WO2012102039A1 - 導波路型偏波ビームスプリッタ - Google Patents

導波路型偏波ビームスプリッタ Download PDF

Info

Publication number
WO2012102039A1
WO2012102039A1 PCT/JP2012/000474 JP2012000474W WO2012102039A1 WO 2012102039 A1 WO2012102039 A1 WO 2012102039A1 JP 2012000474 W JP2012000474 W JP 2012000474W WO 2012102039 A1 WO2012102039 A1 WO 2012102039A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical
optical coupler
beam splitter
degrees
Prior art date
Application number
PCT/JP2012/000474
Other languages
English (en)
French (fr)
Inventor
才田 隆志
那須 悠介
水野 隆之
笠原 亮一
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US13/981,285 priority Critical patent/US9235003B2/en
Priority to CA2825540A priority patent/CA2825540C/en
Priority to JP2012554690A priority patent/JP5567696B2/ja
Priority to CN201280006559.4A priority patent/CN103339541B/zh
Priority to EP12739739.6A priority patent/EP2669722B1/en
Publication of WO2012102039A1 publication Critical patent/WO2012102039A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12116Polariser; Birefringent
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2793Controlling polarisation dependent loss, e.g. polarisation insensitivity, reducing the change in polarisation degree of the output light even if the input polarisation state fluctuates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging

Definitions

  • the present invention relates to a waveguide-type polarization beam splitter, and more particularly to a waveguide-type polarization beam splitter that combines and branches polarized waves.
  • waveguide-type polarization beam splitters are attracting attention because they can be integrated with other waveguide-type devices such as couplers, delay interferometers, and optical hybrids.
  • a waveguide-type polarization beam splitter generally has a Mach-Zehnder interferometer (MZI) configuration and provides a phase difference of ⁇ between TE polarized light and TM polarized light so that the phase difference of the TE polarized light interferometer is 0 (or ⁇ ), and the phase difference in the TM polarization interferometer is ⁇ (or 0), thereby realizing the polarization combining / branching function.
  • MZI Mach-Zehnder interferometer
  • FIG. 1 shows an example of a conventional waveguide-type polarization beam splitter.
  • a conventional waveguide-type polarization beam splitter includes input optical waveguides 101a and 101b, a first optical coupler 102, a pair of waveguide arms 103, and a groove 104 provided so as to cross the waveguide arms 103, It comprises quarter-wave plates 105a and 105b with angles of 0 degrees and 90 degrees inserted into the groove 104, a second optical coupler 106, and output optical waveguides 107a and 107b. (See Patent Document 1).
  • this method since the phase difference between the polarized waves is provided by the wave plates inserted in both arms, a polarization beam splitter having excellent temperature characteristics can be realized.
  • the conventional configuration has a problem that the wavelength dependency is large.
  • the directional coupler is used for the first optical coupler 102 and the second optical coupler 106, the wavelength dependence of the directional coupler itself occurs.
  • the quarter-wave plate 105 gives a phase of ⁇ 90 degrees to the orthogonally polarized waves TE and TM, respectively, so that either one of the waveguide arms 103a or 103b is used for the polarization beam splitter operation. It is necessary to provide a delay unit of a quarter wavelength. Since this delay unit has wavelength dependence, the characteristics of the polarization beam splitter are deteriorated.
  • FIG. 2 is a diagram showing the wavelength characteristics of a conventional waveguide-type polarization beam splitter when manufactured ideally. As can be seen from FIG. 2, the extinction ratio is degraded to 25 dB or less in the wavelength range of 1.53 to 1.565 microns even when the conventional waveguide type polarization beam splitter is ideally manufactured. .
  • FIG. 3 shows a histogram of a conventional waveguide-type polarization beam splitter when manufacturing tolerance is taken into consideration. Even considering the manufacturing tolerance, the extinction ratio of the port 1 is 25 dB or less.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a waveguide-type polarization beam splitter that suppresses deterioration of the polarization extinction ratio due to temperature change and wavelength change. .
  • a first aspect of the present invention is a waveguide-type polarization beam splitter formed on a substrate, including one or two input optical waveguides, A one-input two-output or two-input two-output first optical coupler optically coupled to one or two input optical waveguides, and a pair of optically coupled to the output of the first optical coupler An optical waveguide arm; and a second optical coupler having two inputs and one output or two inputs and two outputs optically coupled to the pair of optical waveguide arms.
  • a groove is provided so as to cross both arms of the pair of optical waveguide arms, and two quarter-wave plates are inserted into the groove so as to cross each arm of the pair of optical waveguide arms.
  • One optical coupler of the first optical coupler and the second optical coupler is an optical coupler that gives a phase shift of about 90 degrees or about -90 degrees between the combined light and the other optical coupler. Is characterized in that it is an optical coupler that gives a phase shift of about 0 degrees or about 180 degrees between the light beams to be coupled and branched.
  • the optical coupler that gives a phase shift of about 0 degrees or about 180 degrees between the light beams to be combined is a Y branch coupler, a 1-input 2-output multimode. It is an interference optical coupler, a 2-input 1-output multimode interference optical coupler, or an X-branch coupler.
  • an optical coupler that gives a phase shift of about 90 degrees or about -90 degrees between the combined light beams is a two-input two-output multimode. It is an interference optical coupler or a directional coupler.
  • angles of the polarization main axes of the two quarter-wave plates are respectively relative to the substrate plane of the waveguide. It is characterized by 0 degrees and 90 degrees.
  • each of the two quarter-wave plates is a polyimide wavelength plate.
  • the sixth aspect of the present invention is characterized in that, in any of the first to fifth aspects, tapered portions are further provided before and after the groove.
  • the seventh aspect of the present invention is characterized in that, in any of the first to sixth aspects, a waveguide lens is further provided before and after the groove.
  • the eighth aspect of the present invention is characterized in that, in any one of the first to seventh aspects, the optical waveguide is a quartz optical waveguide formed on a silicon substrate.
  • a groove is provided so as to traverse both arms of the pair of optical waveguide arms constituting the MZI, and two quarter-wave plates are respectively provided in the groove so as to traverse each arm of the pair of optical waveguide arms.
  • these two quarter-wave plates those whose polarization axes are orthogonal to each other are used, and an optical coupler that gives a phase shift of about 90 degrees or about -90 degrees as an optical coupler, and about 0 degrees
  • an optical coupler that gives a phase shift of about 90 degrees or about -90 degrees as an optical coupler, and about 0 degrees
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a figure which shows the wavelength dependence of the polarization extinction ratio of the waveguide type polarization beam splitter which concerns on 1st Embodiment.
  • FIG. 10 is a cross-sectional view taken along line XX in FIG. 9. It is a figure which shows the wavelength dependence of the polarization extinction ratio of the waveguide type polarization beam splitter which concerns on 2nd Embodiment. It is a figure which shows the histogram of the polarization extinction ratio of the waveguide type polarization beam splitter which concerns on 2nd Embodiment.
  • FIG. 4 shows a waveguide-type polarization beam splitter according to the first embodiment.
  • the waveguide-type polarization beam splitter includes a single input optical waveguide 11, a first optical coupler 12 with one input and two outputs optically coupled to the single input optical waveguide 11, A pair of optical waveguide arms 13a and 13b optically coupled to the output of the optical coupler and a second optical coupler 18 having two inputs and two outputs optically coupled to the pair of optical waveguide arms 13a and 13b are provided.
  • the first optical coupler 12, the pair of optical waveguide arms 13, and the second optical coupler 18 constitute an MZI.
  • a groove 15 is formed so as to traverse the pair of optical waveguide arms 13a, 13b, and the groove 15 traverses each arm 13a, 13b.
  • Two quarter-wave plates 16a and 16b are provided. Two quarter-wave plates 16a and 16b are used whose polarization axes are orthogonal to each other.
  • a Y-branch coupler that gives a phase difference of 0 degree between the lights output to the optical waveguide arms 13a and 13b is used.
  • the second optical coupler 18 gives a phase difference of about 90 degrees and about -90 degrees to the light output to the output ports 19a and 19b with respect to the optical inputs of the waveguide arms 13a and 13b, respectively.
  • a 2-input 2-output (2 ⁇ 2) multimode interference (MMI) coupler is used.
  • the Y-branch coupler is used as an optical coupler that gives a phase difference of about 0 degree or about 180 degrees between the light beams to be branched / branched. This is because it becomes possible to provide a simple waveguide-type polarization beam splitter.
  • the present invention is not limited to this example, and a 1-input 2-output (1 ⁇ 2) MMI coupler can be used as long as it is an optical coupler that gives a phase difference of 0 degree or 180 degrees between light beams to be combined and branched.
  • an adiabatic X-branch coupler is also acceptable.
  • a 2 ⁇ 2 MMI coupler is used as an optical coupler that gives a phase difference of about 90 degrees or about ⁇ 90 degrees between the light beams to be branched and split.
  • this depends on the wavelength by using a 2 ⁇ 2 MMI coupler. This is because it is possible to provide a polarization beam splitter that is small in performance and excellent in manufacturing tolerance.
  • the present invention is not limited to this example, and a directional coupler may of course be used as long as it is a coupler that gives a phase difference of about 90 degrees or about -90 degrees between light beams to be combined.
  • a 1-input 2-output polarization beam splitter is configured using a 1-input 2-output Y-branch coupler on the input side and a 2-input 2-output MMI coupler on the output side. Even if the output is inverted and a 2-input 2-output MMI optical coupler is used on the input side and a 2-input 1-output Y branch coupler is used on the output side, a 2-input 1-output polarization beam combiner is configured. Of course.
  • Each of the arms 13a and 13b constituting the pair of optical waveguide arms 13 can be, for example, a quartz optical waveguide having a relative refractive index difference of 1.5% on the silicon substrate.
  • the quarter-wave plates 16a and 16b can be made of polyimide. Since polyimide is thin, the groove 15 for inserting the quarter-wave plates 16a and 16b can be narrowed to, for example, less than 20 ⁇ m. If the angle of the polarization axis is 0 degrees and 90 degrees with respect to the perpendicular line of the plane on which the pair of optical waveguide arms 13a and 13b are formed, the separated polarized waves become linearly polarized waves, and the handling becomes easy. .
  • a tapered portion may be provided in the waveguide portion before and after the groove 15.
  • the terminal width of the tapered portion is preferably 10 ⁇ m or more.
  • FIG. 5 is a sectional view taken along the line VV in FIG.
  • Two arms 13a and 13b are formed on the substrate 10, and quarter-wave plates 16a and 16b are provided so as to cross the respective cores.
  • the wavelength dependence of the polarization extinction ratio is greatly reduced in the waveguide type polarization beam splitter according to the present embodiment as shown in FIG.
  • the waveguide type polarization beam splitter according to the present embodiment can secure a polarization extinction ratio of 30 dB or more in consideration of manufacturing tolerance as shown in FIG. .
  • FIG. 8 shows a waveguide-type polarization beam splitter according to a modification of the first embodiment.
  • the waveguide-type polarization beam splitter includes two input optical waveguides 11a and 11b, and a two-input two-output first optical coupler 12 optically coupled to the two input optical waveguides 11a and 11b.
  • a pair of optical waveguide arms 13 optically coupled to the output of the first optical coupler and a second optical coupler 18 having two inputs and two outputs optically coupled to the pair of optical waveguide arms 13.
  • the first optical coupler 12, the pair of optical waveguide arms 13, and the second optical coupler 18 constitute an MZI.
  • a groove 15 is formed so as to traverse both the pair of optical waveguide arms 13a and 13b, and the arm 15a and 13b are traversed in the groove 15, respectively.
  • two quarter-wave plates 16a and 16b are provided.
  • Two quarter-wave plates 16a and 16b are used whose polarization axes are orthogonal to each other.
  • an adiabatic X-branch coupler that gives a phase difference of about 0 degree and about 180 degrees between the lights output to the optical waveguide arms 13a and 13b is used.
  • the second optical coupler 18 gives a phase difference of about 90 degrees and about -90 degrees to the light output to the output ports 19a and 19b with respect to the optical inputs of the waveguide arms 13a and 13b, respectively.
  • a 2-input 2-output (2 ⁇ 2) multimode interference (MMI) coupler is used.
  • an optical coupler that gives a phase difference of about 0 degree or about 180 degrees between the light to be coupled and branched and an optical coupler that gives a phase difference of about 90 degrees or about -90 degrees to the light to be joined or branched are combined.
  • the lengths of the waveguide arms 13a and 13b can be matched, it is not necessary to use a delay unit having wavelength dependency, and the wavelength dependency is reduced.
  • parabolic optical waveguides may be provided in the waveguide portions before and after the groove 15.
  • the end width of the parabolic optical waveguide is preferably 10 ⁇ m or more.
  • FIG. 9 shows a waveguide-type polarization beam splitter according to the second embodiment.
  • the waveguide-type polarization beam splitter includes a single input optical waveguide 11, a first optical coupler 12 with one input and two outputs optically coupled to the single input optical waveguide 11, A pair of optical waveguide arms 13 (13a and 13b) optically coupled to the output of the optical coupler and a two-input two-output second optical coupler 18 optically coupled to the pair of optical waveguide arms 13a and 13b.
  • the first optical coupler 12, the pair of optical waveguide arms 13, and the second optical coupler 18 constitute an MZI.
  • a groove 15 is formed so as to traverse the pair of optical waveguide arms 13a, 13b, and the groove 15 traverses each arm 13a, 13b.
  • Two quarter-wave plates 16a and 16b are provided. Two quarter-wave plates 16a and 16b are used whose polarization axes are orthogonal to each other.
  • a 1-input 2-output (1 ⁇ 2) MMI coupler that gives a phase difference of 0 degree between the light output to the optical waveguide arms 13a and 13b is used.
  • the second optical coupler 18 has a phase difference of about 90 degrees and about -90 degrees for the light output to the output ports 19a and 19b with respect to the optical inputs of the waveguide arms 13a and 13b, respectively.
  • a 2-input 2-output directional coupler coupler is used. In this way, an optical coupler that gives a phase difference of about 0 degree or about 180 degrees between the light to be coupled and branched and an optical coupler that gives a phase difference of about 90 degrees or about -90 degrees to the light to be joined or branched are combined.
  • the lengths of the waveguide arms 13a and 13b can be matched, it is not necessary to use a delay unit having wavelength dependency, and the wavelength dependency is reduced.
  • a 1 ⁇ 2 MMI optical coupler is used as an optical coupler that gives a phase difference of 0 degree between light beams to be coupled / branched.
  • the present invention is not limited to this example.
  • the optical coupler gives a phase difference of 0 ° or 180 °, it is of course possible to use an adiabatic X-branch optical coupler or a lattice type optical circuit in which Mach-Zehnder interferometers are connected in cascade.
  • a directional coupler is used as an optical coupler that gives a phase difference of about 90 degrees or ⁇ 90 degrees between the light beams to be coupled / branched.
  • the loss is small by using the directional coupler. This is because it becomes possible to provide a polarization beam splitter.
  • the present invention is not limited to this example, and any MMI coupler may be used as long as the coupler provides a phase difference of about 90 degrees or about -90 degrees between the light beams to be combined.
  • a 2-input 2-output polarization beam splitter is configured by using a 1-input 2-output MMI optical coupler on the input side and a 2-input 2-output directional coupler on the output side.
  • This is a two-input one-output polarization beam combiner that uses a two-input two-output directional coupler on the input side and a two-input one-output MMI optical coupler on the output side.
  • Each of the arms 13a and 13b constituting the pair of optical waveguide arms 13 can be, for example, a quartz optical waveguide having a relative refractive index difference of 1.5% on the silicon substrate.
  • the quarter-wave plates 16a and 16b can be made from quartz. Quartz has a feature that it can provide a wave plate having high rigidity and no problems such as bending and warping, and the controllability is improved. If the angle of the polarization axis is 45 degrees and ⁇ 45 degrees with respect to the normal of the plane on which the pair of optical waveguide arms 13a and 13b are formed, the same type of wave plate can be inserted with the orientation changed. There is an advantage that the number of parts can be reduced.
  • a parabolic optical waveguide 17 may be provided in the waveguide portion before and after the groove 15.
  • the terminal width of the parabolic optical waveguide is preferably 10 ⁇ m or more.
  • FIG. 10 shows a cross-sectional view along the line XX in FIG.
  • Two arms 13a and 13b are formed on the substrate 10, and quarter-wave plates 16a and 16b are provided so as to cross the respective cores.
  • the wavelength dependence of the polarization extinction ratio is greatly reduced in the waveguide type polarization beam splitter according to the present embodiment as shown in FIG.
  • the waveguide type polarization beam splitter according to the present embodiment can secure a polarization extinction ratio of 25 dB or more in consideration of manufacturing tolerance as shown in FIG. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 温度変化、波長変化による偏波消光比の劣化を抑制した導波路型偏波ビームスプリッタを提供する。導波路型偏波ビームスプリッタは、入力用光導波路(11)と、入力用光導波路(11)に結合された第1の光カプラ(12)と、第1の光カプラの出力に結合された一対の光導波路アーム(13a、13b)と、一対の光導波路アーム(13a、13b)に結合された第2の光カプラ(18)とを備える。一対の光導波路アーム(13a、13b)を横断するように溝(15)が形成され、溝(15)には、各アーム(13a、13b)を夫々横断するように2枚の四分の一波長板(16a、16b)が設けられる。四分の一波長板(16a、16b)は、互いに偏波軸が直交する。合分岐する光間に0度又は180度の位相差を与える第1の光カプラ(12)と、合分岐する光間に90度又は-90度の位相差を与える第2の光カプラ(18)を組み合わせる。

Description

導波路型偏波ビームスプリッタ
 本発明は、導波路型偏波ビームスプリッタに関し、より詳細には、偏波を合分岐する導波路型偏波ビームスプリッタに関する。
 大容量光通信に向けて偏波多重された光信号の利用が進んでおり、偏波を合分岐する偏波ビームスプリッタの重要性が増している。特に導波路型偏波ビームスプリッタは、カプラや遅延干渉計、光ハイブリッドなど他の導波路型デバイスと一体集積できることから注目されている。導波路型偏波ビームスプリッタは一般に、マッハツェンダ型干渉計(MZI)の構成でTE偏光とTM偏光との間にπの位相差を設けて、TE偏光の干渉計での位相差を0(あるいはπ)とし、TM偏光の干渉計での位相差をπ(あるいは0)とすることで偏波合分岐機能を実現する。
 図1に、従来の導波路型偏波ビームスプリッタの例を示す。従来の導波路型偏波ビームスプリッタは入力用光導波路101a、101bと、第1の光カプラ102と、一対の導波路アーム103と、導波路アーム103を横断するように設けた溝104と、溝104に挿入された0度および90度の角度の四分の一波長板105a、105bと、第2の光カプラ106と、出力用光導波路107a、107bとから構成されている。(特許文献1参照)。この手法は、偏波間の位相差を両アームに挿入された波長板によって付与するため、温度特性に優れた偏波ビームスプリッタを実現できる。
特開平7-92326号公報
 しかしながら、従来の構成には、波長依存性が大きいという問題があった。図1の構成では第1の光カプラ102および第2の光カプラ106に方向性結合器を用いているために、方向性結合器自体の波長依存性が生じる。また、四分の一波長板105は、直交する偏波TEおよびTMにそれぞれ、±90度の位相を与えるため、偏波ビームスプリッタ動作のためには導波路アーム103aあるいは103bのいずれかに四分の一波長の遅延部を設ける必要がある。この遅延部は波長依存性を有するため、偏波ビームスプリッタの特性は劣化する。
 図2は、理想的に製造された場合の、従来の導波路型偏波ビームスプリッタの波長特性を示す図である。図2より分かるように、従来の導波路型偏波ビームスプリッタでは理想的に製造された場合であっても波長範囲1.53~1.565ミクロンの範囲で、消光比は25dB以下まで劣化する。
 図3は、製造トレランスを考慮した場合の、従来の導波路型偏波ビームスプリッタのヒストグラムを示している。製造トレランスを考慮しても、ポート1の消光比は25dB以下となっている。
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、温度変化および波長変化による偏波消光比の劣化を抑制した導波路型偏波ビームスプリッタを提供することにある。
 このような目的を達成するために、本発明の第1の態様は、基板上に形成された導波路型偏波ビームスプリッタであって、1本または2本の入力用光導波路と、前記1本または2本の入力用光導波路に光学的に結合された1入力2出力または2入力2出力の第1の光カプラと、前記第1の光カプラの出力に光学的に結合された一対の光導波路アームと、前記一対の光導波路アームに光学的に結合された2入力1出力または2入力2出力の第2の光カプラとを備える。前記一対の光導波路アームの両方のアームを横断するように溝が設けられ、前記溝に、前記一対の光導波路アームの各アームをそれぞれ横断するように2枚の四分の一波長板が挿入され、前記2枚の四分の一波長板は、互いに偏波軸が直交している。そして、前記第1の光カプラおよび前記第2の光カプラの一方の光カプラは、合分岐する光間に約90度または約―90度の位相シフトを与える光カプラであり、他方の光カプラは、合分岐する光間に約0度または約180度の位相シフトを与える光カプラであることを特徴とする。
 また、本発明の第2の態様は、第1の態様において、前記合分岐する光間に約0度または約180度の位相シフトを与える光カプラが、Y分岐カプラ、1入力2出力多モード干渉光カプラ、2入力1出力多モード干渉光カプラ、またはX分岐カプラであることを特徴とする。
 また、本発明の第3の態様は、第1又は第2の態様において、前記合分岐する光間に約90度または約‐90度の位相シフトを与える光カプラが、2入力2出力多モード干渉光カプラ、または方向性結合器であることを特徴とする。
 また、本発明の第4の態様は、第1から第3のいずれかの態様において、前記2枚の四分の一波長板の偏波主軸の角度がそれぞれ、導波路の基板平面に対して0度および90度をなしていることを特徴とする。
 また、本発明の第5の態様は、第1から第4のいずれかの態様において、前記2枚の四分の一波長板がそれぞれ、ポリイミド波長板であることを特徴とする。
 また、本発明の第6の態様は、第1から第5のいずれかの態様において、前記溝の前後にテーパ部をさらに備えることを特徴とする。
 また、本発明の第7の態様は、第1から第6のいずれかの態様において、前記溝の前後に導波路レンズをさらに備えることを特徴とする。
 また、本発明の第8の態様は、第1から第7のいずれかの態様において、前記光導波路がシリコン基板上に形成された石英系光導波路であることを特徴とする。
 MZIを構成する一対の光導波路アームの両方のアームを横断するように溝が設けられ、当該溝に、一対の光導波路アームの各アームをそれぞれ横断するように2枚の四分の一波長板が挿入され、これら2枚の四分の一波長板として、互いに偏波軸が直交するものを用い、光カプラとして約90度または約-90度の位相シフトを与える光カプラと、約0度または約180度の位相シフトを与える光カプラを組み合わせて使うことで、波長変化および温度変化による偏波消光比の劣化を抑制した導波路型偏波ビームスプリッタを提供することができる。
従来の導波路型偏波ビームスプリッタを示す図である。 従来の導波路型偏波ビームスプリッタの偏波消光比の波長依存性を示す図である。 従来の導波路型偏波ビームスプリッタの偏波消光比のヒストグラムを示す図である。 第1の実施形態に係る導波路型偏波ビームスプリッタを示す図である。 図4のV-V線に沿った断面図を示す図である。 第1の実施形態に係る導波路型偏波ビームスプリッタの偏波消光比の波長依存性を示す図である。 第1の実施形態に係る導波路型偏波ビームスプリッタの偏波消光比のヒストグラムを示す図である。 第1の実施形態に係る導波路型偏波ビームスプリッタの変形形態を示す図である。 第2の実施形態に係る導波路型偏波ビームスプリッタを示す図である。 図9のX-X線に沿った断面図である。 第2の実施形態に係る導波路型偏波ビームスプリッタの偏波消光比の波長依存性を示す図である。 第2の実施形態に係る導波路型偏波ビームスプリッタの偏波消光比のヒストグラムを示す図である。
 以下、図面を参照して本発明の実施形態を説明する。
 (第1の実施形態)
 図4に、第1の実施形態に係る導波路型偏波ビームスプリッタを示す。導波路型偏波ビームスプリッタは、1本の入力用光導波路11と、1本の入力用光導波路11に光学的に結合された1入力2出力の第1の光カプラ12と、第1の光カプラの出力に光学的に結合された一対の光導波路アーム13aおよび13bと、一対の光導波路アーム13aおよび13bに光学的に結合された2入力2出力の第2の光カプラ18とを備える。第1の光カプラ12、一対の光導波路アーム13、および第2の光カプラ18がMZIを構成する。
 本実施形態による導波路型偏波ビームスプリッタでは、一対の光導波路アーム13a、13bを横断するように溝15が形成されており、溝15には、各アーム13a、13bをそれぞれ横断するように2枚の四分の一波長板16a、16bが設けられている。2枚の四分の一波長板16a、16bは、互いに偏波軸が直交するものを用いている。このような構成にすることで、2つのアーム13a、13bは、挿入されている波長板も含めて、偏波軸方向を除き完全に対称となるので、温度依存性が小さくなる。
 さらに、第1の光カプラ12としては、光導波路アーム13aおよび13bに出力される光間に0度の位相差を与えるY分岐カプラを用いている。また第2の光カプラ18としては、導波路アーム13aおよび13bそれぞれの光入力に対して、出力ポート19aおよび19bに出力される光に、それぞれ約90度および約-90度の位相差を与える2入力2出力(2×2)多モード干渉(MMI:Multimode Interference)カプラを用いている。このように、合分岐する光間に0度または180度の位相差を与える光カプラと、合分岐する光間に90度または-90度の位相差を与える光カプラとを組み合わせることで、導波路アーム13aおよび13bの長さを一致することができるため、波長依存性を持つ遅延部を用いる必要がなく、波長依存性が小さくなる。
 本実施形態では、合分岐する光間に約0度または約180度の位相差を与える光カプラとして、Y分岐カプラを用いたが、これは、Y分岐カプラを用いることで、小型で低損失な導波路型偏波ビームスプリッタを提供することが可能になるからである。しかしながら、本発明はこの例に限定されるものではなく、合分岐する光間に0度または180度の位相差を与える光カプラであれば、1入力2出力(1×2)MMIカプラでも、断熱X分岐カプラでも、もちろん構わない。
 本実施形態では、合分岐する光間に約90度または約-90度の位相差を与える光カプラとして、2×2MMIカプラを用いたが、これは、2×2MMIカプラを用いることで波長依存性が小さく、製造トレランスに優れた偏波ビームスプリッタを提供することが可能になるからである。しかしながら、本発明はこの例に限定されるものではなく、合分岐する光間に約90度または約-90度の位相差を与えるカプラであれば、方向性結合器でも、もちろん構わない。
 本実施形態では、入力側に1入力2出力のY分岐カプラを用い、出力側に2入力2出力のMMIカプラを用いて、1入力2出力の偏波ビームスプリッタを構成するとしたが、入力と出力を反転して、入力側に2入力2出力のMMI光カプラを用い、出力側に2入力1出力のY分岐カプラを用いて、2入力1出力の偏波ビームコンバイナを構成しても、もちろん構わない。
 一対の光導波路アーム13を構成する各アーム13a、13bは、例えば、シリコン基板上の比屈折率差1.5%の石英系光導波路とすることができる。光ファイバとの接続損失小が0.6dB/点未満となる利点や、量産性および制御性に優れるという利点がある。
 四分の一波長板16a、16bは、ポリイミドから作製することができる。ポリイミドは薄いので、四分の一波長板16a、16bを挿入する溝15を例えば20μm未満等に狭くすることができる。偏波軸の角度は、一対の光導波路アーム13aおよび13bが形成されている平面の垂線に対して、0度と90度とすると分離される偏波が直線偏波となり、取り扱いが容易となる。
 溝15における過剰損失を低減するために、溝15の前後の導波路部分にテーパ部を設けてもよい。テーパ部の終端幅は、10μm以上とするのが好ましい。
 図5に、図4のV-V線に沿った断面図を示す。基板10の上に2つのアーム13a、13bが形成されており、それぞれのコアを横断するように四分の一波長板16a、16bが設けられる。
 図2に示した例とは対照的に、本実施形態による導波路型偏波ビームスプリッタでは図6に示すように偏波消光比の波長依存性が大幅に低減されている。
 また、図3に示した例とは対照的に、本実施形態による導波路型偏波ビームスプリッタでは図7に示すように製造トレランスを考慮した場合の偏波消光比としても30dB以上が確保できる。
 (第1の実施形態の変形形態)
 図8に、第1の実施形態の変形形態に係る導波路型偏波ビームスプリッタを示す。導波路型偏波ビームスプリッタは、2本の入力用光導波路11a、11bと、2本の入力用光導波路11a、11bに光学的に結合された2入力2出力の第1の光カプラ12と、第1の光カプラの出力に光学的に結合された一対の光導波路アーム13と、一対の光導波路アーム13に光学的に結合された2入力2出力の第2の光カプラ18とを備える。第1の光カプラ12、一対の光導波路アーム13、及び第2の光カプラ18がMZIを構成する。
 本実施形態による導波路型偏波ビームスプリッタでは、一対の光導波路アーム13a、13bの両方を横断するように溝15が形成されており、溝15には、各アーム13a、13bをそれぞれ横断するように2枚の四分の一波長板16a、16bが設けられている。2枚の四分の一波長板16a、16bは、互いに偏波軸が直交するものを用いている。このような構成にすることで、2つのアーム13a、13bは、挿入されている波長板も含めて、偏波軸方向を除き完全に対称となるので、温度依存性が小さくなる。
 さらに、第1の光カプラ12としては、光導波路アーム13aおよび13bに出力される光間に約0度および約180度の位相差を与える断熱X分岐カプラを用いている。また第2の光カプラ18としては、導波路アーム13aおよび13bそれぞれの光入力に対して、出力ポート19aおよび19bに出力される光に、それぞれ約90度および約-90度の位相差を与える2入力2出力(2×2)多モード干渉(MMI:Multimode Interference)カプラを用いている。このように、合分岐する光間に約0度または約180度の位相差を与える光カプラと、合分岐する光間に約90度または約-90度の位相差を与える光カプラを組み合わせることで、導波路アーム13aおよび13bの長さを一致させることができるため、波長依存性を持つ遅延部を用いる必要がなく、波長依存性が小さくなる。
 溝15における過剰損失を低減するために、溝15の前後の導波路部分にパラボラ光導波路を設けてもよい。パラボラ光導波路の終端幅は10μm以上とするのが好ましい。
 このような構成としても、波長依存性および温度依存性が小さな導波路型偏波ビームスプリッタを提供することが可能となる。
 (第2の実施形態)
 図9に、第2の実施形態に係る導波路型偏波ビームスプリッタを示す。導波路型偏波ビームスプリッタは、1本の入力用光導波路11と、1本の入力用光導波路11に光学的に結合された1入力2出力の第1の光カプラ12と、第1の光カプラの出力に光学的に結合された一対の光導波路アーム13(13aおよび13b)と、一対の光導波路アーム13aおよび13bに光学的に結合された2入力2出力の第2の光カプラ18とを備える。第1の光カプラ12、一対の光導波路アーム13、および第2の光カプラ18がMZIを構成する。
 本実施形態による導波路型偏波ビームスプリッタでは、一対の光導波路アーム13a、13bを横断するように溝15が形成されており、溝15には、各アーム13a、13bをそれぞれ横断するように2枚の四分の一波長板16a、16bが設けられている。2枚の四分の一波長板16a、16bは、互いに偏波軸が直交するものを用いている。このような構成にすることで、2つのアーム13a、13bは、挿入されている波長板も含めて、偏波軸方向を除き完全に対称となるので、温度依存性が小さくなる。
 さらに、第1の光カプラ12としては、光導波路アーム13aおよび13bに出力される光間に0度の位相差を与える1入力2出力(1×2)MMIカプラを用いている。また、第2の光カプラ18としては、導波路アーム13aおよび13bそれぞれの光入力に対して、出力ポート19aおよび19bに出力される光に、それぞれ約90度および約-90度の位相差を与える2入力2出力方向性結合器カプラを用いている。このように、合分岐する光間に約0度または約180度の位相差を与える光カプラと、合分岐する光間に約90度または約-90度の位相差を与える光カプラを組み合わせることで、導波路アーム13aおよび13bの長さを一致させることができるため、波長依存性を持つ遅延部を用いる必要がなく、波長依存性が小さくなる。
 本実施形態では、合分岐する光間に0度の位相差を与える光カプラとして、1×2MMI光カプラを用いたが、本発明はこの例に限定されるものではなく、合分岐する光間に0度または180度の位相差を与える光カプラであれば、断熱X分岐光カプラを用いても、マッハツェンダ干渉計を縦続に接続したラティス型光回路を用いても、もちろん構わない。
 本実施形態では、合分岐する光間に約90度または-90度の位相差を与える光カプラとして、方向性結合器を用いたが、これは、方向性結合器を用いることで損失が小さな偏波ビームスプリッタを提供することが可能になるからである。しかしながら、本発明はこの例に限定されるものではなく、合分岐する光間に約90度または約-90度の位相差を与えるカプラであれば、MMIカプラでも、もちろん構わない。
 本実施形態では、入力側に1入力2出力のMMI光カプラを用い、出力側に2入力2出力の方向性結合器を用いて、2入力2出力の偏波ビームスプリッタを構成するとしたが、これは、入力と出力を反転して、入力側に2入力2出力の方向性結合器を用い、出力側に2入力1出力のMMI光カプラを用いて、2入力1出力の偏波ビームコンバイナを構成しても、もちろん構わない。
 一対の光導波路アーム13を構成する各アーム13a、13bは、例えば、シリコン基板上の比屈折率差1.5%の石英系光導波路とすることができる。光ファイバとの接続損失小が0.6dB/点未満となる利点や、量産性および制御性に優れるという利点がある。
 四分の一波長板16a、16bは、水晶から作製することができる。水晶は剛性が高く曲げや反りなどの問題がない波長板を提供でき、制御性が向上する特徴がある。偏波軸の角度は、一対の光導波路アーム13aおよび13bが形成されている平面の垂線に対して、45度と-45度とすると、同じ種類の波長板を向きを変えて挿入できるため、部品数を低減できる利点がある。
 溝15における過剰損失を低減するために、溝15の前後の導波路部分にパラボラ光導波路17を設けてもよい。パラボラ光導波路の終端幅は、10μm以上とするのが好ましい。
 図10に、図9のX-X線に沿った断面図を示す。基板10の上に2つのアーム13a、13bが形成されており、それぞれのコアを横断するように四分の一波長板16a、16bが設けられる。
 図2に示した例とは対照的に、本実施形態による導波路型偏波ビームスプリッタでは図11に示すように偏波消光比の波長依存性が大幅に低減されている。
 また、図3に示した例とは対照的に、本実施形態による導波路型偏波ビームスプリッタでは図12に示すように製造トレランスを考慮した場合の偏波消光比としても25dB以上が確保できる。
 101、11 入力用光導波路
 102、12 第一の光カプラ
 103、13 一対の光導波路アーム
 104、15 導波路溝
 14、17 テーパ光導波路あるいはパラボラ光導波路
 105、16 四分の一波長板
 106、18 第二の光カプラ
 107、19 出力用光導波路
 20 クラッド
 21 コア
 22 遅延

Claims (8)

  1.  基板上に形成された導波路型偏波ビームスプリッタであって、
     1本または2本の入力用光導波路と、
     前記1本または2本の入力用光導波路に光学的に結合された、1入力2出力または2入力2出力の第1の光カプラと、
     前記第1の光カプラの出力に光学的に結合された一対の光導波路アームと、
     前記一対の光導波路アームに光学的に結合された2入力1出力または2入力2出力の第2の光カプラと
    を備え、
     前記一対の光導波路アームを横断するように溝が設けられ、前記溝に、前記一対の光導波路アームの各アームをそれぞれ横断するように2枚の四分の一波長板が挿入され、前記2枚の四分の一波長板は、互いに偏波軸が直交しており、
     前記第1の光カプラおよび前記第2の光カプラのうちの一方の光カプラは、合分岐する光間に約90度または約-90度の位相シフトを与える光カプラであり、他方の光カプラは、合分岐する光間に約0度または約180度の位相シフトを与える光カプラであることを特徴とする導波路型偏波ビームスプリッタ。
  2.  前記合分岐する光間に約0度または約180度の位相シフトを与える光カプラは、Y分岐カプラ、1入力2出力多モード干渉光カプラ、2入力1出力多モード干渉光カプラ、またはX分岐カプラであることを特徴とする請求項1に記載の導波路型偏波ビームスプリッタ。
  3.  前記合分岐する光間に約90度または約-90度の位相シフトを与える光カプラは、2入力2出力多モード干渉光カプラ、または方向性結合器であることを特徴とする請求項1または2に記載の導波路型偏波ビームスプリッタ。
  4.  前記2枚の四分の一波長板の偏波主軸の角度はそれぞれ、導波路の基板平面に対して0度および90度をなしていることを特徴とする請求項1から3のいずれかに記載の導波路型偏波ビームスプリッタ。
  5.  前記2枚の四分の一波長板はそれぞれ、ポリイミド波長板であることを特徴とする請求項1から4のいずれかに記載の導波路型偏波ビームスプリッタ。
  6.  前記溝の前後にテーパ部をさらに備えることを特徴とする請求項1から5のいずれかに記載の導波路型偏波ビームスプリッタ。
  7.  前記溝の前後に導波路レンズをさらに備えることを特徴とする請求項1から6のいずれかに記載の導波路型偏波ビームスプリッタ。
  8.  前記光導波路はシリコン基板上に形成された石英系光導波路であることを特徴とする請求項1から7のいずれかに記載の導波路型偏波ビームスプリッタ。
PCT/JP2012/000474 2011-01-26 2012-01-25 導波路型偏波ビームスプリッタ WO2012102039A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/981,285 US9235003B2 (en) 2011-01-26 2012-01-25 Waveguide-type polarization beam splitter
CA2825540A CA2825540C (en) 2011-01-26 2012-01-25 Waveguide-type polarization beam splitter exhibiting reduced temperature-related wavelength dependent variation of the polarization extinction ratio
JP2012554690A JP5567696B2 (ja) 2011-01-26 2012-01-25 導波路型偏波ビームスプリッタ
CN201280006559.4A CN103339541B (zh) 2011-01-26 2012-01-25 波导型偏振分束器
EP12739739.6A EP2669722B1 (en) 2011-01-26 2012-01-25 Waveguide-type polarization beam splitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014545 2011-01-26
JP2011-014545 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012102039A1 true WO2012102039A1 (ja) 2012-08-02

Family

ID=46580614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000474 WO2012102039A1 (ja) 2011-01-26 2012-01-25 導波路型偏波ビームスプリッタ

Country Status (6)

Country Link
US (1) US9235003B2 (ja)
EP (1) EP2669722B1 (ja)
JP (1) JP5567696B2 (ja)
CN (1) CN103339541B (ja)
CA (1) CA2825540C (ja)
WO (1) WO2012102039A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219276A (ja) * 2014-05-14 2015-12-07 日本電信電話株式会社 偏波分離回路
WO2016060263A1 (ja) * 2014-10-17 2016-04-21 株式会社フォトニックラティス 偏光分離/合成機能をもつ集積型光結合器
US10809457B2 (en) 2018-04-03 2020-10-20 Electronics And Telecommuncations Research Institute Optical circuit element

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10132928B2 (en) 2013-05-09 2018-11-20 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
US10126412B2 (en) 2013-08-19 2018-11-13 Quanergy Systems, Inc. Optical phased array lidar system and method of using same
US9753351B2 (en) * 2014-06-30 2017-09-05 Quanergy Systems, Inc. Planar beam forming and steering optical phased array chip and method of using same
US9869753B2 (en) 2014-08-15 2018-01-16 Quanergy Systems, Inc. Three-dimensional-mapping two-dimensional-scanning lidar based on one-dimensional-steering optical phased arrays and method of using same
US10036803B2 (en) 2014-10-20 2018-07-31 Quanergy Systems, Inc. Three-dimensional lidar sensor based on two-dimensional scanning of one-dimensional optical emitter and method of using same
US10641876B2 (en) 2017-04-06 2020-05-05 Quanergy Systems, Inc. Apparatus and method for mitigating LiDAR interference through pulse coding and frequency shifting
CN108761648B (zh) * 2018-06-04 2019-06-18 华中科技大学 一种混合集成的三端口光环形器
GB2575653A (en) * 2018-07-17 2020-01-22 Univ College Cork National Univ Of Ireland Phase modulator for optical signal using multimode interference couplers
CN110646884B (zh) * 2019-07-09 2021-01-26 华中科技大学 一种具有大制作容差高偏振消光比的偏振分束器
KR20210018726A (ko) 2019-08-09 2021-02-18 한국전자통신연구원 코히어런트 광수신기 및 그의 제조 방법
US11474298B2 (en) * 2020-11-17 2022-10-18 Intel Corporation 2×2 optical unitary matrix multiplier
US11251876B2 (en) 2020-11-17 2022-02-15 Intel Corporation Optical analog matrix multiplier for optical neural networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792326A (ja) 1993-05-07 1995-04-07 Nippon Telegr & Teleph Corp <Ntt> 光波長板とその製造方法及びこれを用いた導波型光デバイス
JP2001050860A (ja) * 1999-08-11 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> 導波路型偏波状態測定器
WO2008084707A1 (ja) * 2007-01-10 2008-07-17 Nippon Telegraph And Telephone Corporation 導波路型光干渉回路
WO2010140363A1 (ja) * 2009-06-02 2010-12-09 日本電信電話株式会社 広帯域干渉計型偏波合成分離器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614365B2 (ja) 1991-01-14 1997-05-28 日本電信電話株式会社 偏波無依存導波型光デバイス
JPH1130766A (ja) 1997-07-09 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> 光非相反回路
JP3527455B2 (ja) 2000-03-09 2004-05-17 日本電信電話株式会社 光信号処理装置
GB0124840D0 (en) * 2001-10-16 2001-12-05 Univ Nanyang A polarization beam splitter
JP4405978B2 (ja) 2006-04-18 2010-01-27 日本電信電話株式会社 光信号処理器
CN101784926B (zh) 2007-08-24 2012-05-16 日本电信电话株式会社 偏振无关波导型干涉光路
JP5684131B2 (ja) * 2009-09-07 2015-03-11 古河電気工業株式会社 Plc型復調器及び光伝送システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792326A (ja) 1993-05-07 1995-04-07 Nippon Telegr & Teleph Corp <Ntt> 光波長板とその製造方法及びこれを用いた導波型光デバイス
JP2001050860A (ja) * 1999-08-11 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> 導波路型偏波状態測定器
WO2008084707A1 (ja) * 2007-01-10 2008-07-17 Nippon Telegraph And Telephone Corporation 導波路型光干渉回路
WO2010140363A1 (ja) * 2009-06-02 2010-12-09 日本電信電話株式会社 広帯域干渉計型偏波合成分離器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669722A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219276A (ja) * 2014-05-14 2015-12-07 日本電信電話株式会社 偏波分離回路
WO2016060263A1 (ja) * 2014-10-17 2016-04-21 株式会社フォトニックラティス 偏光分離/合成機能をもつ集積型光結合器
US10809457B2 (en) 2018-04-03 2020-10-20 Electronics And Telecommuncations Research Institute Optical circuit element

Also Published As

Publication number Publication date
EP2669722A4 (en) 2014-02-19
CA2825540C (en) 2016-12-13
JP5567696B2 (ja) 2014-08-06
JPWO2012102039A1 (ja) 2014-06-30
EP2669722B1 (en) 2015-01-14
US9235003B2 (en) 2016-01-12
US20130301976A1 (en) 2013-11-14
CN103339541A (zh) 2013-10-02
CN103339541B (zh) 2015-08-26
CA2825540A1 (en) 2012-08-02
EP2669722A1 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5567696B2 (ja) 導波路型偏波ビームスプリッタ
JP5520393B2 (ja) 導波路型偏波ビームスプリッタ
US8787710B2 (en) Wideband interferometer type polarization light beam combiner and splitter
JP4927548B2 (ja) 光回路装置
JP6198091B2 (ja) 導波路偏光スプリッタ兼偏光回転子
CN109001858B (zh) 一种基于表面等离子体亚波长光栅的偏振分束器
JP2014092759A (ja) 偏波制御素子
JP5402802B2 (ja) 光導波回路及び光導波回路の製造方法
CN112630892A (zh) 一种基于非等臂宽马赫曾德干涉仪的四通道粗波分复用器
WO2017169711A1 (ja) 光導波路構造および光導波路回路
JP5137619B2 (ja) Plc型可変分散補償器
WO2020213696A1 (ja) 光90度ハイブリッド回路
JP2015215578A (ja) 光導波路素子およびそれを用いた偏波分離器
US11733460B2 (en) Devices and methods for polarization splitting
WO2024038494A1 (ja) 利得等化器
CN117434652A (zh) 一种低串扰低温漂的粗波分复用器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554690

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2825540

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13981285

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012739739

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE