WO2012101744A1 - 配管長測定システム及び配管長算出装置 - Google Patents

配管長測定システム及び配管長算出装置 Download PDF

Info

Publication number
WO2012101744A1
WO2012101744A1 PCT/JP2011/051241 JP2011051241W WO2012101744A1 WO 2012101744 A1 WO2012101744 A1 WO 2012101744A1 JP 2011051241 W JP2011051241 W JP 2011051241W WO 2012101744 A1 WO2012101744 A1 WO 2012101744A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
refrigerant pipe
frequency characteristic
frequency
length
Prior art date
Application number
PCT/JP2011/051241
Other languages
English (en)
French (fr)
Inventor
卓也 向井
利康 樋熊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11857297.3A priority Critical patent/EP2669620B1/en
Priority to US13/980,948 priority patent/US9644937B2/en
Priority to PCT/JP2011/051241 priority patent/WO2012101744A1/ja
Priority to CN201180065828.XA priority patent/CN103328920B/zh
Publication of WO2012101744A1 publication Critical patent/WO2012101744A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/04Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B7/042Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length

Definitions

  • the present invention relates to a technique for measuring the length of a pipe, and more particularly to a technique for measuring the length of a refrigerant pipe in an air conditioner.
  • the existing refrigerant pipe between the outdoor unit and the indoor unit is used as it is to replace only the refrigerant in order to reduce costs. Cases are common. In this case, if the amount of the refrigerant to be replaced is larger or smaller than the appropriate amount, there is a possibility that the cooling state where the necessary cooling capacity cannot be secured cannot be ensured. Therefore, when replacing the refrigerant, it is necessary to fill an appropriate amount of refrigerant according to the length of the refrigerant pipe (refrigerant pipe length).
  • refrigerant piping may be laid out differently from the design document due to construction problems, etc., and there is no guarantee that the actual refrigerant piping length will always match the value stated in the design document. .
  • Patent Document 1 a transmission unit that applies vibration to the refrigerant pipe and a plurality of reception units that detect the vibration are attached to predetermined positions of the refrigerant pipe.
  • a technique has been proposed in which the length of each section is measured from the propagation time detected in the above, and the refrigerant pipe length is calculated based on a predetermined algorithm.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a pipe length measuring system and a pipe length calculating device that facilitate preparation for accurately measuring the refrigerant pipe length.
  • a pipe length measurement system is: A frequency characteristic measuring means arranged near one end of the refrigerant pipe connecting the outdoor unit and the indoor unit in the air conditioner, and measuring the frequency characteristic of the refrigerant pipe; It is attached between the measurement location on the refrigerant pipe by the frequency characteristic measurement means and the outdoor unit or indoor unit closest to the measurement location, and the inspection signal at the time of the measurement is sent to the outdoor unit or indoor unit.
  • a filter to prevent inflow Pipe length calculation means for extracting a minimum anti-resonance frequency from the frequency characteristic measured by the frequency characteristic measurement means and calculating a length of the refrigerant pipe based on the extracted minimum anti-resonance frequency.
  • the pipe length calculation device is: Extracting a plurality of anti-resonance frequencies under a predetermined condition from the frequency characteristics of the refrigerant pipe connecting the outdoor unit and one or more indoor units in the air conditioner, and based on the extracted plurality of anti-resonance frequencies, It is determined whether or not a branch exists in the refrigerant pipe. If it is determined that no branch exists, the length of the refrigerant pipe is determined based on the minimum anti-resonant frequency among the extracted anti-resonant frequencies. When it is determined that there is a branch, all anti-resonance frequencies other than the minimum anti-resonance frequency and not corresponding to the harmonic component are extracted from the extracted anti-resonance frequencies. Based on all the extracted anti-resonance frequencies, the length of the refrigerant pipe is calculated.
  • Embodiment 1 It is a figure showing the whole pipe length measuring system composition concerning Embodiment 1 of the present invention. It is a block diagram which shows the structure of the piping length calculation apparatus of FIG. It is the figure which showed the structure of FIG. 1 with the electrical equivalent circuit. It is a figure which shows the signal waveform on the refrigerant
  • Embodiment 2 It is a table
  • Embodiment 2 it is a figure for demonstrating the calculation method of refrigerant
  • Embodiment 2 it is a figure for demonstrating the determination method of whether the measured anti-resonance frequency corresponds to a harmonic component.
  • 6 is a flowchart illustrating a procedure of pipe length calculation processing according to the second embodiment.
  • FIG. 1 is a schematic diagram showing the overall configuration of a pipe length measurement system 1 according to Embodiment 1 of the present invention.
  • the pipe length measurement system 1 includes a frequency characteristic measurement device 10, a pipe length calculation device 20, and filters 30a and 30b.
  • the frequency characteristic measuring apparatus 10 and the pipe length calculating apparatus 20 are connected via an interface cable 40 such as a serial cable.
  • the air conditioner shown in FIG. 1 is composed of one outdoor unit 50 and one indoor unit 60. This air conditioner performs an air conditioning operation by circulating a refrigerant in a refrigerant pipe 70 between the outdoor unit 50 and the indoor unit 60, as in a general air conditioner.
  • the refrigerant pipe 70 includes a metal gas pipe 71 and a liquid pipe 72, respectively.
  • the frequency characteristic measuring apparatus 10 is an apparatus for measuring the frequency characteristic of the refrigerant pipe 70 and has a function as a network analyzer.
  • the frequency characteristic measuring apparatus 10 is installed in the vicinity of the outdoor unit 50, one terminal 11 a is connected to the vicinity of the terminal on the outdoor unit 50 side of the gas pipe 71, and the other terminal 11 b is the outdoor unit 50 of the liquid pipe 72. Connected near the end of the side.
  • the frequency characteristic measuring apparatus 10 outputs an inspection signal having a predetermined frequency toward the refrigerant pipe 70 and simultaneously measures the signal level on the refrigerant pipe 70. Then, a gain value that is a ratio between the signal level of the inspection signal and the measured signal level is obtained, and the obtained gain value is stored in a built-in buffer (not shown). The frequency characteristic measuring apparatus 10 performs the same processing by continuously changing the frequency of the inspection signal within a predetermined range. Then, the gain value for each frequency is transmitted as frequency characteristic data of the refrigerant pipe 70 to the pipe length calculating device 20 via the interface cable 40. For example, the frequency characteristic measuring apparatus 10 may measure S parameter S11 and use the parameter value to obtain frequency characteristic data.
