WO2012102488A2 - 전자유압펌프를 포함하는 건설기계의 유압 시스템 - Google Patents

전자유압펌프를 포함하는 건설기계의 유압 시스템 Download PDF

Info

Publication number
WO2012102488A2
WO2012102488A2 PCT/KR2011/010081 KR2011010081W WO2012102488A2 WO 2012102488 A2 WO2012102488 A2 WO 2012102488A2 KR 2011010081 W KR2011010081 W KR 2011010081W WO 2012102488 A2 WO2012102488 A2 WO 2012102488A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pressure
joystick
pump
control
Prior art date
Application number
PCT/KR2011/010081
Other languages
English (en)
French (fr)
Other versions
WO2012102488A3 (ko
Inventor
임현식
정우용
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to US13/981,161 priority Critical patent/US9284719B2/en
Priority to CN201180065660.2A priority patent/CN103328830B/zh
Priority to EP11856946.6A priority patent/EP2669529B1/en
Publication of WO2012102488A2 publication Critical patent/WO2012102488A2/ko
Publication of WO2012102488A3 publication Critical patent/WO2012102488A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/0426Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with fluid-operated pilot valves, i.e. multiple stage valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/002Electrical failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8752Emergency operation mode, e.g. fail-safe operation mode

Definitions

  • the present invention relates to a hydraulic system of a construction machine including an electro-hydraulic pump, and more particularly, when the operation of the electronic control unit for controlling the electro-hydraulic pump is abnormal, in particular, the operation amount of the joystick input to the electronic control unit is not normally transmitted. It relates to a hydraulic system that temporarily drives construction machinery when the electronic control unit is out of control due to failure.
  • Construction machinery such as excavators, wheel loaders, etc. are typically driven by a hydraulic pump driven by an engine and a hydraulic pump driving a plurality of work machines such as a boom, an arm, a bucket, and a traveling motor and a turning motor through the pressure of the hydraulic oil discharged from the hydraulic pump. It consists of a system.
  • the hydraulic pump used in the hydraulic system of such construction machinery is a variable displacement pump having a regulator for adjusting the swash plate and the swash plate angle (swash plate angle) formed in the pump, in particular an instruction input to the regulator to adjust the swash plate angle.
  • a regulator for adjusting the swash plate and the swash plate angle (swash plate angle) formed in the pump in particular an instruction input to the regulator to adjust the swash plate angle.
  • According to the type can be divided into mechanical control or electronic control.
  • the hydraulic pump mainly used a mechanical control method, but nowadays, an electronic control method for controlling an swash plate angle by applying an electric signal to a regulator is introduced.
  • Such an electronically controlled hydraulic pump includes a so-called pressure controlled electrohydraulic pump.
  • the pressure controlled electrohydraulic pump is controlled through control means such as an electronic controller.
  • the electronic control unit receives an input value of the swash plate angle as an electric signal from the joystick operation amount and the sensor mounted in the electrohydraulic pump as the lever such as the joystick in the cockpit of the construction machine is operated, and controls the pressure control with the corresponding electrohydraulic pump. Will output an electrical signal for
  • An object of the present invention is to provide a hydraulic system of a construction machine in which the electronic control unit temporarily controls the electro-hydraulic pump when the operation signal input to the electronic control unit in the construction machine using the electro-hydraulic pump is not normal.
  • Another object of the present invention is to provide a hydraulic system of a construction machine, characterized in that when the joystick is in a neutral state during emergency control, it recognizes this and performs appropriate swash angle control.
  • Still another object of the present invention is to provide a hydraulic system configured to recognize, for example, a neutral state of a joystick even when an operation signal of the joystick is not normal.
  • the present invention is an electrohydraulic pump which is a pressure controlled variable displacement pump; A plurality of main control valves for selectively controlling the flow of the hydraulic oil discharged from the electromagnetic hydraulic pump; A plurality of work machines and traveling motors driven through hydraulic oil supplied from corresponding main control valves among the plurality of main control valves; And an electronic controller configured to control the hydraulic oil discharge flow rate of the electrohydraulic pump based on the flow rate signal of the electrohydraulic pump and the operation amount of the joystick, wherein the electronic controller also controls the normal operation of the joystick because the operation amount of the joystick is not transmitted to the electronic controller.
  • the electro-hydraulic pump may set the hydraulic oil when the joystick is in a neutral state
  • a hydraulic system of a construction machine characterized in that for performing a predetermined swash plate angle control to discharge at a minimum flow rate and a minimum pressure.
  • the hydraulic system further comprises a center bypass valve which is normally closed during normal control of the electronic control unit, wherein the electronic control unit operates the center bypass valve to switch the hydraulic system to an open type when the normal control is impossible. do.
  • the electronic control unit maintains the joystick in a neutral state when the electrohydraulic pump is above a predetermined reference pressure and maintains the maximum swash plate angle for a predetermined reference time. It is characterized by the recognition.
  • the predetermined swash plate angle control is performed so that the pressure of the electro-hydraulic pump becomes the minimum pressure by causing the electro-hydraulic pump to discharge the working oil at a predetermined flow rate as the neutral state of the joystick is recognized. It is done.
  • the pressure of the electromagnetic hydraulic pump is increased, and the electronic control unit stops the predetermined swash plate angle control when the rising pressure is equal to or higher than the predetermined set pressure.
  • the electro-hydraulic pump is characterized in that to discharge the hydraulic fluid at the maximum pressure again.
  • the electronic control unit may provide a hydraulic system of the construction machine to temporarily control the electro-hydraulic pump.
  • 1 is a hydraulic circuit diagram showing an example of a hydraulic system using an electrohydraulic pump
  • FIG. 2 is a diagram representing the relationship between pressure and flow rate of an electrohydraulic pump over time in the system of FIG. 1;
  • FIG. 3 is a hydraulic circuit diagram showing a hydraulic system using an electrohydraulic pump according to an embodiment of the present invention.
  • FIG. 4 is a diagram representing the relationship between pressure and flow rate of the electrohydraulic pump over time in the system of FIG. 3.
  • the construction machine capable of emergency control of the construction machine on the assumption that the input signal of the joystick is not transmitted to the electronic control unit among the input signals (flow signal and pressure signal) transmitted to the electronic control unit.
  • the hydraulic system since only the pressure sensor, for example, to transfer the operation amount of the joystick to the electronic control unit is broken, the pilot pressure output from the joystick to each main control valve or the like is transmitted as normal, and is variable for each electrohydraulic pump. Note that pressure control is possible.
  • the pressure sensor is illustrated as a means for transmitting the operation amount of the joystick to the electronic control unit in the present specification, it is only an example, it is obvious that other suitable means can be used.
  • an electro-hydraulic common joystick may be used or the joystick may be provided with a separate manipulated variable measuring means.
  • the hydraulic system 100 of a construction machine includes an electrohydraulic pump 10a and 10b driven by an engine (not shown), and a plurality of mains for controlling the flow of hydraulic oil discharged from the electrohydraulic pump.
  • Control valves 20a, 20b, 20c, and 20d include driving motors 30a and 30b and a plurality of work machines 40a and 40b driven through the hydraulic oil supplied from the respective main control valves.
  • the pump comprises a predetermined hydraulic line (14a, 14b) for connecting the pump, the main control valve and the working machine to form a path for the hydraulic oil is conveyed, and the electro-hydraulic pump (10a, 10b) and the main control valve (20a) It further includes a traveling straight control valve 22 capable of changing the supply path of the hydraulic oil to the traveling motors 30a and 30b and the work machines 40a and 40b on the hydraulic lines between 20b, 20c and 20d.
  • regulators 12a and 12b for adjusting the swash plate angles of the electro-hydraulic pumps 10a and 10b and an electronic controller 50 capable of controlling the regulator are provided, and the electronic controller 50 includes the pressure of the joystick.
  • the pressure signal 62 and the flow rate signals (e.g., swash plate angle detection signals) 16a and 16b are received from the sensor 60 and the corresponding control signals 52a and 52b are received.
  • the hydraulic system 100 also operates in a closed system with the center bypass valves 70a and 70b closed.
  • Electro-hydraulic pumps 10a and 10b are set to maintain an arbitrary pressure. That is, the hydraulic oil is set to be discharged at a constant pressure from the electromagnetic hydraulic pumps 10a and 10b.
  • FIG. 2 is a graph showing the relationship between the pump pressure and the flow rate versus time in the system of FIG. Referring to FIG. 2, the emergency control mode is as follows.
  • the electronic controller outputs a constant constant control signal to each electromagnetic hydraulic pump under a closed system in which the center bypass valve is closed.
  • the hydraulic oil at the pressure is set to be discharged. This allows each electrohydraulic pump to maintain a high pressure to perform a load operation.
  • the pressure of the electrohydraulic pump (that is, the discharge pressure of the hydraulic fluid) gradually increases because the operating oil is continuously discharged under the closed system.
  • the maximum pressure is maintained until the joystick is operated again as indicated by time E in FIG. 2, for example.
  • the swash plate angle of each electrohydraulic pump is kept to a minimum while the pressure of the electrohydraulic pump is maintained at the maximum pressure.
  • the hydraulic system and the emergency control mode of Figures 3 and 4 is particularly useful when the operation amount of the joystick is not transmitted to the electronic control unit. This useful system and control mode are described in more detail below.
  • the hydraulic system 200 of a construction machine includes an electrohydraulic pump 110a and 110b driven by an engine (not shown), and a plurality of mains for controlling the flow of hydraulic oil discharged from the electrohydraulic pump.
  • Control valves 120a, 120b, 120c, 120d
  • the driving motors 130a, 130b
  • the plurality of working machines 140a, 140b
  • the pump comprises a predetermined hydraulic line (114a, 114b) for connecting the pump and the main control valve, work machine, etc.
  • the electro-hydraulic pump (110a, 110b) and the main control valve (120a) It further includes a traveling straight control valve 122 that can change the supply path of the hydraulic oil to the traveling motors (130a, 130b) and the working machines (140a, 140b) on the hydraulic line between 120b, 120c, 120d.
  • regulators 112a and 112b for adjusting the swash plate angles of the electrohydraulic pumps 110a and 110b
  • an electronic controller 150 capable of controlling the regulator, and the electronic controller 150 controls the amount of operation of the joystick.
  • the pressure signal 162 from the pressure sensor 160 and the flow signal (e.g., the angle detection signal of the swash plate angle) 116a, 116b of each of the electrohydraulic pumps 110a, 110b and corresponding control signals.
  • 152a and 152b are output to each of the electrohydraulic pumps 110a and 110b, in particular to the regulators 112a and 112b.
  • pressure sensors 180a and 180b for detecting the pressure of the hydraulic oil discharged from each of the electrohydraulic pumps 110a and 110b, so-called pump pressures 182a and 182b (discharged from each pump) through this pressure sensor. Pressure of the working oil) can be detected. The detected value is transmitted to the electronic control unit 150, so that the electronic control unit 150 can control each of the electromagnetic hydraulic pumps (110a, 110b) based on the pressure.
  • the hydraulic system 200 also operates as a closed system with the center bypass valves 170a and 170b closed.
  • the center bypass valves 170a and 170b are provided with hydraulic oil discharged from a hydraulic pump 110c such as a separate gear pump driven by an engine, through the pilot line 114c, such as a solenoid valve on the pilot line 114c. The same may be opened / closed according to whether the center bypass control valve 172 is driven.
  • the center bypass control valve 172 may also be driven by receiving a control signal 154 from the electronic controller 150.
  • FIG. 3 drives the center bypass control valve 172 to cut off the supply of hydraulic oil through the pilot line 114c, whereby the center bypass valves 170a and 170b open the hydraulic lines 114a and 114b.
  • the hydraulic system 200 is shown in an open state.
  • the means for example, the pressure sensor 160 for transmitting the manipulation amount of the joystick to the electronic control unit causes a failure, and the manipulation amount (pressure signal 162) of the joystick is transmitted to the electronic control unit 150. If not, the electronic controller 150 cannot normally output control signals 152a and 152b for each engine, and in this abnormal operation, the electronic controller 150 can control the respective electrohydraulic pumps 110a and 110b. Outputs a control signal (pressure command) with a constant.
  • the electronic control unit performs the emergency control in the state of switching the hydraulic system 200 to the open system.
  • the electronic controller 150 may control whether the center bypass valves 170a and 170b are driven by outputting a control signal 154 to the center bypass control valve 172.
  • FIG. 4 is a graph representing the relationship between the pressure and the flow rate of the electrohydraulic pump with respect to time according to the embodiment of FIG. 3. Referring to Figure 4, the emergency control mode of the present invention will be described.
  • the electronic control unit 150 when the operation amount of the joystick is not normally transmitted to the electronic control unit 150 (for example, when the joystick pressure sensor 160 is broken), the emergency control of the electronic control unit 150, the center bypass valve 170a , The electronic control unit 150 is set to discharge the hydraulic fluid at the maximum pressure by outputting a control signal of a constant constant to each of the electro-hydraulic pump under the open system consisting of, (b) 170b). This allows each electrohydraulic pump to maintain a high pressure to perform a load operation.
  • the pump pressure (the discharge pressure of the hydraulic oil, for example, the measured values of the pressure sensors 180a and 180b) maintains the maximum pressure
  • the pump flow rate (the discharge flow rate of the hydraulic oil) is maintained at an appropriate flow rate (swash plate angle) in accordance with the maximum pressure.
  • the pump flow rate is changed to the maximum flow rate and the pump pressure is changed to any pressure less than the maximum pressure because the emergency operation of the work machine is stopped ( 4B).
  • the swash plate angle of the pump maintains the maximum swash plate angle so that the pump discharges the maximum flow rate, where the pump pressure may be formed at about 70 bar.
  • the electronic controller 150 Determines that the joystick has entered the neutral mode (see C of FIG. 4).
  • the electronic controller 150 may have different joysticks. Rather than accidentally staying in the neutral state or slowly passing through the neutral state to manipulate the motion, it is recognized that the joystick is intentionally neutral and will remain neutral.
  • the electronic controller 150 outputs a control signal to the regulator of each of the electrohydraulic pumps 110a and 110b so that each of the electrohydraulic pumps 110a and 110b is controlled.
  • a predetermined flow rate eg, about 50 LPM.
  • the pump flow rate is reduced from the maximum flow rate to a predetermined flow rate (e.g. 50 LPM) (see D in FIG. 4) and maintained at the predetermined flow rate, and the pump pressure is lowered to the minimum pressure so that the joystick is operated again. Is maintained until.
  • a predetermined flow rate e.g. 50 LPM
  • the flow rate and pressure of the pump are maintained at predetermined low values, respectively, thereby preventing the problem that appears when the conventional maximum pressure is maintained.
  • a predetermined swash angle control e.g., neutral mode
  • the pump pressure gradually increases, and the pump pressure is increased to a predetermined reference value (e.g., about 70 bar). If abnormal, the electronic controller 150 escapes from the neutral mode (see F of FIG. 4).
  • the escape of the control of the electronic controller 150 from the neutral mode means that the predetermined swash plate angle control (for example, maintaining a flow rate of about 50 LPM) that is being performed in the neutral mode is stopped, and each of the electrohydraulic pumps 110a and 110b is again maximized.
  • a control signal is output so as to discharge the hydraulic oil at the pressure (see G in FIG. 4).
  • the emergency control of the present invention is proposed for the case where the electronic control unit cannot perform normal control because the operation amount of the joystick is not transmitted to the electronic control unit in the hydraulic system using the pressure-controlled electromagnetic hydraulic pump.
  • the main feature is that it recognizes when the joystick is in a neutral state during control, and in this case, the emergency control can be performed in the neutral mode (for example, predetermined swash angle control).
  • the electronic control unit performs emergency control in a state in which the center bypass valve is opened to switch the system to an open type, so that a condition for easily recognizing the neutral state of the joystick can be set.
  • the electronic controller controls the appropriate pressure and pressure during emergency control by clarifying the section in which the electronic controller performs predetermined swash angle control (neutral mode) and the entry and exit conditions for the neutral mode.
  • the electrohydraulic pump can be driven at a flow rate.
  • the present invention relates to a hydraulic system of a construction machine using an electro-hydraulic pump, in particular, when the electronic controller fails to perform normal control due to a problem that the operation amount of the joystick is not transmitted to the electronic controller.
  • the controller may temporarily control each electrohydraulic pump temporarily, and in particular, the electronic controller recognizes the neutral state of the joystick so that each electrohydraulic pump has a predetermined flow rate (for example, about 50 LPM) and a predetermined pressure (for example, when the joystick is neutral.
  • a hydraulic system for performing a neutral mode predetermined swash plate angle control for discharging the working oil of the minimum pressure.
  • the emergency control is performed in the state of opening the system that was closed during the conventional emergency control.
  • the electronic control unit is characterized in that to drive the center bypass control valve (for example, solenoid valve) to open the center bypass valve.
  • the center bypass control valve for example, solenoid valve
  • the center bypass valve at the time of the operation of the construction machine including the pressure-controlled electro-hydraulic pump for example, in the situation that the electronic control unit can not perform the normal control, because the operation amount of the joystick is not normally transmitted.
  • the electronic control unit performs predetermined swash plate angle control for each of the electrohydraulic pumps according to the above-described neutral mode entry condition and neutral mode exit condition, thereby performing efficient emergency control of the construction machine. Can be.
  • the electronic controller performs a neutral mode such that each of the electrohydraulic pumps is driven at a predetermined flow rate and a predetermined pressure, so that the pump continues to maintain the maximum pressure regardless of the neutrality of the conventional joystick,
  • a neutral mode such that each of the electrohydraulic pumps is driven at a predetermined flow rate and a predetermined pressure, so that the pump continues to maintain the maximum pressure regardless of the neutrality of the conventional joystick.
  • the hydraulic system of the construction machine according to the present invention temporarily prevents the operation of the electronic control unit for controlling the electro-hydraulic pump when the control of the electronic control unit is not possible due to the abnormal operation amount of the joystick input to the electronic control unit. It can be used to drive construction machinery.

Abstract

본 발명은 전자유압펌프를 포함하는 건설기계의 유압 시스템에 관한 것이며, 더욱 구체적으로는 전자유압펌프를 제어하는 전자제어부의 작동이 비정상적일 때, 특히 전자제어부로 조이스틱의 조작량이 전달되지 못하여 전자제어부가 제어 불능시 임시로 건설기계를 구동하는 유압 시스템에 관한 것으로, 이를 위하여 전자제어부는 센터바이패스 밸브를 구동하여 전체 시스템을 개방형으로 전환하고, 조이스틱의 중립 상태를 인식하기 위해, 중립 모드 진입 조건(예컨대, 소정 압력에서 소정 시간 동안 최대 유량 유지)과 중립 모드 탈출 조건을 설정한 후, 이를 이용하여 조이스틱의 중립 상태를 인식하고, 소정의 사판각 제어를 수행하는 중립 모드로 비상 제어를 수행할 수 있다.

Description

전자유압펌프를 포함하는 건설기계의 유압 시스템
본 발명은 전자유압펌프를 포함하는 건설기계의 유압 시스템에 관한 것이며, 더욱 구체적으로는 전자유압펌프를 제어하는 전자제어부의 작동이 비정상적일 때, 특히 전자제어부로 입력되는 조이스틱의 조작량이 정상적으로 전달되지 못함으로 인한 전자제어부의 제어 불능일 때 임시로 건설기계를 구동하는 유압 시스템에 관한 것이다.
굴삭기, 휠로더 등과 같은 건설기계는 통상적으로 엔진에 의해 구동되는 유압펌프와, 유압펌프로부터 토출되는 작동유의 압력을 통해 붐, 암, 버켓, 및 주행모터, 선회 모터 등과 같은 다수의 작업기를 구동하는 유압 시스템으로 구성된다.
이러한 건설기계의 유압 시스템에서 사용되는 유압펌프는 펌프 내에 형성된 사판과 사판의 각도(사판각)를 조정하기 위한 조정기를 구비하는 가변 용량형 펌프이며, 특히 사판각을 조정하기 위해 조정기로 입력되는 지시의 유형에 따라 기계 제어 방식 또는 전자 제어 방식으로 구분될 수 있다.
초기 유압펌프는 기계 제어 방식이 주였으나, 오늘날에는 예컨대 전기 신호를 조정기로 인가하여 사판각을 제어하는 전자 제어 방식이 도입되고 있다. 이러한 전자 제어 방식의 유압펌프는 소위 압력 제어형 전자유압펌프를 포함한다.
압력 제어형 전자유압펌프는 전자제어부와 같은 제어 수단을 통해 제어된다. 이러한 전자제어부는 건설기계의 조종석 내 조이스틱과 같은 레버가 조작됨에 따른 조이스틱의 조작량과 전자유압펌프 내에 장착된 센서로부터 사판각 각도의 값을 각각 전기 신호로 입력받고, 해당 전자유압펌프로 압력 제어를 위한 전기 신호를 출력하게 된다.
그러나, 이러한 전자유압펌프를 사용하는 건설기계의 경우에, 전자제어부가 작동 불능이 된다면, 예컨대 전자제어부로 입력되는 조이스틱의 조작 신호(조작량)가 정상적으로 입력되지 않는 경우에 전자제어부가 정상적으로 전자유압펌프를 제어할 수 없게 되는 문제가 발생할 수 있다.
이처럼, 건설기계를 제어할 때에, 전자제어부로 입력되는 조작 신호가 정상이 아닌 경우에도 전자제어부가 임의로 펌프 압력을 일정하게 유지하려 할 수 있기 때문에, 이는 건설기계의 장비, 예컨대 펌프 등의 소음의 증가, 그리고 유압 펌프나 밸브 등 유압 부품의 내구성 문제, 그리고 엔진이 지속적 고부하 상태로 유지됨에 따른 연료 소모량 증가 및 엔진 내구성 등의 문제로 나타나게 된다.
본 발명의 목적은 전자유압펌프를 사용하는 건설기계에서 전자제어부로 입력되는 조작 신호가 정상이 아닌 경우에 전자제어부가 임시로 전자유압펌프를 비상 제어하는 건설기계의 유압 시스템을 제공하기 위한 것이다.
본 발명의 다른 목적은 비상 제어 도중, 조이스틱이 중립 상태에 놓인 경우에, 이를 인식하여 그에 적절한 사판각 제어를 수행함을 특징으로 하는 건설기계의 유압 시스템을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 조이스틱의 조작 신호가 정상이 아닌 경우에도, 예컨대, 조이스틱의 중립 상태를 인식할 수 있도록 구성되는 유압 시스템을 제공하기 위한 것이다.
이러한 목적을 달성하기 위하여, 본 발명은 압력 제어형 가변 용량 펌프인 전자유압펌프와; 전자유압펌프로부터 토출되는 작동유의 유동을 선택적으로 제어하는 다수의 메인제어밸브와; 다수의 메인제어밸브 중 대응하는 개개의 메인제어밸브로부터 공급되는 작동유를 통해 구동되는 다수의 작업기와 주행모터; 및 전자유압펌프의 유량 신호 및 조이스틱의 조작량에 기초하여 상기 전자유압펌프의 작동유 토출 유량을 제어하는 전자제어부;를 포함하고, 이때 전자제어부는 또한, 조이스틱의 조작량이 전자제어부로 전달되지 못하여 정상 제어 불능시 전자유압펌프로 사전 설정된 압력 제어 신호를 출력하여 전자유압펌프가 작동유를 최대 압력으로 토출하도록 하는 비상 제어를 수행하고, 그리고 이러한 비상 제어 중에 조이스틱이 중립 상태일 때 전자유압펌프가 작동유를 소정의 유량과 최소의 압력으로 토출하도록 하는 소정의 사판각 제어를 수행하는 것을 특징으로 하는 건설기계의 유압 시스템을 제공한다.
본 발명에 있어서, 유압 시스템은 전자제어부의 정상 제어시 통상 폐쇄되는 센터바이패스 밸브를 더 포함하고, 전자제어부는 정상 제어 불능시 센터바이패스 밸브를 작동하여 유압 시스템을 개방형으로 전환하는 것을 특징으로 한다.
또한, 본 발명에 있어서, 센터바이패스 밸브가 작동되어 전환된 개방형 시스템에서, 전자제어부는 전자유압펌프가 소정의 기준 압력 이상이고 최대 사판각을 소정의 기준 시간 동안 유지할 때, 조이스틱을 중립 상태로 인식하는 것을 특징으로 한다.
또한, 본 발명에 있어서, 소정의 사판각 제어는, 조이스틱의 중립 상태를 인식함에 따라 전자유압펌프가 소정의 유량으로 작동유를 토출하도록 함으로써 전자유압펌프의 압력이 최소의 압력이 되도록 수행되는 것을 특징으로 한다.
또한, 본 발명에 있어서, 조이스틱이 중립 상태를 벗어남에 따라, 전자유압펌프의 압력이 상승하게 되고, 전자제어부는 상승하는 압력이 소정의 설정 압력 이상이 될 때, 소정의 사판각 제어를 중지하여 전자유압펌프가 다시 최대 압력으로 작동유를 토출하도록 하는 것을 특징으로 한다.
본 발명에 따르면, 전자유압펌프를 사용하는 건설기계에서 조이스틱의 압력 센서가 고장난 경우에 전자제어부가 임시로 전자유압펌프를 비상 제어하는 건설기계의 유압 시스템을 제공할 수 있다.
또한, 본 발명에 따르면, 위와 같은 비상 제어 도중, 조이스틱이 중립 상태에 놓인 경우에, 이를 인식하여 그에 적절한 사판각 제어를 수행함을 특징으로 하는 건설기계의 유압 시스템을 제공할 수 있다.
또한, 본 발명에 따르면, 조이스틱의 조작량이 전자제어부로 전달되지 않음에도, 전자제어부가 조이스틱의 중립 상태를 인식할 수 있도록 구성되는 유압 시스템을 제공할 수 있다.
또한, 본 발명의 유압 시스템에 따르면, 조이스틱의 중립 상태에서 적절한 사판각 제어를 수행함으로써, 건설기계의 장비, 예컨대 펌프 등의 소음의 증가, 그리고 유압 펌프나 밸브 등 유압 부품의 내구성 문제, 그리고 엔진이 지속적 고부하 상태로 유지됨에 따른 연료 소모량 증가 및 엔진 내구성 등의 문제를 해소할 수 있다.
도 1은 전자유압펌프를 사용하는 유압 시스템의 일 예를 도시한 유압 회로도;
도 2는 도 1의 시스템에서 시간에 대한 전자유압펌프의 압력과 유량의 관계를 표현한 선도;
도 3은 본 발명의 일 실시예에 따른 전자유압펌프를 사용하는 유압 시스템을 도시한 유압 회로도; 및
도 4는 도 3의 시스템에서 시간에 대한 전자유압펌프의 압력과 유량의 관계를 표현한 선도이다.
*부호의 설명*
200: 유압 시스템
110a, 110b: 전자유압펌프
110c: 기어 펌프
112a, 112b: 조정기
114a, 114b: 유압 라인
116a, 116b: 유량 신호
120a, 120b, 120c, 120d: 메인제어밸브
130a, 130b: 주행모터
140a, 140b: 작업기
150: 전자제어부
152a, 152b, 154: 제어 신호
160: 압력 센서
162: 압력 신호
170a, 170b: 센터바이패스 밸브
172: 센터바이패스 제어 밸브(솔레노이드 밸브)
180a, 180b: 압력 센서
182a, 182b: 펌프 압력 신호
본 발명은 전술한 바와 같이, 전자제어부로 전달되는 입력 신호들(유량 신호 및 압력 신호) 중 전자제어부로 조이스틱의 입력 신호가 전달되지 못하는 경우를 가정하여, 건설기계를 비상 제어할 수 있는 건설기계의 유압 시스템에 관한 것이다. 예를 들면, 조이스틱의 조작량을 전자제어부로 전달하기 위한, 예컨대 압력 센서만이 고장난 것이므로, 조이스틱에서 각 메인제어밸브 등으로 출력되는 파일럿 압력은 정상대로 전달되고, 또한 각 전자유압펌프에 대한 가변적인 압력 제어가 가능함에 유의한다.
한편, 본 명세서에서 조이스틱의 조작량을 전자제어부로 전달하는 수단으로 압력 센서가 예시되고 있으나, 이는 단지 예시적인 것이고, 기타 적절한 수단이 사용될 수 있다는 점은 자명하다. 예컨대, 전자-유압 공용 조이스틱이 사용되거나 또는 조이스틱에 별도의 조작량 측정 수단이 구비될 수 있다는 점에 유의한다.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.
본 발명의 전자유압펌프를 포함하는 건설기계에서, 특히, 전자제어부로 전달되는 입력 신호들 중 조이스틱의 입력 신호가 전달되지 못하는 경우를 가정하여, 건설기계를 비상 제어할 수 있는 건설기계의 유압 시스템에 관한 것이다. 이때, 조이스틱의 조작량을 전달하는 수단, 예컨대 압력 센서만이 고장난 것이므로, 조이스틱에서 각 메인제어밸브 등으로 출력되는 파일럿 압력은 정상대로 전달되고 있음에 유의한다.
도 1은 종래의 전자유압펌프를 사용하는 유압 시스템의 일 예를 도시한 유압 회로도이다. 도 1을 참조하면, 건설기계의 유압 시스템(100)은 엔진(도시되지 않음)에 의해 구동되는 전자유압펌프(10a, 10b)와, 전자유압펌프로부터 토출되는 작동유의 유동을 제어하는 다수의 메인제어밸브(20a, 20b, 20c, 20d), 각 메인제어밸브로부터 공급되는 작동유를 통해 구동되는 주행모터(30a, 30b) 및 다수의 작업기(40a, 40b)를 포함한다. 또한, 이들 펌프와 메인제어밸브 및 작업기 등을 연결하여 작동유가 이송되는 경로를 형성하는 소정의 유압 라인(14a, 14b)을 포함하고, 전자유압펌프(10a, 10b)와 메인제어밸브(20a, 20b, 20c, 20d) 사이의 유압 라인 상에 주행모터(30a, 30b) 및 작업기(40a, 40b)에 대한 작동유의 공급 경로를 변경할 수 있는 주행직진제어밸브(22)를 더 포함한다.
덧붙여, 전자유압펌프(10a, 10b)의 사판각을 조정하는 조정기(12a, 12b)와, 이 조정기를 제어할 수 있는 전자제어부(50)를 포함하며, 이 전자제어부(50)는 조이스틱의 압력 센서(60)로부터 압력 신호(62)와 각 펌프(10a, 10b)의 유량 신호(예컨대, 사판각의 각도 검출 신호)(16a, 16b)를 수신하여 대응하는 제어 신호(52a, 52b)를 각 펌프의 조정기(12a, 12b)로 출력한다. 또한, 이 유압 시스템(100)은 센터바이패스 밸브(70a, 70b)가 폐쇄된 상태인 밀폐형 시스템으로 동작한다.
이러한 유압 시스템에서, 예컨대 조이스틱의 조작량(예컨대, 압력 센서의 압력 신호(62))을 전자제어부(50)로 전달하지 못하게 된다면, 전자제어부(50)는 정상적으로 각 전자유압펌프에 대한 제어 신호(52a, 52b)를 출력할 수 없으며, 이러한 비정상 동작시 전자제어부(50)는 각 전자유압펌프(10a, 10b)에 대해 일정 상수의 제어 신호(압력 지령)를 출력함으로써 건설기계의 비상 구동을 위해 각 전자유압펌프(10a, 10b)가 임의의 압력을 유지하도록 설정된다. 즉, 전자유압펌프(10a, 10b)로부터 일정한 압력으로 작동유가 토출되도록 설정된다.
도 2는 도 1의 시스템에서 시간에 대한 펌프의 압력과 유량의 관계를 나타낸 그래프이다. 도 2를 참조하여, 비상 제어 모드에 대해 살펴보면 다음과 같다.
예컨대, 조이스틱의 조작량이 전달되지 못하는 고장으로 인해 발생하는 전자제어부의 비상 제어시에, 센터바이패스 밸브가 폐쇄되어 이루어진 밀폐형 시스템 하에서 전자제어부는 일정 상수의 제어 신호를 각 전자유압펌프로 출력함으로써 일정 압력의 작동유가 토출되도록 설정된다. 이를 통해 각 전자유압펌프가 고압을 유지하여 부하 작업을 수행할 수 있다.
이때, 도 2에서 시각 A로 표시된 것처럼 작업기 등의 구동이 중지되어 조이스틱이 중립 상태에 위치하게 되면, 밀폐형 시스템 하에서 계속 작동유가 토출되기 때문에 전자유압펌프의 압력(즉, 작동유의 토출 압력)이 점차 상승하게 되고 최대 압력에 도달하면, 예컨대 도 2에서 시각 E로 표시된 것처럼 다시 조이스틱이 동작할 때까지 그 최대 압력을 계속 유지하게 된다. 또한 전자유압펌프의 압력이 최대 압력으로 유지하는 동안 각 전자유압펌프의 사판각은 최소로 유지하게 된다.
도 1 및 도 2에 도시된 바와 같은 건설기계의 유압 시스템 및 제어 모드에 비하여, 도 3 및 도 4의 유압 시스템 및 비상 제어 모드는 전자제어부로 조이스틱의 조작량이 전달되지 못하는 경우에 특히 유용하다. 이러한 유용한 시스템 및 제어 모드에 대해 더욱 상세히 설명하면 다음과 같다.
도 3은 본 발명의 일 실시예에 따른 전자유압펌프를 사용하는 유압 시스템(200)을 도시한 유압 회로도이다. 도 3을 참조하면, 건설기계의 유압 시스템(200)은 엔진(도시되지 않음)에 의해 구동되는 전자유압펌프(110a, 110b)와, 전자유압펌프로부터 토출되는 작동유의 유동을 제어하는 다수의 메인제어밸브(120a, 120b, 120c, 120d), 각 메인제어밸브로부터 공급되는 작동유를 통해 구동되는 주행모터(130a, 130b) 및 다수의 작업기(140a, 140b)를 포함한다. 또한, 이들 펌프와 메인제어밸브 및 작업기 등을 연결하여 작동유가 이송되는 경로를 형성하는 소정의 유압 라인(114a, 114b)을 포함하고, 전자유압펌프(110a, 110b)와 메인제어밸브(120a, 120b, 120c, 120d) 사이의 유압 라인 상에 주행모터(130a, 130b) 및 작업기(140a, 140b)에 대한 작동유의 공급 경로를 변경할 수 있는 주행직진제어밸브(122)를 더 포함한다.
덧붙여, 전자유압펌프(110a, 110b)의 사판각을 조정하는 조정기(112a, 112b)와, 이 조정기를 제어할 수 있는 전자제어부(150)를 포함하며, 이 전자제어부(150)는 조이스틱의 조작량[예컨대, 압력 센서(160)로부터 압력 신호(162)]과 각 전자유압펌프(110a, 110b)의 유량 신호(예컨대, 사판각의 각도 검출 신호)(116a, 116b)를 수신하여 대응하는 제어 신호(152a, 152b)를 각 전자유압펌프(110a, 110b)로, 특히 그 조정기(112a, 112b)로 출력한다.
또한, 각 전자유압펌프(110a, 110b)로부터 토출되는 작동유의 압력을 검출하는 압력 센서(180a, 180b)가 도시되어 있으며, 이 압력 센서를 통해 소위 펌프 압력(182a, 182b)(각 펌프로부터 토출되는 작동유의 압력)을 검출할 수 있다. 검출된 값은 전자제어부(150)로 전달되고, 전자제어부(150)가 압력을 기준으로 각 전자유압펌프(110a, 110b)를 제어할 수 있도록 한다.
또한, 이 유압 시스템(200)은 센터바이패스 밸브(170a, 170b)가 폐쇄된 상태인 밀폐형 시스템으로 동작한다. 센터바이패스 밸브(170a, 170b)는 엔진에 의해 구동되는 별도의 기어 펌프와 같은 유압 펌프(110c)로부터 토출되는 작동유가 파일럿 라인(114c)을 통해 전달되어 파일럿 라인(114c) 상의 예컨대 솔레노이드 밸브와 같은 센터바이패스 제어 밸브(172)의 구동 여부에 따라 개방/폐쇄될 수 있다. 센터바이패스 제어 밸브(172)는 또한 전자제어부(150)로부터 제어 신호(154)를 인가받아 구동될 수 있다.
예컨대, 도 3은 센터바이패스 제어 밸브(172)를 구동하여 파일럿 라인(114c)을 통한 작동유의 공급을 차단함으로써, 센터바이패스 밸브(170a, 170b)가 유압 라인(114a, 114b)을 개방하여 유압 시스템(200)이 개방형으로 전환된 상태를 도시한다.
이러한 유압 시스템(200)에서, 예를 들어, 조이스틱의 조작량을 전자제어부로 전달하는 수단[예컨대, 압력 센서(160)]이 고장을 일으켜 조이스틱의 조작량[압력 신호(162)]을 전자제어부(150)로 전달하지 못하게 된다면, 전자제어부(150)는 정상적으로 각 엔진에 대한 제어 신호(152a, 152b)를 출력할 수 없으며, 이러한 비정상 동작시 전자제어부(150)는 각 전자유압펌프(110a, 110b)에 대해 일정 상수의 제어 신호(압력 지령)를 출력한다.
이때, 도 1의 경우와 달리, 센터바이패스 밸브(170a, 170b)를 개방함으로써 유압 시스템(200)을 개방형 시스템으로 전환한 상태에서 전자제어부가 비상 제어를 수행한다. 예컨대, 전자제어부(150)는 센터바이패스 제어 밸브(172)로 제어 신호(154)를 출력하여 센터바이패스 밸브(170a, 170b)의 구동 여부를 제어할 수 있다.
다음으로, 도 4는 도 3의 실시예에 따라 시간에 대한 전자유압펌프의 압력과 유량의 관계를 표현한 그래프이다. 도 4를 참조하여, 본 발명의 비상 제어 모드에 대해 살펴보면 다음과 같다.
예컨대, 조이스틱의 조작량이 전자제어부(150)로 정상적으로 전달되지 못하는 경우에(이를테면, 조이스틱 압력 센서(160)가 고장난 경우에), 전자제어부(150)의 비상 제어시에, 센터바이패스 밸브(170a, 170b)가 개방되어 이루어진 개방형 시스템 하에서 전자제어부(150)는 일정 상수의 제어 신호를 각 전자유압펌프로 출력함으로써 최대 압력으로 작동유가 토출되도록 설정된다. 이를 통해 각 전자유압펌프가 고압을 유지하여 부하 작업을 수행할 수 있다.
이때, 펌프 압력(작동유의 토출 압력, 예컨대 압력 센서 180a, 180b의 측정값)은 최대 압력을 유지하고, 펌프 유량(작동유의 토출 유량)은 최대 압력에 맞추어 적정한 유량(사판각 각도)으로 유지된다.
이후, 비상 제어 중에 조이스틱이 중립 상태에 놓인다면(도 4의 A 참조), 작업기의 비상 구동이 중단되기 때문에 펌프 유량은 최대 유량으로, 그리고 펌프 압력은 최대 압력보다 적은 임의의 압력으로 변경된다(도 4의 B 참조). 예컨대, 펌프의 사판각이 최대 사판각을 유지하여 펌프가 최대 유량을 토출하게 되고, 이때 펌프 압력은 약 70 bar로 형성될 수 있다.
이후, 펌프 유량이 최대 유량, 즉 최대 사판각을 소정의 기준 시간(예컨대 1초) 동안 유지한다면, 그리고 이때 펌프 압력이 소정의 기준 압력(예컨대, 약 50 bar) 이상이라면, 전자제어부(150)는 조이스틱이 중립 모드에 진입하였다고 판단한다(도 4의 C 참조).
즉, 최대 유량(최대 사판각) 유지, 소정의 기준 시간(예컨대, 1초), 소정의 기준 압력(예컨대, 50 bar 이상)과 같은 특정 조건을 충족한다면, 전자제어부(150)는 조이스틱이 다른 동작을 조작하기 위해 우연히 중립 상태에 머물거나 중립 상태를 천천히 통과하는 도중에 있는 것이 아니라, 조이스틱이 의도적으로 중립 상태에 놓여진 것이고 계속 중립 상태를 유지하게 되는 것으로 인식하게 된다.
따라서, 본 발명의 특징에 따라, 조이스틱의 중립 상태가 인식되면, 전자제어부(150)는 각 전자유압펌프(110a, 110b)의 조정기로 제어 신호를 출력하여 각 전자유압펌프(110a, 110b)가 소정의 유량(예컨대, 약 50 LPM)의 작동유를 토출하도록 소정의 사판각 제어를 수행하는 '중립 모드'로 진입한다.
중립 모드로 진입하면, 펌프 유량은 최대 유량에서 소정의 유량(예컨대, 50 LPM)으로 감소하여(도 4의 D 참조) 소정의 유량으로 유지되고, 또한 펌프 압력이 최소 압력으로 낮아져 조이스틱이 다시 동작할 때까지 유지된다.
따라서, 본 발명의 특징에 따라 비상 제어 중에 조이스틱이 중립 상태에 놓인다면, 종래와 달리 펌프의 유량 및 압력이 각각 소정의 낮은 값으로 유지됨으로써 종래 최대 압력이 계속 유지되던 때에 나타나던 문제점을 방지할 수 있게 된다. 예컨대, 펌프 등의 소음의 증가, 그리고 유압 펌프나 밸브 등 유압 부품의 내구성 문제, 그리고 엔진이 지속적 고부하 상태로 유지됨에 따른 연료 소모량 증가 및 엔진 내구성 등의 문제가 방지될 수 있다.
다음으로, 소정의 사판각 제어(예컨대, 중립 모드) 도중에 조이스틱이 다시 동작하면(도 4의 E 참조), 펌프 압력이 점차적으로 증가하게 되고, 펌프 압력이 소정의 기준값(예컨대, 약 70 bar) 이상이 되면 전자제어부(150)는 중립 모드에서 탈출하게 된다(도 4의 F 참조).
전자제어부(150)의 제어가 중립 모드에서 탈출한다는 것은, 중립 모드에서 수행 중이던 소정의 사판각 제어(예컨대, 약 50 LPM 유량 유지)가 중지되고, 각 전자유압펌프(110a, 110b)가 다시 최대 압력으로 작동유를 토출하도록 제어 신호가 출력된다(도 4의 G 참조).
이처럼, 본 발명의 비상 제어는 압력 제어형 전자유압펌프를 사용하는 유압 시스템에 있어서, 조이스틱의 조작량이 전자제어부로 전달되지 못함으로 인해 전자제어부가 정상 제어를 할 수 없는 경우에 대해 제안되는 것으로, 비상 제어 중 조이스틱이 중립 상태일 경우를 인식하고, 그 경우에 비상 제어를 중립 모드(예컨대, 소정의 사판각 제어)에서 수행할 수 있도록 함을 주된 특징으로 한다.
또한, 이를 위해서, 센터바이패스 밸브를 개방하여 시스템을 개방형으로 전환시킨 상태에서 전자제어부가 비상 제어를 수행하도록 함으로써, 조이스틱의 중립 상태를 용이하게 인식할 수 있는 조건을 설정할 수 있다.
또한, 도 4에 도시된 바와 같이, 전자제어부가 소정의 사판각 제어(중립 모드)를 실시하는 구간 및 이 중립 모드에 대한 진입 조건과 탈출 조건을 명확히 함으로써, 비상 제어 중에도 전자제어부가 적절한 압력과 유량으로 전자유압펌프를 구동할 수 있다.
이상에서 설명한 바와 같이, 본 발명은 전자유압펌프를 사용하는 건설기계의 유압 시스템에 관한 것으로, 특히 조이스틱의 조작량이 전자제어부로 전달되지 못하는 문제로 인해 전자제어부가 정상 제어를 수행하지 못할 때, 전자제어부가 각 전자유압펌프를 임시로 비상 제어할 수 있고, 특히 전자제어부가 조이스틱의 중립 상태를 인식하여 조이스틱의 중립시에 각 전자유압펌프가 소정 유량(예컨대, 약 50 LPM)과 소정 압력(예컨대, 최소압력)의 작동유를 토출하도록 하는 중립 모드(소정의 사판각 제어)를 수행하도록 하는 유압 시스템을 특징으로 한다.
또한, 이처럼 조이스틱의 중립 상태를 인식하고, 중립 모드에 대한 진입 조건과 탈출 조건을 설정하기 위해서, 기존의 비상 제어시 밀폐되어 있던 시스템을 개방시킨 상태에서 비상 제어가 수행됨을 특징으로 한다.
또한, 시스템을 개방 상태로 전환하기 위해서, 전자제어부가 센터바이패스 제어 밸브(예컨대, 솔레노이드 밸브)를 구동하여 센터바이패스 밸브를 개방하는 것을 특징으로 한다.
따라서, 본 발명에 따르면, 압력 제어형 전자유압펌프를 포함하는 건설기계의 작업시에, 예컨대 조이스틱의 조작량이 정상적으로 전달되지 못함으로 인해 전자제어부가 정상적으로 제어를 수행할 수 없는 상황에서, 센터바이패스 밸브를 개방하여 시스템을 개방하고, 이후 전자제어부가 전술한 중립 모드 진입 조건과 중립 모드 탈출 조건에 따라 각 전자유압펌프에 대해 소정의 사판각 제어를 수행하도록 함으로써, 건설기계의 효율적인 비상 제어를 수행할 수 있다.
또한, 조이스틱의 중립 상태에서 전자제어부가 각 전자유압펌프가 소정의 유량과 소정의 압력으로 구동되도록 중립 모드를 수행함으로써, 종래 조이스틱의 중립에 무관하게 펌프가 최대 압력을 계속 유지하고, 최대 압력의 유지에 따라 발생하던 소음의 증가, 유압 부품의 내구성 저하, 엔진의 지속적인 고부하 상태로 인한 연료 소모량의 증가, 그리고 엔진 내구성 저하와 같은 다수의 문제를 해소할 수 있다.
본 발명에 따른 건설기계의 유압 시스템은 전자유압펌프를 제어하는 전자제어부의 작동이 비정상적일 때, 특히 전자제어부로 입력되는 조이스틱의 조작량이 정상적으로 전달되지 못함으로 인한 전자제어부의 제어 불능일 때 임시로 건설기계를 구동하는 데에 이용될 수 있다.

Claims (5)

  1. 압력 제어형 가변 용량 펌프인 전자유압펌프(110a, 110b);
    상기 전자유압펌프(110a, 110b)로부터 토출되는 작동유의 유동을 선택적으로 제어하는 다수의 메인제어밸브(120a, 120b, 120c, 120d);
    상기 다수의 메인제어밸브(120a, 120b, 120c, 120d) 중 대응하는 개개의 메인제어밸브로부터 공급되는 작동유를 통해 구동되는 다수의 작업기(140a, 140b)와 주행모터(130a, 130b); 및
    상기 전자유압펌프(110a, 110b)의 유량 신호(116a, 116b) 및 조이스틱의 조작량(162)에 기초하여 상기 전자유압펌프(110a, 110b)의 작동유 토출 유량을 제어하는 전자제어부(150);를 포함하고,
    상기 전자제어부(150)는 또한,
    상기 조이스틱의 조작량이 전자제어부(150)로 전달되지 못하여 정상 제어 불능시 상기 전자유압펌프(110a, 110b)로 사전 설정된 압력 제어 신호를 출력하여 상기 전자유압펌프(110a, 110b)가 작동유를 최대 압력으로 토출하도록 하는 비상 제어를 수행하고, 그리고
    상기 비상 제어 중에 상기 조이스틱이 중립 상태일 때 상기 전자유압펌프(110a, 110b)가 작동유를 소정의 유량과 최소의 압력으로 토출하도록 하는 소정의 사판각 제어를 수행하는 것을 특징으로 하는 건설기계의 유압 시스템(200).
  2. 제 1 항에 있어서, 상기 유압 시스템(200)은 상기 전자제어부(150)의 정상 제어시 통상 폐쇄되는 센터바이패스 밸브(170a, 170b)를 더 포함하고,
    상기 전자제어부(150)는 정상 제어 불능시 상기 센터바이패스 밸브(170a, 170b)를 작동하여 상기 유압 시스템(200)을 개방형으로 전환하는 것을 특징으로 하는 건설기계의 유압 시스템.
  3. 제 2 항에 있어서, 상기 센터바이패스 밸브(170a, 170b)가 작동되어 전환된 개방형 시스템에서, 상기 전자제어부(150)는 상기 전자유압펌프(110a, 110b)가 소정의 기준 압력 이상이고 최대 사판각을 소정의 기준 시간 동안 유지할 때, 상기 조이스틱을 중립 상태로 인식하는 것을 특징으로 하는 건설기계의 유압 시스템.
  4. 제 1 항에 있어서, 상기 소정의 사판각 제어는,
    상기 조이스틱의 중립 상태를 인식함에 따라 상기 전자유압펌프(110a, 110b)가 소정의 유량으로 작동유를 토출하도록 함으로써 상기 전자유압펌프(110a, 110b)의 압력이 최소의 압력이 되도록 수행되는 것을 특징으로 하는 건설기계의 유압 시스템.
  5. 제 4 항에 있어서, 상기 조이스틱이 중립 상태를 벗어남에 따라, 상기 전자유압펌프(110a, 110b)의 압력이 상승하게 되고, 상기 전자제어부(150)는 상기 상승하는 압력이 소정의 설정 압력 이상이 될 때, 상기 소정의 사판각 제어를 중지하여 상기 전자유압펌프(110a, 110b)가 다시 최대 압력으로 작동유를 토출하도록 하는 것을 특징으로 하는 건설기계의 유압 시스템.
PCT/KR2011/010081 2011-01-24 2011-12-26 전자유압펌프를 포함하는 건설기계의 유압 시스템 WO2012102488A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/981,161 US9284719B2 (en) 2011-01-24 2011-12-26 Hydraulic system for construction machine having electronic hydraulic pump
CN201180065660.2A CN103328830B (zh) 2011-01-24 2011-12-26 包括电子液压泵的工程机械的液压系统
EP11856946.6A EP2669529B1 (en) 2011-01-24 2011-12-26 Hydraulic system for construction machine having electronic hydraulic pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0007073 2011-01-24
KR1020110007073A KR101762951B1 (ko) 2011-01-24 2011-01-24 전자유압펌프를 포함하는 건설기계의 유압 시스템

Publications (2)

Publication Number Publication Date
WO2012102488A2 true WO2012102488A2 (ko) 2012-08-02
WO2012102488A3 WO2012102488A3 (ko) 2012-10-18

Family

ID=46581239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010081 WO2012102488A2 (ko) 2011-01-24 2011-12-26 전자유압펌프를 포함하는 건설기계의 유압 시스템

Country Status (5)

Country Link
US (1) US9284719B2 (ko)
EP (1) EP2669529B1 (ko)
KR (1) KR101762951B1 (ko)
CN (1) CN103328830B (ko)
WO (1) WO2012102488A2 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528684B2 (en) * 2011-11-30 2013-09-10 Deere & Company Charge pressure reduction circuit for improved transmission efficiency
WO2014092355A1 (ko) * 2012-12-13 2014-06-19 현대중공업 주식회사 조이스틱 컨트롤 기반의 건설장비 자동 제어 시스템 및 방법
KR101969175B1 (ko) * 2012-12-24 2019-04-15 두산인프라코어 주식회사 자동 변속식 굴삭기
JP6220228B2 (ja) * 2013-10-31 2017-10-25 川崎重工業株式会社 建設機械の油圧駆動システム
US20170074297A1 (en) * 2014-05-06 2017-03-16 Eaton Corporation Low noise control algorithm for hydraulic systems
US10487855B2 (en) * 2016-09-29 2019-11-26 Deere & Company Electro-hydraulic system with negative flow control
KR102423410B1 (ko) * 2017-03-21 2022-07-21 현대두산인프라코어 주식회사 건설 기계의 비상 운전 방법 및 이를 수행하기 위한 장치
JP6782852B2 (ja) * 2018-03-15 2020-11-11 日立建機株式会社 建設機械
US11448240B2 (en) * 2018-07-11 2022-09-20 Halliburton Energy Services, Inc. Using a load sense pump as a backup for a pressure-compensated pump
WO2020071567A1 (en) * 2018-10-02 2020-04-09 Volvo Construction Equipment Ab Device for controlling working unit of construction equipment
CN111441416A (zh) * 2020-05-07 2020-07-24 金华深联网络科技有限公司 一种挖掘机作业控制方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670815B2 (ja) * 1988-07-29 1997-10-29 株式会社小松製作所 建設機械の制御装置
US5138838A (en) 1991-02-15 1992-08-18 Caterpillar Inc. Hydraulic circuit and control system therefor
JPH06213205A (ja) 1993-01-14 1994-08-02 Hitachi Constr Mach Co Ltd 油圧機械の油圧駆動装置
JP3445817B2 (ja) * 1993-11-11 2003-09-08 日立建機株式会社 建設機械の油圧駆動装置
JPH10174512A (ja) * 1996-12-16 1998-06-30 Yanmar Agricult Equip Co Ltd 自走車両のニュートラル検出装置
JP2711830B2 (ja) * 1997-02-10 1998-02-10 株式会社小松製作所 建設機械の制御装置
JP3625149B2 (ja) 1999-03-31 2005-03-02 コベルコ建機株式会社 建設機械の油圧制御回路
DE10124564A1 (de) * 2001-05-14 2002-11-28 Joma Hydromechanic Gmbh Verfahren zum Verstellen einer volumenstromvariablen Verdrängerpumpe in einem Brennkraftmotor
JP2006097855A (ja) * 2004-09-30 2006-04-13 Kobelco Contstruction Machinery Ltd 建設機械の走行制御装置
KR100641393B1 (ko) 2004-12-07 2006-11-01 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 유압제어회로 및 유압제어방법
US7905089B2 (en) * 2007-09-13 2011-03-15 Caterpillar Inc. Actuator control system implementing adaptive flow control
KR101470626B1 (ko) 2007-12-27 2014-12-09 두산인프라코어 주식회사 건설장비의 전자유압 시스템
KR101670529B1 (ko) * 2008-12-15 2016-10-31 두산인프라코어 주식회사 건설 기계의 유압펌프 유량 제어장치
KR20100134332A (ko) * 2009-06-15 2010-12-23 볼보 컨스트럭션 이큅먼트 에이비 건설장비의 조작레버 잠금장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2669529A4

Also Published As

Publication number Publication date
CN103328830A (zh) 2013-09-25
KR101762951B1 (ko) 2017-07-28
US9284719B2 (en) 2016-03-15
EP2669529B1 (en) 2017-11-01
US20130312403A1 (en) 2013-11-28
EP2669529A4 (en) 2014-12-10
WO2012102488A3 (ko) 2012-10-18
KR20120085622A (ko) 2012-08-01
EP2669529A2 (en) 2013-12-04
CN103328830B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2012102488A2 (ko) 전자유압펌프를 포함하는 건설기계의 유압 시스템
WO2012087012A2 (ko) 전자유압펌프용 비상 제어부를 포함하는 건설기계의 유압 시스템
WO2013022132A1 (ko) 건설기계의 압력 제어시스템
WO2013022131A1 (ko) 건설기계의 유압 제어시스템
WO2010071344A1 (ko) 건설 기계의 유압펌프 유량 제어장치
WO2013008964A1 (ko) 건설기계용 유압 액츄에이터 댐핑 제어시스템
WO2012091182A1 (ko) 건설기계의 유압시스템
WO2010074507A2 (ko) 건설기계의 유압펌프 제어장치
WO2012121427A1 (ko) 파이프 레이어용 유압회로
WO2012091184A1 (ko) 건설기계의 에너지 재생 시스템
WO2012026633A1 (ko) 건설기계의 제어장치
WO2014092355A1 (ko) 조이스틱 컨트롤 기반의 건설장비 자동 제어 시스템 및 방법
WO2013002429A1 (ko) 건설기계용 유압제어밸브
WO2012074145A1 (ko) 건설기계의 유압펌프 제어시스템
WO2016114556A1 (ko) 건설기계의 제어 시스템
WO2013157672A1 (ko) 건설기계용 유압시스템
WO2014163362A1 (ko) 건설기계의 스풀 변위 가변 제어장치 및 제어방법
WO2014034969A1 (ko) 건설기계용 유압시스템
WO2019017740A1 (ko) 건설기계의 주행 속도 제어 방법 및 장치
WO2014104635A1 (ko) 건설 기계의 자동 변속 제어 장치 및 제어 방법
WO2013100218A1 (ko) 건설기계의 엔진 제어방법
WO2016035902A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2014092222A1 (ko) 건설기계용 유압회로
WO2014123254A1 (ko) 유압식 건설기계
WO2018164465A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856946

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011856946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011856946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13981161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE