一对接收通道 3, 每一对接收通道 3, 可以分别用于在两个不同的极化方向上接收经过第二 合分路器 22合路的信号,再将接收到的信号输入至第一天线装置中的有源模 块 13中进行变频处理得到基带信号,通过至少一对接收通道 3能够接收第二 天线单元组 21中的多个天线振子在两个极化方向上的信号, 有源模块 13可 以对至少一对接收通道 3输出的信号进行处理, 得到两个极化方向上的两路 基带信号。 因此, 第二天线单元组 21、 第二合分路器 22以及至少一对接收 通道 3和有源模块 13实现的接收性能收益, 可以看作是 2通道(每个通道 对应第二天线单元组 21 中的多个天线振子的一个极化方向) 的接收性能收 益, 即, 第二天线单元组 21、 第二合分路器 22以及至少一对接收通道 3和 有源模块 13可以实现 2R ( Receive ) 的接收性能收益。 由此可见, 本发明 实施例提供的天线系统中, 第一天线装置中第一天线单元组 11、 第一合分路 器 12以及有源模块 13能够实现 2通道的接收性能收益。 每个第二天线装置 中的第二天线单元组 21和第二合分路器 22、 至少一对接收通道 3以及第一 天线装置中的有源模块 13, 能够实现 2通道的接收性能收益。 从而使本发明 实施例提供的天线系统, 能够实现 4通道的接收性能收益或者 4通道以上的 接收性能收益, 即, 4R或 4R以上的接收性能收益。
需要说明的是, 由于天线系统接收的信号通常具有多个路径, 而多个路 径之间具有相互干扰。 假设天线系统接收到的信号具有 4个路径, 如果天线 系统中仅有第一天线装置能够实现 2通道(每个通道对应 b个天线振子的一 个极化方向)接收, 那么第一天线装置的每个通道对应 2个路径的信号, 而 这两个路径的信号之间存在干扰, 因此, 使得系统的信噪比等性能指标较差。
而本发明实施例提供的天线系统, 在第一天线装置能够实现 2通道接收 的基础上, 第二天线装置中的第二天线单元组 21和第二合分路器 22、 至少 一对接收通道 3以及第一天线装置中的有源模块 13, 能够实现 2通道(每个 通道对应第二天线单元组 21 中的多个天线振子的一个极化方向)的接收。假 设天线系统接收到的信号具有 4个路径, 则第一天线装置实现的每个通道, 第二天线装置、至少一对接收通道 3以及第一天线装置中的有源模块 13实现 的每个通道, 均只需对应 1个路径的信号, 因此, 提高了系统的信噪比等性 能指标。 可以看出, 天线系统实现的通道数量越多, 系统的接收性能收益越 好。
以上仅以系统的信噪比为例, 对本发明实施例实现的 4通道或者 4通道 以上的接收相对现有的 2通道的接收的性能收益进行说明。 实际上, 4通道 或者 4通道以上的接收相对 2通道的接收, 能够实现终端发射更小的功率, 系统具有更好的覆盖性以及实现系统具有更大的容量, 在此不——说明。
作为一种可行的实施方式,第二合分路器 22可以为现有的应用于无源天 线的合分路网络, 该合分路网络通常称为无源合分路网络。 该无源合分路网 络可以将第二天线单元组 21 中的多个天线振子接收的信号合路为两路信号, 每路信号对应第二天线单元组 21中的多个天线振子的一个极化方向。 例如: 假设第二天线单元组 21 中每个天线振子分别从与水平面呈正 45度和负 45 度两个极化方向上接收信号, 则第二合分路器 22可以将第二天线单元组 21 中所有天线振子中位于与水平面呈正 45度极化方向上的天线所接收的信号 合为一路信号, 将第二天线单元组 21 中所有天线振子中位于与水平面呈负 45度极化方向上的天线所接收的信号合为另一路信号。
在这种实施场景下, 每个第二天线装置可以对应设置一对接收通道 3, 这一对接收通道 3 中的一个接收通道 3可以用于接收经过第二合分路器 22 合路得到的一路信号, 该路信号可以是, 例如: 第二天线单元组 21 中所有天 线振子中位于与水平面呈正 45度极化方向上的天线所接收的信号合路后得 到的一路信号;另一个接收通道 3可以用于接收经过第二合分路器 22合路得 到的另一路信号, 该路信号可以是, 例如: 第二天线单元组 21中所有天线振 子中位于与水平面呈负 45度极化方向上的天线所接收的信号合路后得到的 一路信号。
这一对接收通道 3可以将接收到的信号输入至第一天线装置中的有源模 块 13中进行变频处理,得到两路基带信号,从而实现每个第二天线装置中的 第二天线单元组 21和第二合分路器 22、 至少一对接收通道 3以及第一天线 装置中的有源模块 13, 能够实现 2通道的接收性能收益, 即 2R接收性能收 益。
需要说明的是,本发明实施例涉及的接收通道 3可以为现有的接收通道, 而现有的接收通道 3可以对接收到的信号进行模数转换和下变频处理得到中 频信号, 因此, 本发明实施例中, 接收通道 3输入至有源模块 13的信号可以 是中频信号。有源模块 13中的信号处理部分,例如图 3所示的该信号处理器 132, 可以对接收通道 3输入的中频信号进行进一步变频处理得到基带信号。
可以看出, 在该实施场景下, 可以在第二天线装置通过设置无源合分路 网络(即, 现有的应用于无源天线的合分路网络), 并且每个第二天线装置对 应设置一对接收通道 3, 实现每个第二天线装置中的第二天线单元组 21、 无 源合分路网络、 一对接收通道 3以及第一天线装置中的有源模块 13, 能够实 现 2通道的接收性能收益。 本发明实施例提供的天线系统中, 可以设置一个 或多个第二天线装置, 从而至少一个第二天线装置与第一天线装置, 可以实 现 4通道的接收性能收益或 4通道以上的接收性能收益, 即, 实现 4R以及 4R以上的接收性能收益。
作为另一种可行的实施方式,第二合分路器 22可以采用与第一天线装置 中的第一合分路器 12类似的合分路器件。 例如: 第二合分路器 22可以由现 有的 2个 m驱 n合分路网络构成, 或者由一个 2m驱 2n合分路网络构成。 假设第二天线单元组 21中包括 n个天线振子,每一个天线振子接收到的信号 可以作为一路信号输入到第二合分路器 22中, 即, 第二天线单元组 21中共 有 2n路信号输入到第二合分路器 22中, 2n路信号中的一个 n路信号对应 n 个天线振子的一个极化方向, 另一个 n路信号对应 n个天线振子的另一个极 化方向。 第二合分路器 22接收到 2n路信号后, 将 2n路信号中位于一个极 化方向上的 n路信号合路为 m路信号输出,将另一个极化方向上的 n路信号 合路为 m路信号输出, 即, 第二合分路器 22合路后得到的 2m路信号中的 一个 m路信号对应 n个天线振子的一个极化方向, 另一个 m路信号对应 n 个天线振子的另一个极化方向。 其中, m和 n均为大于 1的整数, m小于等 于 n, m和 n的比值不是定值, 具体可以由天线的性能指标(例如覆盖性能、 增益等 )与实现代价来权衡确定。
需要说明的是, 由于第一天线单元组 11和第二天线单元组 21 中包括的 天线振子个数通常相同,即 n与 b通常相等,但 m与 a可以相同也可以不同。
在该实施场景下, 每个接收通道 3用于接收 2m路信号中一路信号, 因 此, 接收通道 3需要成对设置, 每对接收通道 3与 2m路信号中位于两个不 同的极化方向上的两路信号对应, 每对接收通道 3分别用于接收 2m路信号 中位于两个不同的极化方向上的两路信号。 因此, 每个第二天线装置中可以 对应设置 m对接收通道 3。 m对接收通道 3中的每一对接收通道 3, 包括一 个 M极化方向上的接收通道 RX_M和一个 D极化方向上的接收通道 RX_D, m对接收通道 3可以分别为: RX_M1和 RX_D1 , RX_M2和 RX_D2, ... ...
RX_Mm和 RX_Dm。
m对接收通道 3中的每对接收通道 3接收到经过第二合分路器 22合路 后的两路信号后,输入至第一天线装置中的有源模块 13进行变频处理得到基 带信号。 其中, 接收通道 3可以为现有的接收通道, 而现有的接收通道 3可 以对接收到的信号进行模数转换和下变频处理得到中频信号, 因此, 本发明 实施例中,接收通道 3输入至有源模块 13的信号可以是中频信号。有源模块 13中的信号处理部分, 例如图 3所示的该信号处理器 132, 可以对接收通道 3输入的中频信号进行进一步变频处理, 得到 M极化方向和 D极化方向上的 两路基带信号。
可选的, 有源模块 13还可以用于: 对第一合分路器 12合路的信号以及 至少一对接收通 3道接收的信号进行波束赋形。有源模块 13可以采用现有的 各种方法对第一合分路器 12合路的信号以及至少一对接收通 3道接收的信号 进行波束赋形, 例如: 可以在模拟域进行波束赋形, 也可以在数字域进行波 束赋形。
可以看出, 在该实施场景下, 每个第二天线装置可以对应设置第二合路 器 22 (可以由两个 m驱 n合分路网络构成, 或者由一个 2m驱 2n合分路网 络构成)和 m对接收通道 3, 每个第二天线装置中的第二天线单元组 21、 m 驱 n合分路网络、 m对接收通道 3以及第一天线装置中的有源模块 13, 能够 实现 2通道的接收性能收益。 本发明实施例提供的天线系统中, 可以设置一 个或多个第二天线装置, 从而至少一个第二天线装置与第一天线装置, 可以 实现 4通道的接收性能收益或 4通道以上的接收性能收益, 即, 实现 4R以 及 4R以上的接收性能收益。
本实施例提供的天线系统, 在有源天线单元组和无源天线单元组构成的 天线系统中, 通过合分路器对无源天线单元组不同极化方向上接收的信号进 行合路后, 采用至少一对接收通道进行接收, 再对接收通道接收的信号进行 变频处理得到基带信号。 由于该天线系统实现了对无源天线单元组中不同的 极化方向上的信号进行接收和变频处理, 使得天线系统中的有源天线单元组 和无源天线单元组构成的天线系统, 能够实现 4通道的接收性能收益或 4通 道以上的接收性能收益, 即, 实现 4R以及 4R以上的接收性能收益, 提高了 系统的接收性能收益。
图 4为本发明提供的天线系统又一个实施例的结构示意图,如图 4所示, 本实施例以第二天线装置中设置现有的应用于无源天线的合分路网络, 即, 无源合分路网络, 以及每个第二天线装置对应设置一对接收通道, 实现每个 第二天线装置中的第二天线单元组 21、 无源合分路网络、 一对接收通道 3以 及第一天线装置中的有源模块 13, 能够实现 2通道的接收性能收益。 具体说 明如下:
在该实施场景下, 第二合分路器 22具体用于: 将第二天线单元组 21 中 的多个天线振子接收的信号合路为两路信号, 每路信号对应第二天线单元组 21 中的多个天线振子的一个极化方向;
相应的, 每个第二天线装置对应一对接收通道 3, 用于接收经过第二合 分路器 22合路后得到的两路信号。
其中, 第二合分路器 22可以为现有的无源合分路网络, 该无源合分路网 络可以将第二天线单元组 21 中的多个天线振子接收的信号合路为两路信号, 每路信号对应第二天线单元组 21中的多个天线振子的一个极化方向。假设第 二天线单元组 21 中每个天线振子在 M极化方向和 D极化方向上接收信号, 则第二合分路器 22可以将第二天线单元组 21中所有天线振子在 M极化方向 上接收的信号合为一路信号, 将第二天线单元组 21 中所有天线振子在 D极 化方向上接收的信号合为另一路信号。 在这种实施场景下, 第二天线装置可 以对应设置一对接收通道 3, 这一对接收通道 3中的一个接收通道 3可以用 于接收经过第二合分路器 22合路得到的一路信号, 该路信号可以是, 例如: 第二天线单元组 21 中所对应的天线振子在 M极化方向上所接收的信号合路 后得到的一路信号; 另一个接收通道 3 可以用于接收经过第二合分路器 22 合路得到的另一路信号, 该路信号可以是, 例如: 第二天线单元组 21中所对 应的天线振子在 D极化方向上所接收的信号合路后得到的一路信号。
一对接收通道 3可以为现有的接收通道, 可以对接收到的信号进行模数 转换和下变频处理得到中频信号, 因此,接收通道 3输入至有源模块 13的信 号可以是中频信号。有源模块 13中的信号处理部分,例如图 3所示的该信号 处理器 132, 可以对接收通道 3输入的中频信号进行进一步变频处理, 得到 两路基带信号, 从而实现每个第二天线装置中的第二天线单元组 21、 无源合 分路网络、 一对接收通道 3以及第一天线装置中的有源模块 13, 能够实现 2 通道的接收性能收益。
通过在每个第二天线装置中设置无源合分路网络, 以及每个第二天线装 置对应设置一对接收通道 3实现在第二天线单元组 21 的两个极化方向上的 2R接收的基础上, 进一步的, 还可以将第二天线装置用作无源天线与 RRU 等模块连接。
在这种实施场景下, 可选的, 可以将第一天线单元组 11中多个天线振子 接收的信号设置为第一频段,将第二天线单元组 21 中多个天线振子接收的信 号设置为第二频段, 其中, 第二频段包含第一频段且第二频段的范围大于第 一频段;
由于第二天线单元组 21接收的信号频段中包含第一天线单元组 11接收 的信号频段, 因此,可以将经过第二合分路器合路 22后得到的两路信号中的 第一频段滤出, 并输出到一对接收通道 3 中, 以实现在第二天线单元组 21 的两个极化方向上的 2R接收。将输出经过第二合分路器 22合路后得到的两 路信号中, 除第一频段之外的其余信号输出至 RRU等模块中, 实现第二天线 装置用作无源天线使用。
据此, 作为一种可行的实施方式, 如图 4所示, 可以在第二天线装置中 设置至少一个第一滤波器 23, 至少一个第一滤波器 23可以设置在第二合分 路器 22与一对收发通道 3之间, 可以用于将经过第二合分路器 22合路后得 到的两路信号中的第一频段滤出并输出至第二天线装置对应的一对接收通道
3。
可选的, 可以设置一个第一滤波器 23, 每个第一滤波器 23可以设置两 个输入端口和两个输出端口,每个输入端口接收经过第二合分路器 22合路后 得到的一路信号, 每个输出端口用于将滤波后的一路信号输入到一个接收通 道 3中。
可选的, 也可以设置两个第一滤波器 23, 每个第一滤波器 23可以设置 一个输入端口和一个输出端口,分别用于接收经过第二合分路器 22合路后得 到的一路信号, 将滤波后的一路信号输入到一个接收通道 3中。
进一步的, 至少一个第一滤波器 23还可以将经过第二合分路器 22合路 后得到的两路信号中, 除第一频段之外的其余信号可全部或部分输出至 RRU、 RRU模块或非分布式基站中,从而实现第二天线装置用作无源天线使 用。
作为另一种可行的实施方式,还可以在第二天线单元组 21与第二合分路 器 22之间设置至少一个第二滤波器,用于对 n个天线振子接收的信号中的第 一频段滤出并输出至第二合分路器 22中。该第二滤波器可以为现有的共振子 滤波器。
可选的, 第二滤波器的个数可以与天线振子的个数相同, 即, 设置 n个 第二滤波器, 每个第二滤波器可以设置两个输入端口和两个输出端口, 用于 接收第二天线单元 21 中的一个天线振子在两个极化方向上接收的信号,并将 接收的信号中的第一频段滤出并输出至所述第二合分路器 22中,再由第二合 分路器 22进行合路处理。
可选的,还可以设置 2n个第二滤波器,每个第二滤波器上设置一个输入 端口和一个输出端口 ,每个第二滤波器用于接收第二天线单元 21 中的一个天 线振子在一个极化方向上的信号, 并将接收的信号中的第一频段滤出并输出 至所述第二合分路器 22中, 再由第二合分路器 22进行合路处理。
可选的,还可以设置一个第二滤波器,在该第二滤波器上设置 2n个输入 端口和 2n个输出端口,用于接收 n个天线振子在两个极化方向上的信号,并 将接收的信号中的第一频段滤出并输出至所述第二合分路器 22中,再由第二 合分路器 22进行合路处理。
以上仅提供第二滤波器的几种可选的设置方式, 可以理解的是, 第二滤 波器的个数及其端口的设置还有多种方式, 并不以上述几种方式对本发明做 出限制。
进一步的, 至少一个第二滤波器还可以输出接收的信号中除第一频段之 外的其余信号中的全部或部分, 来实现第二天线装置用作无源天线使用。 在 这种实施场景下, 还可以在第二天线装置中进一步设置第三合分路器, 该第 三合分路器可以为现有的无源合分路网络, 第三合分路器可以将至少一个第 二滤波器输出的除第一频段之外的其余信号中的全部或部分, 合路为两路信 号, 其中每路信号可以对应 n个天线振子的一个极化方向, 第三合分路器可 以将合路后得到的两路信号输出至 RRU、 RRU模块或非分布式基站中, 从 而实现第二天线装置用作无源天线使用。
可选的, 该天线系统中还可以包括: 射频拉远单元模块(图中未视出), 该射频拉远单元模块可以用于接收第一滤波器 23 或第三合分路器输出的两 路信号中除第一频段之外的其余信号中的全部或部分, 并将所接收的两路信 号进行变频处理得到两路基带信号后, 通过数字接口发给基带单元。 本实施例提供的天线系统, 通过在每个第二天线装置中设置无源合分路 网络, 以及每个第二天线装置对应设置一对接收通道, 实现在第二天线单元 组的两个极化方向上的 2R接收, 实现天线系统的 4R或 4R以上的接收性能 收益。 进一步的, 本实施例还将第一天线单元组中多个天线振子接收的信号 设置为第一频段, 将第二天线单元组中多个天线振子接收的信号设置为第二 频段, 使第二频段包含第一频段且第二频段的范围大于第一频段。 通过在第 二合分路器和一对接收通道之间设置至少一个第一滤波器, 将经过第二合分 路器合路后得到的两路信号中的第一频段滤出, 并输出到一对接收通道中 , 以实现在第二天线单元组的两个极化方向上的第一频段上的 2R接收。 将输 出经过第二合分路器合路后得到的两路信号中, 除第一频段之外的其余信号 可全部或部分输出至 RRU或非分布式基站中,实现第二天线装置用作无源天 线使用。 或者, 通过在第二天线单元组与第二合分路器之间设置至少一个第 二滤波器, 将多个天线振子输出的信号中除第一频段之外的其余信号可全部 或部分输出后,再采用第三合分路器合路成两路信号输出至 RRU或非分布式 基站中, 实现第二天线装置用作无源天线使用。
图 5为本发明提供的天线系统另一个实施例的结构示意图,如图 5所示, 本实施例以第二天线装置中设置 m驱 n合分路网络,每个第二天线装置可以 设置 m对接收通道实现在第二天线单元组的两个极化方向上的 2R接收, 每 个第二天线装置中的第二天线单元组 21、 m驱 n合分路网络、 m对接收通道 3以及第一天线装置中的有源模块 13, 能够实现 2通道的接收性能收益为例 进行说明。
在该实施场景下, 第二合分路器 22 可以具体用于: 将第二天线单元组 21 中的 n个天线振子接收的 2n路信号合路为 2m路信号, 2n路信号中的一 个 n路信号和 2m路信号中的一个 m路信号对应 n个天线振子的一个极化方 向,另一个 n路信号和另一个 m路信号对应 n个天线振子的另一个极化方向, n和 m均为大于 1的整数, m小于等于 n;
相应的, 每个第二天线装置可以设置 m对接收通道 3, 每对接收通道 3 与 2m路信号中位于两个不同的极化方向上的两路信号对应,每对接收通道 3 用于接收 2m路信号中位于所述两个不同的极化方向上的两路信号。
其中, 第二合分路器 22可以采用与第一天线装置中的第一合分路器 12 类似的合分路器件。 第二合分路器 22可以由现有的 2个 m驱 n合分路网络 构成, 还可以由现有的 2m驱 2n合分路网络构成。 假设第二天线单元组 21 中包括 n个天线振子, 每一个天线振子在一个极化方向上接收到的信号可以 作为一路信号输入到第二合分路器 22中, 即, 第二天线单元组 21中共有 2n 路信号输入到第二合分路器 22中, 2n路信号中的一个 n路信号对应 n个天 线振子的一个极化方向, 另一个 n路信号对应 n个天线振子的另一个极化方 向。 第二合分路器 22接收到 2n路信号后, 将一个极化方向上的 n路信号合 路为 m路信号输出, 将另一个极化方向上的 n路信号合路为 m路信号输出。 其中, m和 n均为大于 1的整数, m小于等于 n, m和 n的比值不是定值, 具体可以由天线的性能指标以及实现代价来确定。
每个接收通道 3用于接收 2m路信号中一路信号, 因此, 接收通道 3成 对设置, 每对接收通道 3与 2m路信号中位于两个不同的极化方向上的两路 信号对应, 每对接收通道 3分别用于接收 2m路信号中位于两个不同的极化 方向上的两路信号。 因此, 每个第二天线装置中可以对应设置 m对接收通道 3。 m对接收通道 3中的每一对接收通道 3, 包括一个 M极化方向上的接收 通道 RX_M和一个 D极化方向上的接收通道 RX_D, m对接收通道 3分别为: RX_M1和 RX_D1 , RX_M2和 RX_D2, ... ... RX_Mm和 RX_Dm。
m对接收通道 3中的每对接收通道为现有的接收通道, 可以对接收到的 信号进行模数转换和下变频处理得到中频信号, 因此, 接收通道 3输入至有 源模块 13的信号可以是中频信号。 有源模块 13中的信号处理部分, 例如图 3所示的该信号处理器 132, 可以对接收通道 3输入的中频信号进行进一步 变频处理, 得到两路基带信号。
在该实施场景下,通过每个第二天线装置对应设置 2个 m驱 n合分路网 络或者 2m驱 2n合分路网络, 以及每个第二天线装置对应设置 m对接收通 道 3来可以实现在第二天线单元组 21的两个极化方向上的 2R接收。每个第 二天线装置中的第二天线单元组 21、 m驱 n合分路网络、 m对接收通道 3 以及第一天线装置中的有源模块 13, 能够实现 2通道的接收性能收益。
与图 4所示实施例相类似的,还可以将第二天线装置用作无源天线使用 , 比如与 RRU或非分布式基站连接。
在这种实施场景下, 可选的, 可以将第一天线单元组 11中多个天线振子 接收的信号设置为第一频段,将第二天线单元组 21 中多个天线振子接收的信 号设置为第二频段, 其中, 第二频段包含第一频段且第二频段的范围大于第 一频段; 由于第二天线单元组 21接收的信号频段中包含第一天线单元组 11 接收的信号频段, 因此, 可以将第二天线单元组 21 中每个天线振子输出的信 号中的第一频段滤出输入到第二合分路器 22中, 使输入第二合分路器 22的 2n路信号均位于第一频段, 从而使经过第二合分路器 22合路后得到的 2m 路信号也均位于第一频段,以实现在第二天线单元组 21的两个极化方向上的 2R接收。 进一步的, 可以将第二天线单元组 21 中每个天线振子输出的信号 中除第一频段之外的其他信号全部或部分输出至 RRU、 RRU模块或非分布 式基站中, 以实现第二天线装置用作无源天线使用。
据此, 如图 5所示, 作为一种可行的实施方式, 可以在第二天线装置中 设置至少一个第二滤波器 24, 用于对 n个天线振子接收的信号中的第一频段 滤出并输出至第二合分路器 22中。 该第二滤波器 24可以为现有的共振子滤 波器。
可选的, 如图 5所示, 第二滤波器 24的个数可以与第二天线单元组 21 中的天线振子的个数相等, 即, 设置 n个第二滤波器 24; 其中, 每个第二滤 波器 24可以设置两个输入端口和两个输出端口, 用于接收第二天线单元 21 中的一个天线振子在两个极化方向上接收的信号, 并将接收的信号中的第一 频段滤出并输出至所述第二合分路器 22中, 再由第二合分路器 22进行合路 处理。
可选的,还可以设置 2n个第二滤波器 24,每个第二滤波器 24上可以设 置一个输入端口和一个输出端口,每个第二滤波器 24可以用于接收第二天线 单元 21 中的一个天线振子在一个极化方向上的信号,并将接收的信号中的第 一频段滤出并输出至所述第二合分路器 22中 , 再由第二合分路器 22进行合 路处理。
可选的, 还可以设置一个第二滤波器 24, 在该第二滤波器 24上可以设 置 2n个输入端口和 2n个输出端口, 用于接收 n个天线振子在两个极化方向 上的信号, 并将接收的信号中的第一频段滤出并输出至所述第二合分路器 22 中, 再由第二合分路器 22进行合路处理。
以上仅提供第二滤波器的几种可选的设置方式, 可以理解的是, 第二滤 波器的个数及其端口的设置还有多种方式, 在此不——列举。
进一步的, 至少一个第二滤波器 24还可以用于: 输出所接收的信号中, 除第一频段之外的其余信号中的全部或部分。
可选的, 可以在第二天线装置中进一步设置: 第三合分路器 25, 该第三 合分路器 25可以用于将至少一个第二滤波器 24输出的信号中, 除第一频段 之外的其余信号中的全部或部分合路为两路信号输出至 RRU、 RRU模块或 非分布式基站中, 其中, 每路信号对应 n个天线振子的一个极化方向, 从而 实现第二天线装置用作无源天线使用。
作为另一种可行的实施方式, 还可以在第二天线装置中设置至少一个第 二滤波器 24, 可以用于对第二合分路器 22合路后得到的 2m路信号中的第 一频段滤出, 并输出至 m对接收通道 3中。
可选的, 第二滤波器 24的个数可以为 m个, 其中每个第二滤波器 24可 以设置两个输入端口和两个输出端口,用于接收第二合分路器 22合路后得到 的 2m路信号中位于不同极化方向上的两路信号, 并将接收的信号中的第一 频段滤出输出至 m对接收通道 3中的一对接收通道 3中。
可选的, 还可以设置 2m个第二滤波器 24, 其中每个第二滤波器 24可 以设置一个输入端口和一个输出端口,用于接收第二合分路器 22合路后得到 的 2m路信号中的一路信号, 并将接收的信号中的第一频段滤出输出至 m对 接收通道 3中的一个接收通道 3中。
可选的, 还可以设置一个第二滤波器 24, 在该第二滤波器 24上可以设 置 2m个输入端口和 2m个输出端口, 用于接收第二合分路器 22合路后得到 的 2m路信号,并将接收的信号中的第一频段滤出输出至 m对接收通道 3中。
以上仅提供第二滤波器的几种可选的设置方式, 可以理解的是, 第二滤 波器的个数及其端口的设置还有多种方式, 在此不——列举。
进一步的, 在这种实施场景下, 至少一个第二滤波器 24还可以用于: 输 出第二合路器 22合路后得到的 2m路信号中,除第一频段之外的其余信号中 的全部或部分。
可选的, 同样可以在第二天线装置中进一步设置: 第三合分路器 25, 该 第三合分路器 25可以用于将至少一个第二滤波器 24输出的 2m路信号中, 除第一频段之外的其余信号中的全部或部分合路为两路信号输出至 RRU、 RRU模块或非分布式基站中, 从而实现第二天线装置用作无源天线使用。 可选的, 该天线系统中还可以进一步包括: 射频拉远单元模块(图中未 视出), 该射频拉远单元模块可以用于接收第三合分路器 25输出的两路信号 中除第一频段之外的其余信号中的全部或部分, 并将所接收的两路信号进行 变频处理得到两路基带信号后, 通过数字接口发给基带单元。
本实施例提供的天线系统, 通过在每个第二天线装置中设置 2个 m驱 n 合分路网络或者 2m驱 2n合分路网络, 并且每个第二天线装置对应设置 m 对接收通道, 实现在第二天线单元组的两个极化方向上的接收, 实现天线系 统的 4R或 4R以上的接收性能收益。 进一步的, 本实施例还将第一天线单元 组中多个天线振子接收的信号设置为第一频段, 将第二天线单元组中多个天 线振子接收的信号设置为第二频段, 使第二频段包含第一频段且第二频段的 范围大于第一频段。 通过在第二天线单元组和第二合分路器之间设置至少一 个第二滤波器, 或者, 可以在第二合分路器和接收通道之间设置至少一个第 二滤波器, 将第二天线单元组中每个天线振子接收到的信号或者第二合分路 器输出的信号中的第一频段滤出, 以实现在第二天线单元组的两个极化方向 上的第一频段上的 2R接收。 还可以将至少一个第二滤波器接收到的信号中, 除第一频段之外其余频段的信号输出并经过第三合分路器合路后得到两路信 号中, 输出至 RRU、 RRU模块或非分布式基站中, 实现第二天线装置用作 无源天线使用。
图 2-图 5所示的实施例均为天线系统中包括一个第二天线装置的情况, 对于天线系统中包括多个第二天线装置的实施场景, 其中每个第二天线装置 的结构和功能均可参见上述实施例中的描述。
本发明实施例还提供一种基站系统, 该基站系统包括: 天线系统; 其中, 天线系统包括: 第一天线装置、 至少一个第二天线装置和至少一对接收通道; 第一天线装置中包括: 第一天线单元组、 第一合分路器和有源模块; 第 二天线装置中包括: 第二天线单元组和第二合分路器;
第一天线单元组和第二天线单元组中均包括多个天线振子, 天线振子用 于在两个不同的极化方向上收发信号;
第一合分路器, 用于对第一天线单元组中多个天线振子接收的信号在两 个不同的极化方向上进行合路; 有源模块, 用于接收经过第一合分路器合路的信号, 并对经过第一合分 路器在两个不同的极化方向上合路的信号进行变频处理得到基带信号;
第二合分路器, 用于对第二天线单元组中的多个天线振子接收的信号在 两个不同的极化方向上进行合路;
每个第二天线装置还对应至少一对接收通道, 至少一对接收通道分别用 于接收经过第二合分路器在两个不同的极化方向上合路的信号;
有源模块, 还用于对至少一对接收通道接收的信号进行变频处理得到基 带信号。
作为一种可行的实施方式, 第二合分路器可以将第二天线单元组中的 n 个天线振子接收的 2n路信号合路为两路信号, 2n路信号中的一个 n路信号 对应一个极化方向, 另一个 n路信号对应另一个极化方向, 两路信号中的每 路信号对应一个极化方向, n为大于 1的整数;
每个第二天线装置可以对应一对接收通道, 用于接收经过第二合分路器 合路后得到的两路信号。
可选的,第一天线单元组中多个天线振子接收的信号可以位于第一频段, 第二天线单元组中多个天线振子接收的信号位于第二频段, 第二频段包含第 一频段且第二频段的范围大于第一频段;
可选的, 第二天线装置中还可以设置至少一个第一滤波器, 该至少一个 第一滤波器可以将经过第二合分路器合路后得到的两路信号中的第一频段滤 出并输出至第二天线装置对应的一对接收通道。
该至少一个第一滤波器还可以输出经过第二合分路器合路后得到的两路 信号中, 除第一频段之外的其余信号中的全部或部分。
可选的, 本发明实施例提供的基站系统, 还可以包括:
射频拉远单元, 可以用于接收天线系统中的至少一个第一滤波器输出的 两路信号的全部或部分, 并将所接收的两路信号进行变频处理得到两路基带 信号后, 通过数字接口发给基带单元。
可选的, 本发明实施例提供的基站系统, 还可以包括:
非分布式基站, 可以用于接收天线系统中的至少一个第一滤波器输出的 两路信号中的全部或部分, 并将所接收的两路信号进行变频处理得到两路基 带信号后, 通过数字接口发给基带单元。 作为另一种可行的实施方式, 第二合分路器还可以用于: 将第二天线单 元组中的 n个天线振子接收的 2n信号合路为 2m路信号, 2n路信号中的一 个 n路信号对应一个极化方向,另一个 n路信号对应另一个极化方向, 2m路 信号中的一个 m路信号对应一个极化方向,另一个 m路信号对应另一个极化 方向, n和 m均为大于 1的整数, m小于等于 n;
每个第二天线装置对应 m对接收通道, 每对接收通道可以与 2m路信号 中的位于两个不同的极化方向上的两路信号对应,每对接收通道用于接收 2m 路信号中位于两个不同的极化方向上的两路信号。
可选的,第一天线单元组中多个天线振子接收的信号可以位于第一频段, 第二天线单元组中多个天线振子接收的信号位于第二频段, 第二频段包含第 一频段且第二频段的范围大于第一频段;
第二天线装置中还可以设置至少一个第二滤波器, 用于对 n个天线振子 接收的信号中的第一频段滤出并输出至第二合分路器中。 或者, 第二天线装 置中还可以设置至少一个第二滤波器, 用于对第二合路器合路后得到的 2m 路信号中的第一频段滤出, 并输出至 m对接收通道中。
可选的, 至少一个第二滤波器还可以输出接收的信号中除第一频段之外 的其余信号中的全部或部分。
可选的, 第二天线装置中还可以设置: 第三合分路器, 用于将至少一个 第二滤波器输出信号中, 除第一频段之外的其余信号中的全部或部分合路为 两路信号, 每路信号对应一个极化方向。
在该实施场景下, 基站系统中设置的射频拉远单元, 还可以用于接收天 线系统中的第三合分路器输出的两路信号的全部或部分, 除第一频段之外的 其余信号的全部或部分合路后得到的两路信号。
在该实施场景下, 基站系统中设置的非分布式基站, 还可以用于接收第 三合分路器输出的两路信号中的全部或部分, 并将所接收的两路信号进行变 频处理得到两路基带信号后, 通过数字接口发给基带单元。
本发明实施例提供的基站系统, 其中包括的天线系统的具体结构和功能 可参见本发明提供的天线系统实施例,天线系统与射频拉远单元 RRU的具体 连接方式也可以参见天线系统实施例中的相关描述, 在此不再赘述。
本实施例提供的基站系统, 在有源天线单元组和无源天线单元组构成的 天线系统中, 通过合分路器对无源天线单元组接收的信号进行合路后, 采用 路后的信号, 再对接收通道接收的信号进行变频处理得到基带信号。 由于该 频处理, 使得基站系统中的有源天线单元组和无源天线单元组构成的天线系 统, 能够实现 4通道的接收性能收益或 4通道以上的接收性能收益, 即, 实 现 4R以及 4R以上的接收性能增益, 提高系统的接收性能收益。 进一步的, 无源天线单元组还可以作为无源天线使用, 满足不同应用场景需求。
本发明实施例还可以提供一种通信系统, 包括以上描述的任意一种基站 系统。
可以理解的是, 本发明实施例中以上描述的 4通道或 4通道以上的接收 在接收方式的实现中, 利用了第一滤波器或第二滤波器的信号分路功能, 第 二合分路器的分路功能, 或第三合分路器的合路功能, 则可选的一种变形可 以包括将相应的接收通道改为收发通道, 利用第一滤波器或第二滤波器的信 号合路功能, 利用第二合分路器的合路功能, 和 /或利用第三合分路器的分路 功能等。 当然, 变形也还可以有其他形式, 由于发射过程和接收过程通常为 逆过程, 其结构和实现方式也可相互借鉴, 因此在此不做赞述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。 本发明实施例中提及的器件和 /或装置在物理上可以独立设置, 也可以集 成设置, 比如, 第二合分路器和第一滤波器可以在物理上由同一合分路网络 实现, 或者, 第二滤波器和第二合分路器在物理上由同一合分路网络实现。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种天线系统, 其特征在于, 包括: 第一天线装置、 至少一个第二天 线装置和至少一对接收通道;
所述第一天线装置中包括: 第一天线单元组、 第一合分路器和有源模块; 所述第二天线装置中包括: 第二天线单元组和第二合分路器;
所述第一天线单元组和所述第二天线单元组中均包括多个天线振子, 所 所述第一合分路器, 用于对所述第一天线单元组中多个天线振子接收的 信号在所述两个不同的极化方向上进行合路;
所述有源模块, 用于接收经过所述第一合分路器在所述两个不同的极化 方向上合路的信号, 并对经过所述第一合分路器合路的信号进行变频处理得 到基带信号;
所述第二合分路器, 用于对所述第二天线单元组中的多个天线振子接收 的信号在所述两个不同的极化方向上进行合路;
每个所述第二天线装置还对应所述至少一对接收通道, 所述至少一对接 收通道分别用于接收经过所述第二合分路器在所述两个不同的极化方向上合 路的信号;
所述有源模块, 还用于对所述至少一对接收通道接收的信号进行变频处 理得到基带信号。
2、 根据权利要求 1所述的天线系统, 其特征在于, 所述第二合分路器具 体用于:将所述第二天线单元组中的 n个天线振子接收的 2n路信号合路为两 路信号, 所述 2n路信号中的一个 n路信号对应一个所述极化方向, 另一个 n 路信号对应另一个所述极化方向, 所述两路信号中的每路信号对应一个所述 极化方向, 所述 n为大于 1的整数;
每个所述第二天线装置对应一对所述接收通道, 用于接收经过所述第二 合分路器合路后得到的两路信号。
3、 根据权利要求 2所述的天线系统, 其特征在于, 所述第一天线单元组 中多个天线振子接收的信号位于第一频段, 所述第二天线单元组中多个天线 振子接收的信号位于第二频段, 所述第二频段包含所述第一频段且所述第二 频段的范围大于所述第一频段; 所述第二天线装置中还包括: 至少一个第一滤波器, 用于将经过所述第 二合分路器合路后得到的两路信号中的所述第一频段滤出并输出至所述第二 天线装置对应的一对所述接收通道。
4、 根据权利要求 3所述的天线系统, 其特征在于, 所述至少一个第一滤 波器还用于: 输出经过所述第二合分路器合路后得到的两路信号中, 除所述 第一频段之外的其余信号中的全部或部分。
5、 根据权利要求 4所述的天线系统, 其特征在于, 还包括射频拉远单元 模块, 用于接收所述天线系统中的所述至少一个第一滤波器输出的两路信号 中除所述第一频段之外的其余信号中的全部或部分, 并将所接收的两路信号 进行变频处理得到两路基带信号后, 通过数字接口发给基带单元。
6、 根据权利要求 1所述的天线系统, 其特征在于, 所述第二合分路器具 体用于: 将所述第二天线单元组中的 n个天线振子接收的 2n信号合路为 2m 路信号, 所述 2n路信号中的一个 n路信号对应一个所述极化方向, 另一个 n 路信号对应另一个所述极化方向, 所述 2m路信号中的一个 m路信号对应一 个所述极化方向,另一个 m路信号对应另一个所述极化方向,所述 n和 m均 为大于 1的整数, m小于等于 n;
每个所述第二天线装置对应 m对所述接收通道, 每对所述接收通道与所 述 2m路信号中的位于所述两个不同的极化方向上的两路信号对应, 每对所 述接收通道用于接收所述 2m路信号中位于所述两个不同的极化方向上的两 路信号。
7、根据权利要求 2或 6所述的天线系统, 其特征在于, 所述第一天线单 元组中多个天线振子接收的信号位于第一频段, 所述第二天线单元组中多个 天线振子接收的信号位于第二频段, 所述第二频段包含所述第一频段且所述 第二频段的范围大于所述第一频段;
所述第二天线装置中还包括: 至少一个第二滤波器, 用于对所述 n个天 线振子接收的信号中的所述第一频段滤出并输出至所述第二合分路器中。
8、 根据权利要求 6所述的天线系统, 其特征在于, 所述第一天线单元组 中 n个天线振子接收的信号位于第一频段, 所述第二天线单元组中 n个天线 振子接收的信号位于第二频段, 所述第二频段包含所述第一频段且所述第二 频段的范围大于所述第一频段; 所述第二天线装置中还包括: 至少一个第二滤波器, 用于对所述第二合 路器合路后得到的 2m路信号中的所述第一频段滤出, 并输出至 m对所述接 收通道中。
9、根据权利要求 7或 8所述的天线系统, 其特征在于, 所述至少一个第 二滤波器还用于: 输出接收的信号中除所述第一频段之外的其余信号中的全 部或部分。
10、 根据权利要求 9所述的天线系统, 其特征在于, 所述第二天线装置 中还包括:
第三合分路器, 用于将所述至少一个第二滤波器输出信号中, 除所述第 一频段之外的其余信号中的全部或部分合路为两路信号, 每路信号对应一个 所述极化方向。
11、 根据权利要求 10所述的天线系统, 其特征在于, 还包括: 射频拉远 单元模块, 用于接收所述第三合分路器输出的两路信号中的全部或部分, 并 将所接收的两路信号进行变频处理得到两路基带信号后, 通过数字接口发给 基带单元。
12、 根据权利要求 1 -11任一项所述的天线系统, 其特征在于, 所述第一 合分路器,用于将所述第一天线单元组中的 b个天线振子接收的 2b路信号合 路为 2a路信号, 所述 2b路信号中的一个 b路信号对应一个所述极化方向, 另一个 b路信号对应另一个所述极化方向, 所述 2a路信号中的一个 a路信 号对应一个所述极化方向, 另一个 a路信号对应另一个所述极化方向, 所述 b和 a均为大于 1的整数, a小于等于 b;
所述有源模块包括: a对收发通道和信号处理器;
所述 a对收发通道,每对所述收发通道与所述 2a路信号中位于所述两个 不同的极化方向上的两路信号对应,每对所述收发通道用于接收所述 2a路信 号中位于所述两个不同的极化方向上的两路信号;
所述信号处理器, 用于对所述 a对收发通道接收的信号, 以及所述至少 一对接收通道接收的信号进行变频处理分别得到基带信号。
13、根据权利要求 1-12任一项所述的天线系统, 其特征在于, 所述有源 模块还用于: 对所述第一合分路器合路后得到的信号以及所述至少一对接收 通道接收的信号进行波束赋形。
14、 一种基站系统, 其特征在于, 包括: 如权利要求 1-13任一项所述的 天线系统。
15、 根据权利要求 14所述的基站系统, 其特征在于, 还包括: 射频拉远单元, 用于接收所述天线系统中的至少一个第一滤波器输出的 两路信号中的全部或部分, 并将所接收的两路信号进行变频处理得到两路基 带信号后, 通过数字接口发给基带单元;
或者, 用于接收所述第三合分路器输出的两路信号中的全部或部分, 并 将所接收的两路信号进行变频处理得到两路基带信号后, 通过数字接口发给 基带单元。
16、 根据权利要求 14 所述的基站系统, 其特征在于, 还包括: 非分布 式基站, 用于接收所述天线系统中的至少一个第一滤波器输出的两路信号中 的全部或部分, 并将所接收的两路信号进行变频处理得到两路基带信号后, 通过数字接口发给基带单元;
或者, 用于接收所述第三合分路器输出的两路信号中的全部或部分, 并 将所接收的两路信号进行变频处理得到两路基带信号后, 通过数字接口发给 基带单元。
17、 一种通信系统, 其特征在于, 包括: 如权利要求 14-16任一项所述 的基站系统。
PCT/CN2012/072604 2012-03-20 2012-03-20 天线系统、基站系统和通信系统 WO2012103830A2 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12741651.9A EP2814115B1 (en) 2012-03-20 2012-03-20 Antenna system, base station system and communication system
PCT/CN2012/072604 WO2012103830A2 (zh) 2012-03-20 2012-03-20 天线系统、基站系统和通信系统
JP2015500731A JP5866701B2 (ja) 2012-03-20 2012-03-20 アンテナシステム、基地局システム、及び通信システム
CN201280000818.2A CN103329355B (zh) 2012-03-20 2012-03-20 天线系统、基站系统和通信系统
CA2867894A CA2867894C (en) 2012-03-20 2012-03-20 Antenna system, base station system and communication system
US13/718,976 US8588856B2 (en) 2012-03-20 2012-12-18 Antenna system and base station system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/072604 WO2012103830A2 (zh) 2012-03-20 2012-03-20 天线系统、基站系统和通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/718,976 Continuation US8588856B2 (en) 2012-03-20 2012-12-18 Antenna system and base station system

Publications (2)

Publication Number Publication Date
WO2012103830A2 true WO2012103830A2 (zh) 2012-08-09
WO2012103830A3 WO2012103830A3 (zh) 2013-02-28

Family

ID=46603133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072604 WO2012103830A2 (zh) 2012-03-20 2012-03-20 天线系统、基站系统和通信系统

Country Status (6)

Country Link
US (1) US8588856B2 (zh)
EP (1) EP2814115B1 (zh)
JP (1) JP5866701B2 (zh)
CN (1) CN103329355B (zh)
CA (1) CA2867894C (zh)
WO (1) WO2012103830A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312366A (zh) * 2013-05-31 2013-09-18 华为技术有限公司 有源天线、基站和抑制干扰的方法
CN103718379A (zh) * 2013-03-27 2014-04-09 华为技术有限公司 一种多频段有源天线

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104392B (zh) * 2010-12-15 2013-10-09 华为技术有限公司 多频段多路收发设备及方法、基站系统
US10243263B2 (en) 2014-04-30 2019-03-26 Commscope Technologies Llc Antenna array with integrated filters
CN106961284B (zh) * 2016-01-08 2019-07-19 大唐移动通信设备有限公司 一种射频前端系统、基站
US10462686B2 (en) 2017-10-23 2019-10-29 Keysight Technologies, Inc. Over the air (OTA) beamforming testing with a reduced number of receivers
WO2019100325A1 (zh) * 2017-11-24 2019-05-31 华为技术有限公司 一种传输上行信号的方法、基站及系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513506A (ja) * 1999-10-28 2003-04-08 セレトラ・リミテッド セルラー基地局拡大方法
US6889061B2 (en) * 2000-01-27 2005-05-03 Celletra Ltd. System and method for providing polarization matching on a cellular communication forward link
US6754511B1 (en) * 2000-02-04 2004-06-22 Harris Corporation Linear signal separation using polarization diversity
JP3699883B2 (ja) 2000-06-29 2005-09-28 松下電器産業株式会社 無線基地局装置及び無線通信方法
GB0020088D0 (en) * 2000-08-15 2000-10-04 Fujitsu Ltd Adaptive beam forming
US6957050B2 (en) * 2001-10-23 2005-10-18 Celletra Ltd. Time-delay transmit diversity add-on to a multicarrier base transceiver system
GB0224341D0 (en) * 2002-10-19 2002-11-27 Qinetiq Ltd Mobile radio base station
US7280848B2 (en) * 2002-09-30 2007-10-09 Andrew Corporation Active array antenna and system for beamforming
GB0415811D0 (en) * 2004-07-15 2004-08-18 Quintel Technology Ltd Antenna system for shared operation
CN2729936Y (zh) * 2004-09-23 2005-09-28 西安海天天线科技股份有限公司 一种多极化扇区阵列天线
JP4838263B2 (ja) * 2004-12-13 2011-12-14 テレフオンアクチーボラゲット エル エム エリクソン(パブル) アンテナ装置とそれに関する方法
GB0513583D0 (en) * 2005-07-01 2005-08-10 Nokia Corp A mobile communications network with multiple radio units
GB0616449D0 (en) * 2006-08-18 2006-09-27 Quintel Technology Ltd Diversity antenna system with electrical tilt
CN102548051A (zh) * 2008-10-27 2012-07-04 华为技术有限公司 通信系统、设备和方法
ES2747937T3 (es) * 2008-11-20 2020-03-12 Commscope Technologies Llc Antena sectorial de doble haz y conjunto
CN102308437B (zh) * 2009-05-26 2013-09-11 华为技术有限公司 一种天线装置
EP2256860B1 (en) * 2009-05-26 2018-12-19 Alcatel Lucent Antenna array
CN201608276U (zh) * 2009-11-10 2010-10-13 西安空间无线电技术研究所 一种S/Ka频段的双频馈源
EP2553764A1 (en) * 2010-03-31 2013-02-06 Andrew LLC Omni-directional multiple-input multiple-output antenna system
JP6113166B2 (ja) * 2011-08-19 2017-04-12 クインテル テクノロジー リミテッド 仰角面空間ビームフォーミングを行うための方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2814115A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718379A (zh) * 2013-03-27 2014-04-09 华为技术有限公司 一种多频段有源天线
US9799942B2 (en) 2013-03-27 2017-10-24 Huawei Technologies Co., Ltd. Multi-band active antenna
CN103312366A (zh) * 2013-05-31 2013-09-18 华为技术有限公司 有源天线、基站和抑制干扰的方法
CN103312366B (zh) * 2013-05-31 2015-04-08 华为技术有限公司 有源天线、基站和抑制干扰的方法

Also Published As

Publication number Publication date
WO2012103830A3 (zh) 2013-02-28
US20130252671A1 (en) 2013-09-26
EP2814115A4 (en) 2015-01-28
US8588856B2 (en) 2013-11-19
JP5866701B2 (ja) 2016-02-17
EP2814115B1 (en) 2023-04-19
JP2015514345A (ja) 2015-05-18
CA2867894C (en) 2017-05-16
CA2867894A1 (en) 2012-08-09
CN103329355B (zh) 2016-01-20
EP2814115A2 (en) 2014-12-17
CN103329355A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
WO2012103830A2 (zh) 天线系统、基站系统和通信系统
US9876545B2 (en) Apparatus, system and method of wireless communication via polarized antennas
US20170279500A1 (en) Antenna and Active Antenna System
JP4921567B2 (ja) 複数無線機の通信装置及びその方法
WO2010118689A1 (zh) 一种射频模块的支持多频段共存的方法及装置
WO2015131456A1 (zh) 多模双通终端
US8290536B2 (en) Radio transceiver and method for reception of combined receive signals
WO2011076076A1 (zh) 一种多路接收装置、接收机和基站
US7383032B2 (en) Cellular phone and method for receiving and transmitting signals of different frequency bands
US9258050B2 (en) Transceiving module, antenna, base station and signal receiving method
WO2012103853A2 (zh) 接收和发送信号的方法、发射机、接收机及其系统
CN113904706B (zh) 终端设备、信号传输方法及基带芯片
WO2009039712A1 (fr) Procédé et système pour obtenir des secteurs de couverture en utilisant des unités radios énantiomorphes
WO2022206520A1 (zh) 一种信号转发方法和装置
CN106605445B (zh) 射频拉远单元、接收机和基站
JP5095561B2 (ja) 送受共用回路
RU2575049C1 (ru) Антенная система, система базовой станции и система связи
US20220201782A1 (en) Devices and methods for single-channel and multi-channel wlan communications
CN114340049B (zh) Poi设备和无线覆盖系统
CN111641439B (zh) 天线装置及参考信号发送方法
WO2023191797A1 (en) Apparatus, system, and method of beamforming training over a millimeterwave (mmwave) wireless communication channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741651

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012741651

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015500731

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2867894

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014142023

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741651

Country of ref document: EP

Kind code of ref document: A2