  • the filters 30a and 30b are made of, for example, a ferrite core, and are attached to predetermined positions of the gas pipe 71 and the liquid pipe 72 in a predetermined manner, respectively. Specifically, the filter 30 a is attached so as to wrap the gas pipe 71 at a position closer to the outdoor unit 50 than the connection location of the terminal 11 a of the frequency characteristic measuring apparatus 10. Similarly, the filter 30b is attached so as to wrap the liquid pipe 72 at a position closer to the outdoor unit 50 than the connection location of the terminal 11b of the frequency characteristic measuring apparatus 10.
  • the refrigerant pipe 70 can have a sufficiently large impedance with respect to the frequency of the inspection signal.
  • the inspection signal can be prevented from flowing into the outdoor unit 50, and the inspection signal can be propagated on the refrigerant pipe 70 between the outdoor unit 50 and the indoor unit 60.
  • the pipe length calculation device 20 includes an interface unit 200, an auxiliary storage unit 201, a display unit 202, an input unit 203, and a control unit 204.
  • the interface unit 200 is configured by a communication interface device such as the RS485 standard or the RS-232C standard, and performs serial communication with the frequency characteristic measuring device 10 via the interface cable 40 in accordance with a command from the control unit 204.
  • the auxiliary storage unit 201 includes a readable / writable nonvolatile semiconductor memory such as a flash memory, a hard disk drive, and the like.
  • the auxiliary storage unit 201 is a device driver for controlling each component, a program for executing a pipe length calculation process (pipe length calculation program) to be described later, frequency characteristic data sent from the frequency characteristic measuring device 10, and the like.
  • the display unit 202 is configured by a display device such as a CRT or a liquid crystal display, and displays data such as characters and images supplied from the control unit 204.
  • the input unit 203 includes input devices such as various switches, dials, a keyboard, a keypad, a touch pad, and a mouse.
  • the input unit 203 receives an operation input from a user and sends the received signal to the control unit 204.
  • the display unit 202 and the input unit 203 may be embodied by a touch panel.
  • the control unit 204 includes a CPU (Central Processing Unit), a main storage device (none of which is shown), and the like, and controls the interface unit 200, the auxiliary storage unit 201, the display unit 202, and the input unit 203. Exchange data with them. Further, a pipe length calculation process to be described later is executed according to a pipe length calculation program stored in the auxiliary storage unit 201.
  • CPU Central Processing Unit
  • main storage device one of which is shown
  • the configuration shown in FIG. 1 can be represented by an electrical equivalent circuit as shown in FIG.
  • the frequency characteristic measuring device 10 is regarded as an AC signal source
  • the gas pipe 71 and the liquid pipe 72 are regarded as two lines and a pair of length L [m]. Further, the gas pipe 71 and the liquid pipe 72 are electrically short-circuited through the metal casing of the indoor unit 60.
  • the inspection signal is output from the frequency characteristic measuring apparatus 10, propagates through the refrigerant pipe 70, and reaches the end on the indoor unit 60 side.
  • the frequency characteristic measuring apparatus 10 measures the ratio (gain value) of the combined signal obtained by superimposing the inspection signal and the reflected signal.
  • the frequency characteristic measuring device At the ten measurement positions, the signal levels of the inspection signal and the reflected signal are always positive and negative, and the signal level of the combined signal is always zero. Therefore, the gain value is also zero.
  • FIG. 4 shows temporal changes of the inspection signal, the reflection signal, and the combined signal at the measurement position of the frequency characteristic measuring device 10 on the refrigerant pipe 70.
  • the gain value does not become zero.
  • the gain value is still significantly reduced as compared with frequencies where the wavelength ⁇ [m] of the inspection signal is other than the above.
  • the frequency of the inspection signal at which the anti-resonance occurs is referred to as an anti-resonance frequency.
  • FIG. 5 is a diagram illustrating an example of the frequency characteristic of the refrigerant pipe 70 measured by the frequency characteristic measuring apparatus 10.
  • the length L of the refrigerant pipe 70 is 50 [m].
  • anti-resonance occurs at a frequency of about 3 MHz, and the gain value is extremely small.
  • anti-resonance occurs in harmonic components such as 6 MHz, 9 MHz,.
  • the length L of the refrigerant pipe 70 can be derived using the minimum antiresonance frequency (minimum antiresonance frequency) f0 (in this example, 3 MHz).
  • FIG. 6 is a flowchart showing the procedure of the pipe length calculation process executed by the control unit 204 of the pipe length calculation apparatus 20 according to the pipe length calculation program. This pipe length calculation process is started by a predetermined operation via the input unit 203 by the user.
  • control unit 204 reads out and acquires the frequency characteristic data measured by the frequency characteristic measuring apparatus 10 from the auxiliary storage unit 201 (step S101).
  • the control unit 204 extracts the minimum antiresonance frequency from the acquired frequency characteristic data (step S102).
  • control part 204 calculates the length (refrigerant piping length) of the refrigerant
  • the control unit 204 displays the calculated refrigerant pipe length via the display unit 202 (step S104).
  • the pipe length measurement system 1 it is not necessary to install measuring devices for measuring the frequency characteristics of the refrigerant pipes near both ends of the refrigerant pipe, and install them near one end. Just do it. For this reason, the installation preparation of the measuring device (frequency characteristic measuring device 10) is easy, the labor of the work is greatly reduced, and the measuring time can be shortened.
  • the refrigerant pipe length can be measured even in buildings where permission to enter indoors cannot be obtained due to security problems. It becomes possible.
  • the length of the refrigerant pipe without branching can be obtained by the pipe length calculation process by the pipe length measurement system 1 according to the first embodiment.
  • the refrigerant pipe 80 is branched and connected to a plurality of indoor units (60a, 60b)
  • the pipe length calculation process by the pipe length measurement system 1 of the first embodiment has been changed so that the length can be measured even for refrigerant pipes with branches.
  • the pipe length calculation process by the pipe length measurement system of this embodiment will be described in detail.
  • the pipe length measurement system of the present embodiment has the same configuration and function as the pipe length measurement system 1 of the first embodiment. Therefore, in the following description, the hardware configuration of the frequency characteristic measurement device and the pipe length calculation device and the function of each component will be omitted by using the same reference numerals as those in the first embodiment.
  • the outdoor unit 50 and the indoor units 60a and 60b are connected to a refrigerant pipe 80 having a total length of 270 m.
  • the gas pipe and the liquid pipe are collectively shown as one refrigerant pipe 80.
  • the frequency characteristic measuring apparatus 10 is installed in the vicinity of the outdoor unit 50, and the terminal 11 is connected to the vicinity of the end of the refrigerant pipe 80 on the outdoor unit 50 side.
  • a filter composed of a ferrite core or the like wraps the refrigerant pipe 80 at a position closer to the outdoor unit 50 side than the connection portion of the terminal 11 of the frequency characteristic measuring apparatus 10. It is attached.
  • FIG. 8 is a diagram showing the frequency characteristics of the refrigerant pipe 80 shown in FIG. 7 obtained by simulation using an electromagnetic field simulator. According to this frequency characteristic, it can be confirmed that an anti-resonance frequency other than the harmonic component is included, unlike the case where there is no branch.
  • the pipe length calculation device 20 of the present embodiment is Resonance frequency is regarded as a harmonic component.
  • the harmonic determination bandwidth is assumed to be ⁇ 1% of the measured anti-resonance frequency.
  • 0.96 [MHz], 2.17 [MHz], and 3.52 [MHz] are assumed as those not corresponding to the harmonic component among the anti-resonance frequencies measured in this example. These three are picked up.
  • FIG. 12 is a flowchart showing the procedure of the pipe length calculation process executed by the pipe length calculation device 20 of the present embodiment. This pipe length calculation process is started by a predetermined operation via the input unit 203 by the user.
  • control unit 204 reads out and acquires the frequency characteristic data measured by the frequency characteristic measuring apparatus 10 from the auxiliary storage unit 201 (step S201). And the control part 204 extracts the minimum antiresonance frequency from the acquired frequency characteristic data, and stores it in a buffer (not shown) (step S202).
  • control unit 204 extracts all antiresonance frequencies existing between the minimum antiresonance frequency and the predetermined frequency from the acquired frequency characteristic data, and stores them in the buffer (step S203).
  • anti-resonance frequencies existing up to 10 times the minimum anti-resonance frequency are extracted.
  • the control unit 204 determines whether or not the refrigerant pipe has a branch (step S204). At this time, if all the anti-resonance frequencies extracted in step S203 substantially correspond to a frequency that is an integral multiple of the minimum anti-resonance frequency, that is, all anti-resonance frequencies except the minimum anti-resonance frequency are equal to the minimum anti-resonance frequency. When it corresponds to a harmonic component, the control part 204 determines with the said refrigerant
  • the length of the refrigerant pipe (for example, the refrigerant pipe 70 in FIG. 1) is calculated and obtained (step S205).
  • step S204 when there is a branch (step S204; YES), the control unit 204 does not correspond to the harmonic component that is not the minimum antiresonance frequency among the antiresonance frequencies extracted in step S203 by the above-described method. All anti-resonance frequencies are extracted (step S206). And the control part 204 calculates the length of the said refrigerant
  • coolant piping for example, refrigerant
  • control part 204 displays the calculated refrigerant
  • the pipe length measurement system of the present embodiment can achieve the same effects as the pipe length measurement system 1 of the first embodiment. That is, it is not necessary to install a measuring device for measuring the frequency characteristic of the refrigerant pipe near each end of the refrigerant pipe, and it is only necessary to install it near one end, so that the measuring apparatus (frequency characteristic measuring apparatus 10). Is easy to prepare for installation, greatly reducing the labor of the work and shortening the measurement time.
  • the refrigerant pipe length can be measured even in buildings where permission to enter indoors cannot be obtained due to security problems. It becomes possible.
  • the pipe length measurement system of the present embodiment also has a unique effect that the length of a refrigerant pipe with a branch can be measured.
  • a command for requesting measurement start is transmitted from the pipe length calculation apparatus 20 to the frequency characteristic measurement apparatus 10 by a user operation or the like, and the frequency characteristic measurement apparatus 10 Measurement of frequency characteristics may be started with reception as a trigger.
  • the gain value for each frequency is used as the frequency characteristic data of the refrigerant pipe.
  • the peak value of the voltage on the refrigerant pipe and the effective value of the voltage on the refrigerant pipe for each frequency are the frequency characteristic data. It is good.
  • the communication interface between the frequency characteristic measuring apparatus 10 and the pipe length calculating apparatus 20 is not limited.
  • the frequency characteristic data may be transferred via a USB interface, an Ethernet (registered trademark) interface, or the like. .
  • the frequency characteristic data may be transferred via a recording medium such as a flexible disk, a memory card such as a USB memory or an SD card.
  • the frequency characteristic measurement and the refrigerant pipe length calculation may be performed by one apparatus having both functions of the frequency characteristic measurement apparatus 10 and the pipe length calculation apparatus 20.
  • the installation preparation of a measuring apparatus becomes easy, and there exists an effect that the effort of a work is reduced significantly and the shortening of measurement time can be aimed at.
  • the program it is possible to cause an existing personal computer (PC) or the like to function as the pipe length calculation device 20 of each of the above embodiments. That is, the pipe length calculation program executed by the control unit 204 is installed in an existing PC or the like, and the CPU or the like of the PC or the like executes the pipe length calculation program so that the PC or the like is connected to the pipe length calculation device. 20 can be made to function.
  • PC personal computer
  • the distribution method of such a pipe length calculation program is arbitrary, and can be read by a computer such as a CD-ROM (Compact Disk Read-Only Memory), DVD (Digital Versatile Disk), MO (Magneto Optical Disk), memory card, etc. It may be distributed by being stored in a recording medium, or distributed via a communication network such as the Internet.
  • a computer such as a CD-ROM (Compact Disk Read-Only Memory), DVD (Digital Versatile Disk), MO (Magneto Optical Disk), memory card, etc. It may be distributed by being stored in a recording medium, or distributed via a communication network such as the Internet.
  • the present invention can be suitably applied to the measurement of the refrigerant pipe length of an air conditioner.
  • Pipe length measurement system 10 Frequency characteristic measuring apparatus 11a, 11b Terminal 20 Pipe length calculation apparatus 30a, 30b Filter 40 Interface cable 50 Outdoor unit 60, 60a, 60b Indoor unit 70, 80 Refrigerant pipe 71 Gas pipe 72 Liquid pipe 200 Interface part 201 Auxiliary storage unit 202 Display unit 203 Input unit 204 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

 周波数特性測定装置(10)は、空調機における室外機(50)と室内機(60)とを接続する冷媒配管(70)の室外機(50)側の末端近傍に配置され、冷媒配管(70)の周波数特性を測定する。フィルタ(30)は、周波数特性測定装置(10)の端子(11)の接続箇所よりも室外機(50)側の位置に、冷媒配管(70)を包むようにして取り付けられている。配管長算出装置(20)は、周波数特性測定装置(10)とインタフェースケーブル(40)を介して接続し、周波数特性測定装置(10)が測定した周波数特性をインタフェースケーブル(40)を介して取得する。配管長算出装置(20)は、取得した周波数特性から最小の反共振周波数を抽出し、該抽出した最小の反共振周波数に基づいて冷媒配管(70)の長さを算出する。

Description

配管長測定システム及び配管長算出装置
 本発明は、配管の長さを測定する技術に関し、特に、空調機における冷媒配管の長さを測定する技術に関する。
 例えば、ビル等に設置された空調機を別の機種に交換する場合、コスト削減等のため、室外機と室内機間の冷媒配管については、既設のものをそのまま流用し、冷媒のみを交換するケースが一般的である。この場合、交換する冷媒量が適正量より多かったり、あるいは少なかったりすると、必要な冷却能力が確保できなくなる不冷状態に陥ってしまうおそれがある。したがって、冷媒を交換する際には、冷媒配管の長さ(冷媒配管長)に応じた適切な量の冷媒を充填する必要がある。
 しかしながら、工事上の問題等により冷媒配管が設計書とは異なった配置で敷設されることがあり、実際の冷媒配管長が、必ずしも設計書に記された値と一致しているという保証はない。
 これに対し、例えば、特許文献1には、冷媒配管に振動を与える送信部と、その振動を検知する複数の受信部を冷媒配管の所定位置に取り付け、送信部が与えた振動が各受信部に検知される伝搬時間から各区間の長さを測定し、所定のアルゴリズムに基づいて冷媒配管長を算出する技術が提案されている。
特開2007-85892号公報
 しかしながら、上記の技術において、精度良く冷媒配管長を測定するためには、送信部や受信部といった測定装置を冷媒配管の各末端に配置する必要がある。このため、分岐の多い冷媒配管等では、容易に測定装置を取り付けることができず、測定の開始までに多くの時間を要する。また、何らかの理由により、設計図通りに冷媒配管が配置されていない場合では、どの室内機が当該冷媒配管の末端にあたるのかを判断することが困難であり、測定装置の設置にさらに手間がかかることが予想される。
 また、セキュリティ上の問題により、屋内への立ち入り許可が得られないビル等では、室内機の傍に測定装置を取り付けることができない事態も発生し得る。
 本発明は、このような実情に鑑みてなされたものであり、冷媒配管長を正確に測定するための準備が容易となる配管長測定システム及び配管長算出装置を提供することを目的とする。
 上記目的を達成するため、本発明に係る配管長測定システムは、
 空調機における室外機と室内機とを接続する冷媒配管の一の末端近傍に配置され、当該冷媒配管の周波数特性を測定する周波数特性測定手段と、
 該周波数特性測定手段による前記冷媒配管上の測定箇所と、該測定箇所に最も近い前記室外機又は室内機との間に取り付けられ、前記測定の際の検査信号の当該室外機又は室内機への流入を防止するフィルタと、
 前記周波数特性測定手段が測定した前記周波数特性から最小の反共振周波数を抽出し、該抽出した最小の反共振周波数に基づいて当該冷媒配管の長さを算出する配管長算出手段と、を備える。
 また、本発明の他の観点に係る配管長算出装置は、
 空調機における室外機と1又は複数の室内機とを接続する冷媒配管の周波数特性から、所定条件の下、複数の反共振周波数を抽出し、該抽出した複数の反共振周波数に基づいて、当該冷媒配管に分岐が存在するか否かを判定し、分岐が存在しないと判定した場合には、前記抽出した複数の反共振周波数の内の最小の反共振周波数に基づいて当該冷媒配管の長さを算出し、分岐が存在すると判定した場合には、前記抽出した複数の反共振周波数の内から、前記最小の反共振周波数以外で且つ高調波成分に該当しない全ての反共振周波数を抽出し、該抽出した全ての反共振周波数に基づいて、当該冷媒配管の長さを算出する。
 本発明によれば、冷媒配管長を正確に測定するための準備が容易となり、作業の手間が大幅に低減され、測定時間の短縮が図れる。
本発明の実施形態1に係る配管長測定システムの全体構成を示す図である。 図1の配管長算出装置の構成を示すブロック図である。 図1の構成を電気的な等価回路で示した図である。 図1の冷媒配管上の信号波形を示す図である。 図1の冷媒配管の周波数特性の例を示す図である。 実施形態1の配管長算出処理の手順を示すフローチャートである。 実施形態2において、分岐がある冷媒配管の例を示す概略図である。 図7に示す冷媒配管の周波数特性を示す図である。 図8の周波数特性から抽出した反共振周波数と、その反共振周波数に対応する長さとの関係を示す表である。 実施形態2において、分岐がある場合の冷媒配管長の算出方法を説明するための図である。 実施形態2において、測定した反共振周波数が高調波成分に該当するか否かの判定手法を説明するための図である。 実施形態2の配管長算出処理の手順を示すフローチャートである。
 以下、本発明の実施形態について図面を参照して詳細に説明する。
(実施形態1)
 図1は、本発明の実施形態1に係る配管長測定システム1の全体構成を示す概略図である。図1に示すように、配管長測定システム1は、周波数特性測定装置10と、配管長算出装置20と、フィルタ30a及び30bと、から構成される。周波数特性測定装置10と配管長算出装置20とは、シリアルケーブル等のインタフェースケーブル40を介して接続されている。
 図1に示す空調機は、それぞれ1台ずつの室外機50と室内機60とで構成される。この空調機は、一般的な空調機と同様、室外機50と室内機60との間の冷媒配管70内で冷媒を循環させることで空調動作を行う。冷媒配管70は、それぞれ金属製のガス配管71と液配管72とで構成される。
 周波数特性測定装置10は、冷媒配管70の周波数特性を測定する装置であり、ネットワークアナライザーとしての機能を備える。周波数特性測定装置10は、室外機50の近傍に設置され、一方の端子11aが、ガス配管71の室外機50側の末端付近に接続され、他方の端子11bが、液配管72の室外機50側の末端付近に接続される。
 周波数特性測定装置10は、所定の周波数の検査信号を冷媒配管70に向けて出力し、同時に冷媒配管70上の信号レベルを計測する。そして、検査信号の信号レベルと計測した信号レベルの比であるゲイン値を求め、求めたゲイン値を内蔵するバッファ(図示せず)に保存する。周波数特性測定装置10は、検査信号の周波数を所定範囲で連続的に変化させて同様の処理を行う。そして、各周波数毎のゲイン値を冷媒配管70の周波数特性データとして、インタフェースケーブル40を介して、配管長算出装置20に送信する。例えば、周波数特性測定装置10は、SパラメータのS11を測定し、そのパラメータ値を用いて周波数特性データを得るようにしてもよい。
 フィルタ30a,30bは、例えば、フェライトコアで構成され、それぞれ、ガス配管71及び液配管72の所定位置に所定態様で取り付けられる。具体的には、フィルタ30aは、周波数特性測定装置10の端子11aの接続箇所よりも室外機50側の位置に、ガス配管71を包むように取り付けられる。同様に、フィルタ30bは、周波数特性測定装置10の端子11bの接続箇所よりも室外機50側の位置に、液配管72を包むように取り付けられる。
 フィルタ30a,30bが上記のような態様で取り付けられることで、検査信号の周波数に対して十分大きいインピーダンスを冷媒配管70に持たせることができる。その結果、検査信号が室外機50に流れ込むことを防止でき、検査信号を室外機50と室内機60間の冷媒配管70上で伝搬させることが可能となる。
 配管長算出装置20は、図2に示すように、インタフェース部200と、補助記憶部201と、表示部202と、入力部203と、制御部204と、を備える。
 インタフェース部200は、RS485規格、RS-232C規格等の通信インタフェース装置から構成され、制御部204からの指令に従って、インタフェースケーブル40を介して、周波数特性測定装置10とシリアル通信を行う。補助記憶部201は、フラッシュメモリ等の読み書き可能な不揮発性の半導体メモリやハードディスクドライブ等から構成される。補助記憶部201は、各構成部を制御するためのデバイスドライバや後述する配管長算出処理を実行するためのプログラム(配管長算出プログラム)、周波数特性測定装置10から送られてきた周波数特性データ等を記憶する。
 表示部202は、CRTや液晶表示器等の表示デバイスにより構成され、制御部204から供給される文字や画像等のデータを表示する。入力部203は、各種のスイッチやダイヤル、キーボード、キーパッド、タッチパッドやマウス等の入力デバイスから構成され、ユーザからの操作入力を受け付け、受け付けた信号を制御部204に送出する。なお、表示部202及び入力部203をタッチパネルで具現化してもよい。
 制御部204は、CPU(Central Processing Unit)、主記憶装置(何れも図示せず)等で構成され、インタフェース部200、補助記憶部201、表示部202、入力部203を制御し、それに付随して、これらとの間でデータの授受を行う。また、補助記憶部201に記憶されている配管長算出プログラムに従って、後述する配管長算出処理を実行する。
 次に、図1に示す冷媒配管70の周波数特性について説明する。図1で示される構成は、図3に示すような電気的な等価回路で表すことができる。この回路では、周波数特性測定装置10を交流の信号源、ガス配管71と液配管72を2線1対の長さL[m]の導線とみなしている。また、ガス配管71と液配管72は、室内機60の金属製の筐体を介して電気的に短絡している。
 図3において、検査信号は、周波数特性測定装置10から出力され、冷媒配管70を伝搬していき、室内機60側の末端に到達する。室内機60では、ガス配管71と液配管72が電気的に短絡しているため、この検査信号が位相反転した反射信号が、冷媒配管70上を逆方向に伝搬していく。したがって、周波数特性測定装置10は、検査信号と反射信号を重ね合わせた合成信号の比(ゲイン値)を測定することになる。
 冷媒配管70の長さがL[m]で、検査信号の波長λ[m]が、L=λ/2(λ、3λ/2、・・・)で表すことができるとき、周波数特性測定装置10の測定位置では、常に検査信号と反射信号の信号レベルが正負逆となり、合成信号の信号レベルは常に0になる。したがって、ゲイン値も0となる。
 図4に、冷媒配管70上における周波数特性測定装置10の測定位置での検査信号、反射信号、合成信号の時間変化を示す。実際には、冷媒配管70の抵抗成分やインダクタ成分等により、反射信号は減衰するため、ゲイン値は0にはならない。しかし、検査信号の波長λ[m]が上記以外となる周波数に比べ、ゲイン値が著しく減少することに変わりはない。
 このようにゲイン値が著しく減少する現象は反共振と呼ばれている。以下、この反共振が起こる検査信号の周波数を反共振周波数と呼ぶ。ここで、周波数f[Hz]の検査信号の波長λ[m]は、λ=c/f(cは電気信号の伝搬速度で300×10[m/s])で表すことができる。
 図5は、周波数特性測定装置10が測定した冷媒配管70の周波数特性の例を示す図である。この例では、冷媒配管70の長さLは、50[m]である。この例では、周波数が約3MHzで反共振が起こり、ゲイン値が著しく小さくなっていることが分かる。また6MHz、9MHz・・・といった高調波成分でも同様に反共振が起こっている。この周波数特性の結果から、最小の反共振周波数(最小反共振周波数)f0(この例では、3MHz)を用いて、冷媒配管70の長さLを導出することができる。
 即ち、L=λ0/2(λ0=c/f0)=50[m]となる。
 図6は、配管長算出装置20の制御部204が配管長算出プログラムに従って実行する配管長算出処理の手順を示すフローチャートである。この配管長算出処理は、ユーザによる入力部203を介した所定操作により開始される。
 先ず、制御部204は、補助記憶部201から周波数特性測定装置10が測定した周波数特性データを読み出して取得する(ステップS101)。制御部204は、取得した周波数特性データから最小反共振周波数を抽出する(ステップS102)。
 そして、制御部204は、抽出した最小反共振周波数と上記の式から、冷媒配管70の長さ(冷媒配管長)を算出する(ステップS103)。制御部204は、算出した冷媒配管長を表示部202を介して表示する(ステップS104)。
 以上のように、本実施形態の配管長測定システム1では、冷媒配管の周波数特性を測定するための測定装置を当該冷媒配管の両末端付近に設置する必要がなく、一方の末端付近に設置するだけで済む。このため、測定装置(周波数特性測定装置10)の設置準備が容易であり、作業の手間が大幅に低減され、測定時間の短縮が図れる。
 また、冷媒配管の室外機側の末端付近の箇所のみを測定地点とするため、セキュリティ上の問題等により、屋内への立ち入り許可が得られないビル等においても、冷媒配管長を測定することが可能になる。
(実施形態2)
 上述したように、分岐がない冷媒配管の長さは、実施形態1に係る配管長測定システム1による配管長算出処理で求めることができる。しかしながら、図7に示すように、冷媒配管80が分岐し、複数の室内機(60a、60b)に接続する場合では、上記の配管長算出処理によって冷媒配管80の長さを測定することは困難である。これは、周波数特性測定装置10が出力した検査信号は、短絡した各室内機(60a、60b)だけでなく分岐地点でもいくらかの反射があり、また、分岐先のそれぞれで長さが異なるため、反共振が起こる周波数が複雑になるからである。
 本実施形態の配管長測定システムでは、分岐が存在する冷媒配管についても長さを測定できるように、実施形態1の配管長測定システム1による配管長算出処理に変更を加えた。以下、本実施形態の配管長測定システムによる配管長算出処理について詳細に説明する。なお、配管長算出処理以外の点については、本実施形態の配管長測定システムは、実施形態1の配管長測定システム1と同様の構成及び機能を有する。したがって、以下の説明において、周波数特性測定装置、配管長算出装置のハードウェア構成及び各構成部の機能については、実施形態1と同一の符号を用いることで説明を省略する。
 図7において、室外機50と、室内機60a,60bが、全長270mの冷媒配管80に接続されている構成となっている。なお、図7では、ガス配管と液配管をまとめて、1本の冷媒配管80として表している。周波数特性測定装置10は、室外機50の近傍に設置され、端子11が、冷媒配管80の室外機50側の末端付近に接続されている。また、図示はしないが、実施形態1と同様、フェライトコア等で構成されるフィルタが、周波数特性測定装置10の端子11の接続箇所よりも室外機50側の位置に、冷媒配管80を包むようにして取り付けられている。
 図8は、電磁界シミュレータによるシミュレーションによって得られた図7に示す冷媒配管80の周波数特性を示す図である。この周波数特性によると、分岐がない場合と異なり、高調波成分以外の反共振周波数が含まれていることが確認できる。
 図9は、図8の周波数特性から抽出した反共振周波数fnと、その反共振周波数を用いて、Ln=λn/2(λn=c/fn)の式(即ち、分岐がない場合の算出式)から求めた長さLnとの関係を示す表である。
 図10は、図9に示す各データの内、最小反共振周波数と、高調波成分を除いた反共振周波数fnと、その反共振周波数fnに対応する長さLnをハイライト表示した表である。この表から、各ハイライト表示した反共振周波数fnに対応する長さLnの総和(156.3+69.1+42.6=268[m])が、冷媒配管80の全長(270[m])に近似していることが判る。
 ここで、測定した反共振周波数が高調波成分に該当するか否かを判定する手法について説明する。本実施形態の配管長算出装置20は、測定された反共振周波数に対応する高調波判定帯域幅以内に、測定された他の何れかの反共振周波数の高調波成分が含まれる場合、当該反共振周波数を高調波成分とみなす。高調波判定帯域幅は、本例では、測定された反共振周波数の±1%であるものとする。そうすると、図11に示すように、本例で測定された反共振周波数の内、高調波成分に該当しないものとして、0.96[MHz]、2.17[MHz]、3.52[MHz]の3つがピックアップされることが判る。
 図12は、本実施形態の配管長算出装置20により実行される配管長算出処理の手順を示すフローチャートである。この配管長算出処理は、ユーザによる入力部203を介した所定操作により開始される。
 先ず、制御部204は、補助記憶部201から周波数特性測定装置10が測定した周波数特性データを読み出して取得する(ステップS201)。そして、制御部204は、取得した周波数特性データから最小反共振周波数を抽出し、バッファ(図示せず)に格納する(ステップS202)。
 また、制御部204は、取得した周波数特性データから、最小反共振周波数~所定周波数間に存在する全ての反共振周波数を抽出し、バッファに格納する(ステップS203)。ここでは、例えば、最小反共振周波数の10倍の周波数までに存在する反共振周波数を抽出対象とする。
 制御部204は、当該冷媒配管に分岐があるか否かを判定する(ステップS204)。この際、ステップS203で抽出した全ての反共振周波数が、最小反共振周波数の整数倍の周波数にほぼ該当する場合、即ち、最小反共振周波数を除き全ての反共振周波数が、最小反共振周波数の高調波成分に該当する場合、制御部204は、当該冷媒配管に分岐はないと判定する。その他の場合は、分岐ありとして判定する。
 上記の判定の結果、分岐がない場合(ステップS204;NO)、制御部204は、抽出した最小反共振周波数に基づいて、L[m]=λ0/2(λ0=c/f0)の式から当該冷媒配管(例えば、図1の冷媒配管70)の長さを算出して求める(ステップS205)。
 一方、分岐がある場合(ステップS204;YES)、制御部204は、上述した手法により、ステップS203で抽出した反共振周波数の内から、最小反共振周波数ではなく、且つ、高調波成分に該当しない全ての反共振周波数を抽出する(ステップS206)。そして、制御部204は、ステップS206で抽出した反共振周波数に基づいて、当該冷媒配管(例えば、冷媒配管80)の長さを算出する(ステップS207)。具体的には、制御部204は、ステップS206で抽出した反共振周波数毎に、長さLnを下記式により求め、これらの総和を当該冷媒配管の長さとする。
 Ln[m]=λn/2(λn=c/fn)
 そして、制御部204は、算出した冷媒配管長を表示部202を介して表示する(ステップS208)。
 以上説明したように、本実施形態の配管長測定システムは、実施形態1の配管長測定システム1と同等の作用効果を奏し得る。即ち、冷媒配管の周波数特性を測定するための測定装置を当該冷媒配管の各末端付近に設置する必要がなく、一の末端付近に設置するだけで済むため、測定装置(周波数特性測定装置10)の設置準備が容易であり、作業の手間が大幅に低減され、測定時間の短縮が図れる。
 また、冷媒配管の室外機側の末端付近の箇所のみを測定地点とするため、セキュリティ上の問題等により、屋内への立ち入り許可が得られないビル等においても、冷媒配管長を測定することが可能になる。
 さらに、上記の作用効果に加え、本実施形態の配管長測定システムは、分岐のある冷媒配管の長さも測定できるという特有の効果も奏する。
 なお、本発明は、上記各実施形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。
 例えば、冷媒配管の周波数特性の測定において、ユーザ操作等により、配管長算出装置20から周波数特性測定装置10に対して測定開始を要求するコマンドを送信し、周波数特性測定装置10は、かかるコマンドの受信をトリガとして、周波数特性の測定を開始するようにしてもよい。
 また、上記各実施形態では、各周波数毎のゲイン値を冷媒配管の周波数特性データとしているが、各周波数毎の冷媒配管上の電圧のピーク値や冷媒配管上の電圧の実効値を周波数特性データとしてもよい。
 また、周波数特性測定装置10と配管長算出装置20との間の通信インタフェースに限定はなく、例えば、USBインタフェースやイーサネット(登録商標)インタフェース等を介して、周波数特性データの受け渡しを行ってもよい。
 また、フレキシブルディスク、USBメモリやSDカード等のメモリカード等の記録媒体を介して、周波数特性データの受け渡しを行ってもよい。
 また、周波数特性測定装置10及び配管長算出装置20の双方の機能を併せ持つ一装置により、周波数特性の測定及び冷媒配管長の算出を行ってもよい。
 また、冷媒配管の室外機側の末端付近ではなく、室内機側の末端付近の箇所のみを測定地点としてもよい。このようにしても、測定装置(周波数特性測定装置10)の設置準備が容易となり、作業の手間が大幅に低減され、測定時間の短縮が図れるという効果を奏する。
 また、プログラムの適用により、既存のパーソナルコンピュータ(PC)等を上記各実施形態の配管長算出装置20として機能させることも可能である。即ち、上述の制御部204が実行した配管長算出プログラムを既存のPC等にインストールし、当該PC等のCPU等が、かかる配管長算出プログラムを実行することで、当該PC等を配管長算出装置20として機能させることが可能となる。
 このような配管長算出プログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、メモリカードなどのコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネットなどの通信ネットワークを介して配布してもよい。
 この場合、上述した配管長算出処理を実行する機能を、OS(オペレーティングシステム)とアプリケーションプログラムの分担、またはOSとアプリケーションプログラムとの協働により実現する場合などでは、アプリケーションプログラム部分のみを記録媒体等に格納してもよい。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2009年11月10日に出願された日本国特許出願特願2009-257411号に基づく。本明細書中に、その明細書、特許請求の範囲、図面全体を参照して取り込むものとする。
 本発明は、空調機の冷媒配管長の測定に好適に適用され得る。
 1       配管長測定システム
 10      周波数特性測定装置
 11a、11b 端子
 20      配管長算出装置
 30a、30b フィルタ
 40      インタフェースケーブル
 50      室外機
 60、60a、60b 室内機
 70、80   冷媒配管
 71      ガス配管
 72      液配管
 200     インタフェース部
 201     補助記憶部
 202     表示部
 203     入力部
 204     制御部

Claims (10)

  1.  空調機における室外機と室内機とを接続する冷媒配管の一の末端近傍に配置され、当該冷媒配管の周波数特性を測定する周波数特性測定手段と、
     該周波数特性測定手段による前記冷媒配管上の測定箇所と、該測定箇所に最も近い前記室外機又は室内機との間に取り付けられ、前記測定の際の検査信号の当該室外機又は室内機への流入を防止するフィルタと、
     前記周波数特性測定手段が測定した前記周波数特性から最小の反共振周波数を抽出し、該抽出した最小の反共振周波数に基づいて当該冷媒配管の長さを算出する配管長算出手段と、を備える配管長測定システム。
  2.  前記配管長算出手段は、前記周波数特性測定手段が測定した前記周波数特性から、所定条件の下、複数の反共振周波数を抽出し、該抽出した複数の反共振周波数に基づいて、当該冷媒配管に分岐が存在するか否かを判定し、分岐が存在しないと判定した場合には、前記最小の反共振周波数に基づいて当該冷媒配管の長さを算出し、分岐が存在すると判定した場合には、前記抽出した複数の反共振周波数の内から、前記最小の反共振周波数以外で且つ高調波成分に該当しない全ての反共振周波数を抽出し、該抽出した全ての反共振周波数に基づいて、当該冷媒配管の長さを算出する請求項1に記載の配管長測定システム。
  3.  前記配管長算出手段は、前記最小の反共振周波数を除く前記抽出した全ての反共振周波数が、前記最小の反共振周波数の高調波成分に該当する場合、当該冷媒配管に分岐が存在しないと判定する請求項2に記載の配管長測定システム。
  4.  前記配管長算出手段は、当該冷媒配管に分岐が存在すると判定した場合、前記最小の反共振周波数以外で且つ高調波成分に該当しない全ての反共振周波数について、各々対応する長さを算出し、これらを総計することで、当該冷媒配管の長さを算出する請求項2又は3に記載の配管長測定システム。
  5.  前記周波数特性測定手段による前記冷媒配管上の測定箇所が、前記室外機側の末端近傍である請求項1乃至4の何れか1項に記載の配管長測定システム。
  6.  前記フィルタはフェライトコアで構成されている請求項1乃至5の何れか1項に記載の配管長測定システム。
  7.  前記周波数特性は、前記周波数特性測定手段によって前記冷媒配管に出力された前記検査信号の信号レベルと、前記周波数特性測定手段によって計測された信号レベルの比である請求項1乃至6の何れか1項に記載の配管長測定システム。
  8.  前記周波数特性は、前記周波数特性測定手段によって計測された前記冷媒配管上の電圧のピーク値である請求項1乃至6の何れか1項に記載の配管長測定システム。
  9.  前記周波数特性は、前記周波数特性測定手段によって計測された前記冷媒配管上の電圧の実効値である請求項1乃至6の何れか1項に記載の配管長測定システム。
  10.  空調機における室外機と1又は複数の室内機とを接続する冷媒配管の周波数特性から、所定条件の下、複数の反共振周波数を抽出し、該抽出した複数の反共振周波数に基づいて、当該冷媒配管に分岐が存在するか否かを判定し、分岐が存在しないと判定した場合には、前記抽出した複数の反共振周波数の内の最小の反共振周波数に基づいて当該冷媒配管の長さを算出し、分岐が存在すると判定した場合には、前記抽出した複数の反共振周波数の内から、前記最小の反共振周波数以外で且つ高調波成分に該当しない全ての反共振周波数を抽出し、該抽出した全ての反共振周波数に基づいて、当該冷媒配管の長さを算出する配管長算出装置。
PCT/JP2011/051241 2011-01-24 2011-01-24 配管長測定システム及び配管長算出装置 WO2012101744A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11857297.3A EP2669620B1 (en) 2011-01-24 2011-01-24 Piping length measuring system and piping length calculating apparatus
US13/980,948 US9644937B2 (en) 2011-01-24 2011-01-24 Piping length measuring system and piping length calculating apparatus
PCT/JP2011/051241 WO2012101744A1 (ja) 2011-01-24 2011-01-24 配管長測定システム及び配管長算出装置
CN201180065828.XA CN103328920B (zh) 2011-01-24 2011-01-24 配管长度测定系统以及配管长度计算装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051241 WO2012101744A1 (ja) 2011-01-24 2011-01-24 配管長測定システム及び配管長算出装置

Publications (1)

Publication Number Publication Date
WO2012101744A1 true WO2012101744A1 (ja) 2012-08-02

Family

ID=46580354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051241 WO2012101744A1 (ja) 2011-01-24 2011-01-24 配管長測定システム及び配管長算出装置

Country Status (4)

Country Link
US (1) US9644937B2 (ja)
EP (1) EP2669620B1 (ja)
CN (1) CN103328920B (ja)
WO (1) WO2012101744A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294233A (ja) * 1994-04-21 1995-11-10 Tokyo Gas Co Ltd 埋設管の損傷防止監視方法
JP2000131004A (ja) * 1998-10-26 2000-05-12 Ribekkusu:Kk 距離測定器
JP2003248027A (ja) * 2002-02-21 2003-09-05 Furukawa Electric Co Ltd:The 電力ケーブル線路の部分放電測定装置
JP2007085892A (ja) 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd 配管長測定装置および配管長測定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2154742B (en) * 1984-02-21 1987-12-02 Edeco Petroleum Services Measuring length of electrical conductor
JP3035865B2 (ja) * 1990-09-27 2000-04-24 富士電機株式会社 多分岐ケーブルの事故点標定方法
JP2006183979A (ja) * 2004-12-28 2006-07-13 Mitsubishi Heavy Ind Ltd 冷媒配管長さ検知システムおよび冷媒配管長さ検知方法
US7566384B2 (en) * 2005-07-22 2009-07-28 Praxair Technology, Inc. System and apparatus for real-time monitoring and control of sputter target erosion
JP5433987B2 (ja) * 2008-06-13 2014-03-05 ダイキン工業株式会社 冷凍装置
KR101250243B1 (ko) * 2008-09-05 2013-04-04 엘지전자 주식회사 배관 거리 감지 장치 및 감지 방법
JP4912426B2 (ja) * 2009-04-27 2012-04-11 三菱電機株式会社 配管診断装置、及び空気調和機
US8401216B2 (en) * 2009-10-27 2013-03-19 Saab Sensis Corporation Acoustic traveling wave tube system and method for forming and propagating acoustic waves
KR101229361B1 (ko) * 2010-03-10 2013-02-05 엘지전자 주식회사 배관 통신 장치, 이를 포함한 공기 조화기 및 이의 배관 통신 방법
WO2012026138A1 (ja) * 2010-08-23 2012-03-01 三菱電機株式会社 導体長計測装置及び導体長計測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294233A (ja) * 1994-04-21 1995-11-10 Tokyo Gas Co Ltd 埋設管の損傷防止監視方法
JP2000131004A (ja) * 1998-10-26 2000-05-12 Ribekkusu:Kk 距離測定器
JP2003248027A (ja) * 2002-02-21 2003-09-05 Furukawa Electric Co Ltd:The 電力ケーブル線路の部分放電測定装置
JP2007085892A (ja) 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd 配管長測定装置および配管長測定方法

Also Published As

Publication number Publication date
EP2669620A4 (en) 2017-01-25
EP2669620A1 (en) 2013-12-04
CN103328920A (zh) 2013-09-25
US9644937B2 (en) 2017-05-09
CN103328920B (zh) 2016-03-23
EP2669620B1 (en) 2018-02-28
US20130297253A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
US20090030623A1 (en) System and method of determining the area of vulnerability for estimation of voltage sags and computer-readable medium having embodied thereon computer program for the method
EP2786163A1 (en) Fault location in power distribution systems
CN114295196B (zh) 一种基于地线电磁信号的架空线路舞动定位方法及装置
Lafaia et al. Frequency and time domain responses of cross-bonded cables
CN106896297B (zh) 一种综合计及稳态和暂态响应特性的配电线路模型构建方法
WO2017061981A1 (en) Method and system for locating ground faults in a network of drives
JP5072949B2 (ja) 端末システム異常検出装置、端末システム異常検出方法、端末システム並びにプログラム
CN110059397A (zh) 一种低噪声油浸式配电变压器油箱设计方法、系统及介质
JP4989706B2 (ja) 配管長測定システム、配管長算出装置及びプログラム
US20130141075A1 (en) Multiphase Electrical Power Phase Identification
WO2012101744A1 (ja) 配管長測定システム及び配管長算出装置
CN109490612A (zh) 一种频率自适应的交流量测量方法和系统
JP2012037537A (ja) 配管診断装置、及び空気調和機
CN108254623A (zh) 一种导线高频交流电阻测量方法及装置
KR102391663B1 (ko) 활선 절연 저항 분석 장치
JP5649654B2 (ja) 導体長計測装置及び導体長計測方法
US20150185258A1 (en) Electrical load identification using system line voltage
UA83102C2 (ru) Способ неразрушительной диагностики предаварийного состояния электрооборудования с обмотками высокого напряжения
KR101789130B1 (ko) 전역 통과 필터를 이용한 순시 무효전력 및 유효전력 측정방법
KR102014644B1 (ko) 차동기 공진 검출 장치 및 방법
KR102342450B1 (ko) 전력망에서의 비선형 진동 검출장치 및 그 방법
CN109521321B (zh) 一种可控电压源全补偿的补偿电压预测方法
JP5900963B2 (ja) ケーブルの線路定数の測定方法および装置
US20210190838A1 (en) Gating Energy Consumption Accumulation by Detecting a Fundamental Component of a Current
JP2008141860A (ja) 電気料金算定システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180065828.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011857297

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP