WO2012100793A1 - Schalteinheit zum schalten von hohen gleichspannungen - Google Patents

Schalteinheit zum schalten von hohen gleichspannungen Download PDF

Info

Publication number
WO2012100793A1
WO2012100793A1 PCT/EP2011/005616 EP2011005616W WO2012100793A1 WO 2012100793 A1 WO2012100793 A1 WO 2012100793A1 EP 2011005616 W EP2011005616 W EP 2011005616W WO 2012100793 A1 WO2012100793 A1 WO 2012100793A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching unit
conductor
melting point
contact
housing
Prior art date
Application number
PCT/EP2011/005616
Other languages
English (en)
French (fr)
Inventor
Waldemar Weber
Klaus Werner
Hubert Harrer
Wolfgang Schmidt
Original Assignee
Ellenberger & Poensgen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ellenberger & Poensgen Gmbh filed Critical Ellenberger & Poensgen Gmbh
Priority to CA2785605A priority Critical patent/CA2785605C/en
Priority to KR1020127017023A priority patent/KR101521074B1/ko
Priority to SG2012048427A priority patent/SG182295A1/en
Priority to PL11790724T priority patent/PL2502251T3/pl
Priority to ES11790724T priority patent/ES2403489T3/es
Priority to AU2011338139A priority patent/AU2011338139B2/en
Priority to CN201180005134.7A priority patent/CN102725812B/zh
Priority to EP11790724A priority patent/EP2502251B1/de
Priority to US13/537,918 priority patent/US8766760B2/en
Publication of WO2012100793A1 publication Critical patent/WO2012100793A1/de
Priority to HRP20130376AT priority patent/HRP20130376T1/hr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/32Insulating body insertable between contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/10Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess voltage, e.g. for lightning protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/122Automatic release mechanisms with or without manual release actuated by blowing of a fuse

Definitions

  • the invention relates to a switching unit for switching high DC voltages, in particular for DC interruption between a DC power source and an electrical device, having two terminals protruding from a housing, which are electrically conductively coupled via a conductor path, and arranged with one between the first and the second terminal mechanical contact system with two contacts which are movable relative to each other and can be transferred from a closed position to an open position, as well as with a triggered by a thermal fuse disconnecting device for extinguishing an arc resulting from the opening of the contacts.
  • a direct current source is understood to mean, in particular, a photovoltaic (PV) generator (solar system) and an electrical device, in particular an inverter.
  • PV photovoltaic
  • a PV system or solar system with a so-called PV generator which in turn consists of grouped, combined into sub-generators solar modules.
  • the solar modules are connected in series or in parallel strands. While one sub-generator delivers its DC power through two terminals, the DC Power of the entire PV generator via an inverter fed into an AC power grid.
  • so-called generator junction boxes are placed close to the sub-generators. The thus-accumulated DC power is usually fed via a common cable to the central inverter.
  • PV systems permanently supply an operating current and an operating voltage in the range between 180V (DC) and 1500V (DC).
  • DC 180V
  • DC 1500V
  • a reliable separation of the electrical components or devices from the effective as a DC power source PV system is desirable, for example, for installation, assembly or service purposes and in particular for general personal protection.
  • a corresponding disconnecting device must be capable of interrupting under load, that is, without first switching off the DC power source.
  • switching contact For load separation mechanical switches (switching contact) can be used. These have the advantage that when the contact opening is made as well as a galvanic isolation of the electrical device (inverter) from the DC power source (PV system) is made.
  • Such switching units are generally known in the art.
  • the arcs that occur when the contacts are opened under load are quickly moved to designated extinguishing devices where the corresponding arc extinction takes place.
  • the force required for this is done by magnetic fields, so-called Blasfelder, which are typically generated by one or more permanent magnets.
  • Blasfelder which are typically generated by one or more permanent magnets.
  • the arc is passed into corresponding extinguishing chambers, where the arc extinction is carried out according to known principles.
  • Such extinguishing chambers consist for example of splitter stacks.
  • the material used for the quenching plates usually ferromagnetic materials are used, since the magnetic field that accompanies the arc, in the vicinity of a ferromagnetic material tends to pass through the magnetic better conducting quenching plates. This creates a suction effect in the direction of the quenching plates, which causes the arc to move to the arrangement of the quenching plates and is divided between them.
  • the circuit In order to bring the PV system into a safe state for man and plant in the event of such errors, the circuit must be permanently disconnected so that the operator can detect the error and replace the switching unit. When transferring to this state, do not damage or destroy the switch housing of the device so that the live parts remain isolated. The transfer in such an error case is done by a so-called fail-safe element of the switching unit, without having to take advance activation measures, such as a manual intervention or the like must be made.
  • Typical fail-safe elements are triggered by an exceeding of a permissible material-dependent current density (current per area). An electrical conductor is melted through and the circuit is interrupted. This is a common way to detect and turn off overcurrents, such as those used in fuses. However, this method can not be used in PV systems, since it can not be assumed that there is a specific current density or current level. The triggering or error detection should rather be independent of current heights. From DE 10 2008 049 472 A1 an overvoltage arrester with at least one diverting element as well as with a separating device is known in which, on the one hand, a thermally realizable separation of the at least one diverting element can be carried out.
  • Such a fail-safe element is also not suitable for the above-described application, since here too the error detection takes place only from a certain overcurrent. A pending arc would occur in the event of a fault at higher voltages in the current working range of the switching unit.
  • the invention has for its object to provide a switching unit of the type mentioned, which can reliably and safely switch a high DC voltage.
  • the switching unit should be suitable for carrying out a DC interruption between a DC power source, in particular a PV generator, and an electrical device, in particular an inverter.
  • the switching unit should be set up to extinguish an arcing fault that does not automatically extinguish within the switching unit without the need for activation measures beforehand, for example a manual intervention or the like.
  • the switching unit comprises two terminals protruding from a housing, which are electrically conductively coupled via a conductor path.
  • a mechanical contact system with two contacts is arranged, which are movable relative to each other and can be transferred from a closed position to an open position.
  • a releasable by means of a thermal fuse separator is used to extinguish an arc resulting from the opening of the contacts.
  • the thermal fuse comprises a melting point arranged in the conductor path, which is connected on the one hand to the contact system and on the other hand via a movable conductor section to the first connection.
  • a non-self-extinguishing arc can form when the contact system is opened.
  • the separation device is triggered and the connection between the conductor section and the contact system at the melting point is separated when the melting point of the melting point is reached or exceeded as a result of the arc.
  • the thermal fuse of the switching unit thus serves as a fail-safe element, which is particularly suitable for use in PV systems. Furthermore, the Fall protection of the switching unit cost-effectively and thus meets the requirements of economic manufacturability.
  • the melting point is in particular a solder joint, which is separated when the response temperature is reached or exceeded.
  • a fused alloy such as an aluminum-silicon-tin alloy or other well-known low-melting alloys may be used.
  • the melting point of such alloys is usually in the range of 150 ° C to 250 ° C.
  • the current is safely conducted in rated operation, without the thermal fuse is triggered.
  • other temperature-sensitive and electrically conductive materials as melt material, such as an electrically conductive plastic.
  • the switching unit by selecting the conductive and / or insulating materials of the switching unit a corresponding variation in the response temperature and / or the triggering time can be achieved. Furthermore, it is conceivable that with a suitable dimensioning and composition of the materials used, such a switching unit can also be used for lower voltages.
  • the separating device comprises a prestressed spring element.
  • the spring restoring force acts along a direction of separation directly or indirectly on the movable conductor section. If, in the event of a fault, the melting point is heated inadmissibly, it is melted and as a result the switching unit causes a power interruption due to the spring restoring force.
  • the preloaded spring element thus allows an automatic power interruption without an activation measure must be made by a person in case of failure.
  • the spring element deflects the conductor section when the separation device is triggered by a pivot point which is at a distance from the melting point.
  • the covered swing angle is in particular greater than or equal to 90 °.
  • the housing of the switching unit has an insulating chamber adjacent to the melting point.
  • the conductor portion is pressed as a result of the spring restoring force in this isolation chamber.
  • the insulating chamber is used for the spatial and thus insulating separation of the conductor portion of the contact system, whereby the extinction of the arc is advantageously supported.
  • the separating device has a separating element which is movably held in the housing and which is guided against the conductor section.
  • the melting point is naturally sensitive to external forces acting on it. Due to the aforementioned spring restoring force of the separating device on the conductor section, the melting point is relatively heavily loaded.
  • the separating element By the separating element, the restoring force on a larger contact surface on Start ladder section effectively. In other words, this means that the resulting torque acting at the melting point is advantageously reduced. As a result, less mechanical stress is applied to the melting point.
  • the separating element also sets close to the melting point on the conductor section, so that the force arm and thus the acting torque at the melting point is further reduced.
  • This torque, or the Kraftarmin and / or the Trennelementbeunk can be used as an additional parameter for dimensioning the response temperature and / or the trip time of the fail-safe of the switching unit or the separation device.
  • the separating element is guided slidingly movable in the housing and is moved when triggering the separator, by the spring return force, together with the conductor portion in the insulating chamber.
  • the conductor section is completely covered in the tripped state.
  • the disconnecting device is triggered, the further arc, due to the pivoting of the conductor section, is squeezed between the separating element and the insulating chamber. The crushing ensures a particularly quick and safe extinguishing of the arc.
  • the spring element is in this case a fferend bucking spring, which presses the separating element along the direction of separation in the insulating chamber.
  • the separating element and the insulating chamber are geometrically complementary designed for this purpose, so that the arc in the chamber can be squeezed and the conductor portion of the separating element relative to the contact system is completely concealed.
  • the Einquetschilia is expedient adaptable to the performance parameters of the DC power source.
  • the separating element is rotatably held in the housing. When the separation device is triggered, the conductor section is pivoted by the separation element about the pivot point spaced from the fusion point.
  • the spring element is a leg spring, through which a
  • the contact system comprises a moving and a fixed contact. Between the fixed contact and the melting point, an electrically conductive contact carrier is arranged, which couples the fixed contact and the melting point thermally conductive.
  • an electrically conductive contact carrier is arranged between the fixed contact and the melting point, which couples the fixed contact and the melting point thermally conductive.
  • the heat capacity or the melting point of the contact carrier is higher than that or of the melting point.
  • the contact carrier is made of a thermally and electrically highly conductive material, such as copper, so that a fast and reliable release of the separator is ensured.
  • the contact carrier can be designed and dimensioned accordingly, for example by a taper on the carrier.
  • the moving contact is coupled via a trigger mechanism with a rocker arm for manually actuating the contact system.
  • the triggering mechanism, the moving contact and the fixed contact form a (mechanical) jump contact system.
  • the contacts are typically removed from each other as quickly as possible by a prestressed leg spring, typically in a few milliseconds.
  • a (first) emerging arc is normally erasable, so that the separation device is not triggered.
  • the movable conductor section is a flexible connecting element, in particular a stranded conductor, whose fixed end is unsolvable with the first connection and whose loose end is soldered to the melting point, preferably to the contact carrier.
  • the housing of the switching unit accommodates the conductor path, the mechanical contact system, the disconnecting device and the thermal fuse.
  • the current-carrying parts of the switching unit are isolated from the environment. In particular, this advantageously protects a person operating the switching unit against the high voltages and currents applied.
  • the housing and the separating element are made of a thermally stable plastic material, in particular of a thermoset material. This ensures that the high heat development due to the arc, the switch housing is not damaged or destroyed. As a result, the current-carrying parts continue to be isolated in the event of a fault in a touch-proof manner. Furthermore, it is ensured that the separating element is not damaged or destroyed by the second arc in the region of the melting point. As a result, the separating element reliably disconnect the switching unit from the mains in the event of a fault.
  • the separating element and / or the insulating chamber are made of a plastic material outgassing in the event of fire, in particular of polyamide.
  • a plastic material outgassing in the event of fire, in particular of polyamide.
  • suitable are, for example, polycarbonate or polyoxymethylene.
  • the plastic outgassing contribute advantageously to a fast extinction of the (second) arc. In particular, the gases hinder ionization of the air gap in the region of the dissolved melting point or allow it to decay faster.
  • the device comprises a current-carrying switching unit according to the invention.
  • the terminals and the housing are suitable and arranged for a circuit board assembly for this purpose.
  • the separating device is therefore particularly suitable for reliable and touch-safe galvanic DC interruption both between a PV system and one of these associated inverter as well as in connection with, for example, a fuel cell system or an accumulator (battery).
  • FIG. 1 is a block diagram of the switching unit according to the invention with a
  • Fig. 2 in a sectional view of the switching unit in a closed
  • FIG. 4 in a sectional view of the switching unit according to FIG. 1 and FIG. 2 after a triggering of the fail-safe system
  • Fig. 7 in a sectional view fragmentary the switching unit with an alternative separation device
  • Fig. 8 in a sectional view fragmentary, the switching unit of Figure 6 in the triggered fail-safe state.
  • Fig. 1 shows schematically a switching unit 1, which is connected in the embodiment between a PV generator 2 and an inverter 3.
  • the PV generator 2 comprises a number of solar modules 4, which are guided parallel to each other on a common generator junction box 5, which effectively serves as a collection point.
  • the switching unit 1 comprises essentially two subsystems for the galvanic direct current isolation of the PV generator 2 from the inverter 3.
  • the first subsystem is a manually operable mechanical contact system 7, the second subsystem is a fail-safe triggering system independently triggered in the event of a fault.
  • System 8 In the negative pole representing return line 9 of the switching unit 1 - and thus the overall system - can be connected in a manner not shown further contact and fail-safe systems 7, 8.
  • the switching unit 1 comprises a housing 10 from the two terminals (external terminals) 1 1 and 12 protrude.
  • the switching unit 1 is connected via the terminals 11 and 12 in the main current path 6 between the PV generator 2 and the inverter 3.
  • the contact system 7 further comprises a via a rocker arm 13 and a coupling lever 14 manually operable contact bracket 15 is formed as a moving contact and a contact carrier 16 as a fixed contact.
  • the contacts or contact surfaces 17a and 17b between the contact clip 15 and the contact carrier 16 are designed as plate-like contact elements.
  • the contact clip 15 is electrically conductively coupled to the terminal 11 via a fixed stranded conductor 18, wherein both the connection between the contact clip 15 and the stranded conductor 18 and the connection between the stranded conductor 18 and the terminal 11 are designed as a welded connection.
  • the contact clip 15 is substantially hammer-shaped and made of an electrically conductive metal, wherein the contact surface 17a is arranged at the hammer head end and in the closed position of the switching unit 1 (FIG. 2) rests on the contact surface 17b.
  • the contact carrier 16 is made of copper, so that it has a high electrical and thermal conductivity.
  • the contact carrier 16 has substantially the shape of a step, wherein at the upper step edge, the contact surface 17b is arranged.
  • the step body of the contact carrier 15 has a tapered cross section to increase its thermal conductivity.
  • a movable stranded conductor 20 is electrically conductively coupled via a solder 19.
  • the stranded conductor 20 may have an electrically insulating shield 21, which is removed at its two ends.
  • One of the conductor ends (fixed end) of the stranded conductor 20 is permanently connected to the terminal 12 by welding, while the other end of the conductor (loose end) is soldered to the solder 19 on the contact carrier 15.
  • the circuit In the closed position of the switching unit 1, the circuit is thus closed via the two terminals 1 1 and 12 and the main current path 6.
  • the current flows through a thus formed conductor path 22 comprising the terminal 11, the stranded conductor 18, the contact clip 15, the contact surfaces 17a and 17b, the contact carrier 16, the solder 19, the stranded conductor 20 and the terminal 12.
  • the conductor path 22 extends approximately U-shaped within the housing 10th
  • the housing 10 is made of an electrically insulating and heat-resistant plastic and is - as shown in Fig. 5 - formed from two complementary housing halves 10a and 10b.
  • the half-shells 10a and 10b can be connected by four holes 23 by means of screws or rivets, not shown.
  • the holes 23 are arranged distributed approximately at the vertices of an imaginary quadrilateral evenly on the housing 10.
  • the housing 10 has an approximately rectangular cross-section, so that a simple assembly of several juxtaposed switching units 1 on a common circuit board is possible.
  • the housing 10 has an approximately U-shaped circumference, wherein the two U-legs are interconnected by a horizontal part. For this horizontal part protrude the two terminals 11 and 12 and at the U-base at least partially the rocker arm 13 out.
  • the half-shells 10a and 10b are designed with corresponding inner-profile structures, in which the individual components of the switching unit 1 can be used in a form-fitting manner or with play.
  • the rocker arm 13 serves not only to open and close the contact system 7, but also as an external visual indication of the switching state of the switching unit 1, as shown in Fig. 4, in which the rocker arm 13 is in the open position.
  • an external force for tilting the switch is converted by a hinge system 24 in a pivoting movement of the contact clip 15.
  • the fail-safe system 8 ensures permanent galvanic isolation between the PV generator 2 and the inverter 3.
  • the fail-safe system 8 comprises the contact carrier 16, the solder 19, the stranded conductor 20, a separating device 27 with a helical compression spring 28 and a slide 29 and an insulating chamber 30. This embodiment of the separation device 27 is shown in more detail in FIG.
  • the helical compression spring 28 is located in a guide chamber 31 of the housing 10, wherein a pin-like extension 32 of the guide chamber 31 is at least partially enclosed by the helical compression spring 28.
  • the helical compression spring 28 presses against the slide 29 due to a spring restoring force F. the stranded conductor 20.
  • the slider 29 has a projection 33 formed as a finger, which presses directly against the stranded conductor 20.
  • the finger 33 begins near the solder 19, so that the torque acting on the soldering due to the spring restoring force F is as low as possible.
  • the guide chamber 31 and the insulating chamber 30 are at a height along a separation direction A and are separated from each other by the perpendicular thereto stranded conductor 20.
  • the guide chamber 31 and the insulating chamber 30 further have the same (slider-shaped) cross-section.
  • the slide 29 and the insulating chamber 30 are geometrically complementary, so that they are easily slidable.
  • the Einquetschitz the isolation chamber 30 is suitably adapted to the performance parameters of the PV generator 2.
  • the stranded conductor 20 is pivoted about a pivot point 34, and finally bent by about 90 ° (Fig. 4).
  • a second arc (not shown) forms between the contact carrier 16 and the loose end of the stranded conductor 20, which runs approximately along the connecting line in the separated state. This second arc is extended by the displacement of the slide 29 on the one hand, and thereby cooled, and on the other hand due to the fit between the slide 29 and the insulating chamber
  • the contact carrier 16 and the stranded conductor 20 are galvanically separated, whereby at the same time the arc 26 is extinguished.
  • the finger 33 favors the separation of the soldering and encapsulates the second arc when stop at the bottom of the insulating chamber 30 completely on or off.
  • Both the slider 29 and the inner walls of the insulating chamber 30 may be made of an outgassing and electrically insulating plastic material. Due to the evolution of heat in the vicinity of the second arc, in particular in the region of the separation device 27, gases are released from these plastic materials. The gases hinder ionization of the air gap in the region of the dissolved solder 19 or let the ionization decay faster. As a result, the second arc is more easily erased by the separation device 27.
  • the conductor path 22 of the switching unit 1 has in the tripped state (FIG. 4) accordingly two galvanic separation points, namely on the one hand between the contact surfaces 17a and 17b and on the other hand between the contact carrier 16 and the loose end of the stranded conductor 20.
  • the materials and dimensions of the switching unit 1 and Their separation device 27 are dimensioned accordingly to ensure even in the event of a fault within a few milliseconds a DC galvanic interruption between the PV generator 2 and the inverter 3.
  • a second embodiment variant of the switching unit 1 with a separating device 27 ' is explained below with reference to FIGS. 7 and 8, with only the second half of the conductor path 22 relevant to the fail-safe system 8 (the contact carrier 16, FIG. the solder 19, the stranded conductor 20 and the terminal 12) is shown.
  • the separating device 27 ' comprises a prestressed leg spring 35, an approximately hook-like pivoting head or lever 36 and an insulating chamber 30'.
  • the inner profile of the housing 2 is set up and designed in accordance with the separating device 27 '.
  • the insulating chamber 30 'in this embodiment is substantially the lower half (of the top rail 12 of) of the housing 10.
  • the pivoting head (pivot lever) 36 is approximately L-shaped, wherein both the pivoting head 36 and the Insulating chamber 30 'are made of an outgassing electrically insulating Kunststoffmate- material.
  • Swivel head 36 attaches to strand 20 in a similar manner as finger 33 in the previously described variant.
  • the prestressed leg spring 35 is arranged at the lower end of the vertical L-leg of the swivel head 36.
  • the leg spring 35 of the swivel head 36 is pivotally or rotatably held.
  • the leg spring 35 pivots the pivoting head 36 due to a spring restoring force F '.
  • the strand 19 is pivoted about the pivot 34 'at an angle of about 90 ° in the direction of the lower right corner of the housing 10 and the insulating chamber 30'.
  • the arc is not crushed, but only artificially extended, so that the arc plasma can be erased due to the resulting cooling.
  • the arc is much more prolonged compared to the first embodiment, since the stranded conductor 20 is not pressed in the direction of the right side wall, but is pivoted into the lower corner.
  • the switching unit 1 is equipped with the separation device 27 'and adapted to ensure within a few milliseconds a galvanic DC interruption between the PV generator 2 and the inverter, both in normal and in case of failure.
  • the horizontal rail side bearing surface of the housing 10 is about 4 cm wide, the side edges of the housing about 6 cm long and the housing 10 about 2 cm deep.
  • the distance of the contact surfaces 17a and 17b is in the open position about 1 cm and the distance between the contact carrier 15 and the loose end of the stranded conductor 20 after triggering of the separator 27 and 27 'at least 1, 5 cm.
  • the plastics for housing 10, insulating chamber 30/30 'and slide 29 or swivel head 35, the shape and the material of the contact carrier 16 and the torque acting on Lot 19 are selected so that the switching unit 1 has a nominal voltage of about 1500 V (DC).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Fuses (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

Die Erfindung betrifft eine Schalteinheit (1) zum Schalten von hohen Gleichspannungen, insbesondere für eine galvanische Gleichstromunterbrechung zwischen einer Gleichstromquelle (2) und einer elektrischen Einrichtung (3). Die Schalteinheit (1) umfasst zwei aus einem Gehäuse (10) herausragende Anschlüsse (11, 12), die elektrisch leitfähig über einen Leiterpfad (22) gekoppelt sind, ein zwischen dem ersten und dem zweiten Anschluss (11, 12) angeordnetes Kontaktsystem (7) sowie eine mittels einer thermischen Sicherung (8) auslösbare Trennvorrichtung (27, 27'). Die thermische Sicherung (8) umfasst eine im Leiterpfad (22) angeordnete Schmelzstelle (19), die einerseits mit dem Kontaktsystem (7) und andererseits über einen beweglichen Leiterabschnitt (20) mit dem ersten Anschluss (12) verbunden ist. Die Trennvorrichtung (27, 27') wird ausgelöst und die Verbindung zwischen dem Leiterabschnitt (20) und dem Kontaktsystem (7) an der Schmelzstelle (19) aufgetrennt, wenn infolge eines beim Öffnen des Kontaktsystem (7) entstehenden Lichtbogens (26) die Schmelztemperatur der Schmelzstelle (19) erreicht beziehungsweise überschritten ist.

Description

Beschreibung
Schalteinheit zum Schalten von hohen Gleichspannungen
Die Erfindung betrifft eine Schalteinheit zum Schalten von hohen Gleichspannungen, insbesondere zur Gleichstromunterbrechung zwischen einer Gleichstromquelle und einer elektrischen Einrichtung, mit zwei aus einem Gehäuse herausragenden Anschlüssen, die elektrisch leitend über einen Leiterpfad gekoppelt sind, und mit einem zwischen dem ersten und dem zweiten Anschluss angeordneten mechanischen Kontaktsystem mit zwei Kontakten, die relativ zueinander bewegbar und aus einer Schließstellung in eine Offenstellung überführbar sind, sowie mit einer mittels einer thermischen Sicherung auslösbaren Trennvorrichtung zum Verlöschen eines beim Öffnen der Kontakte entstehenden Lichtbogens. Es werden hierbei unter einer Gleichstromquelle insbesondere ein Photovoltaik (PV) - Generator (Solaranlage) und unter einer elektrischen Einrichtung insbesondere ein Wechselrichter verstanden.
Beim Schalten von höheren Gleichspannungen bis 1500V (DC) entstehen in derartigen Schalteinheiten zwischen den Kontaktzonen infolge der hohen Feldstärken (durch Gasionisation) leitfähige Kanäle, die als elektrische Lichtbögen beziehungsweise Lichtbogenplasmen bekannt sind. Der beim Trennen der Schaltkontakte entstehende Lichtbogen muss möglichst schnell gelöscht werden, da der Lichtbogen eine große Wärmemenge freisetzt (Gastemperatur von einigen Tausend Grad Kelvin), die zu einer starken Erhitzung der Schaltkontakte und der Umgebung führt. Durch diese starke Erhitzung können Schäden an der Schalteinheit, beispielsweise ein Abbrennen der Schalteinheit, und auch der übergeordneten Einbaueinheit entstehen.
Aus der DE 20 2008 010 312 U1 ist eine PV-Anlage oder Solaranlage mit einem sogenannten PV-Generator bekannt, der seinerseits aus gruppierten, zu Teilgeneratoren zusammengefassten Solarmodulen besteht. Die Solarmodule sind in Reihe geschaltet oder liegen in parallelen Strängen vor. Während ein Teilgenerator seine Gleichstromleistung über zwei Klemmen abgibt, wird die Gleichstrom- leistung des gesamten PV-Generators über einen Wechselrichter in ein Wechselspannungsnetz eingespeist. Um dabei den Verkabelungsaufwand und Leistungsverluste zwischen den Teilgeneratoren und dem zentralen Wechselrichter gering zu halten, werden sogenannte Generatoranschlusskästen nahe bei den Teilgeneratoren angeordnet. Die derart kumulierte Gleichstromleistung wird üblicherweise über ein gemeinsames Kabel zum zentralen Wechselrichter geführt.
PV-Anlagen liefern systembedingt dauerhaft einen Betriebsstrom und eine Betriebsspannung im Bereich zwischen 180V (DC) und 1500V (DC). Eine zuverlässige Trennung der elektrischen Komponenten oder Einrichtungen von der als Gleichstromquelle wirksamen PV-Anlage ist beispielsweise zu Installations-, Montage- oder Servicezwecken sowie insbesondere auch zum allgemeinen Personenschutz wünschenswert. Eine entsprechende Trennvorrichtung muss in der Lage sein, eine Unterbrechung unter Last, das heißt ohne vorheriges Abschalten der Gleichstromquelle vorzunehmen.
Zur Lasttrennung können mechanische Schalter (Schaltkontakt) eingesetzt werden. Diese haben den Vorteil, dass bei erfolgter Kontaktöffnung ebenso eine galvanische Trennung der elektrischen Einrichtung (Wechselrichter) von der Gleichstromquelle (PV-Anlage) hergestellt ist.
Derartige Schalteinheiten sind allgemein aus dem Stand der Technik bekannt. Die beim Öffnen der Kontakte unter Last entstehenden Lichtbögen werden schnell in dafür vorgesehene Löschvorrichtungen bewegt, wo die entsprechende Lichtbogenlöschung stattfindet. Die dafür benötigte Kraft erfolgt durch magnetische Felder, sogenannte Blasfelder, die typischerweise durch einen oder mehrere Permanentmagneten erzeugt werden. Durch besondere Gestaltung der Kontaktzonen und des Lichtbogenleitstücks wird der Lichtbogen in entsprechende Löschkammern geleitet, wo die Lichtbogenlöschung nach bekannten Prinzipien erfolgt.
Solche Löschkammern bestehen zum Beispiel aus Löschblechpaketen. Als Material für die Löschbleche werden üblicherweise ferromagnetische Werkstoffe eingesetzt, da das Magnetfeld, welches den Lichtbogen begleitet, in der Nähe eines ferromagnetischen Werkstoffes bestrebt ist, durch die magnetisch besser leitenden Löschbleche zu verlaufen. Dadurch entsteht eine Saugwirkung in Richtung der Löschbleche, die dazu führt, dass sich der Lichtbogen zu der Anordnung der Löschbleche bewegt und zwischen diesen aufgeteilt wird.
Bei einfachen mechanischen Schalteinheiten treten in der Praxis zahlreiche Fehlerquellen auf, die ein sicheres Schalten nachteilig beeinflussen oder gar unmöglich machen. Ein möglicher Fehler ist das Fehlen eines lichtbogenlöschenden Bauteils, wie zum Beispiel eines Löschblechs oder des Blasmagneten. Femer können auch falsch montierte Bauteile beispielsweise durch ein polverkehrtes Einlegen des Blasmagneten ebenfalls zum Versagen der Schalteinheit führen. Insbesondere bei hybriden Schaltersystemen bestehen weitere Fehlermöglichkeiten aufgrund fehlender oder fehlerhafter elektronischer Bauteile.
Um die PV-Anlage bei einem Auftreten von derartigen Fehlerfällen in einen für Mensch und Anlage sicheren Zustand zu bringen, muss der Stromkreis dauerhaft getrennt werden, damit der Bediener den Fehler erkennen und die Schalteinheit austauschen kann. Bei einem Überführen in diesen Zustand darf das Schaltgehäuse des Gerätes nicht beschädigt oder zerstört werden, so dass die stromführenden Teile isoliert bleiben. Das Überführen in einem solchen Fehlerfall geschieht durch ein sogenanntes Fail-Safe-Element der Schalteinheit, ohne dass vorab Aktivierungsmaßnahmen, beispielsweise ein manueller Eingriff oder dergleichen vorgenommen, werden muss.
Typische Fail-Safe-Elemente werden ausgelöst durch eine Überschreitung einer zulässigen materialabhängigen Stromdichte (Stromstärke pro Fläche). Dabei wird ein elektrischer Leiter durchschmolzen und der Stromkreis unterbrochen. Dies ist eine übliche Methode, um Überströme zu erkennen und abzuschalten, wie sie zum Beispiel in Schmelzsicherungen angewandt wird. Diese Methode lässt sich jedoch nicht in PV-Anlagen anwenden, da hier nicht von einer bestimmten Stromdichte beziehungsweise Stromhöhe auszugehen ist. Die Auslösung beziehungsweise Fehlerdetektion soll vielmehr stromhöhenunabhängig erfolgen. Aus der DE 10 2008 049 472 A1 ist ein Überspannungsabieiter mit mindestens einem Ableitelement, sowie mit einer Abtrennvorrichtung bekannt, bei dem einerseits ein thermisch realisierbares Abtrennen des mindestens einen Ableitelements vorgenommen werden kann. Andererseits besteht die Möglichkeit, bei weiterer energetischer, insbesondere thermischer Belastung den Kurzschlussfall herbeizuführen. Hierbei befindet sich im Bewegungsweg eines durch die Abtrennvorrichtung bewegten Leiterabschnitts zwischen einer Schmelzstelle und einem einen Gegenkontakt bildenden leitfähigen Element eine thermisch lösbare Stoppeinrichtung. Bei einer Auslösung und im Überlastfall wird die Bewegung des Leiterabschnitts durch die Stoppeinrichtung vor dem Erreichen der Endposition unterbrochen. Liegt ein Fehlerfall vor, bei dem die Abtrennvorrichtung den Strom nicht sicher unterbrechen kann und ein Lichtbogen zwischen dem festen Anschluss des Ableitelements und des Leiterabschnitts entsteht oder bestehen bleibt, was einem zusätzlichen Wärmeeintrag entspricht, wird die Stoppwirkung aufgehoben und der bewegliche Leiterabschnitt in die Endposition bewegt. Die Abschaltung des Kurzschlusses und somit die Abtrennung des Überspannungsabieiters vom Netz übernimmt in an sich bekannter Weise eine vorgeschaltete Überstromschutzeinrich- tung, insbesondere eine Sicherung.
Ein derartiges Fail-Safe-Element ist ebenso nicht für den oben geschilderten Anwendungsfall geeignet, da auch hier die Fehlerdetektion erst ab einem bestimmten Überstrom erfolgt. Ein anstehender Lichtbogen würde im Fehlerfall bei höheren Spannungen auch im Stromarbeitsbereich der Schalteinheit entstehen.
Der Erfindung liegt die Aufgabe zugrunde, eine Schalteinheit der eingangs genannten Art anzugeben, die zuverlässig und sicher eine hohe Gleichspannung schalten kann. Insbesondere soll die Schalteinheit dazu geeignet sein, eine Gleichstromunterbrechung zwischen einer Gleichstromquelle, insbesondere einem PV-Generator, und einer elektrischen Einrichtung, insbesondere einem Wechselrichter, auszuführen. Weiterhin soll die Schalteinheit dazu eingerichtet sein, einen im Fehlerfall entstehenden, nicht selbstständig verlöschenden Lichtbogen innerhalb der Schalteinheit zu löschen, ohne dass vorab Aktivierungsmaßnahmen, beispielsweise ein manueller Eingriff oder dergleichen, vorgenommen werden muss. Die Aufgabe wird erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der Unteransprüche.
Dazu umfasst die Schalteinheit zwei aus einem Gehäuse herausragende Anschlüsse, die elektrisch leitfähig über einen Leiterpfad gekoppelt sind. Zwischen dem ersten und dem zweiten Anschluss ist ein mechanisches Kontaktsystem mit zwei Kontakten angeordneten, die relativ zueinander bewegbar und aus einer Schließstellung in eine Offenstellung überführbar sind. Eine mittels einer thermischen Sicherung auslösbare Trennvorrichtung dient zum Verlöschen eines beim Öffnen der Kontakte entstehenden Lichtbogens. Die thermische Sicherung umfasst eine im Leiterpfad angeordnete Schmelzstelle, die einerseits mit dem Kontaktsystem und andererseits über einen beweglichen Leiterabschnitt mit dem ersten Anschluss verbunden ist.
Unter Last kann sich im Fehlerfall - aufgrund der hohen anliegenden Spannung zwischen den Kontaktflächen - beim Öffnen des Kontaktsystems ein nicht selbstständig verlöschender Lichtbogen bilden. Die Trennvorrichtung wird ausgelöst und die Verbindung zwischen dem Leiterabschnitt und dem Kontaktsystem an der Schmelzstelle wird aufgetrennt, wenn infolge des Lichtbogens die Schmelztemperatur der Schmelzstelle erreicht oder überschritten ist.
Der im Fehlerfall auftretende Lichtbogen ist sehr energiereich. Im Gegensatz zum Stand der Technik wird nicht die Stromdichte bei einem Überstrom, sondern die durch den Lichtbogen entstehende Wärmeenergie, die im Fehlerfall überproportional ansteigt, zur Auslösung der thermischen Sicherung beziehungsweise zum Aufschmelzen der Schmelzstelle genutzt. Dadurch ist eine Ausfallsicherung der Schalteinheit gegeben, deren Auslösung beziehungsweise Fehlerdetektierung stromhöhenunabhängig erfolgt.
Die thermische Sicherung der Schalteinheit dient somit als Fail-Safe-Element, das insbesondere für eine Anwendung in PV-Anlagen geeignet ist. Femer ist der Aus- fallschutz der Schalteinheit kostengünstig herstellbar und erfüllt somit die Anforderungen der wirtschaftlichen Herstellbarkeit.
In einer zweckmäßigen Ausführungsform ist die Schmelzstelle insbesondere eine Lötstelle, die bei einem Erreichen oder Überschreiten der Ansprechtemperatur aufgetrennt wird. Als Lotmaterial zwischen Kontaktsystem und Leiterabschnitt kann eine Schmelzlegierung, wie zum Beispiel eine Aluminium-Silizium-Zinn- Legierung oder andere allgemein bekannte, niedrigschmelzende Legierungen eingesetzt werden. Der Schmelzpunkt derartiger Legierungen liegt üblicherweise im Bereich von 150°C bis 250°C. Dadurch wird im Nennbetrieb der Strom sicher geführt, ohne dass die thermische Sicherung ausgelöst wird. Denkbar ist aber auch die Verwendung anderer temperatursensibler und elektrisch leitfähiger Materialien als Schmelzstellenmaterial, wie beispielsweise ein elektrisch leitfähiger Kunststoff.
Entsprechend des Anwendungsgebiets kann durch Auswahl der leitfähigen und/ oder isolierenden Materialien der Schalteinheit eine entsprechende Variation in der Ansprechtemperatur und/oder der Auslösezeit erreicht werden. Ferner ist es denkbar, dass bei einer geeigneten Dimensionierung und Zusammensetzung der verwendeten Materialien eine solche Schalteinheit auch für niedrigere Spannungen einsetzbar ist.
In einer vorteilhaften Weiterbildung umfasst die Trennvorrichtung ein vorgespanntes Federelement. Die Federrückstellkraft wirkt entlang einer Auftrennrichtung mittelbar oder unmittelbar auf den beweglichen Leiterabschnitt. Wird bei einem Fehlerfall die Schmelzstelle unzulässig erwärmt, so wird diese aufgeschmolzen und die Schalteinheit bewirkt infolgedessen aufgrund der Federrückstellkraft eine Netzunterbrechung. Insbesondere ermöglicht das vorgespannte Federelement somit eine selbsttätige Netzunterbrechung, ohne dass bei einem Fehlerfall eine Aktivierungsmaßnahme durch eine Person vorgenommen werden muss.
Bei einem Auftrennen der Schmelzstelle bildet sich zwischen dem Kontaktsystem einerseits und dem beweglichen Leiterabschnitt andererseits ebenfalls ein Lichtbogen. Aufgrund der Federrückstellkraft wird der Leiterabschnitt vom Kontaktsys- tem wegbewegt und somit der Lichtbogen beziehungsweise das Lichtbogenplasma künstlich verlängert. Wird dieser Lichtbogen derart gelöscht, so verlöscht auch der Lichtbogen zwischen den Kontaktflächen des Kontaktsystems. Die Gleichstromquelle ist infolgedessen von der elektrischen Einrichtung galvanisch getrennt.
In einer geeigneten Ausführung lenkt das Federelement den Leiterabschnitt bei einer Auslösung der Trennvorrichtung um einen zur Schmelzstelle beabstandeten Schwenkpunkt aus. Der zurückgelegte Schwenkwinkel ist dabei insbesondere größer oder gleich 90°. Durch das Verschwenken des Leiterabschnitts wird der zweite Lichtbogen künstlich verlängert und damit weiter abgekühlt. Durch diese zusätzliche Verlängerung beziehungsweise Abkühlung ist sichergestellt, dass der Abstand zwischen dem Kontaktsystem und dem Leiterabschnitt möglichst schnell und weit geöffnet wird, um den beim Lösen des Leiterabschnitts entstehenden (zweiten) Lichtbogen sowie den am Kontaktsystem anstehenden (ersten) Lichtbogen zu verlöschen. Die Federrückstellkraft ist dabei entsprechend groß genug gewählt, um den Leiterabschnitt möglichst schnell zu Verschwenken, so dass eine Beschädigung des Schaltgehäuses durch die Lichtbögen vorteilhaft vermieden wird.
In einer geeigneten Ausführung weist das Gehäuse der Schalteinheit eine an die Schmelzstelle angrenzende Isolierkammer auf. Bei einer erfolgten Auslösung der Trennvorrichtung wird der Leiterabschnitt infolge der Federrückstellkraft in diese Isolierkammer gedrückt. Die Isolierkammer dient zur räumlichen und somit isolierenden Trennung des Leiterabschnitts von dem Kontaktsystem, wodurch die Löschung des Lichtbogens vorteilhaft unterstützt wird.
In einer ebenso geeigneten Ausführung weist die Trennvorrichtung ein im Gehäuse beweglich gehaltenes Trennelement auf, welches gegen den Leiterabschnitt geführt ist. Die Schmelzstelle ist naturgemäß empfindlich gegen auf sie einwirkende äußere Kräfte. Aufgrund der erwähnten Federrückstellkraft der Trennvorrichtung auf den Leiterabschnitt wird die Schmelzstelle relativ stark belastet. Durch das Trennelement kann die Rückstellkraft auf einer größeren Auflagefläche am Leiterabschnitt wirksam ansetzten. Mit anderen Worten heißt dies, dass das resultierende Drehmoment, das an der Schmelzstelle wirkt, vorteilhaft verringert wird. Dadurch liegt weniger mechanische Beanspruchung an der Schmelzstelle an.
In einer geeigneten Ausbildungsform der Erfindung setzt das Trennelement zudem nahe der Schmelzstelle am Leiterabschnitt an, so dass der Kraftarm und somit das wirkende Drehmoment an der Schmelzstelle weiter verringert wird. Dieses Drehmoment, beziehungsweise die Kraftarmlänge und/oder die Trennelementbemessung, kann als ein zusätzlicher Parameter zur Dimensionierung der Ansprechtemperatur und/oder der Auslösezeit der Ausfallsicherung der Schalteinheit beziehungsweise der Trennvorrichtung verwendet werden.
In einer zweckmäßigen Weiterführung wird der Leiterabschnitt nach einer Auslösung der Trennvorrichtung gegenüber der Schmelzstelle durch das Trennelement zumindest teilweise isolierend abgedeckt, wodurch der Lichtbogen vorteilhaft unterdrückt wird.
In einer zweckmäßigen Ausgestaltung der Schalteinheit ist das Trennelement im Gehäuse schiebebeweglich geführt und wird beim Auslösen der Trennvorrichtung, durch die Federrückstell kraft, gemeinsam mit dem Leiterabschnitt in die Isolierkammer verfahren. Dadurch wird der Leiterabschnitt im ausgelösten Zustand völlig abgedeckt. Bei einer Auslösung der Trennvorrichtung wird der weitere Lichtbogen, aufgrund des Verschwenkens des Leiterabschnitts, zwischen dem Trennelement und der Isolierkammer eingequetscht. Durch die Einquetschung wird eine besonders schnelle und sichere Löschung des Lichtbogens sichergestellt.
In einer bevorzugten Ausführungsform ist das Federelement hierbei eine Schraubend ruckfeder, die das Trennelement entlang der Auftrennrichtung in die Isolierkammer drückt. Das Trennelement und die Isolierkammer sind hierzu geometrisch komplementär gestaltet, so dass der Lichtbogen in der Kammer einquetschbar und der Leiterabschnitt vom Trennelement gegenüber dem Kontaktsystem vollständig verdeckbar ist. Die Einquetschlänge ist dabei zweckmäßig an die Leistungsparameter der Gleichstromquelle anpassbar. In einer alternativen, ebenso vorteilhaften Ausgestaltung der Schalteinheit ist das Trennelement im Gehäuse drehbeweglich gehalten. Bei einem Auslösen der Trennvorrichtung wird der Leiterabschnitt durch das Trennelement um den von der Schmelzstelle beabstandeten Schwenkpunkt verschwenkt. In einer zweckmäßigen Ausführungsform ist das Federelement eine Schenkelfeder, durch die ein
Schwenkhebel den Leiterabschnitt im Fehlerfall verschwenkt.
In einfacher Gestaltung der Erfindung umfasst das Kontaktsystem einen Beweg- und einen Festkontakt. Zwischen dem Festkontakt und der Schmelzstelle ist ein elektrisch leitfähiger Kontaktträger angeordnet, der den Festkontakt und die Schmelzstelle wärmeleitend koppelt. Anstelle eines Beweg- und eines Festkontaktes können auch zwei bewegliche Kontakte vorgesehen sein. Die Wärmekapazität oder der Schmelzpunkt des Kontaktträgers ist hierbei höher als die bzw. derjenigen der Schmelzstelle. In einer zweckmäßigen Ausführungsform ist der Kontaktträger aus einem thermisch und elektrisch gut leitenden Material ausgeführt, wie beispielsweise Kupfer, so dass eine schnelle und zuverlässige Auslösung der Trennvorrichtung sichergestellt ist. Um die Wärmeleitfähigkeit (Wärmefluss pro Querschnittsfläche und Temperaturgradient) zu unterstützen, kann der Kontaktträger entsprechend gestaltet und dimensioniert werden, beispielsweise durch eine Verjüngung am Träger.
In einer geeigneten Weiterbildung ist der Bewegkontakt über einen Auslösemechanismus mit einem Kipphebel zum manuellen Betätigen des Kontaktsystems gekoppelt. In einer typischen Ausführungsform bilden der Auslösemechanismus, der Bewegkontakt und der Festkontakt ein (mechanisches) Sprungkontaktsystem. Bei einem solchen Sprungkontakt werden - infolge bei einer Betätigung - die Kontakte typischerweise durch eine vorgespannte Schenkelfeder möglichst schnell voneinander entfernt, typischerweise in wenigen Millisekunden. Dadurch ist im Normalfall ein (erster) entstehender Lichtbogen löschbar, so dass die Trennvorrichtung nicht ausgelöst wird. In einer typischen Ausführung der Schalteinheit ist der bewegbare Leiterabschnitt ein flexibles Verbindungselement, insbesondere ein Litzenleiter, dessen Festende mit dem ersten Anschluss unlösbar und dessen Losende an der Schmelzstelle, vorzugsweise mit dem Kontaktträger, verlötet ist.
In einer ebenso typischen Ausführung nimmt das Gehäuse der Schalteinheit den Leiterpfad, das mechanische Kontaktsystem, die Trennvorrichtung und die thermische Sicherung auf. Dadurch sind die stromführenden Teile der Schalteinheit von der Umgebung isoliert. Insbesondere wird hiermit vorteilhafterweise eine die Schalteinheit betätigende Person gegen die hohen anliegenden Spannungen und Strömen geschützt.
In einer vorteilhaften Ausgestaltung sind das Gehäuse und das Trennelement aus einem thermisch stabilen Kunststoffmaterial, insbesondere aus einem Duroplast- Werkstoff, gefertigt. Dadurch wird sichergestellt, dass durch die hohe Wärmeentwicklung aufgrund des Lichtbogens das Schaltgehäuse nicht beschädigt oder zerstört wird. Dadurch bleiben die stromführenden Teile bei einem Fehlerfall berührungssicher weiter isoliert. Ferner wird sichergestellt, dass das Trennelement nicht durch den zweiten Lichtbogen im Bereich der Schmelzstelle beschädigt oder zerstört wird. Dadurch kann das Trennelement bei einem Fehlerfall zuverlässig die Schalteinheit vom Netz trennen.
In einer geeigneten Ausführung sind das Trennelement und/oder die Isolierkammer aus einem im Brandfall ausgasenden Kunststoffmaterial, insbesondere aus Polyamid, gefertigt. Ebenso geeignet sind beispielsweise auch Polycarbonat oder Polyoxymethylen. Die Kunststoff-Ausgasungen tragen vorteilhaft zu einem schnellen Verlöschen des (zweiten) Lichtbogens bei. Insbesondere behindern die Gase eine Ionisierung des Luftspalts im Bereich der aufgelösten Schmelzstelle beziehungsweise lassen diese schneller abklingen.
Das Zusammenspiel mit der Wahl geeigneter Kunststoffe für Gehäuse, Isolierkammer und Trennelement, der Form und des Werkstoffs des Kontaktträgers und der Dimensionierung der Einquetschung sowie des wirkenden Drehmoments an der Schmelzstelle ermöglichen ein exaktes Auslösen der Trennvorrichtung im Fehlerfall und ein zuverlässiges Verlöschen des Lichtbogens.
Bezüglich einer Abtrennvorrichtung zur Gleichstromunterbrechung zwischen einer Gleichstromquelle und einer elektrischen Einrichtung, insbesondere zwischen einem PV-Generator und einem Wechselrichter, wird die genannte Aufgabe gelöst durch die Merkmale des Anspruchs 16. Danach umfasst die Vorrichtung eine stromführende erfindungsgemäße Schalteinheit.
In einer zweckmäßigen Ausführungsform der Schalteinheit sind hierzu die Anschlüsse und das Gehäuse für eine Leiterplattenmontage geeignet und eingerichtet. Beim bevorzugten Einsatz der Schalteinheit ist die Abtrennvorrichtung daher zur zuverlässigen und berührungssicheren galvanischen Gleichstromunterbrechung sowohl zwischen einer PV-Anlage und einem dieser zugeordneten Wechselrichter als auch in Verbindung mit beispielsweise einer Brennstoffzellen-Anlage oder einem Akkumulator (Batterie) besonders geeignet.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
Fig. 1 in einem Blockschaltbild die erfindungsgemäße Schalteinheit mit einem
Fail-Safe-System zwischen einem PV-Generator und einem Wechselrichter,
Fig. 2 in einer Schnittdarstellung die Schalteinheit in einem geschlossenen
Schaltzustand,
Fig. 3 in einer Schnittdarstellung die Schalteinheit gemäß Fig. 1 beim Öffnen des mechanischen Kontaktsystems und bei Bildung eines Lichtbogens, Fig. 4 in einer Schnittdarstellung die Schalteinheit gemäß Fig. 1 und Fig. 2 nach einer Auslösung des Fail-Safe-Systems,
Fig. 5 in einer Explosionsdarstellung die Schalteinheit,
Fig. 6 in einer Ausschnittsdarstellung die Trennvorrichtung,
Fig. 7 in einer Schnittdarstellung ausschnittsweise die Schalteinheit mit einer alternativen Trennvorrichtung, und Fig. 8 in einer Schnittdarstellung ausschnittsweise die Schalteinheit gemäß Fig.6 im ausgelösten Fail-Safe-Zustand.
Einander entsprechende Teile und Größen sind in allen Figuren stets mit den gleichen Bezugszeichen versehen.
Fig. 1 zeigt schematisch eine Schalteinheit 1 , die im Ausführungsbeispiel zwischen einem PV-Generator 2 und einem Wechselrichter 3 geschaltet ist. Der PV- Generator 2 umfasst eine Anzahl an Solarmodulen 4, die zueinander parallel liegend an einem gemeinsamen Generatoranschlusskasten 5 geführt sind, der effektiv als Sammelpunkt dient.
Die Schalteinheit 1 umfasst im den Pluspol repräsentierenden Hauptstrompfad 6 im Wesentlichen zwei Teilsysteme zur galvanischen Gleichstromtrennung des PV- Generators 2 vom Wechselrichter 3. Das erste Teilsystem ist ein manuell betätigbares mechanisches Kontaktsystem 7, das zweite Teilsystem ist ein im Fehlerfall selbstständig auslösendes Fail-Safe-System 8. In der den Minuspol repräsentierenden Rückführleitung 9 der Schalteinheit 1 - und damit der Gesamtanlage - können in nicht näher dargestellter Art und Weise weitere Kontakt- und Fail- Safe-Systeme 7, 8 geschaltet sein.
Die Fig. 2 bis 6 zeigen eine Variante der erfindungsgemäßen Schalteinheit 1 in detaillierter Darstellung. Die Schalteinheit 1 umfasst ein Gehäuse 10 aus dem zwei Anschlüsse (Außenanschlüsse) 1 1 und 12 herausragen. Die Schalteinheit 1 ist über die Anschlüsse 11 und 12 in den Hauptstrompfad 6 zwischen dem PV- Generator 2 und dem Wechselrichter 3 geschaltet.
Das Kontaktsystem 7 umfasst weiterhin einen über einen Kipphebel 13 und einen Koppelhebel 14 manuell betätigbaren Kontaktbügel 15 als Bewegkontakt und einem Kontaktträger 16 als Festkontakt gebildet wird. Die Kontakte oder Kontaktflächen 17a und 17b zwischen dem Kontaktbügel 15 und dem Kontaktträger 16 sind als plättchenartige Kontaktelemente ausgeführt. Der Kontaktbügel 15 ist über einen festen Litzenleiter 18 elektrisch leitfähig mit dem Anschluss 11 gekoppelt, wobei sowohl die Verbindung zwischen dem Kontaktbügel 15 und dem Litzenleiter 18 als auch die Verbindung zwischen Litzenleiter 18 und Anschluss 11 als eine Schweißverbindung ausgeführt ist. Der Kontaktbügel 15 ist im Wesentlichen hammerförmig und aus einem elektrisch leitenden Metall gefertigt, wobei die Kontaktfläche 17a am Hammerkopf-Ende angeordnet ist und in der Schließstellung der Schalteinheit 1 (Fig. 2) auf der Kontaktfläche 17b aufliegt.
Der Kontaktträger 16 ist aus Kupfer hergestellt, so dass dieser eine hohe elektrische und thermische Leitfähigkeit aufweist. Der Kontaktträger 16 hat im Wesentlichen die Form einer Stufe, wobei an der oberen Stufenkante die Kontaktfläche 17b angeordnet ist. Der Stufenkörper des Kontaktträgers 15 hat einen verjüngten Querschnitt, um dessen Wärmeleitfähigkeit zu erhöhen. An der unteren Stufenkante ist über ein Lot 19 ein beweglicher Litzenleiter 20 elektrisch leitfähig gekoppelt.
Der Litzenleiter 20 kann eine elektrisch isolierende Schirmung 21 aufweisen, welche an seinen beiden Enden entfernt ist. Eines der Leiterenden (Festende) des Litzenleiters 20 ist mit dem Anschluss 12 unlösbar durch Schweißen verbunden, während das andere Leiterende (Losende) mit dem Lot 19 am Kontaktträger 15 verlötet ist.
In der Schließstellung der Schalteinheit 1 ist der Stromkreis somit über die beiden Anschlüsse 1 1 und 12 und den Hauptstrompfad 6 geschlossen. Der Strom fließt durch einen somit gebildeten Leiterpfad 22, umfassend den Anschluss 11 , den Litzenleiter 18, den Kontaktbügel 15, die Kontaktflächen 17a und 17b, den Kontaktträger 16, das Lot 19, den Litzenleiter 20 und den Anschluss 12. Der Leiterpfad 22 verläuft etwa U-förmig innerhalb des Gehäuses 10.
Das Gehäuse 10 besteht aus einem elektrisch isolierenden und wärmebeständigen Kunststoff und wird - wie in Fig. 5 ersichtlich - aus zwei komplementären Gehäusehalbschalen 10a und 10b gebildet. Die Halbschalen 10a und 10b können durch vier Bohrungen 23 mit Hilfe von nicht weiter dargestellten Schrauben oder Nieten miteinander verbunden werden. Die Bohrungen 23 sind in etwa an den Eckpunkten eines gedachten Vierecks gleichmäßig am Gehäuse 10 verteilt angeordnet.
Das Gehäuse 10 weist einen etwa rechteckigen Querschnitt auf, so dass eine einfache Montage von mehreren nebeneinander angeordneten Schalteinheiten 1 auf einer gemeinsamen Leiterplatte möglich ist. Das Gehäuse 10 hat einen näherungsweise U-förmigen Umfang, wobei die beiden U-Schenkel durch einen waagerechten Teil miteinander verbunden sind. Aus diesem waagrechten Teil ragen die beiden Anschlüsse 11 und 12 und an der U-Basis zumindest teilweise der Kipphebel 13 heraus. Ferner sind die Halbschalen 10a und 10b mit entsprechenden Innen-Profil-Strukturen ausgeführt, in die die einzelnen Bestandteile der Schalteinheit 1 formschlüssig oder mit Spiel einsetzbar sind.
Der Kipphebel 13 dient nicht nur zum Öffnen und Schließen des Kontaktsystems 7, sondern auch als äußere optische Anzeige des Schaltzustandes der Schalteinheit 1 , wie in Fig. 4 ersichtlich, bei dem der Kipphebel 13 in der Offenstellung ist. Bei einer manuellen Betätigung des Kipphebels 13 wird eine äußere Kraft zur Kippung des Schalters durch ein Gelenksystem 24 in eine Schwenkbewegung des Kontaktbügels 15 umgesetzt.
Das Fail-Safe-System 8 stellt eine dauerhafte galvanische Trennung zwischen dem PV-Generator 2 und dem Wechselrichter 3 sicher. Das Fail-Safe-System 8 umfasst den Kontaktträger 16, das Lot 19, den Litzenleiter 20, eine Trennvorrichtung 27 mit einer spiralförmigen Schraubendruckfeder 28 und einen Schieber 29 sowie eine Isolierkammer 30. Diese Ausführungsvariante der Trennvorrichtung 27 ist in Fig. 6 näher dargestellt.
Die Schraubendruckfeder 28 liegt in einer Führungskammer 31 des Gehäuses 10 ein, wobei ein zapfenähnlicher Fortsatz 32 der Führungskammer 31 zumindest teilweise von der Schraubendruckfeder 28 umschlossen wird. Die Schraubendruckfeder 28 drückt aufgrund einer Federrückstellkraft F den Schieber 29 gegen den Litzenleiter 20. Der Schieber 29 weist einen als Finger 33 ausgebildeten Fortsatz auf, der unmittelbar gegen den Litzenleiter 20 drückt. Der Finger 33 setzt dabei nahe des Lots 19 an, so dass das an der Lötung wirkende Drehmoment aufgrund der Federrückstellkraft F möglichst gering ist.
Die Führungskammer 31 und die Isolierkammer 30 liegen auf einer Höhe entlang einer Auftrennrichtung A und werden durch den dazu senkrecht verlaufenden Litzenleiter 20 voneinander getrennt. Die Führungskammer 31 und die Isolierkammer 30 haben weiterhin den gleichen (schieberförmigen) Querschnitt.
Im Fehlerfall erhitzt ein entstehender Lichtbogen 26 aufgrund der überproportional ansteigenden Wärmeentwicklung die Kontaktflächen 17a und 17b und damit auch den Kontaktträger 16. Aufgrund dessen hoher Wärmekapazität wird das Lot 19 in einem vergleichbaren Maße erhitzt und letztendlich aufgeschmolzen. Infolgedessen wird durch die Federrückstellkraft F der Schraubendruckfeder 28 der Schieber
29 entlang der Auftrennrichtung A in die Isolierkammer 30 verschoben. Der Schieber 29 und die Isolierkammer 30 sind geometrisch komplementär ausgebildet, so dass sie problemlos ineinander verschiebbar sind. Die Einquetschlänge der Isolierkammer 30 ist dabei zweckmäßig an die Leistungsparameter des PV- Generators 2 angepasst.
Während des Verschiebens des Schiebers 29 in die Isolierkammer 30 wird der Litzenleiter 20 um einen Drehpunkt 34 verschwenkt, und letztendlich um etwa 90° abgeknickt (Fig. 4). Beim Aufschmelzen und Auftrennen des Lots 19 bildet sich ein zweiter Lichtbogen (nicht gezeigt) zwischen dem Kontaktträger 16 und dem Losende des Litzenleiters 20, der näherungsweise entlang deren Verbindungslinie im aufgetrennten Zustand verläuft. Dieser zweite Lichtbogen wird durch die Verschiebung des Schiebers 29 einerseits verlängert, und dadurch abgekühlt, und andererseits aufgrund der Passform zwischen dem Schieber 29 und der Isolierkammer
30 zwischen selbigen eingequetscht und somit gelöscht. Sobald der zweite Lichtbogen verloschen ist, sind der Kontaktträger 16 und der Litzenleiter 20 galvanisch getrennt, wodurch auch gleichzeitig der Lichtbogen 26 verlöscht wird. Der Finger 33 begünstigt die Auftrennung der Lötung und kapselt den zweiten Lichtbogen beim Anschlag am Boden der Isolierkammer 30 vollständig ein beziehungsweise ab.
Sowohl der Schieber 29 als auch die Innenwände der Isolierkammer 30 können aus einem ausgasenden und elektrisch isolierenden Kunststoffmaterial hergestellt sein. Durch die Wärmeentwicklung in der Umgebung des zweiten Lichtbogens, insbesondere im Bereich der Trennvorrichtung 27, werden von diesen Kunststoffmaterialien Gase freigesetzt. Die Gase behindern eine Ionisierung des Luftspalts im Bereich des aufgelösten Lots 19 beziehungsweise lassen die Ionisierung schneller abklingen. Dadurch ist der zweite Lichtbogen leichter durch die Trennvorrichtung 27 löschbar.
Der Leiterpfad 22 der Schalteinheit 1 weist im ausgelösten Zustand (Fig. 4) demnach zwei galvanische Trennstellen auf, nämlich einerseits zwischen den Kontaktflächen 17a und 17b sowie andererseits zwischen dem Kontaktträger 16 und dem Losende des Litzenleiters 20. Die Materialien und Dimensionierungen der Schalteinheit 1 und ihrer Trennvorrichtung 27 sind entsprechend dimensioniert, um auch bei einem Fehlerfall innerhalb weniger Millisekunden eine galvanische Gleichstromunterbrechung zwischen dem PV-Generator 2 und dem Wechselrichter 3 sicherzustellen.
Anhand der Fig. 7 und Fig. 8 wird nachfolgend eine zweite Ausführungsvariante der Schalteinheit 1 mit einer Trennvorrichtung 27' erläutert, wobei zugunsten der besseren Übersichtlichkeit nur die für das Fail-Safe-System 8 relevante zweite Hälfte des Leiterpfads 22 (der Kontaktträger 16, das Lot 19, der Litzenleiter 20 und der Anschluss 12) dargestellt ist. Die Trennvorrichtung 27' umfasst eine vorgespannte Schenkelfeder 35, einen etwa hakenartigen Schwenkkopf oder -hebel 36 und eine Isolierkammer 30'. Das Innenprofil des Gehäuses 2 ist entsprechend der Trennvorrichtung 27' eingerichtet und gestaltet.
Die Isolierkammer 30' ist in dieser Ausführung im Wesentlichen die untere Hälfte (von der Hutleiste 12 aus) des Gehäuses 10. Der Schwenkkopf (Schwenkhebel) 36 ist näherungsweise L-förmig, wobei sowohl der Schwenkkopf 36 als auch die Isolierkammer 30' aus einem ausgasenden elektrisch isolierenden Kunststoffmate- rial hergestellt sind. Die obere Ecke 36a des horizontalen L-Schenkels des
Schwenkkopfs 36 setzt in einer ähnlichen Weise an der Litze 20 an, wie der Finger 33 in der vorher beschriebenen Variante. Am unteren Ende des vertikalen L- Schenkels des Schwenkkopfs 36 ist die vorgespannte Schenkelfeder 35 angeordnet. Durch die Schenkelfeder 35 ist der Schwenkkopf 36 schwenk- beziehungsweise drehbeweglich gehalten.
Bei einem Aufschmelzen des Lots 19 infolge der Wärmeentwicklung des Lichtbogens 26 verschwenkt die Schenkelfeder 35 den Schwenkkopf 36 aufgrund einer Federrückstellkraft F'. Dabei wird die Litze 19 um den Drehpunkt 34' um einen Winkel von etwa 90° in Richtung der unteren rechte Ecke des Gehäuses 10 beziehungsweise der Isolierkammer 30' verschwenkt.
Im Gegensatz zum ersten Ausführungsbeispiel wird der Lichtbogen nicht eingequetscht, sondern lediglich künstlich verlängert, so dass das Lichtbogenplasma aufgrund der daraus resultierenden Abkühlung löschbar ist. Der Lichtbogen wird dabei im Vergleich zum ersten Ausführungsbeispiel wesentlich stärker verlängert, da der Litzenleiter 20 nicht in Richtung der rechten Seitenwand gedrückt, sondern in die untere Ecke verschwenkt wird. Die Schalteinheit 1 ist mit der Trennvorrichtung 27' dazu eingerichtet und geeignet, innerhalb weniger Millisekunden eine galvanische Gleichstromunterbrechung zwischen dem PV-Generator 2 und dem Wechselrichter sicherzustellen, sowohl im Normal- als auch im Fehlerfall.
In einer geeigneten Dimensionierung der Gehäuseabmessung ist die waagerechte hutschienenseitige Auflagefläche des Gehäuses 10 etwa 4 cm breit, die Seitenkanten des Gehäuses etwa 6 cm lang und das Gehäuse 10 circa 2 cm tief. Der Abstand der Kontaktflächen 17a und 17b ist in der Offenstellung etwa 1 cm und der Abstand zwischen dem Kontaktträger 15 und dem Losende des Litzenleiters 20 nach einer Auslösung der Trennvorrichtung 27 beziehungsweise 27' mindestens 1 ,5 cm. Die Kunststoffe für Gehäuse 10 , Isolierkammer 30/ 30' und Schieber 29 beziehungsweise Schwenkkopf 35, die Form und der Werkstoff des Kontakt- trägers 16 sowie das am Lot 19 wirkende Drehmoment sind so gewählt, dass die Schalteinheit 1 eine Nennspannung von ungefähr 1500 V (DC) hat.
Die Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr können auch andere Varianten der Erfindung von dem Fachmann hieraus abgeleitet werden ohne den Gegenstand der Erfindung zu verlassen. Insbesondere sind femer alle im Zusammenhang mit den verschiedenen Ausführungsbeispielen beschriebenen Einzelmerkmale auch auf andere Weise miteinander kombinierbar, ohne den Gegenstand der Erfindung zu verlassen.
Bezugszeichenliste
1 Schalteinheit 19 Lot
2 PV-Generator 20 Litzenleiter
3 Wechselrichter 21 Schirmung
4 Solarmodul 22 Leiterpfad
5 Anschlusskasten 23 Bohrung
6 Hauptstrompfad 24 Gelenksystem
7 Kontaktsystem 26 Lichtbogen
8 Fail-Safe-System 27, 27' Trennvorrichtung
9 Rückführleitung 28 Schraubendruckfeder
10 Schaltgehäuse 29 Schieber
10a, 10b Halbschale 30, 30' Isolierkammer
1 1 , 12 Anschluss 31 Führungskammer
13 Kipphebel 32 Führungsfortsatz
14 Koppelhebel 33 Fingerfortsatz
15 Kontaktbügel 34 Drehpunkt
16 Kontaktträger 35 Schenkelfeder
17a, 17b Kontaktfläche 36 Schwenkkopf/-hebel
18 Litzenleiter 36a Schwenkkopfspitze
A Auftrennrichtung
F, F' Federkraft

Claims

Ansprüche
1. Schalteinheit (1 ) zum Schalten von hohen Gleichspannungen, mit zwei aus einem Gehäuse (10) herausragenden Anschlüssen (11 , 12), die elektrisch leitend über einen Leiterpfad (22) gekoppelt sind, und mit einem zwischen dem ersten und dem zweiten Anschluss (1 1 , 12) angeordneten mechanischen Kontaktsystem (7) mit zwei Kontakten (15, 16), die relativ zueinander bewegbar und aus einer Schließstellung in eine Offenstellung überführbar sind, sowie mit einer mittels einer thermischen Sicherung (8) auslösbaren Trennvorrichtung (27, 27') zum Verlöschen eines beim Öffnen der Kontakte (15, 16) entstehenden Lichtbogens (26),
dadurch gekennzeichnet,
dass die thermische Sicherung (8) eine im Leiterpfad (22) angeordnete Schmelzstelle (19) umfasst, die einerseits mit dem Kontaktsystem (7) und andererseits über einen beweglichen Leiterabschnitt (20) mit dem ersten Anschluss (12) verbunden ist, wobei die Trennvorrichtung (27, 27') ausgelöst und die Verbindung zwischen dem Leiterabschnitt (20) und dem Kontaktsystem (7) an der Schmelzstelle (19) aufgetrennt wird, wenn infolge des Lichtbogens (26) die Schmelztemperatur der Schmelzstelle (19) erreicht oder überschritten ist.
2. Schalteinheit (1 ) nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Trennvorrichtung (27, 27') ein vorgespanntes Federelement (28, 35) umfasst, dessen Federkraft (F, F') entlang einer Auftrennrichtung (A) mittelbar oder unmittelbar auf den Leiterabschnitt (20) wirkt.
3. Schalteinheit (1 ) nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass das Federelement (28, 35) den Leiterabschnitt (20) beim Auslösen der Trennvorrichtung (27, 27') um einen zur Schmelzstelle (19) beabstandeten Schwenkpunkt (34) umlenkt.
Schalteinheit (1 ) nach Anspruch 3,
dadurch gekennzeichnet,
dass die Trennvorrichtung (27, 27') den Leiterabschnitt (20)
Schwenkwinkel größer oder gleich 90° umlenkt.
5. Schalteinheit (1 ) nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass das Gehäuse (10) eine an die Schmelzstelle (19) angrenzende Isolierkammer (30, 30') aufweist, in der der Leiterabschnitt (20) nach erfolgter Auslösung der Trennvorrichtung (27, 27') einliegt.
6. Schalteinheit (1 ) nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass die Trennvorrichtung (27, 27') ein im Gehäuse (10) beweglich gehaltenes Trennelement (29, 36) aufweist, das gegen den Leiterabschnitt (20) geführt ist.
7. Schalteinheit (1 ) nach Anspruch 6,
dadurch gekennzeichnet,
dass das Trennelement (29, 36) nach erfolgter Auslösung den Leiterabschnitt (20) gegenüber der Schmelzstelle (19) zumindest teilweise isolierend abdeckt.
8. Schalteinheit (1 ) nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass das Trennelement (29) im Gehäuse (10) schiebebeweglich geführt ist und beim Auslösen der Trennvorrichtung (27) zusammen mit dem Leiterabschnitt (20) in die Isolierkammer (30) einfährt.
9. Schalteinheit (1 ) nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
dass das Trennelement (36) im Gehäuse (10) drehbeweglich gehalten ist und beim Auslösen der Trennvorrichtung (27') den Leiterabschnitt (20) um den zur Schmelzstelle (19) beabstandeten Schwenkpunkt (34) verschwenkt.
Schalteinheit (1 ) nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
dass das Kontaktsystem (7) einen Bewegkontakt (17a) und einen Festkontakt (17b) oder zwei bewegliche Kontakte (17a, 17b) aufweist, wobei die Schmelzstelle (19) über einen elektrisch leitfähigen Kontaktträger (16) wärmeleitend an den Festkontakt (17b) bzw. an einen der beweglichen Kontakte (17b) gekoppelt ist.
11. Schalteinheit (1 ) nach Anspruch 10,
dadurch gekennzeichnet,
dass der Bewegkontakt (15) über einen Auslösemechanismus (24, 25) mit einem Kipphebel (13) zum Betätigen des Kontaktsystems (7) gekoppelt ist.
12. Schalteinheit (1 ) nach einem der Ansprüche 1 bis 11 ,
dadurch gekennzeichnet,
dass der bewegbare Leiterabschnitt (20) ein flexibles Verbindungselement ist, insbesondere in Form eines Litzenleiters (20), dessen Festende mit dem ersten Anschluss (12) unlösbar und dessen Losende an der Schmelzstelle (19), vorzugsweise mit dem Kontaktträger (16), verlötet ist.
13. Schalteinheit (1 ) nach einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet, dass das Gehäuse (10) den Leiterpfad (22), das mechanische Kontaktsystem (7), die Trennvorrichtung (27, 27') und die thermische Sicherung (8) aufnimmt.
14. Schalteinheit (1 ) nach einem der Ansprüche 1 bis 13,
dadurch gekennzeichnet,
dass das Gehäuse (10) und das Trennelement (29, 36) aus einem thermisch stabilen Kunststoffmaterial, insbesondere aus einem Duroplast-Werkstoff, gefertigt sind.
15. Schalteinheit (1 ) nach einem der Ansprüche 1 bis 14,
dadurch gekennzeichnet,
dass Trennelement (29, 36) und/oder die Isolierkammer (30, 30') aus einem im Brandfall ausgasenden Kunststoffmaterial, insbesondere aus Polyamid, gefertigt sind.
16. Trennvorrichtung (27, 27') zur Gleichstromunterbrechung zwischen einer Gleichstromquelle und einer elektrischen Einrichtung, insbesondere zwischen einem Photovoltaik-Generator (2) und einem Wechselrichter (3), mit einer stromführenden Schalteinheit (1 ) nach einem der Ansprüche 1 bis 15.
PCT/EP2011/005616 2011-01-25 2011-11-09 Schalteinheit zum schalten von hohen gleichspannungen WO2012100793A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2785605A CA2785605C (en) 2011-01-25 2011-11-09 Switchgear unit for switching high dc voltages
KR1020127017023A KR101521074B1 (ko) 2011-01-25 2011-11-09 직류 고전압을 스위칭하기 위한 개폐기
SG2012048427A SG182295A1 (en) 2011-01-25 2011-11-09 Switchgear unit for switching high dc voltages
PL11790724T PL2502251T3 (pl) 2011-01-25 2011-11-09 Jednostka łącznikowa do łączenia wysokich napięć stałych
ES11790724T ES2403489T3 (es) 2011-01-25 2011-11-09 Unidad de conmutación para conmutar tensiones continuas elevadas
AU2011338139A AU2011338139B2 (en) 2011-01-25 2011-11-09 Switchgear unit for switching high DC voltages
CN201180005134.7A CN102725812B (zh) 2011-01-25 2011-11-09 用于切换高直流电压的开关单元及其隔离装置
EP11790724A EP2502251B1 (de) 2011-01-25 2011-11-09 Schalteinheit zum schalten von hohen gleichspannungen
US13/537,918 US8766760B2 (en) 2011-01-25 2012-06-29 Switchgear unit for switching high DC voltages
HRP20130376AT HRP20130376T1 (en) 2011-01-25 2013-04-29 Switching unit for switching high dc voltages

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE202011001891.1 2011-01-25
DE202011001891 2011-01-25
DE102011015449.3A DE102011015449B4 (de) 2011-01-25 2011-03-30 Schalteinheit zum Schalten von hohen Gleichspannungen
DE102011015449.3 2011-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/537,918 Continuation US8766760B2 (en) 2011-01-25 2012-06-29 Switchgear unit for switching high DC voltages

Publications (1)

Publication Number Publication Date
WO2012100793A1 true WO2012100793A1 (de) 2012-08-02

Family

ID=46510887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/005616 WO2012100793A1 (de) 2011-01-25 2011-11-09 Schalteinheit zum schalten von hohen gleichspannungen

Country Status (13)

Country Link
US (1) US8766760B2 (de)
EP (1) EP2502251B1 (de)
KR (1) KR101521074B1 (de)
CN (1) CN102725812B (de)
AU (1) AU2011338139B2 (de)
CA (1) CA2785605C (de)
DE (2) DE102011015449B4 (de)
ES (1) ES2403489T3 (de)
HR (1) HRP20130376T1 (de)
PL (1) PL2502251T3 (de)
PT (1) PT2502251E (de)
SG (1) SG182295A1 (de)
WO (1) WO2012100793A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013202882A1 (de) * 2013-02-21 2014-08-21 Phoenix Contact Gmbh & Co. Kg Verfahren zur Herstellung einer DC-geeigneten thermischen Schaltvorrichtung (S) zur Absicherung von einem oder mehreren elektronischen Bauteilen (EC).
CN104052022A (zh) * 2013-03-12 2014-09-17 天津永明新能源科技有限公司 一种火灾时通过安装高温熔断器切断光伏发电的方法
CN103198984B (zh) * 2013-04-10 2015-05-27 四川中光防雷科技股份有限公司 一种高安全性电涌保护器
DE102013213947A1 (de) * 2013-07-16 2015-02-19 Robert Bosch Gmbh Baugruppe zur Absicherung einer elektrochemischen Speicherzelle
US9552951B2 (en) * 2015-03-06 2017-01-24 Cooper Technologies Company High voltage compact fusible disconnect switch device with magnetic arc deflection assembly
FR3039924B1 (fr) * 2015-08-07 2019-05-10 Supergrid Institute Appareil de coupure mecanique d'un circuit electrique
US9842719B2 (en) * 2016-02-04 2017-12-12 Cooper Technologies Company Fusible switch disconnect device for DC electrical power system
US10854414B2 (en) 2016-05-11 2020-12-01 Eaton Intelligent Power Limited High voltage electrical disconnect device with magnetic arc deflection assembly
CN106656271B (zh) * 2016-11-27 2023-07-21 西安科技大学高新学院 一种载波通信电流环信号耦合装置
KR101901618B1 (ko) 2017-03-27 2018-09-27 엘에스산전 주식회사 회로 차단기
US10629391B2 (en) * 2017-12-21 2020-04-21 Eaton Intelligent Power Limited Fusible safety disconnect in solid state circuit breakers and combination motor starters
US10636607B2 (en) 2017-12-27 2020-04-28 Eaton Intelligent Power Limited High voltage compact fused disconnect switch device with bi-directional magnetic arc deflection assembly
CN109003411B (zh) * 2018-08-27 2024-04-02 佛山市高明毅力温控器有限公司 一种防火探测报警器
CN109813019A (zh) * 2019-01-08 2019-05-28 江苏汇商电器有限公司 一种用于控制制冷压缩机通断的压力式温控器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796980A (en) * 1972-07-31 1974-03-12 Westinghouse Electric Corp Disposable circuit breaker
US5936495A (en) * 1994-05-06 1999-08-10 Miklinjul Corporation Fuse switch
EP1953788A1 (de) * 2007-02-01 2008-08-06 Schneider Electric Industries S.A.S. Vorrichtung zum Schutz gegen Überspannungen mit beweglicher Elektrode und Entriegelungssystem der Verbindungsunterbrechungsvorrichtung
DE202008010312U1 (de) 2008-07-31 2008-10-02 Phoenix Solar Ag Photovoltaische Anlage und Generatoranschlusskasten in einer photovoltaischen Anlage
DE102008049472A1 (de) 2007-10-16 2009-09-10 Dehn + Söhne Gmbh + Co. Kg Überspannungsableiter mit mindestens einem Ableitelement, insbesondere einem Varistor, sowie mit einer Abtrennvorrichtung

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2329362A (en) * 1934-04-14 1943-09-14 Westinghouse Electric & Mfg Co Circuit breaker
US2150012A (en) * 1937-01-27 1939-03-07 Gen Electric Circuit breaker
US2199622A (en) * 1937-07-31 1940-05-07 Westinghouse Electric & Mfg Co Circuit breaker
US2843702A (en) * 1952-10-22 1958-07-15 Ite Circuit Breaker Ltd Protective device with current limiting means
US2811606A (en) * 1953-12-11 1957-10-29 Fed Electric Prod Co Automatic circuit breakers
US2924686A (en) * 1955-12-23 1960-02-09 Ite Circuit Breaker Ltd Fusible switch comprising a circuit breaker and current limiting fuse
US2908782A (en) * 1957-04-04 1959-10-13 Gen Electric Circuit breaker
US3043939A (en) * 1958-11-13 1962-07-10 Ite Circuit Breaker Ltd Separate phase directed venting
US3211860A (en) * 1960-03-02 1965-10-12 Westinghouse Electric Corp Circuit breaker with improved trip-device enclosure
DE1128009B (de) * 1960-07-27 1962-04-19 Licentia Gmbh Gleichstromschnellschalter
US3213249A (en) * 1961-08-02 1965-10-19 Westinghouse Electric Corp Circuit breaker with spring operating mechanism
US3533038A (en) * 1967-06-22 1970-10-06 Ite Imperial Corp Non-interchangeable means for circuit breaker fuse connections
US3566326A (en) * 1970-01-26 1971-02-23 Wadsworth Electric Mfg Co Inc Circuit breaker
US3697915A (en) * 1970-10-26 1972-10-10 Texas Instruments Inc Circuit breaker having means for increasing current carrying capacity
US3958197A (en) * 1975-01-24 1976-05-18 I-T-E Imperial Corporation High interrupting capacity ground fault circuit breaker
US4034326A (en) * 1975-04-17 1977-07-05 Comtelco (U.K.) Limited Temperature sensitive trip device
JPS5669745A (en) * 1979-11-10 1981-06-11 Terasaki Denki Sangyo Kk Circuit breaker
US4393288A (en) * 1981-06-23 1983-07-12 Gte Products Corporation Circuit breaker
US4559510A (en) * 1982-10-11 1985-12-17 Heinrich Kopp Gmbh & Co. Kg. Equipment protecting electrical circuit breaker
US4458225A (en) * 1982-11-18 1984-07-03 Eaton Corporation Circuit breaker with independent magnetic and thermal responsive contact separation means
US4604596A (en) * 1985-02-01 1986-08-05 Matsushita Electric Works, Ltd. Remotely controllable circuit breaker
EP0236576B1 (de) * 1986-01-10 1991-08-14 Matsushita Electric Works, Ltd. Ausschalter
JPH0515290A (ja) * 1991-07-12 1993-01-26 Yoshiaki Shinsa 鳥類の侵入防止装置
FR2679698B1 (fr) * 1991-07-25 1995-03-17 Sextant Avionique Dispositif de signalisation de declenchement d'un disjoncteur.
JP3298117B2 (ja) * 1991-09-10 2002-07-02 ソニー株式会社 表示装置
US5463199A (en) * 1993-05-28 1995-10-31 Philips Electronics North America Corporation DC-rated circuit breaker with arc suppressor
US5780800A (en) * 1996-08-07 1998-07-14 General Electric Company Circuit breaker contact arm and spring shield
US5859578A (en) * 1997-03-04 1999-01-12 General Electric Company Current limiting shunt for current limiting circuit breakers
US6084193A (en) * 1998-10-07 2000-07-04 Texas Instruments Incorporated Electrical circuit interruption device having improved arc extinguishing apparatus including an arc paddle
TW453504U (en) * 1999-06-24 2001-09-01 You Tsung Mou Button switch having overload protection function
TW456574U (en) * 1999-10-29 2001-09-21 You Tsung Mou Overload protection push button switch with indirectly driven auto-reset activated mechanism
TW462531U (en) * 1999-12-30 2001-11-01 You Tsung Mou Over-load protection type button switch with drawing type auto-reset driven mechanism
JP3900780B2 (ja) * 2000-03-06 2007-04-04 富士電機機器制御株式会社 回路しゃ断器
US6498310B1 (en) * 2001-07-19 2002-12-24 Carling Technologies, Inc. Reverse alarm switch circuit breaker
DE20321765U1 (de) * 2003-10-21 2009-09-17 Ellenberger & Poensgen Gmbh Schutzschalter mit einer Bimetallschnappscheibe
MX2007002775A (es) * 2004-09-13 2007-05-21 Cooper Technologies Co Modulos y dispositivos de desconexion por conmutacion con fusibles.
DE102008017472A1 (de) * 2007-04-28 2008-11-06 Abb Ag Installationsschaltgerät
ATE463829T1 (de) * 2007-10-12 2010-04-15 Sma Solar Technology Ag Lasttrenner-anordnung
FR2928026B1 (fr) * 2008-02-27 2011-08-19 Schneider Electric Ind Sas Dispositif de protection contre les surtensions comprenant des moyens de deconnexion selectifs
CN102194616A (zh) * 2010-03-12 2011-09-21 库帕技术公司 带有可打开的端子盖板的熔断式断路开关
FR2958787B1 (fr) * 2010-04-09 2012-05-11 Abb France Dispositif de protection contre les surtensions a deconnecteurs thermiques dedoubles
FR2958789B1 (fr) * 2010-04-09 2012-05-11 Abb France Dispositif de protection contre les surtensions transitoires a deconnecteur thermique ameliore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796980A (en) * 1972-07-31 1974-03-12 Westinghouse Electric Corp Disposable circuit breaker
US5936495A (en) * 1994-05-06 1999-08-10 Miklinjul Corporation Fuse switch
EP1953788A1 (de) * 2007-02-01 2008-08-06 Schneider Electric Industries S.A.S. Vorrichtung zum Schutz gegen Überspannungen mit beweglicher Elektrode und Entriegelungssystem der Verbindungsunterbrechungsvorrichtung
DE102008049472A1 (de) 2007-10-16 2009-09-10 Dehn + Söhne Gmbh + Co. Kg Überspannungsableiter mit mindestens einem Ableitelement, insbesondere einem Varistor, sowie mit einer Abtrennvorrichtung
DE202008010312U1 (de) 2008-07-31 2008-10-02 Phoenix Solar Ag Photovoltaische Anlage und Generatoranschlusskasten in einer photovoltaischen Anlage

Also Published As

Publication number Publication date
CN102725812A (zh) 2012-10-10
HRP20130376T1 (en) 2013-05-31
EP2502251B1 (de) 2013-01-30
DE202011110186U1 (de) 2013-02-08
CA2785605A1 (en) 2012-08-02
KR20140008231A (ko) 2014-01-21
DE102011015449B4 (de) 2014-09-25
AU2011338139B2 (en) 2014-08-14
CA2785605C (en) 2017-04-25
SG182295A1 (en) 2012-08-30
AU2011338139A1 (en) 2012-08-09
PL2502251T3 (pl) 2013-07-31
US20120268233A1 (en) 2012-10-25
KR101521074B1 (ko) 2015-06-16
EP2502251A1 (de) 2012-09-26
ES2403489T3 (es) 2013-05-20
CN102725812B (zh) 2015-07-29
PT2502251E (pt) 2013-05-06
US8766760B2 (en) 2014-07-01
DE102011015449A1 (de) 2012-07-26

Similar Documents

Publication Publication Date Title
EP2502251B1 (de) Schalteinheit zum schalten von hohen gleichspannungen
EP2553691B1 (de) Überspannungsschutzeinrichtung, umfassend mindestens einen überspannungsableiter
EP3120372B1 (de) Überspannungsschutzeinrichtung, umfassend mindestens einen überspannungsableiter und eine dem überspannungsableiter parallel geschaltete, thermisch auslösbare, federvorgespannte kurzschlussschalteinrichtung
EP2697812B1 (de) Kontakteinrichtung und deren antrieb für schutzschaltgeräte
DE102013019390B4 (de) Überspannungsschutzeinrichtung, aufweisend mindestens einen Überspannungsableiter und eine, mit dem Überspannungsableiter in Reihe geschaltete, thermisch auslösbare Schalteinrichtung
WO2008068115A1 (de) Steckbarer überspannungsableiter
DE202009018118U1 (de) Überspannungsableiter mit mindestens einem Ableitelement
EP2784795B1 (de) Elektrischer Schalter
EP3223378B1 (de) Elektrische schalteinrichtung für eine schaltungsanordnung zum trennen einer elektrischen verbindung zwischen zwei anschlusspunkten
DE102009004704B4 (de) Überspannungsableiter mit einer Schalteinrichtung zum Auslösen einer Abtrenneinrichtung
EP2385537B1 (de) Doppelunterbrechendes Schutzschaltgerät zum Überwachen eines Stromkreises
EP2824689B1 (de) Dynamischer Auslöser und elektrisches Installationsschaltgerät mit einem dynamischen Auslöser
DE202012000339U1 (de) Elektrische Abtrennvorrichtung
DE102017204942A1 (de) Elektromechanisches Schutzschaltgerät
DE102017105029A1 (de) Abschaltelement und Überspannungsschutzanordnung
DE102008049472A1 (de) Überspannungsableiter mit mindestens einem Ableitelement, insbesondere einem Varistor, sowie mit einer Abtrennvorrichtung
EP2070169B1 (de) Überspannungsableiter mit mindestens einem ableitelement, insbesondere einem varistor, sowie mit einer abtrennvorrichtung
EP4250462A1 (de) Batteriemodul mit einer schmelzsicherung
DE102020211531A1 (de) Niederspannungs-Schutzschaltgerät
DE102021202664A1 (de) Kompakt-Leitungsschutzschalter
DE102020112852A1 (de) Elektrochemische Zelle mit einer Schutzvorrichtung zum Unterbrechen eines elektrischen Leistungspfades und Verfahren zum Unterbrechen eines elektrischen Leistungspfades durch eine elektrochemische Zelle
DE102014003970A1 (de) Elektrischer Schalter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005134.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011790724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011338139

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2785605

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127017023

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5751/CHENP/2012

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11790724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE