WO2012101979A1 - 電界プローブ - Google Patents

電界プローブ Download PDF

Info

Publication number
WO2012101979A1
WO2012101979A1 PCT/JP2012/000231 JP2012000231W WO2012101979A1 WO 2012101979 A1 WO2012101979 A1 WO 2012101979A1 JP 2012000231 W JP2012000231 W JP 2012000231W WO 2012101979 A1 WO2012101979 A1 WO 2012101979A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
monopole antenna
reflecting member
field probe
reception
Prior art date
Application number
PCT/JP2012/000231
Other languages
English (en)
French (fr)
Inventor
正樹 仲瀬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012554660A priority Critical patent/JP5786869B2/ja
Publication of WO2012101979A1 publication Critical patent/WO2012101979A1/ja
Priority to US13/948,952 priority patent/US9234928B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Definitions

  • the present invention relates to an electric field probe for measuring a near electric field.
  • Patent Document 1 discloses a technique for improving the far-field directivity of a half-wave dipole antenna. More specifically, a half-wave dipole antenna is installed in the center of the width direction and height direction of one or more reflectors, and the height of the reflector is 1.3 to 1.7 wavelengths of the operating frequency. It is disclosed that a half-wave dipole antenna having a relatively small size and a large FB ratio can be obtained by setting the value within the range.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electric field probe capable of narrowing a reception range to a desired range when measuring a near electric field.
  • An electric field probe includes a rod-shaped monopole antenna, and a hollow, electrically conductive reflecting member arranged coaxially with the monopole antenna so as to cover the monopole antenna.
  • the member is characterized in that one end is opened in the axial direction of the monopole antenna.
  • the periphery of the monopole antenna is covered with the conductive reflecting member.
  • the reflecting member is disposed so that the opening is positioned in the axial direction of the monopole antenna, that is, in the null direction. Therefore, noise that enters from the lateral direction of the electric field probe (direction perpendicular to the axis of the monopole antenna, that is, the direction in which the monopole antenna has directivity) is blocked.
  • the noise from the noise source located in the axial direction of the monopole antenna (electric field probe) for example, the downward direction when the electric field probe's opening is directed downward from above the object to be measured
  • the monopole antenna is disposed so that one end of the monopole antenna substantially coincides with the opening end surface of the reflecting member.
  • the end of the monopole antenna protrudes outside the opening end of the reflecting member, it picks up noise from the lateral direction (the direction perpendicular to the axis of the monopole antenna, that is, the direction in which the monopole antenna has directivity). It becomes easy and the reception range is expanded. Conversely, if the end of the monopole antenna enters inside the opening end of the reflecting member (that is, if the length of the reflecting member in the axial direction is longer than that of the monopole antenna), the reflecting member picks up noise.
  • the ground (reference) fluctuates and reception sensitivity deteriorates. In this case, since the end portion (tip end) of the monopole antenna and the opening end surface of the reflecting member are substantially aligned, it is possible to narrow the reception range while maintaining high reception sensitivity.
  • the open end of the reflecting member is wider than the other end.
  • the reflecting member is preferably formed in a conical shape with an open bottom surface, a quadrangular pyramid shape with an open bottom surface, or a hemisphere with an open bottom surface.
  • the present invention it is possible to narrow the reception range to a desired range when measuring the near electric field.
  • FIG. 1 It is a fragmentary sectional view showing the composition of the electric field probe concerning an embodiment. It is a figure which shows the structure of the electric field probe which is not provided with the reflection member used as a comparative example. It is a figure which shows the electric field distribution (reception range) of the XZ direction (XZ plane) of the electric field probe which is not provided with the reflection member used as a comparative example. It is a figure which shows the electric field distribution (reception range) of the XZ direction (XZ plane) of the electric field probe which concerns on embodiment. It is a figure for demonstrating the electric field strength (reception range) shown by FIG.
  • FIG. 1 is a partial cross-sectional view showing the configuration of the electric field probe 1.
  • the electric field probe 1 is an electric field probe for measuring a near electric field such as an electronic circuit board.
  • the electric field probe 1 covers the monopole antenna 20 coaxially with the monopole antenna 20, a columnar main body 10, a rod-like monopole antenna 20 continuously connected to the tip of the main body 10. And a hollow conical reflecting member 30 arranged in this manner. Subsequently, each component will be described in detail.
  • the main body 10 is a semi-rigid cable having a coaxial structure, and an inner conductor (core wire) 11 made of a silver-plated copper tube is covered with a dielectric (PTFE) 12, and the dielectric 12 is an outer conductor 13 made of oxygen-free copper.
  • the structure is covered with.
  • the main body 10 has dimensions of 9.62 mm in diameter and 40 mm in length.
  • the monopole antenna 20 is obtained by removing the outer conductor 13 at the tip of the semi-rigid cable protruding from the main body 10 and exposing the inner conductor 11 from the tip of the main body 10 by a predetermined length (30 mm in this embodiment). is there. That is, in this embodiment, the inner conductor 11 of the semi-rigid cable is used as the monopole antenna 20. Therefore, the monopole antenna 20 is electrically connected to the inner conductor 11 of the main body 10. The periphery of the monopole antenna 20 is covered with a dielectric 21 integrated with the dielectric 12.
  • the monopole antenna 20 is disposed such that the position of the tip 20a coincides with the opening end surface 30a of the reflecting member 30 when viewed from the side.
  • a signal received by the monopole antenna 20 is output to a measuring instrument or the like via the inner conductor 11 of the main body 10 and an SMA connector 40 described later.
  • the reflecting member 30 is a member formed in a hollow cone shape having an open bottom by a conductive metal such as copper.
  • the reflecting member 30 is attached to the end portion on the front end side of the external conductor 13 constituting the main body portion 10 so as to cover the monopole antenna 20 coaxially with the monopole antenna 20, and the bottom surface portion is mono
  • the pole antenna 20 is opened in the axial direction.
  • the diameter of the opening end face 30a of the reflecting member 30 is set according to a desired reception range (measurement range). That is, when it is desired to narrow the reception range (measurement range), the diameter of the opening end face 30a may be reduced.
  • the diameter of the opening end surface 30a of the reflecting member 30 is set to 35 mm, and the length of the reflecting member 30 in the axial direction is set to 30 mm.
  • the reflecting member 30 is connected to a ground such as a measuring instrument via the outer conductor 13 of the main body 10 and the SMA connector 40.
  • An SMA connector 40 for connecting to a measuring instrument such as a spectrum analyzer is attached to the rear end side of the main body 10.
  • a coaxial cable is connected to the SMA connector 40 and is connected to a measuring instrument such as a spectrum analyzer.
  • FIG. 2 is a diagram showing a configuration of the electric field probe 100 that does not include the reflecting member 30 used as a comparative example
  • FIG. 3 shows an electric field distribution in the XZ direction (XZ plane) of the electric field probe 100. It is a figure which shows (reception range).
  • FIG. 4 is a diagram showing an electric field distribution (reception range) in the XZ direction (XZ plane) of the electric field probe 1 according to the present embodiment.
  • FIG. 6 is a diagram showing the electric field strength (reception range) in the X-axis direction at a position 20 mm below the tip of the electric field probe 1, 100.
  • FIG. 5 is a diagram for explaining the electric field strength (reception range) shown in FIG.
  • the axial direction (vertical direction in FIGS. 2 and 5) of the electric field probes 1 and 100 (monopole antenna 20) is the Z-axis direction, and is orthogonal to the axial line of the electric field probes 1 and 100 (monopole antenna 20).
  • the direction (left-right direction in FIGS. 2 and 5) was taken as the X-axis direction.
  • the electric field probe 100 used as a comparative example is obtained by removing the reflecting member 30 from the electric field probe 1 according to the embodiment. Since other configurations are the same as those of the electric field probe 1, detailed description thereof is omitted here.
  • each of the electric field probe 1 and the electric field probe 100 was modeled, and the electric field distribution of the electric field probes 1 and 100 was obtained using simulation software (Unsoft, HFSS). More specifically, the electric field distribution of the electric field probe 1, 100 was confirmed by calculating the transmission characteristics when a 1 W sine wave was fed to the electric field probe 1, 100 from the rear end of the modeled main body 10. . From the reciprocity theorem, the transmission characteristics of the electric field probes 1 and 100 are defined as the reception characteristics of the electric field probes 1 and 100.
  • FIG. 3 shows the electric field distribution (reception range) in the XZ direction (XZ plane) of the electric field probe 100 (comparative example)
  • FIG. 4 shows the X ⁇ of the electric field probe 1 according to the present embodiment.
  • An electric field distribution (reception range) in the Z direction (XZ plane) is shown.
  • the electric field probe 1 according to the present embodiment compared with the electric field probe 100 (comparative example) that does not include the reflecting member 30, the electric field probe 1 according to the present embodiment has the electric field distribution spreading in the X-axis direction. Less was found. Therefore, in the electric field probe 1, it was confirmed that the reception range of the near electric field was narrowed compared to the electric field probe 100.
  • the electric field strength (reception range) in the X-axis direction at a position 20 mm below the tip of the electric field probe 1,100 is shown in FIG.
  • the horizontal axis of the graph shown in FIG. 6 is the distance (mm) in the X-axis direction from directly below the electric field probes 1 and 100, and the vertical axis is the electric field strength (dB).
  • the simulation result of the electric field probe 1 according to the present embodiment is indicated by a solid line
  • the simulation result of the electric field probe 100 of the comparative example is indicated by a broken line.
  • the distance Lx in the X-axis direction between the position immediately below the probe with the highest field strength and the position where the field strength (received amount) is ⁇ 6 dB or less compared to the field strength directly below the probe (see FIG. 6). 5) was 100 mm or more in the electric field probe 100 (comparative example).
  • the distance Lx is 18 mm. Therefore, in the electric field probe 1, it was confirmed that the receiving range at a position 20 mm below the tip of the electric field probes 1 and 100 was narrowed. From the above results, it was confirmed that the reception range of the near electric field can be narrowed by using the electric field probe 1 according to the present embodiment.
  • the periphery of the monopole antenna 20 is covered with the conductive reflecting member 30.
  • the reflecting member 30 is disposed so that the opening is located in the axial direction of the monopole antenna 20, that is, in the null direction. Therefore, noise that enters from the lateral direction of the electric field probe 1 (the direction perpendicular to the axis of the monopole antenna 20, that is, the direction in which the monopole antenna 20 has directivity) is blocked.
  • noise located in the axial direction of the monopole antenna 20 (electric field probe 1) (for example, directly below when the opening (tip) of the electric field probe 1 is directed downward from above the object to be measured). Only noise from the source can be measured. Therefore, it is possible to narrow the reception range and measure the electric field in the vicinity.
  • the lateral direction (the direction perpendicular to the axis of the monopole antenna 20, that is, the direction in which the monopole antenna 20 has directivity). ) Is easily picked up, and the reception range is expanded.
  • the tip 20a of the monopole antenna 20 enters inside the opening end of the reflecting member 30 that is, when the axial length of the reflecting member 30 is longer than that of the monopole antenna 20
  • the reflecting member 30 Picks up noise and the ground (reference) fluctuates, degrading reception sensitivity.
  • the distal end 20a of the monopole antenna 20 and the opening end surface 30a of the reflecting member 30 are arranged so as to substantially coincide with each other, it is possible to narrow the reception range while keeping the reception sensitivity high. Become.
  • the reflecting member 30 is formed in a conical shape having an open bottom surface, that is, the opening end portion of the reflecting member 30 is wider than the other end portion, the receiving sensitivity. Can be further improved.
  • the reception sensitivity of the electric field probe 1 and the reception range (measurement range) of the electric field probe 1 are the dimensions of the electric field probe 1, more specifically, the length of the monopole antenna 20 constituting the electric field probe 1 shown in FIG. It varies depending on the length L1 and the angle ⁇ formed between the center line (axis) of the monopole antenna 20 and the reflecting member 30 (hereinafter simply referred to as “the angle ⁇ of the reflecting member 30”).
  • FIG. 7 is a diagram for explaining a preferred dimension of the electric field probe 1.
  • FIG. 8 is a graph showing the relationship between the angle ⁇ of the reflecting member 30 and the reception sensitivity when the length L1 of the monopole antenna 20 is changed
  • FIG. 9 is a reflecting member when the measurement frequency is changed. It is a graph which shows the relationship between 30 angles (theta) and receiving sensitivity.
  • FIG. 10 is a diagram showing the electric field strength (reception range) in the X-axis direction when the angle ⁇ of the reflecting member 30 is changed.
  • the length L1 of the monopole antenna 20 is set to “20 mm ⁇ L1 ⁇ 50 mm”, the angle ⁇ of the reflecting member 30 is set to “50 ° ⁇ ⁇ ⁇ 70 °”, and the opening end face 30a of the reflecting member 30 is set.
  • the position of the tip 20a of the monopole antenna 20 are preferably matched. In this way, the receiving sensitivity can be increased and the receiving range can be narrowed down.
  • the length L1 of the monopole antenna 20 is set to “30 mm ⁇ L1 ⁇ 40 mm”, the angle ⁇ of the reflecting member 30 is set to “about 60 °”, and the opening end face 30a of the reflecting member 30 is More preferably, the pole antenna 20 is formed so as to coincide with the position of the tip 20a. In this way, it is possible to increase the reception sensitivity and narrow the reception range.
  • the reason will be described with reference to FIGS.
  • the tip 20a of the monopole antenna 20 was set to coincide with the opening end surface 30a of the reflecting member 30.
  • the horizontal axis in FIG. 8 is the angle ⁇ (°) of the reflecting member 30, and the vertical axis is the reception sensitivity (dBV / m).
  • the reception sensitivity becomes high when the length L1 of the monopole antenna 20 is in the range of “20 mm ⁇ L1 ⁇ 50 mm”, and the reception sensitivity is particularly high when “30 mm ⁇ L1 ⁇ 40 mm”. It was confirmed that it would be higher.
  • the tip 20a of the monopole antenna 20 was set to coincide with the opening end surface 30a of the reflecting member 30.
  • the horizontal axis in FIG. 9 is the angle ⁇ (°) of the reflecting member 30, and the vertical axis is the reception sensitivity (dBV / m).
  • the results when the measurement frequency is 2 GHz are plotted with “ ⁇ ”.
  • the results when the measurement frequency was 2.5 GHz were plotted with “ ⁇ ”, and the results when the measurement frequency was 3 GHz were plotted with “ ⁇ ”.
  • the reception sensitivity becomes high in the range where the angle ⁇ of the reflecting member 30 is “50 ° ⁇ ⁇ ⁇ 70 °”, and the angle ⁇ of the reflecting member 30 is “ It was confirmed that the reception sensitivity was the highest when “60 °”.
  • the electric field strength in the X-axis direction at a position 20 mm below the tip of the electric field probe 1 (monopole antenna 20) when the angle ⁇ of the reflecting member 30 is changed, that is, the reception range. (See FIG. 7) will be described. Also here, the tip 20a of the monopole antenna 20 was set so as to coincide with the opening end surface 30a of the reflecting member 30.
  • the horizontal axis of the graph shown in FIG. 10 is the distance L2 (mm) in the X-axis direction from directly below the electric field probe 1, and the vertical axis is the electric field strength (dB).
  • FIG. 10 shows changes in the electric field strength with respect to the distance L2 in the X-axis direction when the angle ⁇ of the reflecting member 30 is changed from 10 ° to 90 ° at intervals of 10 °.
  • the angle ⁇ of the reflecting member 30 is 70 ° or more (refer to the alternate long and short dash line in FIG. 10)
  • the reception range is widened, and the angle ⁇ is 60 ° or less (see the thick solid line in FIG. 10).
  • the angle ⁇ of the reflecting member 30 is preferably “less than 70 °”, and more preferably “60 ° or less”.
  • the length L1 of the monopole antenna 20 is “20 mm ⁇ L1 ⁇ 50 mm”, and the angle ⁇ of the reflecting member 30 is “50 ° ⁇ ⁇ ⁇ 70 °”.
  • the opening end surface 30a of the reflecting member 30 and the position of the tip 20a of the monopole antenna 20 so as to coincide with each other, the reception sensitivity can be increased and the reception range can be narrowed down.
  • the length L1 of the monopole antenna 20 is set to “30 mm ⁇ L1 ⁇ 40 mm”, the angle ⁇ of the reflecting member 30 is set to “about 60 °”, and the opening end face 30a of the reflecting member 30 is set. And the position of the tip 20a of the monopole antenna 20 coincide with each other, the receiving sensitivity can be further increased and the receiving range can be narrowed down.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • the shape and size of the monopole antenna 20 and the reflecting member 30 are not limited to the above embodiment.
  • the reflecting member 30 is formed in a conical shape having an open bottom surface, but the shape of the reflecting member 30 is not limited to a conical shape.
  • the reflecting member 30 may be formed in, for example, a quadrangular pyramid shape with an open bottom surface or a hemispherical shape with an open bottom surface.
  • the inner conductor 11 of the semi-rigid cable was utilized as the monopole antenna 20, it is not always necessary to utilize the inner conductor 11 of the semi-rigid cable, for example, using a general rod-shaped metal or the like. Also good.
  • the electric field probe 1 includes the main body 10, but the main body 10 is not necessarily required.
  • the main body 10 may be removed and the SMA connector 40 may be attached to the rear end of the monopole antenna 20.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 近傍電界を測定する際に、受信範囲を所望する範囲に狭めることが可能な電界プローブを提供する。 電界プローブ(1)は、棒状のモノポールアンテナ(20)と、該モノポールアンテナ(20)と同軸上に、モノポールアンテナ(20)を覆うように配置された、導電性を有する反射部材(30)とを備えている。反射部材(30)は、中空円錐状に形成されており、底面が、モノポールアンテナ(20)の軸線方向に開口されている。モノポールアンテナ(20)は、先端(20a)の位置が、反射部材(30)の開口端面(30a)と略一致するように配設されている。

Description

電界プローブ
 本発明は、近傍電界測定用の電界プローブに関する。
 下記特許文献1には、半波長ダイポールアンテナの遠方界の指向性を高める技術が開示されている。より詳細には、半波長ダイポールアンテナを1枚或いは複数枚の反射板の幅方向および高さ方向の中央に設置し、反射板の高さを使用周波数の1.3波長~1.7波長の範囲内に設定することにより、比較的に小型でFB比の大きい半波長ダイポールアンテナが得られることが開示されている。
特開2002-141742号公報
 しかしながら、上述したアンテナを用いて被測定物の近傍電界を測定しようとすると、測定したい箇所の周囲に存在するノイズ源からのノイズも拾ってしまい、正確な測定を行うことが難しかった。すなわち、ノイズ源の位置とノイズ強度とを精度よく把握することが困難であった。
 本発明は、上記問題点を解消する為になされたものであり、近傍電界を測定する際に、受信範囲を所望する範囲に狭めることが可能な電界プローブを提供することを目的とする。
 本発明に係る電界プローブは、棒状のモノポールアンテナと、該モノポールアンテナと同軸上に、モノポールアンテナを覆うように配置された、中空で、導電性を有する反射部材とを備え、当該反射部材は、一方の端部が、モノポールアンテナの軸線方向に開口されていることを特徴とする。
 本発明に係る電界プローブによれば、モノポールアンテナの周囲が導電性の反射部材によって覆われている。この反射部材は、モノポールアンテナの軸線方向、すなわちヌル方向に開口部が位置するように配設されている。そのため、電界プローブの横方向(モノポールアンテナの軸線と垂直な方向、すなわちモノポールアンテナが指向性を有する方向)から入ってくるノイズが遮断される。その結果、モノポールアンテナ(電界プローブ)の軸線方向(例えば被測定物の上方から電界プローブの開口部を下に向けて使用する場合には真下方向)に位置するノイズ源からのノイズだけを測定することができる。よって、受信範囲を絞って、近傍の電界を測定することが可能となる。
 本発明に係る電界プローブでは、モノポールアンテナの一方の端部が反射部材の開口端面と略一致するようにモノポールアンテナが配設されていることが好ましい。
 モノポールアンテナの端部が反射部材の開口端よりも外側に出てしまうと、横方向(モノポールアンテナの軸線と垂直な方向、すなわちモノポールアンテナが指向性を有する方向)からのノイズを拾い易くなり、受信範囲が広がってしまう。逆に、モノポールアンテナの端部が反射部材の開口端よりも内側に入り込んでしまうと(すなわち反射部材の軸線方向の長さをモノポールアンテナよりも長くすると)、反射部材がノイズを拾ってグランド(リファレンス)が揺れ、受信感度が劣化する。この場合、モノポールアンテナの端部(先端)と反射部材の開口端面とが略一致するように配置されているため、受信感度を高く保ちつつ、受信範囲を絞ることが可能となる。
 本発明に係る電界プローブでは、反射部材の開口端が他端部よりも拡げられていることが好ましい。
 このようにすれば、受信感度をより向上させることができる。ここで、より具体的には、反射部材は、底面が開口された円錐状、底面が開口された四角錐状、又は、底面が開口された半球状に形成されていることが好ましい。
 本発明によれば、近傍電界を測定する際に、受信範囲を所望する範囲に狭めることが可能となる。
実施形態に係る電界プローブの構成を示す部分断面図である。 比較例として用いた反射部材を備えていない電界プローブの構成を示す図である。 比較例として用いた反射部材を備えていない電界プローブのX-Z方向(XZ平面)の電界分布(受信範囲)を示す図である。 実施形態に係る電界プローブのX-Z方向(XZ平面)の電界分布(受信範囲)を示す図である。 図6に示される電界強度(受信範囲)を説明するための図である。 電界プローブの先端から20mm下方の位置でのX軸方向の電界強度(受信範囲)を示す図である。 実施形態に係る電界プローブの好ましいディメンジョンを説明するための図である。 モノポールアンテナの長さL1を変化させたときの反射部材の角度θと受信感度との関係を示すグラフである。 測定周波数を変化させたときの反射部材の角度θと受信感度との関係を示すグラフである。 反射部材の角度θを変化させたときのX軸方向の電界強度(受信範囲)を示すグラフである。
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図において、同一要素には同一符号を付して重複する説明を省略する。
 まず、図1を用いて、実施形態に係る電界プローブ1の構成について説明する。図1は、電界プローブ1の構成を示す部分断面図である。
 電界プローブ1は、例えば電子回路基板などの近傍電界を測定するための電界プローブである。電界プローブ1は、円柱状の本体部10と、該本体部10の先端に連続的に接続された棒状のモノポールアンテナ20と、該モノポールアンテナ20と同軸上に、モノポールアンテナ20を覆うように配設された中空円錐状の反射部材30とを備えている。続いて、各構成要素について詳細に説明する。
 本体部10は、例えば、同軸構造のセミリジッドケーブルであり、銀メッキ銅チューブからなる内部導体(芯線)11を誘電体(PTFE)12で覆い、この誘電体12を無酸素銅からなる外部導体13で被覆した構造になっている。なお、本実施形態では、本体部10の寸法を、直径9.62mm、長さ40mmとした。
 モノポールアンテナ20は、本体部10から突出したセミリジッドケーブルの先端部の外部導体13を取り除き、内部導体11を本体部10の先端から所定長さ(本実施形態では30mm)だけ露出させたものである。すなわち、本実施形態では、セミリジッドケーブルの内部導体11をモノポールアンテナ20として利用した。したがって、モノポールアンテナ20は、本体部10の内部導体11と電気的に連結されている。モノポールアンテナ20の周囲は、誘電体12と一体の誘電体21によって被覆されている。
 図1に示されるように、モノポールアンテナ20は、側方視した場合に、先端20aの位置が、反射部材30の開口端面30aと一致するように配設されている。なお、モノポールアンテナ20で受信された信号は、本体部10の内部導体11及び後述するSMAコネクタ40を介して計測器などに出力される。
 反射部材30は、導電性を有する例えば銅などの金属によって、底面が開口された中空円錐状に形成された部材である。反射部材30は、モノポールアンテナ20と同軸上に、該モノポールアンテナ20を覆うように、本体部10を構成する外部導体13の先端側の端部に取り付けられており、底面部分が、モノポールアンテナ20の軸線方向に開口されている。
 反射部材30の開口端面30aの径は、所望する受信範囲(測定範囲)に応じて寸法が設定される。すなわち、受信範囲(測定範囲)を狭めたい場合には、開口端面30aの径を小さくすればよい。ここで、本実施形態では、反射部材30の開口端面30aの直径を35mmとし、反射部材30の軸線方向の長さを30mmとした。なお、反射部材30は、本体部10の外部導体13及びSMAコネクタ40を介して計測器などのグランドに接続される。
 本体部10の後端側には、スペクトラムアナライザなどの計測器に接続するためのSMAコネクタ40が取り付けられている。電界プローブ1は、使用される際に、SMAコネクタ40に同軸ケーブルが接続され、スペクトルアナライザなどの計測器と接続される。
 続いて、図2~図6を併せて参照しつつ、反射部材30の有無による電界プローブの受信範囲の違いについて、シミュレーション結果を示して説明する。ここで、図2は、比較例として用いた反射部材30を備えていない電界プローブ100の構成を示す図であり、図3は、該電界プローブ100のX-Z方向(XZ平面)の電界分布(受信範囲)を示す図である。また、図4は、本実施形態に係る電界プローブ1のX-Z方向(XZ平面)の電界分布(受信範囲)を示す図である。図6は、電界プローブ1,100の先端から20mm下方の位置でのX軸方向の電界強度(受信範囲)を示す図である。また、図5は、図6に示される電界強度(受信範囲)を説明するための図である。なお、ここで、電界プローブ1,100(モノポールアンテナ20)の軸線方向(図2,5の上下方向)をZ軸方向とし、電界プローブ1,100(モノポールアンテナ20)の軸線と直交する方向(図2,5の左右方向)をX軸方向とした。
 図2に示されるように、比較例として用いた電界プローブ100は、実施形態に係る電界プローブ1から反射部材30を取り除いたものである。その他の構成は電界プローブ1と同一であるので、ここでは詳細な説明は省略する。シミュレーションに際しては、電界プローブ1及び電界プローブ100それぞれをモデル化し、シミュレーションソフト(アンソフト、HFSS)を用いて電界プローブ1,100の電界分布を求めた。より具体的には、モデル化した本体部10の後端から、1Wの正弦波を電界プローブ1,100に給電したときの送信特性を計算することで電界プローブ1,100の電界分布を確認した。なお、相反の定理より、電界プローブ1,100の送信特性を該電界プローブ1,100の受信特性とした。
 その結果を、図3及び図4に示す。上述したように、図3は、電界プローブ100(比較例)のX-Z方向(XZ平面)の電界分布(受信範囲)を示し、図4は、本実施形態に係る電界プローブ1のX-Z方向(XZ平面)の電界分布(受信範囲)を示す。図3及び図4に示されるように、反射部材30を備えていない電界プローブ100(比較例)と比較して、本実施形態に係る電界プローブ1は、電界分布のX軸方向への広がりが少ないことが認められた。よって、電界プローブ1では、電界プローブ100に比べて、近傍電界の受信範囲が狭められていることが確認できた。
 次に、電界プローブ1,100の先端から20mm下方の位置でのX軸方向の電界強度(受信範囲)を図6に示す。図6に示されたグラフの横軸は、電界プローブ1,100の直下からのX軸方向の距離(mm)であり、縦軸は電界強度(dB)である。また、図6のグラフでは、本実施形態に係る電界プローブ1のシミュレーション結果を実線で、比較例の電界プローブ100のシミュレーション結果を破線で示した。
 図6に示されるように、最も電界強度が高いプローブ直下と、該プローブ直下の電界強度と比較して電界強度(受信量)が-6dB以下になる位置とのX軸方向の距離Lx(図5参照)は、電界プローブ100(比較例)では、100mm以上であった。一方、本実施形態に係る電界プローブ1では、距離Lxが18mmであった。よって、電界プローブ1では、電界プローブ1,100の先端から20mm下方の位置での受信範囲も狭まっていることが確認された。以上の結果から、本実施形態に係る電界プローブ1を用いることにより、近傍電界の受信範囲を絞ることができることが確認された。
 以上、詳細に説明したように、本実施形態によれば、モノポールアンテナ20の周囲が導電性の反射部材30によって覆われている。この反射部材30は、モノポールアンテナ20の軸線方向、すなわちヌル方向に開口部が位置するように配設されている。そのため、電界プローブ1の横方向(モノポールアンテナ20の軸線と垂直な方向、すなわちモノポールアンテナ20が指向性を有する方向)から入ってくるノイズが遮断される。その結果、モノポールアンテナ20(電界プローブ1)の軸線方向(例えば被測定物の上方から電界プローブ1の開口部(先端部)を下に向けて使用する場合には真下方向)に位置するノイズ源からのノイズだけを測定することができる。よって、受信範囲を絞って、近傍の電界を測定することが可能となる。
 ところで、モノポールアンテナ20の先端20aが反射部材30の開口端よりも外側に出てしまうと、横方向(モノポールアンテナ20の軸線と垂直な方向、すなわちモノポールアンテナ20が指向性を有する方向)からのノイズを拾い易くなり、受信範囲が広がってしまう。逆に、モノポールアンテナ20の先端20aが反射部材30の開口端よりも内側に入り込んでしまうと(すなわち反射部材30の軸線方向の長さをモノポールアンテナ20よりも長くすると)、反射部材30がノイズを拾ってグランド(リファレンス)が揺れ、受信感度が劣化する。本実施形態によれば、モノポールアンテナ20の先端20aと反射部材30の開口端面30aとが略一致するように配置されているため、受信感度を高く保ちつつ、受信範囲を絞ることが可能となる。
 また、本実施形態によれば、反射部材30が、底面が開口された円錐状に形成されているため、すなわち反射部材30の開口端部が他端部よりも拡げられているため、受信感度をより向上させることができる。
 ところで、電界プローブ1の受信感度及び近傍電界の受信範囲(測定範囲)は、電界プローブ1のディメンジョン、より具体的には、図7に示される、電界プローブ1を構成するモノポールアンテナ20の長さL1、及び、モノポールアンテナ20の中心線(軸線)と反射部材30との成す角度θ(以下、単に「反射部材30の角度θ」という)等によって変化する。
 そこで、次に、図7~10を併せて参照しつつ、モノポールアンテナ20の好ましい長さ、及び、反射部材30の好ましい角度について説明する。ここで、図7は、電界プローブ1の好ましいディメンジョンを説明するための図である。図8は、モノポールアンテナ20の長さL1を変化させたときの反射部材30の角度θと受信感度との関係を示すグラフであり、図9は、測定周波数を変化させたときの反射部材30の角度θと受信感度との関係を示すグラフである。また、図10は、反射部材30の角度θを変化させたときのX軸方向の電界強度(受信範囲)を示す図である。
 電界プローブ1では、モノポールアンテナ20の長さL1を「20mm≦L1≦50mm」とし、反射部材30の角度θを「50°≦θ<70°」とし、かつ、反射部材30の開口端面30aとモノポールアンテナ20の先端20aの位置とが一致するように形成することが好ましい。このようにすれば、受信感度を高くでき、かつ受信範囲を狭く絞ることができる。
 また、電界プローブ1では、モノポールアンテナ20の長さL1を「30mm≦L1≦40mm」とし、反射部材30の角度θを「約60°」とし、かつ、反射部材30の開口端面30aとモノポールアンテナ20の先端20aの位置とが一致するように形成することがより好ましい。このようにすれば、受信感度をより高くでき、かつ受信範囲をより狭く絞ることが可能となる。以下、図8,9,10を用いて、シミュレーション結果を示しつつ、その理由を説明する。
 まず、図8を用いて、モノポールアンテナ20の長さL1を変化させたときの、反射部材30の角度θと受信感度との関係について説明する。なお、モノポールアンテナ20の先端20aは、反射部材30の開口端面30aと一致するように設定した。図8の横軸は反射部材30の角度θ(°)であり、縦軸は受信感度(dBV/m)である。
 図8では、測定周波数を2.5GHzとし、モノポールアンテナ20の長さL1を、10mm、20mm、30mm、40mm、50mmと5段階に変化させたときの、反射部材30の角度θと受信感度とのシミュレーション結果を示す。なお、図8では、モノポールアンテナ20の長さL1を10mmとしたときの結果を「◇」でプロットした。また、L1を20mmとしたときの結果を「□」で、L1を30mmとしたときの結果を「△」でプロットした。さらに、L1を40mmとしたときの結果を「○」で、L1を50mmとしたときの結果を「*」でプロットした。
 その結果、図8に示されるように、モノポールアンテナ20の長さL1が「20mm≦L1≦50mm」の範囲で受信感度が高くなり、「30mm≦L1≦40mm」のときに受信感度が特に高くなることが確認された。
 次に、図9を用いて、測定周波数を変化させたときの、反射部材30の角度θと受信感度との関係について説明する。なお、モノポールアンテナ20の先端20aは、反射部材30の開口端面30aと一致するように設定した。図9の横軸は反射部材30の角度θ(°)であり、縦軸は受信感度(dBV/m)である。
 図9では、モノポールアンテナ20の長さを30mmに固定し、測定周波数を2GHz、2.5GHz、3GHzと3段階に変化させたときの、反射部材30の角度θと受信感度とのシミュレーション結果を示す。なお、図9では、測定周波数を2GHzとしたときの結果を「◇」でプロットした。また、測定周波数を2.5GHzとしたときの結果を「□」で、測定周波数を3GHzとしたときの結果を「△」でプロットした。
 その結果、図9に示されるように、いずれの周波数においても、反射部材30の角度θが「50°≦θ≦70°」の範囲で受信感度が高くなり、反射部材30の角度θが「60°」のときに受信感度が最も高くなることが確認された。
 続いて、図10を用いて、反射部材30の角度θを変化させたときの、電界プローブ1(モノポールアンテナ20)の先端から20mm下方の位置でのX軸方向の電界強度、すなわち受信範囲(図7参照)について説明する。ここでも、モノポールアンテナ20の先端20aは、反射部材30の開口端面30aと一致するように設定した。図10に示されたグラフの横軸は、電界プローブ1の直下からのX軸方向の距離L2(mm)であり、縦軸は電界強度(dB)である。
 図10では、反射部材30の角度θを10°から90°まで、10°間隔で変化させたときの、X軸方向の距離L2に対する電界強度の変化を示す。図10に示されるように、反射部材30の角度θが70°(図10中の一点鎖線参照)以上のときには受信範囲が広くなり、角度θが60°(図10中の太い実線参照)以下のときには、受信範囲を狭くなることが認められた。すなわち、受信範囲を狭く絞るという観点からは、反射部材30の角度θは、「70°未満」であることが好ましく、特に、「60°以下」であることがより好ましいことが確認された。
 以上、詳細に説明したように、本実施形態によれば、モノポールアンテナ20の長さL1を「20mm≦L1≦50mm」とし、反射部材30の角度θを「50°≦θ<70°」とし、かつ、反射部材30の開口端面30aとモノポールアンテナ20の先端20aの位置とが一致するように形成することにより、受信感度を高くでき、かつ受信範囲を狭く絞ることができる。
 また、本実施形態によれば、モノポールアンテナ20の長さL1を「30mm≦L1≦40mm」とし、反射部材30の角度θを「約60°」とし、かつ、反射部材30の開口端面30aとモノポールアンテナ20の先端20aの位置とが一致するように形成することにより、受信感度をより高くでき、かつ受信範囲をより狭く絞ることが可能となる。
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、モノポールアンテナ20や反射部材30の形状や大きさなどは、上記実施形態には限られない。
 特に、上記実施形態では、反射部材30が、底面が開口された円錐状に形成されていたが、反射部材30の形状は円錐状には限られない。反射部材30は、例えば、底面が開口された四角錐状、又は、底面が開口された半球状に形成されていてもよい。
 また、上記実施形態では、セミリジッドケーブルの内部導体11をモノポールアンテナ20として利用したが、必ずしもセミリジッドケーブルの内部導体11を利用する必要はなく、例えば、一般的な棒状の金属などを使用してもよい。
 また、上記実施形態では、電界プローブ1が本体部10を備えていたが、本体部10は必ずしも必要ではない。例えば、本体部10を取り去り、モノポールアンテナ20の後端にSMAコネクタ40を取り付ける構成としてもよい。
 1 電界プローブ
 10 本体部
 20 モノポールアンテナ
 20a 先端
 30 反射部材
 30a 開口端面
 40 SMAコネクタ
 

Claims (6)

  1.  棒状のモノポールアンテナと、
     前記モノポールアンテナと同軸上に、該モノポールアンテナを覆うように配置された、中空で、導電性を有する反射部材と、
     を備え、
     前記反射部材は、一方の端部が、前記モノポールアンテナの軸線方向に開口されていることを特徴とする電界プローブ。
  2.  前記モノポールアンテナは、一方の端部が、前記反射部材の開口端面と略一致するように配設されていることを特徴とする請求項1に記載の電界プローブ。
  3.  前記反射部材は、開口端が他端部よりも拡げられていることを特徴とする請求項2に記載の電界プローブ。
  4.  前記反射部材は、底面が開口された円錐状に形成されていることを特徴とする請求項3に記載の電界プローブ。
  5.  前記反射部材は、底面が開口された四角錐状に形成されていることを特徴とする請求項3に記載の電界プローブ。
  6.  前記反射部材は、底面が開口された半球状に形成されていることを特徴とする請求項3に記載の電界プローブ。
     
PCT/JP2012/000231 2011-01-24 2012-01-17 電界プローブ WO2012101979A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012554660A JP5786869B2 (ja) 2011-01-24 2012-01-17 電界プローブ
US13/948,952 US9234928B2 (en) 2011-01-24 2013-07-23 Electric field probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-012139 2011-01-24
JP2011012139 2011-01-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/948,952 Continuation US9234928B2 (en) 2011-01-24 2013-07-23 Electric field probe

Publications (1)

Publication Number Publication Date
WO2012101979A1 true WO2012101979A1 (ja) 2012-08-02

Family

ID=46580559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000231 WO2012101979A1 (ja) 2011-01-24 2012-01-17 電界プローブ

Country Status (3)

Country Link
US (1) US9234928B2 (ja)
JP (1) JP5786869B2 (ja)
WO (1) WO2012101979A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084600A1 (ja) * 2019-10-29 2021-05-06 日本電信電話株式会社 高周波ノイズ検出アンテナ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10320082B2 (en) * 2016-07-29 2019-06-11 At&T Mobility Ii Llc High directivity slot antenna
CN106785362A (zh) * 2016-12-02 2017-05-31 上海无线电设备研究所 一种用于阵列天线监测的天线及其应用
DE102021117664A1 (de) * 2021-07-08 2023-01-12 Ingun Prüfmittelbau Gmbh Prüfvorrichtung für Hochfrequenzanwendungen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255347A (ja) * 2000-03-13 2001-09-21 Hitachi Ltd 近傍電磁界測定用プローブ
JP2004037109A (ja) * 2002-06-28 2004-02-05 Minoru Tsutsui 同軸ダイポールセンサーおよび地中電界検出システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406194A (en) * 1992-09-21 1995-04-11 At&T Corp. Alx Ga1-x as probe for use in electro-optic sampling
JP3453045B2 (ja) * 1997-08-07 2003-10-06 株式会社村田製作所 アンテナ装置
US6287302B1 (en) * 1999-06-14 2001-09-11 Fidus Medical Technology Corporation End-firing microwave ablation instrument with horn reflection device
US6806841B2 (en) * 2001-03-09 2004-10-19 Jack Nilsson Tri-element antenna with dish
JP2002141742A (ja) 2000-11-01 2002-05-17 Ntt Docomo Inc 半波長ダイポールアンテナ
FR2819640B1 (fr) * 2001-01-12 2005-09-30 France Telecom Sonde electromagnetique
EP1542314A1 (en) * 2003-12-11 2005-06-15 Sony International (Europe) GmbH Three-dimensional omni-directional monopole antenna designs for ultra- wideband applications
JP4127838B2 (ja) * 2005-03-31 2008-07-30 株式会社東芝 電磁界プローブ
EP1939981B1 (en) * 2006-12-26 2016-08-03 Samsung Electronics Co., Ltd. Antenna apparatus
JP2010148035A (ja) * 2008-12-22 2010-07-01 Nissei Electric Co Ltd アンテナ
US8343145B2 (en) * 2009-09-28 2013-01-01 Vivant Medical, Inc. Microwave surface ablation using conical probe
US8847617B2 (en) * 2011-04-22 2014-09-30 Apple Inc. Non-contact test system for determining whether electronic device structures contain manufacturing faults

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255347A (ja) * 2000-03-13 2001-09-21 Hitachi Ltd 近傍電磁界測定用プローブ
JP2004037109A (ja) * 2002-06-28 2004-02-05 Minoru Tsutsui 同軸ダイポールセンサーおよび地中電界検出システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084600A1 (ja) * 2019-10-29 2021-05-06 日本電信電話株式会社 高周波ノイズ検出アンテナ

Also Published As

Publication number Publication date
JP5786869B2 (ja) 2015-09-30
US9234928B2 (en) 2016-01-12
US20130307522A1 (en) 2013-11-21
JPWO2012101979A1 (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6380549B2 (ja) プローブ
KR101281329B1 (ko) 탁월한 설계 유연성을 갖는 초광대역 안테나
JP5786869B2 (ja) 電界プローブ
US10386456B1 (en) Wideband radio-frequency antenna
US10725146B2 (en) Wideband radio-frequency antenna
TWI450446B (zh) 一種天線結構
KR101789274B1 (ko) 근장 스캔 보정 방법 및 장치
JP6887483B2 (ja) 電子機器
JP5631374B2 (ja) アンテナ
US20200106538A1 (en) Angular impulse delay in radio-frequency antennas
JP2009206816A (ja) 無指向性アンテナ
WO2020103031A1 (en) Probe, array probe, detector, and method
US9535136B2 (en) Magnetic field probe
JP2010175378A (ja) アンテナ測定用プローブ及びこれを用いた測定方法
KR100887373B1 (ko) 패치 안테나 장치
KR102558018B1 (ko) 후면 연결부를 구비하는 캐비티-백 커플러
US10777942B2 (en) Signal transmission cable
JP2020027092A (ja) プローブ保持装置およびそれを用いたアンテナパターン測定装置
JP4532587B2 (ja) 広帯域アンテナ
JP2011017535A (ja) 遠方電磁界ノイズ測定方法および装置
JP2011169731A (ja) ノイズ測定用ケーブル及びノイズ測定装置
JP2002062323A (ja) Emiプローブ
JP6004488B2 (ja) 無線通信機、無線通信機の検査方法及び無線通信機の製造方法
JP5661491B2 (ja) アンテナ
WO2021091409A1 (en) An antenna device and a detecting device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739556

Country of ref document: EP

Kind code of ref document: A1