WO2012102274A1 - 樹脂シートの製造方法 - Google Patents

樹脂シートの製造方法 Download PDF

Info

Publication number
WO2012102274A1
WO2012102274A1 PCT/JP2012/051454 JP2012051454W WO2012102274A1 WO 2012102274 A1 WO2012102274 A1 WO 2012102274A1 JP 2012051454 W JP2012051454 W JP 2012051454W WO 2012102274 A1 WO2012102274 A1 WO 2012102274A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
sheet
shape
roll
resin
Prior art date
Application number
PCT/JP2012/051454
Other languages
English (en)
French (fr)
Inventor
豊博 濱松
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012102274A1 publication Critical patent/WO2012102274A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/9175Cooling of flat articles, e.g. using specially adapted supporting means by interposing a fluid layer between the supporting means and the flat article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • B29C2035/1658Cooling using gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent

Definitions

  • the present invention relates to a method for producing a resin sheet having a shape on the surface.
  • a method for producing a resin sheet having a shape on the surface an extruder is used to extrude the resin from a die in a heated and melted state, and a continuous resin sheet (continuous resin sheet) is produced and transferred.
  • a method of transferring the shape of a transfer mold onto the surface of a continuous resin sheet using a mold is known (for example, see Patent Document 1).
  • the continuous resin sheet is sandwiched and pressed between the first pressing roll and the second pressing roll that are separated in the thickness direction of the sheet, and the shape of the transfer mold formed on the surface of the second pressing roll is It is transferred to a continuous resin sheet.
  • a resin sheet having a shape on the surface has been required to have a shape with a large aspect ratio, which is a ratio of the height to the width of the unit shape.
  • the height of the shape transferred to the resin sheet is not always sufficient with respect to the depth of the transfer mold. Therefore, an improvement in transfer rate (H / D), which is a ratio of the maximum height H of the surface shape transferred to the resin sheet to the maximum depth D of the transfer mold, is demanded.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a method for producing a resin sheet capable of improving the transfer rate.
  • the present inventor in the continuous resin sheet peeled from the shape roll, cools the sheet surface on the side where the shape is formed, and the productivity is good. Even if it exists, it discovered that the surface shape transcribe
  • the present invention uses a sheet manufacturing process for continuously extruding a heat-melted resin from a die to manufacture a continuous resin sheet, and a shape roll having a transfer mold formed on the peripheral surface.
  • Production of resin sheet for cooling sheet surface when surface temperature of continuous resin sheet after peeling from roll is in range of (Tg + 5) ° C to (Tg + 50) ° C with respect to glass transition temperature Tg of resin Provide a method.
  • the continuous resin sheet peeled from the shape roll has a cooling step for cooling the sheet surface on the side on which the shape is transferred, and the surface temperature of the sheet surface is In order to cool the sheet surface when it is in the range of (Tg + 5) ° C. to (Tg + 50) ° C. with respect to the glass transition temperature Tg of the resin, the surface shape of the continuous resin sheet after peeling from the transfer mold is cured.
  • the transferred surface shape can be suitably maintained, and the transfer rate can be improved.
  • the sheet surface may be cooled by blowing air onto the sheet surface, or the sheet surface may be cooled by performing mist injection on the sheet surface.
  • the cooling step it is preferable to cool the sheet surface within a range of 30 cm from the peeling point where the continuous resin sheet is peeled from the shape roll.
  • the temperature of the sheet surface is within (Tg + 5) ° C. to (Tg + 50) with respect to the glass transition temperature Tg of the resin within 30 cm from the peeling point.
  • the surface shape after being peeled from the transfer mold can be suitably maintained by cooling the sheet surface.
  • FIG. 1 is a schematic configuration diagram illustrating a resin sheet manufacturing apparatus according to an embodiment of the present invention.
  • the resin sheet manufacturing apparatus 50 is an apparatus that can be used in the resin sheet manufacturing method of the present invention.
  • the resin sheet manufacturing apparatus 50 includes a die 51 that continuously extrudes a heated and melted resin to obtain a continuous resin sheet 60, and a first pressing roll that presses the continuous resin sheet 60 extruded from the die 51 from both sides in the thickness direction. 52A and a second pressing roll (shape roll) 52B.
  • the resin sheet manufacturing apparatus 50 includes a resin charging port 57 for charging a resin as a raw material, and an extruder 58 for pressing the resin charged from the resin charging port 57.
  • the first pressing roll 52A and the second pressing roll 52B are configured to be rotatable around rotation axes parallel to each other.
  • 52 A of 1st press rolls and the 2nd press roll 52B are spaced apart and arrange
  • FIG. As shown in FIG. 5, a transfer mold 53 corresponding to the concavo-convex shape transferred to the resin sheet 60 is formed on the peripheral surface of the second pressing roll 53.
  • the resin sheet manufacturing apparatus 50 includes a cooling unit 59 for cooling the sheet surface of the continuous resin sheet 60 peeled from the second pressing roll (shape roll) 52B.
  • the cooling unit 59 cools the surface of the sheet on which the shape is transferred by the transfer mold 53.
  • a blower for spraying air on the sheet surface, an injection nozzle for spraying mist on the sheet surface, or the like can be used.
  • the cooling unit 59 can spray the cooling fluid entirely in the width direction of the continuous resin sheet.
  • the cooling unit 59 cools the sheet surface in a range where the length N in the transport direction of the continuous resin sheet is within 30 cm from the peeling point M where the continuous resin sheet is peeled from the shape roll 52B.
  • the flow direction of the cooling fluid may be perpendicular to the sheet surface of the resin sheet, may be inclined, or may be parallel.
  • the cooling fluid may be sprayed along the traveling direction of the resin sheet, or the cooling fluid may be sprayed so as to face the traveling direction.
  • the cooling fluid is preferably directed so as to aim at a peeling point M where the resin sheet is peeled from the shape roll.
  • it is preferable that the cooling fluid is sprayed in a region where the resin sheet is linearly conveyed.
  • the position at which the cooling fluid is sprayed is not limited to the range where the length N from the peeling point M is within 30 cm, and the cooling fluid is placed in the region where the length N from the peeling point M is 30 cm or more. It is good also as a cooling part which sprays on the surface.
  • the resin sheet 60 After the resin sheet 60 is peeled from the shape roll 52B, it can be cooled when the surface temperature of the resin sheet 60 is in the range of (Tg + 5) ° C. to (Tg + 50) ° C. with respect to the glass transition temperature Tg of the resin. What is necessary is just to be set as a structure.
  • FIG. 2 is a schematic configuration diagram showing a resin sheet manufacturing apparatus according to the second embodiment of the present invention.
  • the resin sheet manufacturing apparatus 50B shown in FIG. 2 is different from the resin sheet manufacturing apparatus 50 shown in FIG. 1 in that a third pressing roll 52C is provided after the second pressing roll (shape roll) 52B. .
  • the third pressing roll 52C has the same configuration as the first pressing roll 52A.
  • the third pressing roll 52C sandwiches and presses the continuous resin sheet 60 between the second pressing roll 52B.
  • the resin sheet manufacturing apparatus 50B includes a cooling unit 59, similar to the resin sheet manufacturing apparatus 50 described above.
  • the cooling unit 59 may be configured immediately after the resin sheet 60 is peeled from the shape roll 52B. After the resin sheet is peeled from the third pressing roll 52C, the continuous resin sheet is conveyed linearly. It is good also as a structure which sprays the fluid for cooling when it is.
  • FIG. 3 is a schematic configuration diagram showing a resin sheet manufacturing apparatus according to the third embodiment of the present invention.
  • the difference between the resin sheet manufacturing apparatus 50C shown in FIG. 3 and the resin sheet manufacturing apparatus 50 shown in FIG. 1 is that a preloading roll 52D is provided upstream of the first pressing roll 52A.
  • the preload roll 52D has the same configuration as the first pressing roll 52A.
  • the preload roll 52D sandwiches and presses the continuous resin sheet 60 between the first press roll 52A.
  • the resin sheet manufacturing apparatus 50C includes a cooling unit 59, similar to the resin sheet manufacturing apparatuses 50 and 50B.
  • the cooling unit 59 is disposed so as to cool the sheet surface in a range where the length N in the conveying direction of the continuous resin sheet is within 30 cm from the peeling point M where the continuous resin sheet 60 is peeled from the shape roll 52B. Has been.
  • a cooling fluid for example, air or mist-like water
  • a cooling fluid for example, air or mist-like water
  • FIG. 4 is a perspective view schematically showing the configuration of the resin sheet according to the embodiment of the present invention.
  • the resin sheet 30 formed by cutting the continuous resin sheet 60 into a predetermined size is shown.
  • the resin sheet 30 can be used as a light guide plate of a surface light source device (backlight) mounted on a transmissive image device.
  • the backlight can be used as an edge light type in which a light source such as an LED is disposed on the side surface 33 of the light guide plate and light incident from the side surface 33 of the light guide plate is emitted to the front side.
  • a light source may be arrange
  • the rear surface 32 of the resin sheet is usually subjected to a reflection process for irregularly reflecting light incident from the side surface.
  • a printing method performed as reflection processing ink jet printing may be performed in addition to silk printing.
  • the surface 31 of the resin sheet 30 extends in the first direction (x-axis direction) and has a plurality of convex shapes arranged side by side in a second direction (y-axis direction) orthogonal to the first direction. A portion 35 is formed.
  • the concavo-convex shape having the convex portion 35 formed on the surface 31 is formed by a transfer process described later.
  • the light guide plate made of a resin sheet is made of a translucent resin.
  • the translucent resin is a resin that transmits light.
  • the refractive index of the translucent resin is usually 1.49 to 1.59.
  • methacrylic resin is mainly used.
  • other resins may be used, or styrene resins may be used.
  • an acrylic resin, a styrene resin, a carbonate resin, a cyclic olefin resin, an MS resin (a copolymer of acrylic and styrene), or the like can be used.
  • thermoplastic resin that becomes a molten state when heated.
  • an acrylic resin, a styrene resin, a carbonate resin, a cyclic olefin resin, an MS resin (a copolymer of acrylic and styrene), and the like can be given.
  • cures by heating in the range applicable to the manufacturing method of this invention may be sufficient.
  • Additives such as a light diffusing agent, an ultraviolet absorber, a heat stabilizer, and an antistatic agent may be added to the resin.
  • FIG. 6 is a flowchart showing the procedure of the resin sheet manufacturing method according to the embodiment of the present invention.
  • the resin sheet manufacturing method of the present embodiment can be implemented using, for example, a resin sheet manufacturing apparatus 50 shown in FIGS.
  • the resin sheet manufacturing method of the present embodiment includes a sheet manufacturing process (S1) in which a resin in a heated and melted state is continuously extruded from a die to form a continuous resin sheet, and a transfer mold on the peripheral surface.
  • the resin is continuously extruded from the die 51 in a heated and melted state to manufacture the continuous resin sheet 60.
  • the resin used in the production method of the present invention include thermoplastic resins that are in a molten state when heated.
  • a metal T-die similar to that used in a normal extrusion method is used.
  • an extruder 58 is used in the same manner as in a normal extrusion molding method.
  • the extruder 58 may be a single screw extruder or a twin screw extruder.
  • the resin is heated in the extruder 58, sent to the die 51 in a molten state, and extruded.
  • the resin extruded from the die 51 is continuously extruded into a sheet shape to form a continuous resin sheet 60.
  • a preferable range of the sheet thickness is 1.0 mm or more and 4.5 mm or less.
  • the transfer step (S2) is a pressing step in which the continuous resin sheet 60 manufactured in the sheet manufacturing step (S1) is pressed by being sandwiched between the first pressing roll (pressing roll) 52A and the second pressing roll (shape roll) 52B.
  • S3 a transport step (S4) for transporting the continuous resin sheet 60 pressed in the pressing step (S3) while being in close contact with the peripheral surface of the shape roll 52B, and a continuous resin transported in the transport step (S4)
  • seat surface of the continuous resin sheet 60 peeled at the peeling process are included.
  • the continuous resin sheet 60 obtained in the sheet manufacturing step (S1) includes a first pressing roll 52A and a second pressing roll 52B in the thickness direction of the sheet, as shown in FIG. It is sandwiched and pressed from both sides at the same time.
  • the surface temperature of the continuous resin sheet 60 immediately before coming into contact with the second pressing roll 52B is in a range of 180 ° C. to 250 ° C.
  • the surface temperature can be adjusted by changing the set temperature of the extruder 58 and changing the set temperature of the die 51.
  • the surface temperature of the continuous resin sheet 60 can be measured using an infrared thermometer.
  • the shape of the transfer mold 53 formed on the surface of the second pressing roll (shape roll) 52B is transferred to the continuous resin sheet 60.
  • the second pressing roll 52B provided with the transfer mold 53 is also referred to as a transfer roll.
  • the transfer mold 53 provided on the surface of the transfer roll is pressed against the surface of the continuous resin sheet 60, and the surface shape is transferred to the continuous resin sheet 60 as a reverse mold.
  • first and second pressing rolls 52A and 52B metal rolls made of a metal such as stainless steel or steel are usually used, and the diameter is usually 100 mm to 500 mm.
  • the surface thereof may be subjected to a plating treatment such as chrome plating, copper plating, nickel plating, nickel-phosphorous plating.
  • the surface (circumferential surface) of the first pressing roll 52A may be a mirror surface or may be a transfer surface provided with unevenness such as embossing.
  • the transporting step (S4) is a step of transporting the continuous resin sheet 60 according to the rotation of the second pressing roll 52B in a state where the continuous resin sheet 60 is in close contact with the peripheral surface of the second pressing roll 52B.
  • the peeling step (S5) is a step of peeling the continuous resin sheet 60 from the peripheral surface (transfer mold) of the second pressing roll 52B.
  • a cooling process (S6) cools the sheet
  • the surface temperature of the continuous resin sheet after being peeled off from the second pressing roll 52B is in the range of (Tg + 5) ° C. to (Tg + 50) ° C. with respect to the glass transition temperature Tg of the resin, Cool the surface.
  • the surface temperature of the continuous resin sheet after cooling is preferably, for example, 5 to 20 ° C. lower than the surface temperature of the continuous resin sheet before cooling. However, if the sheet is cooled too much, the sheet warps and the like is not preferable.
  • the sheet surface is cooled by blowing air onto the sheet surface.
  • the surface of the sheet is cooled by spraying mist of water (mist) using a sprayer or the like.
  • mist of water mist of water
  • FIG. 5 is a cross-sectional view schematically showing the concave portion formed in the transfer mold and the convex portion formed in the resin sheet.
  • the transfer mold 53 includes a plurality of recesses provided on the surface of the shape roll 52B.
  • the recess is formed continuously in the circumferential direction of the shape roll 52B.
  • the pitch of the recesses is usually 30 ⁇ m or more, preferably 50 ⁇ m or more. However, in the manufacturing method and manufacturing apparatus of the present invention, it is suitable when the pitch interval between the recesses is 30 ⁇ m to 800 ⁇ m. 30 ⁇ m to 500 ⁇ m.
  • the pitch interval (P) of the recesses refers to the distance between the groove portions (bottom portions) of adjacent recesses, and the groove depth (D) of the recesses refers to the groove portion (bottom portion) of the recesses from the surface circumference of the shape roll 52B. ).
  • examples of the cross-sectional shape of the recess of the transfer mold 53 include a semicircular shape and a semielliptical shape. Further, it may be a V shape having an acute angle portion corresponding to the prism shape.
  • the transfer mold 53 is manufactured by applying a plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating to the surface of a transfer roll made of stainless steel, steel, etc.
  • a plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating
  • the removal may be performed using a diamond tool, a metal grindstone, or the like, laser processing, or chemical etching may be performed to form the shape, but the method is not particularly limited.
  • the surface of the transfer roll may be subjected to plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating, etc. at a level that does not impair the accuracy of the surface shape after the transfer mold 53 is formed.
  • plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating, etc. at a level that does not impair the accuracy of the surface shape after the transfer mold 53 is formed.
  • the second pressing step may be performed after the transporting step (S4).
  • the second pressing step can be performed using a resin sheet manufacturing apparatus 50B shown in FIG.
  • the continuous resin sheet 60 conveyed in the conveying step (S4) is pressed by being sandwiched between the second pressing roll (shape roll) 52B and the third pressing roll 52C.
  • the continuous resin sheet 60 pressed in the second pressing step is peeled from the second pressing roll (peeling step) and conveyed while being in close contact with the peripheral surface of the third pressing roll 52C, and then the circumference of the third pressing roll 52C. Peel from the surface.
  • a preloading step of pressing in advance may be performed before the pressing step (S3).
  • the preloading step can be performed using a resin sheet manufacturing apparatus 50C shown in FIG.
  • the continuous resin sheet 60 manufactured in the sheet manufacturing process (S1) is pressed in advance by being sandwiched between the preloading roll 52D and the first pressing roll 52A.
  • the pressed continuous resin sheet 60 is conveyed in close contact with the peripheral surface of the first pressing roll 52A, and the pressing step (S3) is performed by the first and second pressing rolls 52A and 52B.
  • the method for producing a resin sheet of the present invention includes a cooling step of cooling the sheet surface of the continuous resin sheet 60 peeled from the shape roll 52B on the side to which the shape is transferred. And since the surface temperature of a sheet
  • Example 1 Comparative Example 1
  • seat which concerns on Example 1 and Comparative Example 1 was created using the resin sheet manufacturing apparatus 50C shown in FIG. What was created by executing the cooling process was taken as Example 1, and what was made without running the cooling process was taken as Comparative Example 1.
  • the conditions of the manufacturing apparatus 50C used are shown below.
  • the screw diameter of the extruder 58 was 120 mm, and the amount of extrusion by the extruder 58 was 700 kg / hr.
  • the line speed was 2.83 m / min
  • the sheet width was 120 cm
  • Example 1 and Comparative Example 1 a PMMA plate having a sheet thickness of 3 mm was formed by extrusion molding (sheet manufacturing process). In Example 1 and Comparative Example 1, a single-layered resin sheet (see FIG. 4) was prepared.
  • a copolymer of methyl methacrylate and methyl acrylate was used as the resin constituting the resin sheet according to Example 1 and Comparative Example 1.
  • the resin specifications are shown below.
  • Weight ratio: methyl methacrylate / methyl acrylate 94/6 MFR: 1.5g / 10min
  • Air spraying flow rate 2 L / hr
  • air temperature 23 ° C
  • Air spraying position 20cm from the peeling point
  • Table 1 below shows the test conditions and test results of Example 1 and Comparative Example 1.
  • Example 2 and Comparative Example 2 The sheet
  • the conditions of the manufacturing apparatus 50C used are shown below.
  • the screw diameter of the extruder 58 was 120 mm, and the amount of extrusion by the extruder 58 was 700 kg / hr.
  • the line speed was 2.47 m / min
  • the sheet width was 135 cm
  • Example 2 and Comparative Example 2 a PMMA plate having a sheet thickness of 3 mm was formed by extrusion molding (sheet manufacturing process). In Example 2 and Comparative Example 2, a single-layer resin sheet (see FIG. 4) was prepared.
  • a copolymer of methyl methacrylate and methyl acrylate was used as the resin constituting the resin sheet according to Example 2 and Comparative Example 2.
  • the resin specifications are shown below.
  • Weight ratio: methyl methacrylate / methyl acrylate 94/6 MFR: 1.5g / 10min
  • Air spraying flow rate 2 L / hr
  • air temperature 23 ° C
  • Air spraying position 20cm from the peeling point
  • Table 2 below shows test conditions and test results of Example 2 and Comparative Example 2.
  • Example 3 Comparative Example 3
  • seat which concerns on Example 3 and Comparative Example 3 was created using the resin sheet manufacturing apparatus 50C shown in FIG. What was created by executing the cooling process was taken as Example 3, and what was made without executing the cooling process was taken as Comparative Example 3.
  • the conditions of the manufacturing apparatus 50C used are shown below.
  • the screw diameter of the extruder 58 was 120 mm, and the amount of extrusion by the extruder 58 was 700 kg / hr.
  • the line speed was 2.14 m / min
  • Comparative Example 3 the line speed was 2.15 m / min.
  • the sheet width was 135 cm
  • Example 3 and Comparative Example 3 a PMMA plate having a sheet thickness of 3.5 mm was formed by extrusion molding (sheet manufacturing process). In Example 3 and Comparative Example 3, a single-layer resin sheet (see FIG. 4) was prepared.
  • a copolymer of methyl methacrylate and methyl acrylate was used as the resin constituting the resin sheet according to Example 2 and Comparative Example 2.
  • the resin specifications are shown below.
  • Weight ratio: methyl methacrylate / methyl acrylate 94/6 MFR: 1.5g / 10min
  • Air spraying flow rate 2 L / hr
  • air temperature 23 ° C
  • Air spraying position 20cm from the peeling point
  • the shape transfer rate of the resin sheet can be improved.
  • the light guide plate is described as the resin sheet, but other resin sheets may be created.
  • the resin sheet manufacturing method of the present invention is effective for manufacturing a shape light guide plate and a shape diffusion plate mounted on a backlight of a liquid crystal TV, for example.
  • the present invention is particularly effective for manufacturing a shape light guide plate and a shape diffusion plate having a high aspect ratio.
  • the continuous resin sheet is manufactured using the resin sheet manufacturing apparatuses 50, 50B, and 50C shown in FIGS. 1 to 3, but the resin sheet manufacturing apparatus capable of performing other manufacturing processes. May be used.
  • the sheet surface is formed by blowing air or performing mist injection, but the cooling step may be executed by other methods.
  • the sheet surface may be cooled by spraying an inert gas or the like as the cooling fluid.
  • the sheet surface may be cooled by using radiant heat transfer using a cooling plate or the like.
  • the sheet surface is cooled in a range where the distance N from the peeling point M is within 30 cm. However, in the range where the distance N from the peeling point M exceeds 30 cm, the sheet surface is It may be cooled.
  • a resin sheet with an improved transfer rate can be produced.
  • 50, 50B, 50C ... resin sheet manufacturing apparatus, 51 ... die, 52A ... first press roll, 52B ... second press roll (shape roll), 52C ... third press roll, 52D ... preload roll, 53 ... transfer mold, 54 ... concave shape, 57 ... resin inlet, 58 ... extruder, 59 ... cooling part, 60 ... continuous resin sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

本発明は、転写率の向上を図ることが可能な樹脂シート製造方法を提供する。この樹脂シート製造方法は、形状ロールから剥離された連続樹脂シートの、形状が転写された側のシート表面を冷却する冷却工程を備え、シート表面の表面温度が、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲であるときに、シート表面を冷却する。

Description

樹脂シートの製造方法
 本発明は、表面に形状を有する樹脂シートの製造方法に関する。
 表面に形状を有する樹脂シート(表面形状転写樹脂シート)を製造する方法として、押出機を用いて、樹脂を加熱溶融状態でダイから押し出し、連続した樹脂シート(連続樹脂シート)を製造し、転写型を用いて、連続樹脂シートの表面に転写型の形状を転写する方法が知られている(例えば、特許文献1参照)。この方法では、シートの厚み方向に離間する第1押圧ロールと第2押圧ロールとの間に、連続樹脂シートを挟み込んで押圧し、第2押圧ロールの表面に形成された転写型の形状を、連続樹脂シートに転写している。
特開2009-220555号公報
 近年、表面に形状が施された樹脂シートにおいて、単位形状の幅に対する高さの比率であるアスペクト比の大きい形状が要求されている。しかし、従来の樹脂シートの製造方法では、転写型の深さに対して、樹脂シートに転写された形状の高さが必ずしも十分ではなかった。そのため、転写型の最大深さDに対する、樹脂シートに転写された表面形状の最大高さHの比率である転写率(H/D)の向上が求められている。
 本発明は、このような課題を解決するために成されたものであり、転写率の向上を図ることが可能な樹脂シートの製造方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、形状ロールから剥離された連続樹脂シートにおいて、形状が形成された側のシート表面を冷却することで、生産性が良い場合であっても転写型によって転写された表面形状を好適に維持することができ、転写率の向上を図ることが可能であることを見出し、本発明に至った。
 すなわち、本発明は、加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを製造するシート製造工程と、周面に転写型が形成された形状ロールを用いて、連続樹脂シートのシート表面に転写型の形状を転写する転写工程と、を備えた樹脂シート製造方法において、転写工程は、シート製造工程によって製造された連続樹脂シートを押圧ロールと形状ロールとで挟み込むことで押圧する押圧工程と、押圧工程で押圧された連続樹脂シートを形状ロールの周面に密着させたまま搬送する搬送工程と、搬送工程で搬送された連続樹脂シートを形状ロールの周面から剥離する剥離工程と、形状ロールの周面から剥離された連続樹脂シートにおいて、形状が転写された側のシート表面を冷却する冷却工程と、を含み、冷却工程では、形状ロールから剥離された後の連続樹脂シートの表面温度が、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲であるときに、シート表面を冷却する樹脂シートの製造方法を提供する。
 このような本発明の樹脂シートの製造方法によれば、形状ロールから剥離された連続樹脂シートの、形状が転写された側のシート表面を冷却する冷却工程を備え、シート表面の表面温度が、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲であるときに、シート表面を冷却するため、転写型から剥離された後の連続樹脂シートの表面形状を硬化させ、転写された表面形状を好適に維持することができ、転写率の向上を図ることが可能である。
 ここで、冷却工程では、シート表面に対して、エアー噴きつけ、またはミスト噴射を行うことが好適である。このように、シート表面に対してエアー噴きつけることでシート表面を冷却しても良く、シート表面に対してミスト噴射を行うことでシート表面を冷却しても良い。
 また、冷却工程では、形状ロールから連続樹脂シートが剥離された位置である剥離点から30cm以内の範囲において、シート表面を冷却することが好ましい。通常の押出成形機を用いて生産効率を上げようとした場合には、剥離点から30cm以内において、シート表面の温度が、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲内となりやすく、このときに、シート表面を冷却することで、転写型から剥離された後の表面形状を好適に維持することができる。
 本発明によれば、転写率の向上を図ることが可能な樹脂シートの製造方法を提供することができる。
本発明の実施形態に係る樹脂シート製造装置を示す概略構成図である。 本発明の第2実施形態に係る樹脂シート製造装置を示す概略構成図である。 本発明の第3実施形態に係る樹脂シート製造装置を示す概略構成図である。 本発明の実施形態に係る樹脂シートの構成を模式的に示す斜視図である。 転写型に形成された凹部及び樹脂シートに形成された凸状部を模式的に示す断面図である。 本発明の実施形態に係る樹脂シートの製造方法の手順を示すフローチャートである。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、同一または相当要素には同一符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。
 (樹脂シートの製造装置)
 図1は、本発明の実施形態に係る樹脂シート製造装置を示す概略構成図である。樹脂シート製造装置50は、本発明の樹脂シートの製造方法に使用可能な装置である。樹脂シート製造装置50は、加熱溶融状態の樹脂を連続的に押し出して連続樹脂シート60を得るダイ51と、ダイ51から押し出された連続樹脂シート60を厚み方向の両側から押圧する第1押圧ロール52A及び第2押圧ロール(形状ロール)52Bと、を備えている。
 また、樹脂シート製造装置50は、原料となる樹脂を投入するための樹脂投入口57と、樹脂投入口57から投入された樹脂を押し出すための押し出し機58とを備えている。
 第1押圧ロール52A及び第2押圧ロール52Bは、互いに平行な回転軸回りに回転可能な構成とされている。第1押圧ロール52A及び第2押圧ロール52Bは、樹脂シート60の厚み方向に離間して配置され、互いの周面同士の間隔は、樹脂シート60の厚みに応じて設定されている。第2押圧ロール53の周面には、図5に示すように、樹脂シート60に転写される凹凸形状に対応する転写型53が形成されている。
 また、樹脂シート製造装置50は、第2押圧ロール(形状ロール)52Bから剥離された連続樹脂シート60のシート表面を冷却するための冷却部59を備えている。冷却部59は、具体的には、転写型53によって形状が転写された側のシート表面を冷却するものである。冷却部59としては、シート表面にエアーを噴きつけるための送風機、シート表面にミストを噴射するための噴射ノズルなどを使用することができる。冷却部59は、例えば、連続樹脂シートの幅方向において全体的に、冷却用流体を噴きつけることができる。
 また、冷却部59は、形状ロール52Bから連続樹脂シートが剥離された位置である剥離点Mから、連続樹脂シートの搬送方向における長さNが30cm以内の範囲において、シート表面を冷却するように配置されている。また、冷却用流体の流れ方向は、樹脂シートのシート表面に対して、垂直でもよく、傾斜していてもよく、平行でもよい。冷却用流体は、樹脂シートの進行方向に沿って噴きつけられていてもよく、進行方向に対向するように冷却用流体を噴きつける構成としてもよい。冷却用流体は、形状ロールから樹脂シートが剥離される剥離点Mを狙うように向けられていることが好ましい。また、冷却用流体は、樹脂シートが直線的に搬送されている領域において、噴きつけられることが好ましい。
 なお、冷却用流体が噴きつけられる位置は、剥離点Mからの長さNが30cm以内の範囲に限定されず、剥離点Mからの長さNが30cm以上の領域において、冷却用流体をシート表面に噴きつける冷却部としてもよい。樹脂シート60が形状ロール52Bから剥離された後、樹脂シート60の表面温度が、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲にあるときに、冷却可能な構成とされていればよい。
 (樹脂シートの製造装置の変形例)
 図2は、本発明の第2実施形態に係る樹脂シート製造装置を示す概略構成図である。図2に示す樹脂シート製造装置50Bが、図1に示す樹脂シート製造装置50と異なる点は、第2押圧ロール(形状ロール)52Bの後段に、第3押圧ロール52Cを備えている点である。第3押圧ロール52Cは、第1押圧ロール52Aと同様な構成である。第3押圧ロール52Cは、第2押圧ロール52Bとの間に、連続樹脂シート60を挟み込んで押圧する。
 また、樹脂シート製造装置50Bは、上記の樹脂シート製造装置50と同様に、冷却部59を備えている。冷却部59は、樹脂シート60が形状ロール52Bから剥離された直後に設置されている構成でも良く、第3押圧ロール52Cから樹脂シートが剥離された後、連続樹脂シートが直線的に搬送されているときに、冷却用流体を噴きつける構成としてもよい。
 図3は、本発明の第3実施形態に係る樹脂シート製造装置を示す概略構成図である。図3に示す樹脂シート製造装置50Cが、図1に示す樹脂シート製造装置50と異なる点は、第1押圧ロール52Aの前段に、予圧ロール52Dを備えている点である。予圧ロール52Dは、第1押圧ロール52Aと同様な構成である。予圧ロール52Dは、第1押圧ロール52Aとの間に、連続樹脂シート60を挟み込んで押圧する。
 また、樹脂シート製造装置50Cは、上記の樹脂シート製造装置50,50Bと同様に、冷却部59を備えている。冷却部59は、形状ロール52Bから連続樹脂シート60が剥離される位置である剥離点Mから、連続樹脂シートの搬送方向における長さNが30cm以内の範囲において、シート表面を冷却するように配置されている。冷却部59は、樹脂シート60が形状ロール52Bから剥離された後、樹脂シート60の表面温度が、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲にあるときに、樹脂シート60に冷却用流体(例えば、空気、霧状の水)を噴きつける。
 (連続樹脂シート)
 本発明の実施形態に係る製造方法により製造される連続樹脂シートについて説明する。図4は、本発明の実施形態に係る樹脂シートの構成を模式的に示す斜視図である。図4では、連続樹脂シート60が所定のサイズに切断されて形成された樹脂シート30を示している。樹脂シート30は、透過型画像装置に搭載される面光源装置(バックライト)の導光板として使用可能なものである。バックライトとしては、導光板の側面33にLEDなどの光源を配置し、導光板の側面33から入射した光を正面側に出射するエッジライト型として、使用可能である。なお、樹脂シートの側面33に対して光源を配置して導光板として使用してもよく、樹脂シートの背面32に対して光源を配置して拡散板として使用してもよい。
 樹脂シートを導光板として使用する場合には、通常、樹脂シートの背面32には、側面から入射した光を乱反射させる反射加工が施される。反射加工として行う印刷の方法としては、シルク印刷のほかに、インクジェット印刷を行ってもよい。あるいは反射加工の方法としては、印刷ではなく、レーザ照射によりドット形状の凹凸を付与してもよい。
 樹脂シート30の表面31には、第1の方向(x軸方向)に延在すると共に、この第1の方向に直交する第2の方向(y軸方向)に並べて配置された複数の凸状部35が形成されている。表面31に形成された凸状部35を有する凹凸形状は、後述する転写工程よって形成される。
 (樹脂シートの構成材料)
 樹脂シートからなる導光板は、透光性樹脂から形成されている。透光性樹脂は、光を透過させる樹脂である。透光性樹脂の屈折率は通常、1.49~1.59である。導光板(30)に使用される透光性樹脂としては、メタクリル樹脂が主として用いられる。導光板(30)に使用される透光性樹脂として、その他の樹脂を用いてもよく、スチレン系の樹脂を用いても良い。透光性樹脂としては、アクリル樹脂、スチレン樹脂、カーボネート樹脂、環状オレフィン樹脂、MS樹脂(アクリルとスチレンとの共重合体)などが使用可能である。
 樹脂シート30(60)構成する樹脂としては、通常は、加熱されることにより溶融状態となる熱可塑性樹脂が挙げられる。具体的には、アクリル系樹脂、スチレン系樹脂、カーボネート樹脂、環状オレフィン樹脂、MS樹脂(アクリルとスチレンとの共重合体)などが挙げられる。なお、本発明の製造方法に適用できる範囲で、加熱されることにより硬化する熱硬化性樹脂であってもよい。上記樹脂は、光拡散剤、紫外線吸収剤、熱安定剤、帯電防止剤などの添加剤が添加されていてもよい。
 (樹脂シートの製造方法)
 本発明の実施形態に係る樹脂シートの製造方法について説明する。図6は、本発明の実施形態に係る樹脂シートの製造方法の手順を示すフローチャートである。本実施形態の樹脂シートの製造方法は、例えば、図1~図3に示す樹脂シート製造装置50を用いて実施可能である。図6に示すように、本実施形態の樹脂シートの製造方法は、加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを成形するシート製造工程(S1)と、周面に転写型53が形成された(形状ロール)を用いて、連続樹脂シートに転写型の形状を転写する転写工程(S2)と、を備える。
 (シート製造工程)
 シート製造工程では、樹脂を加熱溶融状態でダイ51から連続的に押し出して連続樹脂シート60を製造する。本発明の製造方法に用いられる樹脂としては、加熱されることにより溶融状態となる熱可塑性樹脂が挙げられる。
 上記樹脂を加熱溶融状態で連続的に押し出すダイ51としては、通常の押出成形法に用いられると同様の金属製のTダイなどが用いられる。ダイ51から樹脂を加熱溶融状態で押し出すには、通常の押出成形法と同様に、押出機58が用いられる。押出機58は一軸押出機であってもよいし、二軸押出機であってもよい。樹脂は押出機58内で加熱され、溶融された状態でダイ51に送られ、押し出される。ダイ51から押し出された樹脂は、連続的にシート状となって押し出され、連続樹脂シート60となる。
 なお、連続樹脂シート60の厚みは、得られたシートの用途に応じて適宜調整すればよい。例えば、連続樹脂シート60を導光板(30)として用いる場合のシート厚みの好ましい範囲は、1.0mm以上4.5mm以下である。
 (転写工程)
 転写工程(S2)は、シート製造工程(S1)によって製造された連続樹脂シート60を第1押圧ロール(押圧ロール)52Aと第2押圧ロール(形状ロール)52Bとで挟み込むことで押圧する押圧工程(S3)と、押圧工程(S3)で押圧された連続樹脂シート60を形状ロール52Bの周面に密着させたまま搬送する搬送工程(S4)と、搬送工程(S4)で搬送された連続樹脂シート60を形状ロール52Bの周面(転写型53)から剥離する剥離工程(S5)と、剥離工程で剥離された連続樹脂シート60のシート表面を冷却する冷却工程(S6)と、を含む。
 (押圧工程)
 上記シート製造工程(S1)で得られた連続樹脂シート60は、押圧工程(S2)により、図1に示すように、第1押圧ロール52Aと第2押圧ロール52Bとで、シートの厚み方向の両側から同時に挟み込まれて、押圧される。
 このとき、第2押圧ロール52Bに接する直前の連続樹脂シート60の表面温度は、180℃~250℃の範囲である。表面温度の調整は、押出機58の設定温度の変更、ダイ51の設定温度の変更により、調整することができる。なお、連続樹脂シート60の表面温度は、赤外線温度計を用いて計測することができる。
 この押圧工程(S3)において、連続樹脂シート60には、第2押圧ロール(形状ロール)52Bの表面に形成された転写型53による形状が転写される。なお、本発明においては、転写型53を備えた第2押圧ロール52Bを転写ロールともいう。上記転写ロール表面に備えられた転写型53は、連続樹脂シート60の表面に押し当てられ、その表面形状を逆型として連続樹脂シート60に転写するものである。
 第1および第2押圧ロール52A,52Bとして通常はステンレス鋼、鉄鋼などの金属で構成された金属製ロールが用いられ、その直径は通常100mm~500mmである。これらの第1および第2押圧ロール52A,52Bとして金属製ロールを用いる場合、その表面は、たとえばクロムメッキ、銅メッキ、ニッケルメッキ、ニッケル-リンメッキなどのメッキ処理が施されていてもよい。また、第1押圧ロール52Aの表面(周面)は、鏡面であってもよいし、エンボスなどの凹凸が施された転写面となっていてもよい。
 (搬送工程)
 搬送工程(S4)は、連続樹脂シート60を第2押圧ロール52Bの周面に密着させた状態で、第2押圧ロール52Bの回転に従って搬送する工程である。
 (剥離工程)
 剥離工程(S5)は、連続樹脂シート60を第2押圧ロール52Bの周面(転写型)から剥離する工程である。
 (冷却工程)
 冷却工程(S6)は、第2押圧ロール52Bの周面から剥離された連続樹脂シート60において、形状が転写された側のシート表面を冷却する。冷却工程では、第2押圧ロール52Bから剥離された後の連続樹脂シートの表面温度が、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲であるときに、シート表面を冷却する。そして、冷却後の連続樹脂シートの表面温度は、例えば冷却前の連続樹脂シートの表面温度よりも5℃~20℃低下していることが好ましい。ただし、急冷し過ぎた場合には、シートの反りなどが発生し好ましくない。
 例えば、シート表面に対してエアー噴きつけることでシート表面を冷却する。また、例えば、噴霧器などを使用して、霧状の水(ミスト)を噴きつけることでシート表面を冷却する。冷却工程では、第2押圧ロール52Bから剥離された位置である剥離点Mから30cm以内の範囲において、シート表面を冷却することが好ましい。
 (転写型)
 図5は、転写型に形成された凹部及び樹脂シートに形成された凸状部を模式的に示す断面図である。転写型53は、形状ロール52Bの表面に設けられた複数の凹部からなる。例えば、凹部は、形状ロール52Bの周方向に連続して形成されている。凹部のピッチは、通常30μm以上、好ましくは50μm以上であるが、本発明の製造方法および製造装置においては、凹部のピッチ間隔が30μm~800μmである場合に好適であり、凹部の溝深さが30μm~500μmである。凹部のピッチ間隔(P)とは、隣接する凹部の溝部間(底部同士)の距離をいい、凹部の溝深さ(D)とは、形状ロール52Bの表面円周上から凹部の溝部(底部)までの距離をいう。
 また、転写型53の凹部の断面形状としては、半円形状、半楕円形状などが挙げられる。また、プリズム形状に対応した鋭角部を有するV字型形状でもよい。
 上記転写型53の作製方法としては、上記ステンレス鋼、鉄鋼などからなる転写ロールの表面に、たとえばクロムメッキ、銅メッキ、ニッケルメッキ、ニッケル-リンメッキなどのメッキ処理を施した後に、そのメッキ面に対してダイヤモンドバイトや金属砥石等を用いた除去加工や、レーザー加工や、またはケミカルエッチングを行ない、形状を加工することがあるが、これらの手法に特に限定されるものではない。
 また、転写ロールの表面は、上記転写型53を形成した後に、たとえば表面形状の精度を損なわないレベルで、クロムメッキ、銅メッキ、ニッケルメッキ、ニッケル-リンメッキなどのメッキ処理を施してもよい。
 (樹脂シートの製造方法の変形例)
 製造方法の変形例として、例えば、搬送工程(S4)の後に、第2の押圧工程を実施してもよい。第2の押圧工程は、図2に示す樹脂シート製造装置50Bを用いて実施可能である。第2の押圧工程では、搬送工程(S4)によって搬送された連続樹脂シート60を第2押圧ロール(形状ロール)52Bと第3押圧ロール52Cとで挟みこむことで押圧する。第2押圧工程で押圧された連続樹脂シート60は、第2押圧ロールから剥離され(剥離工程)、第3押圧ロール52Cの周面に密着したまま搬送された後、第3押圧ロール52Cの周面から剥離される。
 また、例えば図2に示す樹脂シート製造装置50を用いて、冷却工程を実行する場合には、第2押圧ロール52Bから連続樹脂シートが剥離された直後に、冷却してもよく、例えば、第3押圧ロール52Cから連続樹脂シートが剥離された後、直線的に搬送されているときに、シート表面を冷却してもよい。
 また、製造方法の他の変形例として、例えば、押圧工程(S3)の前に、予め押圧する予圧工程を実施しても良い。予圧工程は、図3に示す樹脂シート製造装置50Cを用いて実施可能である。予圧工程では、シート製造工程(S1)によって製造された連続樹脂シート60を予圧ロール52Dと第1押圧ロール52Aとで挟み込むことで、予め押圧する。押圧された連続樹脂シート60は、第1押圧ロール52Aの周面に密着したまま搬送され、第1および第2押圧ロール52A,52Bによって押圧工程(S3)が実行される。
 (作用)
 本発明の樹脂シートの製造方法では、形状ロール52Bから剥離された連続樹脂シート60の、形状が転写された側のシート表面を冷却する冷却工程を備えている。そして、シート表面の表面温度を低下させることができるため、転写型53から剥離された後の連続樹脂シートの表面形状をより早く硬化させることができる。これにより、転写された表面形状が好適に維持されるため、転写率の向上を図ることが可能である。
 (実施例)
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 (実施例1,比較例1)
 図3に示す樹脂シート製造装置50Cを用いて実施例1及び比較例1に係るシートを作成した。冷却工程を実行して作成したものを実施例1とし、冷却工程を実行せずに作成したものを比較例1とした。使用した製造装置50Cの条件を以下に示す。押出機58のスクリュー径を120mmとし、押出機58による押出量を、700kg/hrとした。実施例1、比較例1ともに、ライン速度を2.83m/minとし、シート幅を120cmとし、ロール温度(予圧ロール52D/第1押圧ロール52A/第2押圧ロール52B)を、80℃/85℃/95℃とした。
 実施例1及び比較例1では、シート厚み3mmのPMMA板を押出成形(シート製造工程)によって作成した。実施例1及び比較例1では、単層構造の樹脂シート(図4参照)を作成とした。
 実施例1及び比較例1に係る樹脂シートを構成する樹脂に、メタクリル酸メチルとアクリル酸メチルとの共重合体を用いた。樹脂の仕様を以下に示す。
 重量比:メタクリル酸メチル/アクリル酸メチル=94/6
 MFR:1.5g/10min
 ガラス転移温度Tg:102℃
 厚み:3.0mm
 冷却工程における条件を以下に示す。
 エアー噴きつけ流量:2L/hr、エアーの温度:23℃
 エアー噴きつけ位置:剥離点から20cm
 実施例1では、第2押圧ロール52Bから剥離された直後の樹脂シートの表面温度は、116℃であり、このときの形状高さHは、169μmであり、形状転写率(=H/D)は、76%であった。比較例1では、第2押圧ロール52Bから剥離された直後の樹脂シートの表面温度は、123℃であり、このときの形状高さHは、127μmであり、形状転写率(=H/D)は、57%であった。
 下記の表1に実施例1及び比較例1の試験条件及び試験結果を示している。
Figure JPOXMLDOC01-appb-T000001
 (実施例2,比較例2)
 図3に示す樹脂シート製造装置50Cを用いて実施例2及び比較例2に係るシートを作成した。冷却工程を実行して作成したものを実施例2とし、冷却工程を実行せずに作成したものを比較例2とした。使用した製造装置50Cの条件を以下に示す。押出機58のスクリュー径を120mmとし、押出機58による押出量を、700kg/hrとした。実施例2、比較例2ともに、ライン速度を2.47m/minとし、シート幅を135cmとし、ロール温度(予圧ロール52D/第1押圧ロール52A/第2押圧ロール52B)を、80℃/85℃/95℃とした。
 実施例2及び比較例2では、シート厚み3mmのPMMA板を押出成形(シート製造工程)によって作成した。実施例2及び比較例2では、単層構造の樹脂シート(図4参照)を作成とした。
 実施例2及び比較例2に係る樹脂シートを構成する樹脂に、メタクリル酸メチルとアクリル酸メチルとの共重合体を用いた。樹脂の仕様を以下に示す。
 重量比:メタクリル酸メチル/アクリル酸メチル=94/6
 MFR:1.5g/10min
 ガラス転移温度Tg:102℃
 厚み:3.0mm
 冷却工程における条件を以下に示す。
 エアー噴きつけ流量:2L/hr、エアーの温度:23℃
 エアー噴きつけ位置:剥離点から20cm
 実施例2では、第2押圧ロール52Bから剥離された直後の樹脂シートの表面温度は、110℃であり、このときの形状高さHは、188μmであり、形状転写率(=H/D)は、85%であった。比較例2では、第2押圧ロール52Bから剥離された直後の樹脂シートの表面温度は、117℃であり、このときの形状高さHは、161μmであり、形状転写率(=H/D)は、73%であった。
 下記の表2に実施例2及び比較例2の試験条件及び試験結果を示している。
Figure JPOXMLDOC01-appb-T000002
 (実施例3,比較例3)
 図3に示す樹脂シート製造装置50Cを用いて実施例3及び比較例3に係るシートを作成した。冷却工程を実行して作成したものを実施例3とし、冷却工程を実行せずに作成したものを比較例3とした。使用した製造装置50Cの条件を以下に示す。押出機58のスクリュー径を120mmとし、押出機58による押出量を、700kg/hrとした。実施例3では、ライン速度を2.14m/minとし、比較例3では、ライン速度を2.15m/minとした。実施例3、比較例3ともに、シート幅を135cmとし、ロール温度(予圧ロール52D/第1押圧ロール52A/第2押圧ロール52B)を、80℃/85℃/100℃とした。
 実施例3及び比較例3では、シート厚み3.5mmのPMMA板を押出成形(シート製造工程)によって作成した。実施例3及び比較例3では、単層構造の樹脂シート(図4参照)を作成とした。
 実施例2及び比較例2に係る樹脂シートを構成する樹脂に、メタクリル酸メチルとアクリル酸メチルとの共重合体を用いた。樹脂の仕様を以下に示す。
 重量比:メタクリル酸メチル/アクリル酸メチル=94/6
 MFR:1.5g/10min
 ガラス転移温度Tg:102℃
 厚み:3.5mm
 冷却工程における条件を以下に示す。
 エアー噴きつけ流量:2L/hr、エアーの温度:23℃
 エアー噴きつけ位置:剥離点から20cm
 実施例3では、第2押圧ロール52Bから剥離された直後の樹脂シートの表面温度は、118℃であり、このときの形状高さHは、134μmであり、形状転写率(=H/D)は、60%であった。比較例3では、第2押圧ロール52Bから剥離された直後の樹脂シートの表面温度は、125℃であり、このときの形状高さHは、117μmであり、形状転写率(=H/D)は、53%であった。
 下記の表3に実施例3及び比較例3の試験条件及び試験結果を示している。
Figure JPOXMLDOC01-appb-T000003
 このように本発明の実施形態に係る樹脂シートの製造方法によれば、樹脂シートの形状転写率を向上させることができる。
 以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではない。
 また、上記実施形態では、樹脂シートとして、導光板について説明しているが、その他の樹脂シートを作成してもよい。本発明の樹脂シート製造方法は、例えば液晶TVのバックライトに搭載される形状導光板および形状拡散板の製造に有効である。本発明は、アスペクト比の高い形状導光板および形状拡散板の製造に特に有効である。
 また、上記実施形態では、図1~図3に示す樹脂シート製造装置50、50B、50Cを用いて、連続樹脂シートの製造を行っているが、その他の製造工程を実行可能な樹脂シート製造装置を用いてもよい。
 また、上記実施形態では、エアーの噴きつけ、又は、ミスト噴射を行うことにより、シート表面を行っているが、その他の方法により、冷却工程を実行してもよい。例えば、冷却用流体として、不活性ガスなどを噴きつけることで、シート表面を冷却させてもよい。また、冷却板などを用いて、ふく射伝熱を利用して、シート表面を冷却させてもよい。
 また、上記実施形態の冷却工程では、剥離点Mからの距離Nが30cm以内の範囲において、シート表面を冷却しているが、剥離点Mからの距離Nが30cmを超える範囲において、シート表面を冷却してもよい。
 本発明の樹脂シートの製造方法によれば、転写率の向上が図られた樹脂シートを製造することができる。
 50,50B,50C…樹脂シート製造装置、51…ダイ、52A…第1押圧ロール、52B…第2押圧ロール(形状ロール)、52C…第3押圧ロール、52D…予圧ロール、53…転写型、54…凹部形状、57…樹脂投入口、58…押出機、59…冷却部、60…連続樹脂シート。

Claims (3)

  1.  加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを製造するシート製造工程と、
     周面に転写型が形成された形状ロールを用いて、前記連続樹脂シートのシート表面に前記転写型の形状を転写する転写工程と、を備えた樹脂シート製造方法において、
     前記転写工程は、前記シート製造工程によって製造された前記連続樹脂シートを押圧ロールと前記形状ロールとで挟み込むことで押圧する押圧工程と、
     前記押圧工程で押圧された前記連続樹脂シートを前記形状ロールの周面に密着させたまま搬送する搬送工程と、
     前記搬送工程で搬送された前記連続樹脂シートを前記形状ロールの周面から剥離する剥離工程と、
     前記形状ロールの周面から剥離された前記連続樹脂シートにおいて、形状が転写された側のシート表面を冷却する冷却工程と、を含み、
     前記冷却工程では、前記形状ロールから剥離された後の前記連続樹脂シートの表面温度が、前記樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲であるときに、前記シート表面を冷却する樹脂シート製造方法。
  2.  前記冷却工程では、前記シート表面に対して、エアー噴きつけ、またはミスト噴射を行う請求項1記載の樹脂シート製造方法。
  3.  前記冷却工程では、前記形状ロールから前記連続樹脂シートが剥離された位置である剥離点から30cm以内の範囲において、前記シート表面を冷却する請求項1又は2に記載の樹脂シート製造方法。
PCT/JP2012/051454 2011-01-28 2012-01-24 樹脂シートの製造方法 WO2012102274A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011016898A JP2012153126A (ja) 2011-01-28 2011-01-28 樹脂シートの製造方法
JP2011-016898 2011-07-22

Publications (1)

Publication Number Publication Date
WO2012102274A1 true WO2012102274A1 (ja) 2012-08-02

Family

ID=46580840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051454 WO2012102274A1 (ja) 2011-01-28 2012-01-24 樹脂シートの製造方法

Country Status (2)

Country Link
JP (1) JP2012153126A (ja)
WO (1) WO2012102274A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811182B1 (ko) * 2017-09-01 2017-12-26 김영철 아스팔트 방수시트 제조장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127460A (en) * 1978-03-28 1979-10-03 Chuo Kagaku Kk Method of making embossed synthetic resin sheet
JPH0957847A (ja) * 1995-08-21 1997-03-04 Riken Vinyl Kogyo Kk エンボス加工フィルムの製造方法およびこれに使用するための装置
JP2000019309A (ja) * 1998-07-07 2000-01-21 Asahi Chem Ind Co Ltd 採光用フレネルプリズム板及びその製造方法
JP2009274389A (ja) * 2008-05-16 2009-11-26 Fujifilm Corp 偏肉樹脂シートの製造方法および製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127460A (en) * 1978-03-28 1979-10-03 Chuo Kagaku Kk Method of making embossed synthetic resin sheet
JPH0957847A (ja) * 1995-08-21 1997-03-04 Riken Vinyl Kogyo Kk エンボス加工フィルムの製造方法およびこれに使用するための装置
JP2000019309A (ja) * 1998-07-07 2000-01-21 Asahi Chem Ind Co Ltd 採光用フレネルプリズム板及びその製造方法
JP2009274389A (ja) * 2008-05-16 2009-11-26 Fujifilm Corp 偏肉樹脂シートの製造方法および製造装置

Also Published As

Publication number Publication date
JP2012153126A (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
TWI531462B (zh) 用於押出成型及圖案形成之同軸射出式裝置
JP5584654B2 (ja) 保護フィルム付き導光板の製造方法
JP2010058521A (ja) 光学シートの製造方法及び光学シート
US20110227238A1 (en) Apparatus and method for producing optical sheeting
JP2009220555A (ja) 表面形状転写樹脂シートの製造方法およびその製造装置
CN102029712B (zh) 光学片制造装置和光学片制造方法
CN101439582A (zh) 导光板的制造方法
WO2012102178A1 (ja) 樹脂フィルムの製造方法及び製造装置
TWI461762B (zh) 薄雙側光導板
CN104076431A (zh) 复合导光板、复合导光板制作方法及其制作装置
WO2012102274A1 (ja) 樹脂シートの製造方法
KR20110044148A (ko) 표면 형상 전사 수지 시트의 제조 방법
JP2014160201A (ja) 光学シートの製造方法
WO2012165479A1 (ja) 保護フィルム付き導光板
JP2011194724A (ja) 表面形状転写樹脂シートの製造方法
JP2008044136A (ja) 光学シートの製造方法及び表示スクリーンの製造方法
JP2013176982A (ja) 形状転写樹脂シートの製造方法及び樹脂シート
JP2014106241A (ja) 光学シートの製造方法
WO2012102273A1 (ja) 樹脂シートの製造方法、及び形状ロール
JP2014172356A (ja) 積層シートの製造方法
JP2012171296A (ja) パターンシートの製造方法及び製造装置
JP2013022813A (ja) 樹脂シートの製造方法
KR101582373B1 (ko) 도광판의 제조방법, 이로부터 제조된 도광판 및 이를 포함하는 액정표시장치
JP2012030590A (ja) 表面形状転写樹脂シートの製造方法
JP2012250467A (ja) 導光板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738759

Country of ref document: EP

Kind code of ref document: A1