WO2012100748A1 - Glp-1受体激动剂用于治疗疼痛 - Google Patents

Glp-1受体激动剂用于治疗疼痛 Download PDF

Info

Publication number
WO2012100748A1
WO2012100748A1 PCT/CN2012/070741 CN2012070741W WO2012100748A1 WO 2012100748 A1 WO2012100748 A1 WO 2012100748A1 CN 2012070741 W CN2012070741 W CN 2012070741W WO 2012100748 A1 WO2012100748 A1 WO 2012100748A1
Authority
WO
WIPO (PCT)
Prior art keywords
pain
glp
receptor
rat
condition
Prior art date
Application number
PCT/CN2012/070741
Other languages
English (en)
French (fr)
Inventor
王永祥
龚念
Original Assignee
Wang Yongxiang
Gong Nian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Yongxiang, Gong Nian filed Critical Wang Yongxiang
Publication of WO2012100748A1 publication Critical patent/WO2012100748A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • GLP-1 receptor agonist for the treatment of pain
  • the present invention relates to the agonistic effect of a glucogan-like peptide-1, GLP-1 receptor agonist on the GLP-1 receptor in the nervous system, specifically for the treatment of pain. , especially chronic pain; also relates to methods for identifying agents using the GLP-1 receptor.
  • Pain is one of the most common symptoms in the clinic. Many diseases or conditions have pain symptoms and seriously affect the quality of life of patients. Treatment of pain has become one of the most considered factors in health care and disease treatment. Therefore, pain has received more and more attention from the medical community. 2000-2010 has been called the pain era. Pain is an unpleasant sensation and emotional experience associated with acute or potential tissue damage that prompts people to avoid or destroy the condition, thereby protecting the body and avoiding further damage. Most of the pain disappears immediately after the pain stimulus is removed, but sometimes the pain persists even though the stimulus has been eliminated and the body has recovered significantly. In addition, although pain, damage or disease is not detected, pain still occurs. Based on this, pain can be divided into acute pain and chronic pain.
  • Chronic pain is a hot topic in international pain research. It can be divided into inflammatory pain, neuropathic pain, tumor (cancer) pain, diabetes pain and low back pain depending on the cause. The difference between chronic pain and acute pain is that some non-invasive stimuli caused by stimulation of the peripheral nerves, such as light touch and warmth, can also cause strong pain in the affected area. Chronic pain often occurs some time after the injury. This pain is spontaneous, random and persistent, and it is often ineffective in taking regular analgesics and often does not heal for life. Chronic pain involves complex mechanisms of formation. Peripheral ectopic discharge and central sensitization are currently recognized as the main mechanisms of chronic pain including neurogenic pain and tumor pain formation (Basbaum et al. Cell 139: 267- 284, 2009).
  • the incidence of chronic pain is high, accounting for about 10% of the total, and increases with age and the prolongation of the original disease course (such as the incidence rate of up to 13% over 55 years old, and 8% in the early diagnosis of diabetes, but in the diagnosis Up to 50% after 25 years).
  • Pain (such as various forms of chronic pain, including cancer pain, neuropathic pain, etc.) is inadequately available in wards, intensive care units (ICUs), emergency departments, and the like.
  • drugs such as analgesics and anesthetics can be used to treat acute pain.
  • the treatment of chronic pain is much more difficult and may require multiple efforts to achieve relatively good results.
  • the treatment of chronic pain mainly includes tricyclic antidepressants such as amitriptyline.
  • antiepileptic drugs such as gabapentin and pregabalin
  • local anesthetics such as lidocaine
  • opioids such as morphine, dihydromorphone, fentanyl and buprenorphine
  • adrenaline Body blockers such as clonidine
  • 5-HT re-intake inhibitors such as duloxetine and ziconotide.
  • morphine treatment of neuropathic pain has been reported inconsistently; another example is amitriptyline, including orthostatic hypotension, urinary retention, memory confusion, abnormal myocardial conduction, lethargy, etc.; Peptides are inconvenient to use.
  • the current success rate of drug treatment for chronic pain is limited. Therefore, finding new anti-chronic pain drugs that are safe, effective, non-addictive and convenient to use is a major challenge in the world.
  • Drucher et al. detected the glucagon-like peptide-1 (GLP-1) binding receptor (GLP-1 receptor) in rat insulinoma cell line RIN1046-38, but its clone was cloned by Thorens. This is equivalent to 1992 (Thears, Proc. Natl. Acad. Sci” 89: 8641-8645, 1992). Subsequently, it was found in human islets, brain, spinal cord, lung, stomach, small intestine, kidney and heart tissue. The presence of receptors (Nishizawa et al., J. Auton. Nerv. Syst., 80: 14221, 2000; Tibaduiza et al., J. Biol.
  • the GLP-1 receptor belongs to the glucagon receptor subfamily of the G protein coupled receptor B family (secretin family). The most striking feature of this subfamily is the relatively long extracellular N-terminal sequence, which forms a globular domain through three binary bonds. This region has many glycosylation modifications that play a key role in the ligand binding process, but the domain is isolated and found to be insufficiently bound to the ligand itself. In fact, the complex spatial conformation formed by the interaction between specific extracellular residues between the extracellular loop region and the seven transmembrane segments also plays a role in ligand binding (Tibaduiza et al., J. Biol Chem., 276: 37787-37793, 2001).
  • the main physiological functions of the currently known GLP-1 receptor mainly include the following aspects:
  • the GLP-1 receptor belongs to the Gs subclass of G protein-coupled receptors and is sensitive to cholera toxin.
  • GLP-1 binds to the receptor
  • the coupled G protein ⁇ subunit dissociates from the ⁇ and ⁇ subunits and mediates different intracellular signaling pathways, respectively.
  • the Ga subunit is activated to stimulate adenylate cyclase, resulting in elevated intracellular cAMP levels and PKA activation, resulting in a series of levels, including changes in ion channel activity, intracellular calcium. Flow changes, vesicle release from insulin secretion, etc.
  • GLP-1 directly increases the sensitivity of islet beta cells to glucose through the cAMP-PKA pathway, stimulating glycemic-dependent insulin secretion (Holz et al., J. Biol. Chem” 274: 14147-14156, 1999). Increase the intracellular ATP concentration, increase the ratio of ATP to ADP, promote the ATP-dependent potassium channel to close, depolarize the cell membrane, open the L-type calcium channel on the membrane, and further promote the release of calcium ions from the intracellular calcium pool. Insulin-containing secretory vesicles are effluxed.
  • the insulin-promoting effect of GLP-1 is markedly glucose-dependent, and there is no response when the glucose concentration is lower than 4.5 mM. At the same time, this effect is comprehensive, affecting the transcription, translation and splicing of proinsulin genes. Various functional links.
  • genes closely related to glucose metabolism in ⁇ cells such as glucokinase and glucose transporter 2 are up-regulated by GLP-1.
  • studies have shown that the insulin gene promoter in rat beta cells can be activated in a partial ⁇ -independent manner Bode et al "Endocrinology, 140: 3919-3927, 1999).
  • GLP-1 receptors are expressed in the hypothalamus, brainstem and cerebellum, suggesting that they may have certain physiological functions in the brain. GLP-1 enters the brain through the blood circulation, and low-density binding of iodine-labeled GLP-1 can be detected in neurons of the cerebral cortex, hippocampus and cerebellum, but the GLP-1 receptor is in the brain. The endogenous ligands of the ministry have not been published so far. In ex vivo experiments, GLP-1 promotes the differentiation of neuronal cells, and its function is similar to that of nerve growth factor, but the related signal pathway remains to be elucidated.
  • GLP-1 inhibits appetite and food intake in rats in a dose-dependent manner, whereas exendin (9-39) reverses this phenomenon (Meeran et al "Endocrinology, 140: 244-250, 1999).
  • GLP-1 can cause a transient feeling of fullness and loss of appetite in both normal and diabetic patients.
  • the thalamic nucleus is associated with dietary control, GLP-1 receptor expression is also present in this region, presumably peripheral GLP-1 may indirectly affect the central nervous system through signal transmission to produce satiety and reduce appetite.
  • cAMP production is essential for GLP-1 signaling, and elevated cAMP protects neurons from neuronal immunity.
  • Apoptosis although the molecular mechanism of current apoptosis has been well understood, but the links that may be involved in the GLP-1 receptor have not been systematically studied. It is shown that PI3K-dependent and MAPK-independent signaling pathways are here. Played an important role ( Hui et al., Endocrinology, 144: 1444-1455, 2003).
  • GLP-1 The effect of GLP-1 on the heart mainly affects the intracellular cAMP content, promotes influx, and reduces the content of pyruvate in the myocardium and the activation of PKA and downstream signaling pathways against cardiomyocyte apoptosis by acting as pyruvate dehydrogenase. related.
  • GLP-1 receptor antagonist The most widely used GLP-1 receptor antagonist is exendin (9-39), which is mainly used for the biological effects of the #1£ GLP-1 receptor (Goke et al., J. Biol. Chem. , 268: 19650-19655. 1993; Furuse et al., Japanese Poultry Science, 35: 376-380, 1998).
  • GLP-1 receptor agonists mainly include macromolecules such as peptides and small molecules. class.
  • a GLP-1 receptor agonist is capable of activating the GLP-1 receptor in the nervous system, particularly the middle sacral nervous system (including the spinal cord), whereby treatment can activate the GLP-1 receptor.
  • the condition to be treated such as pain, especially chronic pain.
  • the present disclosure provides a method of treating a condition treatable by activating the GLP-1 receptor, comprising administering to a subject in need thereof an effective amount of GLP-1 Receptor agonist.
  • the condition that is treatable by activating the GLP-1 receptor is pain, especially chronic pain. In a specific embodiment, the condition is not pain caused by a digestive motility disorder.
  • the condition capable of being treated by activating the GLP-1 receptor is selected from the group consisting of chronic pain, neuropathic pain, chronic low back pain, headache, migraine, trigeminal neuralgia, Cluster headache, fibromyalgia syndrome, joint pain, inflammatory pain, arthritis pain, osteoarthritis pain, rheumatoid arthritis pain, tumor pain, cancer pain, visceral pain, somatic pain, musculoskeletal pain, bone Pain, lumbosacral pain, neck pain or upper back pain, diabetic pain, pain caused by spinal cord injury, surgical pain, postoperative pain, acute pain, or with infection, sickle cell anemia, autoimmune disease, multiple sclerosis or Inflammation-related pain, pain caused by injury or surgery, or a combination thereof.
  • the condition capable of being treated by activating the GLP-1 receptor is selected from the group consisting of pain associated with: diabetic neuropathic pain, peripheral neuralgia, post-herpetic neuralgia, Waist or neck nerve root pain, fibromyalgia, glossopharyngeal neuralgia, reflex sympathetic dystrophy, burning pain, thalamic syndrome, nerve root avulsion, phantom limb pain, pain after thoracotomy, cancer, chemical damage , toxins, nutritional deficiencies, viral or bacterial infections, temporomandibular joint disorder syndrome, fibromyalgia syndrome, osteoporosis, bone metastases or bone pain caused by other unknown causes, gout, fibrinitis, myofascial pain, Thoracic outlet syndrome, back pain or back pain, pelvic pain, cardiac chest pain, non-cardiac chest pain, spinal cord injury-related pain, central post-stroke pain, cancer pain, AIDS pain, anti-tumor drug-induced n
  • the GLP-1 receptor agonist can be a macromolecular GLP-1 receptor agonist or a small molecule GLP-1 receptor agonist.
  • the macromolecular GLP-1 receptor agonists include, but are not limited to, GLP-1, liraglutide, GTP-010, exendin-4 (exenatide), exendin-3 and other exendins, and functional variants thereof, fragments, derivatives thereof Things and analogues.
  • the macromolecular GLP-1 receptor agonist may or may not have a modification, such as a molecular weight-enhancing structure (e.g.) conjugated to PEG or albumin.
  • the biological activity of the GLP-1 receptor agonist is long.
  • Such functional variants include, for example, various GLP-1 variants or exendin variants.
  • the small molecule GLP-1 receptor agonist includes, but is not limited to, genipin and its derivatives, genipin and genipin, Boc5 (SH 7870 ), S4P
  • the GLP-1 receptor agonist is administered orally or parenterally, for example, including subcutaneous injection, spinal, intracranial, intramuscular, nasal administration, intravenous administration, and / or intraperitoneal administration.
  • the method further comprises administering to the subject an additional pain treatment agent, for example, the pain treatment agent includes, but is not limited to, an analgesic such as an opioid analgesic, an anti-inflammatory agent , migraine formulation, tricyclic antidepressant, antiepileptic drug, alpha 2 receptor agonist, or selective serotonin reuptake inhibitor/selective norepinephrine recruitment inhibitor, or a combination thereof.
  • an analgesic such as an opioid analgesic
  • an anti-inflammatory agent such as an opioid analgesic, an anti-inflammatory agent , migraine formulation, tricyclic antidepressant, antiepileptic drug, alpha 2 receptor agonist, or selective serotonin reuptake inhibitor/selective norepinephrine recruitment inhibitor, or a combination thereof.
  • the additional pain treatment agent is selected from the group consisting of morphines (eg, morphine, dihydromorphone, fentanyl, buprenorphine, and buprenorphine), gabapentin, pregabalin , Ziconotide, Loxetine, Clonidine, Lidocaine, DAO enzyme inhibitors (eg 5-chlorobenzo[d]isoxazol-3-ol, AS057278, sodium benzoate, 3-hydroxyquinoline- 2-(7)-one and 4H-thieno
  • NMDA receptor blockers eg MK-801, ketamine, dextromethorphan, phencyclidine and (27?)-amino-5-phosphonate.
  • a GLP-1 receptor agonist for the preparation of a medicament for treating a condition treatable by activating a GLP-1 receptor in the nervous system, particularly the central nervous system.
  • the condition is preferably pain, especially chronic pain.
  • the present disclosure also provides a GLP-1 receptor agonist for treating a condition treatable by activating a GLP-1 receptor in the nervous system, particularly the central nervous system, the condition It is preferably pain, especially chronic pain.
  • a GLP-1 receptor agonist for treatment in particular, the technical solutions corresponding to the various embodiments involved in the above-described first aspect of the treatment method are included.
  • the present disclosure provides a method of identifying an agent for treating a condition treatable by activating a GLP-1 receptor in the nervous system, comprising: providing a test compound, Testing the compound for contact with a GLP-1 receptor (eg, a GLP-1 receptor on a neural cell), and determining the activity of the GLP-1 receptor; if the test compound is capable of increasing the activity of the GLP-1 receptor, then The test compound can be used as an agent for treating a condition which can be treated by activating the GLP-1 receptor in the nervous system.
  • the condition is pain, especially chronic pain.
  • the condition is pain, especially chronic pain, such as the various pains mentioned above.
  • Figure 1 shows the expression of mR A in the rat pancreas, spinal cord, dorsal M ganglion, cerebral cortex and GLP-1 receptor. Each tissue was repeated 3 times using the real-time PCR method.
  • Figure 2 shows the distribution of immunospecific staining (brownish yellow) of rat (A) and spinal cord (B) GLP-1 receptors.
  • FIG. 3 shows spinal injection of the GLP-1 receptor peptide agonist exenatide (A) and GLP-1 (7-36) (B) and the small molecule agonist genipin (C), ginini Glycosylate (D), Genipin (E), 1,10-anhydrogenipin (AG) (F), Methyl Genipin (G), Horse Money Effects of glycoside (H), behenyl methyl ester (1), 8-oxo-methyl saponin (J) and sterol (K) on the formalin-induced pain model in rats.
  • the dose-effect relationship (L) of the drug to the phase II pain response was calculated by the area under the curve.
  • Figure 4 shows the inhibitory effect of spinal cord injection of GLP-1 receptor agonist exenatide on rat bone cancer pain model (A), neurogenic pain model (B) and diabetic pain model (C), according to The dose-response relationship was calculated 1 hour after the drug (D).
  • Figure 5 shows the inhibitory effect of subcutaneous injection of the GLP-1 receptor peptide agonist exenatide on the pain of mouse formalin.
  • Figure 6 shows the effect of subcutaneous injection and the small molecule agonist geniposide of the GLP-1 receptor on the pain of mice in formalin.
  • Figure 7 shows the effect of subcutaneous injection of exeantide and genipin on mouse formalin phase I pain (A) and phase II pain (B) for 7 consecutive days. Compared with the saline + saline control group, & represents? ⁇ 0.05; Compared with saline + morphine group, 1) representative? ⁇ 0.05.
  • FIG. 8 shows that spinal cord injection of the GLP-1 receptor antagonist exendin (9-39) blocks the inhibitory effect of GLP-1 receptor agonists on formalin pain in rats.
  • Spinal injection of GLP-1 receptor antagonist exendin (9-39) blocked exenatide, GLP-1 (7-36) and genipin (A, C) compared with the corresponding saline group, ⁇ P ⁇ 0.05;
  • GLP-l ( 7-36) and geniposidic group compared with corresponding exenatide, 3 ⁇ 4 represent? ⁇ 0.05.
  • Figure 9 shows the effect of the GLP-1 receptor antagonist exendin (9-39) on the subcutaneous injection of genipin. Compared with the saline control group, a represents P ⁇ 0.05; compared with the geniposide group, b represents P ⁇ 0.05.
  • Figure 10 shows the effect of spinal cord administration of the GLP-1 receptor antagonist exendin (9-39) on systemic administration of exenatide analgesic effect. Compared with the corresponding saline group, 3 ⁇ 4 represents? ⁇ 0.05; b represents P ⁇ 0.05 compared with the corresponding exenatide group.
  • FIG. 11 shows that the spinal cord injection of GLP-1 receptor siRNA/GLP-lr blocked the inhibitory effect of the GLP-1 receptor peptide agonist exenatide on formalin pain in rats for 7 consecutive days.
  • Spinal injection of GLP-1 receptor siRNA/GLP-lr blocked the inhibitory effect of exenatide on formalin pain in rats (A) and the area under the formalin II pain curve AUC (B).
  • A the area under the formalin II pain curve AUC
  • 3 ⁇ 4 represents P ⁇ 0.05
  • compared with the corresponding exenatide group 3 ⁇ 4 represents P ⁇ 0.05.
  • Spinal injection of GLP-1 receptor siRNA/GLP-lr inhibited spinal cord GLP-1 receptor protein expression (C) and expression profile (D) for 7 consecutive days.
  • FIG. 12 shows that spinal cord injection of GLP-1 receptor siRNA/GLP-lr blocked the inhibitory effect of GLP-1 receptor small molecule agonist genipin on rat formalin pain for 7 consecutive days.
  • A rat formalin pain
  • AU area under the pain curve of formalin II
  • the term "treating,” refers to the treatment of a target disease or condition of a subject to be treated and/or any of its symptoms and/or any possible complications and/or sequelae thereof by medical intervention. , eliminate, alleviate, ameliorate, stop aggravating, and/or prevent, or cause the subject to be treated to obtain any positive effects in an immediate and/or potential medical sense.
  • agonist refers to a chemical that binds to and activates a cellular receptor to induce a response from that cell.
  • GLP-1 receptor agonist refers to a substance capable of binding to activate the GLP-1 receptor, which is capable of inducing a biological effect similar to that of GLP-1. It should be noted that GLP-1 itself is also included in the GLP-1 receptor agonist. Furthermore, when referring to a GLP-1 receptor agonist, its meaning includes not only the compound having such activity, its solvate, hydrate and salt form, but also the form of the prodrug of the agonist.
  • GLP-1 receptor agonists are capable of activating the GLP-1 receptor in the nervous system, particularly in the central nervous system, including the spinal cord, whereby treatment can be achieved by activating the GLP-1 receptor.
  • a condition that is treated such as pain, especially chronic pain.
  • the present disclosure provides a method of treating a condition treatable by activating the GLP-1 receptor, comprising administering to a subject in need thereof an effective amount of GLP-1 Receptor agonist.
  • the condition that is treatable by activating the GLP-1 receptor is pain, especially chronic pain. In a specific embodiment, the condition is not pain caused by a digestive motility disorder.
  • the condition capable of being treated by activating the GLP-1 receptor is selected from the group consisting of chronic pain, neuropathic pain, chronic back pain, headache, migraine, trigeminal neuralgia, cluster Sexual headache, fibromyalgia syndrome, joint pain, inflammatory pain, arthritis pain, osteoarthritis pain, rheumatoid arthritis pain, tumor pain, cancer pain, visceral pain, physical pain, musculoskeletal pain, bone pain , lumbosacral pain, neck pain or upper back pain, diabetic pain, spinal cord Pain caused by injury, surgical pain, postoperative pain, acute pain, or pain associated with infection, sickle cell anemia, autoimmune disease, multiple sclerosis or inflammation, pain caused by injury or surgery, or a combination thereof.
  • the condition capable of being treated by activating the GLP-1 receptor is selected from the group consisting of pain associated with: diabetic neuropathic pain, peripheral neuralgia, post-herpetic neuralgia, Waist or neck nerve root pain, fibromyalgia, glossopharyngeal neuralgia, reflex sympathetic dystrophy, burning pain, thalamic syndrome, nerve root avulsion, phantom limb pain, pain after thoracotomy, cancer, chemical damage , toxins, nutritional deficiencies, viral or bacterial infections, temporomandibular joint disorder syndrome, fibromyalgia syndrome, osteoporosis, bone metastases or bone pain caused by other unknown causes, gout, fibrinitis, myofascial pain, Thoracic outlet syndrome, upper back pain, lower back pain, pelvic pain, cardiac chest pain, non-cardiac chest pain, spinal cord injury-related pain, central post-stroke pain, cancer pain, AIDS pain, anti-tumor drug-induced
  • the GLP-1 receptor agonist can be a macromolecular GLP-1 receptor agonist or a small molecule GLP-1 receptor agonist.
  • the macromolecular GLP-1 receptor agonist includes, but is not limited to, GLP-1, liraglutide, GTP-010, exendin-4
  • the macromolecular GLP-1 receptor agonist may or may not have a modification, such as a molecular weight-enhancing structure conjugated to PEG or albumin to prolong the GLP-1 receptor agonist.
  • Biological activity Such functional variants include, for example, various GLP-1 variants or exendin variants.
  • the small molecule GLP-1 receptor agonist includes, but is not limited to, genipin, genipin and genipin, Boc5, S4P, "Compound 2"
  • the GLP-1 receptor agonist is administered orally or parenterally, for example, including subcutaneous injection, spinal, intracranial, intramuscular, nasal administration, intravenous administration, and / or intraperitoneal administration.
  • the method further comprises administering to the subject an additional pain treatment agent, for example, the pain treatment agent includes, but is not limited to, an analgesic such as an opioid analgesic, anti-inflammatory Medicine, migraine preparation, tricyclic antidepressant, antiepileptic drug, alpha 2 receptor agonist, or selective serotonin reuptake inhibitor/selective norepinephrine recruitment inhibitor, or a combination thereof.
  • an analgesic such as an opioid analgesic, anti-inflammatory Medicine, migraine preparation, tricyclic antidepressant, antiepileptic drug, alpha 2 receptor agonist, or selective serotonin reuptake inhibitor/selective norepinephrine recruitment inhibitor, or a combination thereof.
  • the additional pain treatment agent is selected from the group consisting of morphines (eg, morphine, dihydromorphone, fentanyl, buprenorphine, and buprenorphine), gabapentin, pregabalin, Ziconotide, Loxetine, Clonidine, Lidocaine, DAO enzyme inhibitors (eg 5-chlorobenzo[d]isoxazol-3-ol, AS057278, sodium benzoate, 3-hydroxyquinolin-2-(lH) -one and 4H-thieno[3,2-b]pyrrole-5-carboxylic acid, NMDA receptor blockers (eg MK-801, ketamine, right: saflufen, phencyclidine and (2?)-amino -5-phosphonovaleric acid).
  • morphines eg, morphine, dihydromorphone, fentanyl, buprenorphine, and buprenorphine
  • gabapentin pregabalin
  • a GLP-1 receptor agonist for the manufacture of a medicament for treating a condition treatable by activating a GLP-1 receptor in the nervous system, particularly in the central nervous system.
  • the condition is preferably pain, especially chronic pain.
  • the present disclosure also provides a GLP-1 receptor agonist for treating a condition treatable by activating a GLP-1 receptor in the nervous system, particularly the central nervous system, the condition It is preferably pain, especially chronic pain.
  • a GLP-1 receptor agonist for treatment in particular, the technical solutions corresponding to the various embodiments involved in the above-described first aspect of the treatment method are included.
  • the present disclosure provides a method of identifying a candidate drug, comprising: providing a test compound to bind the test compound to a GLP-1 receptor (eg, GLP-1 on a neural cell) Contacting, and determining the activity of the GLP-1 receptor; if the test compound is capable of increasing the activity of the GLP-1 receptor, the test compound can be used as a therapeutic agent by activating GLP-1 in the nervous system A drug candidate for a condition that is treated by the receptor.
  • the condition is pain, especially chronic pain.
  • Pain can be divided into acute pain and chronic pain.
  • GLP-1 receptor agonists can be divided into macromolecular GLP-1 receptor agonists and small molecule GLP-1 receptor agonists, wherein macromolecular GLP-1 receptor agonists mainly include peptide GLP-1 Receptor agonist.
  • these peptides For example, the ability of these peptides to resist degradation of proteases in vivo, including peptidases, particularly dipeptidyl peptidase IV (DPP IV), or resistance to other degradation (e.g., oxidation, etc.) is enhanced by altering the columns of these peptides. It has also been attempted to conjugate these molecular weight-enhancing structures (e.g., albumin and/or PEG of various molecular weights, etc.) to these peptides, which may also increase the in vivo half-life of the peptide agonist, thereby prolonging its biological activity.
  • these molecular weight-enhancing structures e.g., albumin and/or PEG of various molecular weights, etc.
  • GLP-1 receptor agonists including GLP-1, exenatide, genipin and its derivative genipin And geniposide and its derivatives (such as genipin, l, 10-anhydrogenipin (AG), methyl genipin, loganin, behenyl methyl ester, 8-oxo-methyl saponin Methyl esters and sterols are effective in inhibiting formalin-induced chronic pain (phase II response), tumor pain, neuropathic pain, and/or diabetic pain in a dose-dependent manner.
  • GLP-1 receptor agonists including GLP-1, exenatide, genipin and its derivative genipin And geniposide and its derivatives (such as genipin, l, 10-anhydrogenipin (AG), methyl genipin, loganin, behenyl methyl ester, 8-oxo-methyl saponin Methyl esters and sterols are effective in inhibiting formalin-induced chronic pain (phase II response
  • geniposide can also be effective for analgesia, and the active bioavailability is 83.5% of subcutaneous injection.
  • the maximum inhibition rate of exenatide was as high as 70-80%, and the effective dose of ED 5 in the spinal cord and subcutaneous half. It can be as low as 0.5 pmol/rat and 5.4 nmol/kg, respectively, which may be the strongest analgesic drug currently known.
  • continuous administration of exenatide and genipin on 7 days did not confer tolerance, providing a pharmacological basis for the treatment of chronic pain by GLP-1 receptor agonists.
  • GLP-l (7-36), exenatide and genipin, genipin, genipin, 10-anhydrogenipin (AG), thioglycolidine, loganin, saponin Ester, 8-oxo-methyl saponin methyl ester and sterol inhibited formalin-induced chronic pain ED 5 o in rats, 0.5 pmol/rat, 1.2 pmol/rat, 63.0 nmol/atmosphere, 43 Nmol/rat, 85 nmol/rat, 54 nmol/atmosphere, 48 nmol/rat, 61 nmol/rat, 35 nmol/rat, 49 nmol/rat, and 33.7 nmol/rat, they agonistically GLP- 1 Receptor activity is positively correlated.
  • GLP-1 (7-36), exenatide and genipin can be completely blocked by the spinal injection of GLP-1 receptor antagonists exendin (9-39) and siRNA/GLP-lr.
  • GLP-1 receptor antagonists exendin (9-39) and siRNA/GLP-lr Activation of the central nervous system, especially the GLP-1 receptor in the spinal cord, can produce an effective analgesic effect, and the GLP-1 receptor is a target molecule for the treatment of pain.
  • GLP-1 Receptor Gene Expression Add 100 ml of tissue to 1 ml Trizol reagent (Invitrogen, Shanghai, China) and add the appropriate volume of Trizol reagent. The quality of the extracted RNA was determined according to OD260/OD280 and nucleic acid electrophoresis. Using reverse transcriptase (Toyobo, Toyobo (Shanghai) Biotech Co., Ltd.), according to the manufacturer's instructions, 1 total RA was reverse transcribed into cDNA under the corresponding reverse transcription conditions.
  • the cDNA generated by reverse transcription was used as a template, GAPDH was used as an internal reference, and the expression of the target gene GLP-1 receptor in various parts of the rat was detected by PCR (Mastercycler ep realplex real-time PCR system, Eppendorf, Hamburg, Germany). ⁇ The ⁇ method was used to analyze changes in the expression of the target gene GLP-1 receptor.
  • the PCR primers used are as follows:
  • the results of three rats are shown in Figure 1.
  • the rat pancreas can express high GLP-1 receptor.
  • the expression of GLP-1 receptor in the spinal cord is about 16.8% of the pancreas.
  • the ganglion and cerebral cortex GLP-1 The receptor expression was weaker at 1.1% and 1.3% of the pancreas, respectively, while the expression of GLP-1 receptor was almost undetectable in skeletal muscle (0.04%).
  • pancreas, skeletal muscle, ganglion and spinal cord lumbar enlargement are taken, fixed in 4% paraformaldehyde for 24 hours, then dehydrated and transparent, paraffin-embedded, 5 ⁇ slice, sliced off Wax, soak the slices in a 30% ⁇ 2 0 2 /furfural solution (1:9) at room temperature Inactivate the endogenous peroxidase activity for 15 minutes, rinse 3 times with PBST for 2 minutes each time; immerse the sections in 0.01 M sodium citrate buffer (pH 6.0) and heat to boiling, interval 10 minutes, repeat 2 times; after cooling, wash twice with PBST, remove excess liquid, add 5% BSA blocking solution, room temperature for 20 minutes, remove excess liquid, add GLP-1 receptor primary antibody
  • GLP-1 receptor-specific staining (brown-yellow) is distributed in all layers of the rat spinal cord, but is mainly distributed in the middle layer of gray matter and white matter, located on the cell membrane (Fig. 2B). A small amount of GLP-1 receptor specific staining was also observed in the ganglia (not shown).
  • GLP-1 receptor agonists such as GLP-1 (7-36), exenatide, genipin, genipin, and genipin have no apparent behavioral changes such as sedation, jitter, An increase in sputum, irritation, and activity indicates that the analgesic effect of GLP-1 receptor agonists on pain is not due to non-specific sedative effects or impaired motor coordination.
  • the experimental results are shown in Fig. 4 ⁇ .
  • the mechanical pain threshold of the affected limbs in rats showed a dose-effect relationship and time-effect relationship.
  • Spinal injection of exenatide did not affect the mechanical pain threshold of normal limbs in rats, but inhibited the mechanical pain threshold of the affected limbs. For a duration of more than 2 hours, the mechanical pain threshold began to decrease 4 hours after administration.
  • exenatide inhibited bone cancer pain hyperalgesia in a dose-dependent manner.
  • the maximum possible analgesic effect (% Maximum Possible Effect, % MPE ) was 55.6%, and the ED 50 was 10.5 ng/ Rat (2.5 pmol rat) (Fig. 4D).
  • Rats Male Wistar rats (body weight 150-170 g), animals were acclimated to the environment for 3 days. Rats were anesthetized with sodium pentobarbital (50 mg/kg, ip). A PE-10 catheter was inserted into the spinal cord at the tibial site to the lumbar spinal cord, and L5/L6 spinal nerve ligation was performed on the left side of the rat. After the rats were recovered for 3-7 days, the mechanical pain threshold of the left paw was measured using IITC CE220 (Electronic von Frey Anesthesiometer, IITC Life Science Inc., California, USA); the left mechanical pain threshold was selected to be less than 8 g. Rats, rats that were successful in modeling.
  • IITC CE220 Electro von Frey Anesthesiometer, IITC Life Science Inc., California, USA
  • the maximum possible analgesic effect (% Maximum Possible Effect, % MPE ) was 54.3%, and the ED 50 was 11.3 ng. / rat (2.7 pmol/rat) (Fig. 4D).
  • mice Male Wistar rats (body weight 200-250 g), animals were acclimated to the environment for 3 days. Rats were anesthetized with isoflurane, and streptozotocin (50 mg/kg) was injected into the tail vein. After 30 days, rats were tested bilaterally using IITC CE220 (Electronic von Frey Anesthesiometer, IITC Life Science Inc., California, USA). The mechanical pain threshold of the foot was selected, and the rats with mechanical pain threshold less than 10 g were selected as the diabetic rats with successful modeling.
  • IITC CE220 Electro von Frey Anesthesiometer, IITC Life Science Inc., California, USA
  • the diabetic rats with successful modeling were divided into 6 groups: normal saline (10 ⁇ /rat) ), 3, 10, 30, 100 and 300
  • the experimental results are shown in Fig. 4C.
  • the mechanical pain threshold of the lateral foot of the rats showed a dose-effect relationship and a time-effect relationship.
  • Spinal injection of exenatide significantly inhibited the mechanical pain threshold of the affected limb for more than 2 hours.
  • the mechanical pain threshold began to decrease after 4 hours.
  • mice Male Swiss mice (body weight 20 - 25 g), free to drink, eat, divided into 5 groups, 4 in each group. Five groups of mice were given subcutaneous injection of 10 ml/kg saline and exenatide (10, 30, 100 and 300 g/kg) 30 minutes before the formalin-induced pain. Mice were injected with 10 ⁇ 5% formalin in the right hind paw, and the mice were observed for 0-5 minutes (phase I reaction) and 20-40 minutes (phase II reaction) after continuous formalin injection. As an indicator of pain.
  • mice Male Swiss mice (body weight 20 ⁇ 25 g), free to drink, eat, divided into 7 groups, 3 in each group. Seven groups of mice were subcutaneously given 10 ml/k g of normal saline and geniposide (3, 10, 30, 100 and 300 mg/kg) 30 minutes before the pain caused by formalin, and the stomach was administered orally. Genipin (100 mg/kg)schreib Experimental results showed that subcutaneous administration of GLP-1 receptor small molecule agonist geniposide inhibited formalin chronic pain (phase II response) in a dose-dependent manner (Fig. 6A) The maximum inhibition rate was 71.5%, and the ED 5 value was 13.1 mg/kg (Fig. 6B).
  • mice Male Swiss mice (body weight 20 ⁇ 25 g), free to drink, eat, divided into 7 groups, 4 in each group. Group 4 mice were injected subcutaneously with normal saline (10 ml/kg/time, twice daily) for 7 consecutive days. After 12 hours, subcutaneous single-dose injection of normal saline (10 ml/kg), exenatide (100 g/kg), geniposide (100 mg/kg) and morphine (5 mg/kg); Injection of exenatide (100 g/kg/time, twice daily), genipin (100 mg/kg/time, twice daily) and morphine (10 mg/kg/time, twice daily) ), for 7 consecutive days.
  • mice After 12 hours, subcutaneous single doses of exenatide (100 g/kg), geniposide (100 mg/kg) and morphine (5 m g /k g ) were administered. After 30 minutes of single-dose injection, mice were injected with 10 ⁇ 5% formalin for pain in the right hind paw. Observed 0-5 minutes (phase I reaction) and 20-40 minutes after formalin injection (phase II reaction) The mice continued to have a lame time as an indicator of pain. As shown in Figures 7A and 7B, the experimental results showed that single-dose injection of exenatide and geniposide inhibited formalin phase II pain in control mice injected subcutaneously with saline for 7 consecutive days, with inhibition rates of 65.0, respectively.
  • Exendin (9-39) (100 ng/rat) did not block the analgesic effect of exenatide (30 ng/rat) on chronic pain in rat formalin phase II, but when exendin (9-39) was reached The analgesic effect of exenatide (30 ng/rat) was completely blocked when 2 g/rat or more.
  • GLP-1 (7-36) and geniposide can effectively inhibit formalin chronic pain ( ⁇ phase reaction) with inhibition rates of 57.0% and 57.3%, respectively.
  • Intrathecal peptide GLP-1 receptor antagonist exendin (9-39) (2 ⁇ ⁇ / rat) completely blocked GLP-l (7-36) and the analgesic effect of geniposide.
  • mice Male Swiss mice (body weight 20 ⁇ 25 g), free to drink, eat, divided into 4 groups, 4 in each group.
  • Four groups of mice were given subcutaneous saline (10 ml/kg), geniposide (300 mg/kg), exendin (9-39) (60 g/kg) and 30 minutes before the pain caused by formalin.
  • Exendin (9-39) 60 g/k g ) + genipin (300 mg/kg).
  • the mouse formalin-induced pain model was used to observe the actual test indicators, and the analgesic relationship was analyzed. The experimental results are shown in Fig. 9.
  • GLP-1 receptor small molecule agonist geniposide can effectively inhibit formalin chronic pain (phase II reaction) with an inhibition rate of 64.4%.
  • Subcutaneous injection of GLP-1 receptor peptide antagonist exendin (9-39) (60 g/kg) did not affect formalin pain response in rats (phase I and phase II), but completely blocked geniposide
  • Analgesic effect on chronic pain in mouse formalin phase II suggests that exendin (9-39) blocks the spinal cord GLP-1 receptor through the blood-brain barrier and further demonstrates the positive conformation of geniposide Excited The GLP-1 receptor produces an analgesic effect.
  • mice Male Swiss mice (body weight 20 ⁇ 25 g), free to drink, eat, divided into 4 groups, 4 in each group.
  • Four groups of mice were given: normal saline (5 ⁇ /mouse) + normal saline (10 ml/kg), exendin (9-39) (1 g/mouse) + normal saline (10 ml/kg), physiological Saline (5 ⁇ /mouse) + exenatide (100 g/kg) and exendin (9-39) (1 g/mouse) + exenatide (100 g/kg) o given 45 minutes before formalin pain
  • the second administration was given 30 minutes before the formalin-induced pain, and the experimental index was observed with reference to the mouse formalin-induced pain model, and the analgesic relationship was analyzed.
  • siRNA/GLP-lr sequence is 5,-GUA UCU CUA CGA GGA CGA GUU-3' (SEQ ID NO:8) /5,-CUC GUC CUC GUA GAG AUA CUU-3' (SEQ ID NO:9)
  • Non -sense siRNA sequence is 5,-UUC UCC GAA CGU GUC ACG UUU-3'( SEQ ID NO:10 )/5'-ACG UGA CAC GUU CGG AGAAUU-3' (SEQ ID NO: 11). The results of the experiment are shown in Figures 11A and 11B.
  • Non-sense siRNA ( 5 ) does not affect the expression of GLP-1 receptor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Endocrinology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

说 明 书
GLP-1受体激动剂用于治疗疼痛
技术领域
[01] 本发明涉及胰高血糖素样肽 -1 ( glucogan-like peptide-l, GLP-1 )受 体激动剂对神经系统中 GLP-1受体的激动作用,具体来说用于治疗疼痛, 尤其是慢性疼痛; 还涉及利用 GLP-1受体来鉴定药剂的方法。
背景技术
[02] 疼痛是临床上最常见的症状之一, 很多疾病或病症都会出现疼痛症 状,并严重影响患者的生活质量,治疗疼痛已经成为健康护理和疾病治疗 中最多考虑的因素之一。 因此疼痛已获得医药界越来越多的关注, 2000-2010已被称为疼痛年代。 疼痛是与急性或潜在的组织破坏相关联的 不愉快的感觉和情感体验,促使人们避开或所述破坏情形,从而保护身体 并避免破坏的进一步发生。大多数疼痛在疼痛刺激消除以后随即消失,但 有时尽管刺激已经消除并且身体明显恢复但疼痛仍然持续。此外,有时尽 管检测不到任何刺激、破坏或疾病, 但仍出现疼痛。基于此, 疼痛可分为 急性疼痛和慢性疼痛。
[03] 慢性疼痛是当今国际疼痛研究的热点,根据发生的原因不同,可分为 炎症痛、 神经源性痛、 肿瘤(癌症)痛、糖尿病疼痛和腰背痛等。 慢性疼 痛和急性疼痛的区别,在于不完全是末梢神经受刺激引起的一些非损害性 刺激, 如轻触、温热等刺激也可引起病变区的强烈疼痛。慢性疼痛常在损 伤后一段时间发生, 这种疼痛带有自发性, 随机性和持久性, 而且服用常 用镇痛药多无效, 并往往终生不愈。慢性疼痛涉及复杂的形成机理, 外周 的异位放电及中枢敏感化(central sensitization )是目前广泛认可的慢性 疼痛包括神经源性疼痛和肿瘤疼痛形成的主要机制 ( Basbaum et al. Cell 139: 267-284, 2009 )。 慢性疼痛发病率较高, 约占总 的 10%, 并随 年龄增大和原发病程延长而增高(如 55岁以上发病率可达 13%, 再如在 糖尿病诊断初期为 8%, 而在诊断 25年后可高达 50% )。
[04] 疼痛(如各种形式的慢性疼痛包括癌症疼痛、神经源性痛等)治疗不 充分在病房、 重症监护室(ICU )、 急诊等中普遍存在。 可以使用药物、 精神疗法、物理疗法以及传统医学疗法等来治疗疼痛。例如, 可以使用镇 痛剂和麻醉剂等药物来治疗急性疼痛。相对而言,慢性疼痛的治疗要困难 得多, 可能需要多方面的共同努力才能达到相对较好的结果。
[05] 目前临床上治疗慢性疼痛主要包括三环抗抑郁药如阿米替林
( amitriptyline ),抗癫痫药如加巴喷丁和普瑞巴林,局部麻醉药如利多卡 因 (Lidocaine ), 阿片类药(如吗啡、 二氢吗啡酮、 芬太尼和丁丙诺啡), 腎上腺素受体阻断剂如可乐定, 以及 5-HT再才聂取抑制剂如度洛西汀和齐 考诺肽等。但是由于对慢性疼痛较低的认知度,市场上现有的多数产品并 不专门针对慢性疼痛,对大部分患者无效或只能适度緩解疼痛,或会引起 许多不良反应,或给药不方便。如吗啡治疗神经源性疼痛各家报道不一致; 再如阿米替林不良反应较多, 包括体位性低血压、尿潴留、记忆模糊、 心 肌传导异常、嗜睡等; 再如脊髓推注齐考诺肽使用不方便。 总之目前药物 治疗慢性疼痛成功率有限。 因此寻找安全有效、无成瘾性、方便使用的新 型抗慢性疼痛药物是全球具有极大挑战性的一个重大课题。
[06] 1987年 Drucher等最早在大鼠胰岛瘤细胞 RIN1046-38中检测到胰高 血糖素样肽 -1 ( GLP-1 )的结合受体 ( GLP-1受体),但其克隆由 Thorens 等于 1992年完成( Thorens, Proc. Natl. Acad. Sci" 89: 8641-8645, 1992 )。 随后, 在人的胰岛、 大脑、 脊髓、 肺、 胃、 小肠、 肾脏及心脏组织中都发 现了该受体的存在( Nishizawa et al., J. Auton. Nerv. Syst., 80: 14221, 2000; Tibaduiza et al., J. Biol. Chem., 276: 37787-37793, 2001 ), ^葡萄糖代谢 的主要外周组织 (如肝脏、 骨骼肌和脂肪组织) 中却未发现其存在 ( Montrose et al., J. Cell Physiol., 172: 275-283, 1997; Yang et al., Am. J. Physiol., 275: C675-C683, 1998 )。 DNA杂交试验显示, GLP-1受体基因 位于人染色体的 6p21, 基因组全长 40 kd, 至少有 7个外显子。人和大鼠 的 GLP-1受体均含有 463个氨基酸, 同源性为 91%; 小鼠的受体蛋白有 489个 ^酸, 与人的 GLP-1受体同源性为 84%。
[07] GLP-1受体属于 G蛋白偶联受体 B家族(分泌素家族) 中的胰高血 糖素受体亚家族。 该亚家族最明显的特征是相对较长的胞外 N端序列, 通过三个二 ^键形成一球状结构域。该区域有许多糖基修饰,在配体结合 过程中起关键作用, 但将该结构域分离后发现其本身并不足以与配体结 合。实际上,胞外环区域和 7个跨膜区段间通过特定氨基酸残基之间的相 互作用形成的复杂空间构象,对配体结合也起了一定的作用( Tibaduiza et al., J. Biol. Chem., 276: 37787-37793, 2001 )。 突变分析表明, 端和胞 外区的带电荷氨基酸对其功能非常重要,而受体第 5和第 6个跨膜区段的 第三个胞内环与 G蛋白偶联相关。 到目前为止, 未曾发现该受体的功能 突变与糖尿病或其他疾病的易感性有关。
[08] 目前已知的 GLP-1受体的主要生理功能主要包括以下几个方面:
[09] 1.在胰岛细胞中的功能:
[10] 1 )促进胰岛素的分泌: GLP-1受体属于 G蛋白偶联受体中的 Gs亚 类,对霍乱毒素敏感。当 GLP-1受体的经典激动剂 GLP-1和受体结合后, 偶联的 G蛋白 α亚基与 ρ、 γ亚基解离,并分别介导胞内不同的信号通路。 在胰岛 Ρ细胞模型中, Ga亚单位被活化后, 刺激腺苷酸环化酶, 导致细 胞内 cAMP水平升高和 PKA活化, 引起一系列级^ ^应, 包括离子通道 活性改变、 细胞内钙流变化、 胰岛素分泌小泡释放等。 GLP-1 直接通过 cAMP-PKA途径提高胰岛 β细胞对葡萄糖的敏感性, 刺激血糖依赖性的 胰岛素持续分泌 ( Holz et al., J. Biol. Chem" 274: 14147-14156, 1999 )。 葡 萄糖代谢使细胞内 ATP浓度增加, ATP与 ADP的比值升高, 促使 ATP 依赖性钾离子通道关闭, 细胞膜去极化, 膜上 L型钙离子通道开启, 并 进一步促进细胞内钙库释放钙离子, 促进含胰岛素的分泌小泡外排。
GLP-1 的促胰岛素分泌作用呈明显的葡萄糖依赖性, 在葡萄糖浓度低于 4.5 mM时, 无任何反应; 同时, 这种作用又是全方位的, 影响前胰岛素 基因的转录、 翻译及剪接等各个功能环节。 此外, β细胞中与糖代谢密切 相关的基因, 如葡萄糖激酶和葡萄糖转运蛋白 2, 其表达均被 GLP-1上 调。但也有研究表明,大鼠 β细胞中的胰岛素基因启动子可以部分不依赖 ΡΚΑ的方式被激活( Bode et al" Endocrinology, 140: 3919-3927, 1999 )。 2 ) 刺激 P细胞的增生: GLP-1受体被激活后, G蛋白 β、 γ亚基通过磷脂酰 肌醇 -3-激酶 ( P13K )和丝裂元活化蛋白激酶 ( ΜΑΡΚ )的信号通路诱导 β 细胞的增殖和分化 ( Leech et al" Biochem. Biophys. Res. Commun., 278:44-47, 2000 )。 3 )抑制 β细胞的凋亡:通过上调 Aktl基因、 Prosurvival 激酶及 44 MAPK表达,降低 Caspase-3活性( Wang et al., Diabetologia, 45: 1263-1273, 2002 ). 4 )降低胰高血糖素分泌, 具体分子机制目前尚不 明了。
[11] 2.在神经组织中的效应:
[12] GLP-1 受体在下丘脑、 脑干及小脑中均有表达, 提示其在脑内可能 有一定的生理功能。 GLP-1 经血液循环进入大脑, 在大脑皮层、 海马及 小脑的神经元都可检测到碘标 GLP-1的低密度结合,但 GLP-1受体在脑 部的内源性配体至今未 现。 在离体实验中, GLP-1 可促进神经元细 胞的分化, 其功能类似于神经生长因子,但相关的信号通道仍待阐明。 最 近有研究表明, GLP-1 以剂量依赖性方式抑制大鼠的食欲和摄食量, 而 exendin(9-39)可逆转此现象( Meeran et al" Endocrinology, 140: 244-250, 1999 )。 同样, 无论在正常人还是糖尿病患者中, 应用 GLP-1均可使其产 生短暂的胀饱感觉和食欲下降。 因丘脑核与饮食控制有关, 该区域又有 GLP-1受体表达, 推测外周的 GLP-1有可能通过信号传递间接地影响中 枢神经而产生饱感, 减少食欲。 如上所述, cAMP的生成对 GLP-1信号 传导至关重要, 而 cAMP的升高又可保护神经元免于凋亡, 尽管目前细 胞凋亡的分子机制已有较深的认识, 但对于 GLP-1受体在其中可能牵涉 的环节尚未系统研究,有资料表明, PI3K依赖而 MAPK非依赖性信号途 径在此扮演了重要的角色( Hui et al., Endocrinology, 144: 1444-1455, 2003 )。
[13] 3.对胃肠道功能的影响:
[14] 在对鼠、 猪和人的一系列研究中发现, GLP-1 可抑制胃肠道蠕动和 胃液分泌, 延迟胃排空(Meier et al., J. Clin. Endocrinol. Metab., 88: 2719-2725, 2003 )。
[15] 4.对心血管系统的作用:
[16] GLP-1对心脏的作用主要与其增加细胞内 cAMP含量,促进 内流, 及通过作用丙酮酸脱氢酶作用减少丙酮酸在心肌的含量以及活化 PKA及 下游信号通路抗心肌细胞凋亡有关。
[17] 目前使用最多的 GLP-1受体拮抗剂为 exendin(9-39), 主要用于 # i£ GLP-1受体的生物学作用等( Goke et al., J. Biol. Chem., 268: 19650-19655. 1993; Furuse et al., Japanese Poultry Science, 35: 376-380, 1998 ). 目前已 知的 GLP-1受体激动剂主要包括大分子如肽类和小分子两大类。
[18] 1.肽类: 1 ) GLP-1 ( Mojsov et al., J. Biol. Chem., 261: 11880-11889, 1986; Nathan et al., Diabetes Care, 15:270-276, 1992 )及其衍生物如 liraglutide, GTP-010等; 2 ) exendin-4/exenatide ( Goke et al., J. Biol. Chem., 268: 19650-19655, 1993 )及其衍生物等。已有美国安米林( Amylin ) 和;^来( Eli Lilly )公司共同开发的一天注射两次的 exendin-4 制剂 ( exenatide, 商品名: Byetta ) 于 2005 年上市 (美国专利 5,424,286, 6,858,576, 6,872,700, 6,902,744, 6,956,026, 7,297,761 )治疗 II型糖尿病。 此外, Liraglutide已于 2009年被批准上市用于治疗 II型糖尿病。
[19] 2. 小分子激动剂, 如: 1 ) Boc5 ( SH7870 )和 S4P ( SH7871 ) ( Chen et al., Proc. Natl. Acad. Sci" 104: 943-948, 2007 )及其衍生物, 为正构型激 动剂, 其生物学作用可被 exendin(9-39)阻断; 2 ) "Compound 2" ( quinoxalines )及其衍生物 ( Knudsen et al" Proc. Natl. Acad. Sci., 104: 937-942, 2007; Teng et al., Bioorg. Med. Chem. Lett., 17: 5472-5478, 2007 ), 其为别构型调节剂, 生物学作用不被 exendin(9-39)阻断; 3 ) "Compound A,,和 "Compound B,, ( pyrimidine )及其衍生物为别构型激动 剂, 生物学作用不被 exendin(9-39)阻断 ( Sloop et al., Diabetes 59:3099-3107, 2010 ); 4 )京尼平苷( Liu et al., Neurochem. Int., 51: 361-369, 2007 ); 5 ) ZYOG1, 目前已进入 I期临床研究治疗 II型糖尿病和肥胖 ( Zydus Cadila 公 司 网 站 http://www.zyduscadila.com/press/PressNote21-06-10.pdf); 6 ) T0632 ( Kopin et al., WO2004/103310, 2004 ); 7 ) "6Cu compound " ( Wang et al., Acta Pharmacologica Sinica 31: 1026-1030, 2010 )等。
[20] 中枢神经系统尤其脊髓的 GLP-1受体作为治疗疼痛的靶点分子的研 究未见任何报道。 目前已有的 GLP-1与疼痛相关的研究有 3个, 其一是 来自于临床研究证明皮下注射 GLP-1类似物 GTP-010能降低肠易激综合 征( Irritable Bowel Syndrome )产生的疼痛,其作用与抑制肠道运动有关 ( WO2008/134425; Hellstrom. Regulatory Peptides 156: 9-12, 2009 );其二 是来自于专利申请公开 WO2007/028394, 该^ "利申请公开了 GLP-1受体 激动剂治疗胆嚢运动障碍和胆绞痛,其作用与抑制胆道运动有关。这两例 中作者都认为, 所涉及的疼痛与消化道系统动力紊乱相关, GLP-1 受体 激动剂是通过抑制消化道动力而解除了疼痛。 因此, 它们都属于因消化道 动力紊乱而导致的疼痛, 与传统的疼痛尤其慢性疼痛的发生、发展和作用 部位具有不同的机制。 第三个关于 GLP-1受体与疼痛影响的研究来自于 Midwestern University 的 Matwyshyn 博士在 2009 年举行的 AAPS Annual Meeting and Exposition 以及¾ ^在 2010年世界药理大会 (WorldPharm2010)上的会议报告, 但他报道的结论是 GLP-1受体激动剂 exendin-4腹腔连续注射给药不能产生镇痛作用, 对吗 镇痛作用及其耐 受亦无影响(Matwyshyn et al.,AAPS-002278, 2009 )。
发明内容 [21] 发明人意外地发现, GLP-1 受体激动剂能够激活神经系统尤其是中 柩神经系统(包括脊髓) 中的 GLP-1受体, 从而治疗能够通过激活所述 GLP-1受体而得到治疗的病症, 如疼痛, 尤其是慢性疼痛。
[22] 因此, 在一个方面, 本公开内容提供了一种治疗能够通过激活所述 GLP-1 受体而得到治疗之病症的方法, 其中包括给有此需要的对象施用 有效量的 GLP-1受体激动剂。
[23] 在一个实施方案中, 所述能够通过激活所述 GLP-1受体而得到治疗 的病症是疼痛, 尤其是慢性疼痛。在一个具体实施方案中, 所述病症不是 消化道动力紊乱导致的疼痛。
[24] 在一个具体实施方案中, 所述能够通过激活所述 GLP-1受体而得到 治疗的病症选自慢性疼痛, 神经性疼痛, 慢性腰背痛, 头痛, 偏头痛, 三 叉神经痛, 丛集性头痛, 纤维肌痛综合征, 关节痛, 炎性疼痛, 关节炎疼 痛,骨关节炎疼痛,类风湿性关节炎疼痛,肿瘤疼痛,癌症疼痛, 内脏痛, 躯体痛, 肌肉骨骼痛, 骨痛, 腰骶痛, 颈痛或上背痛, 糖尿病性疼痛, 脊 髓损伤引起的疼痛, 手术疼痛, 术后疼痛, 急性疼痛, 或与感染、镰状细 胞贫血、 自身免疫病、 多发性硬化或炎症相关的疼痛, 由损伤或手术造成 的疼痛, 或它们的组合。
[25] 在另一个具体实施方案中, 所述能够通过激活所述 GLP-1受体而得 到治疗的病症选自与以下有关的疼痛: 糖尿病性神经痛, 外周神经痛, 疱 疹后神经痛, 腰或颈的神经根痛, 纤维肌痛, 舌咽神经痛, 反射交感性营 养不良, 灼痛, 丘脑综合征, 神经根撕脱, 幻肢痛, 开胸术后的疼痛, 癌 症, 化学损伤, 毒素, 营养缺乏, 病毒或细菌感染, 颞下颌关节紊乱综合 征, 纤维肌痛综合征, 骨质疏松, 骨转移或其他未知原因引起的骨痛, 痛 风, 纤维组织炎, 肌筋膜痛, 胸廓出口综合征, 背痛或腰痛, 骨盆痛, 心 脏性胸痛, 非心脏性胸痛, 脊髓损伤相关性疼痛, 中枢性中风后疼痛, 癌 症痛, AIDS痛, 抗肿瘤药物致神经疼痛, 镰状细胞痛, 老年痛, 或它们 的组合。
[26] 在另一个具体实施方案中, 所述 GLP-1 受体激动剂可以是大分子 GLP-1受体激动剂或小分子 GLP-1受体激动剂。 例如所述大分子 GLP-1 受体激动剂包括但不限于 GLP-1 , liraglutide , GTP-010 , exendin-4 ( exenatide ), exendin-3和其他 exendins, 及其功能性变体、 片段、衍生 物和类似物。所述大分子 GLP-1受体激动剂可以具有修饰或不具有修饰, 所述修饰例如是缀合 PEG或白蛋白等增加分子量的结构(moeity ) 以延 长所述 GLP-1 受体激动剂的生物活性。 所述功能性变体例如包括各种 GLP-1变体或 exendin变体。 例如所述小分子 GLP-1受体激动剂包括但 不限于京尼平及其衍生物京尼平苷和京尼平苷酸, Boc5 ( SH 7870 ), S4P
( SH7871 ), "Compound 2" ( qui腿 alines )及其衍生物 ( Knudsen et al., Proc. Natl. Acad. Sci., 104: 937-942, 2007; Teng et al., Bioorg. Med. Chem. Lett., 17: 5472-5478, 2007 ), "Compound A,, 和 "Compound B,,
( pyrimidine )及其衍生物 ( Sloop et al., Diabetes 59:3099-3107, 2010 ), ZYOG1 , T0632, "6 Cu Compound"(Wang et al., Acta Pharmacologica Sinica 31: 1026— 1030, 2010), 及其衍生物。
[27] 在一个实施方案中, 通过口服或胃肠外途径施用所述 GLP-1受体激 动剂,例如包括皮下注射,脊 用,颅内施用、肌肉注射,经鼻腔施用, 静脉内施用和 /或腹腔内施用。
[28] 在另一个实施方案中,所述方法还包括向所述对象施用另外的疼痛治 疗剂, 例如所述疼痛治疗剂包括但不限于: 镇痛剂如阿片类镇痛剂, 抗炎 药, 偏头痛制剂, 三环抗抑郁药, 抗癫痫药, α2 受体激动剂, 或选择性 血清素再摄取抑制剂 /选择性去曱肾上腺素招取抑制剂, 或它们的组合。
[29] 在一个具体实施方案中,所述另外的疼痛治疗剂选自吗啡类药物(如 吗啡、 二氢吗啡酮、 芬太尼、 丁丙诺啡和叔丁啡), 加巴喷丁, 普瑞巴林, 齐考诺肽, 洛西汀, 可乐定, 利多卡因, DAO酶抑制剂 (如 5-氯苯并 [d】 异恶唑 -3-醇、 AS057278、 苯甲酸钠、 3-羟基喹啉 -2-(7 )-酮和 4H-噻吩并
[3,2-b】吡咯 -5-羧酸), NMDA受体阻断剂 (如 MK-801、 氯胺酮、 右美沙 芬、 苯环利定和 (27?)-氨基 -5-膦戊酸。
[30] 在第二方面, 开内 提供 GLP-1受体激动剂在制备用于治疗 能够通过激活神经系统尤其是中枢神经系统中 GLP-1受体而得到治疗之 病症的药物中的用途, 所述病症优选地是疼痛, 尤其是慢性疼痛。在所述 用途的各种实施方案中,尤其包括与上述第一方面治疗方法所涉及各实施 方案相对应的技术方案。
[31] 在第三方面, 本公开内容还提供 GLP-1受体激动剂, 其用于治疗能 够通过激活神经系统尤其是中枢神经系统中 GLP-1受体而得到治疗之病 症,所述病症优选地是疼痛,尤其是慢性疼痛。在所述用于治疗的 GLP-1 受体激动剂的各种实施方案中,尤其包括与上述第一方面治疗方法所涉及 各实施方案相对应的技术方案。 [32] 此外,在第四方面,本公开内容还提供一种鉴定治疗能通过激活神经 系统中 GLP-1受体而得到治疗之病症的药剂的方法, 其包括: 提供测试 化合物, 使所述测试化合物与 GLP-1受体(如神经细胞上 GLP-1受体) 相接触, 和测定所述 GLP-1受体的活性; 如果所述测试化合物能够提高 GLP-1 受体的活性, 那么所述测试化合物可用作治疗能通过激活神经系 统中 GLP-1受体而得到治疗之病症的药剂。 在一个实施方案中, 所述病 症是疼痛, 尤其是慢性疼痛。
[33] 在第四方面, 开内 ^^提供一种使用根据上述鉴定方法所鉴定之 药剂以及使用所鉴定之药剂来治疗能通过激活神经系统中 GLP-1受体而 得到治疗之病症的方法。在一个实施方案中, 所述病症是疼痛, 尤其是慢 性疼痛, 例如^ 开内容以上提到的各种疼痛。
[34] 考虑到不同国家的专利制度对保护主题有不同规定, ^开内 提 供与以上方法相对应的制药用途以及用于预定用途的药物。这些各种制药 用途和药物也在本发明保护范围内,就像它们已经具体记载在 开内容 中一样。
[35] 开内容仅仅举例说明了要求保护的一些具体实施方案,其中一个 或更多个技术方案中所记载的技术特征可以与任意的一个或多个技术方 案相组合,这些经组合而得到的技术方案也在本申请保护范围内,就像这 些经组合而得到的技术方案已经在本公开内容中具体记载一样。
[36] 将结合附图以及以下进一步的详细说明来举例说明本发明。需要指出 的是, 以下说明仅仅是对本发明要求保护的技术方案的举例说明,并非对 这些技术方案的任何限制。本发明的保护范围以所附权利要求书记载的内 容为准。
附图说明
[37] 图 1示出, 大鼠胰腺、 脊髓、 背才 M 经节、 大脑皮层和 GLP-1受体 mR A表达。 使用实时 PCR方法, 每种组织重复 3次。
[38] 图 2示出, 大鼠 ( A )和脊髓(B ) GLP-1受体免疫特异性染色 (棕黄色)分布。
[39] 图 3 示出, 脊髓注射 GLP-1 受体肽类激动剂 exenatide ( A )和 GLP-l(7-36) ( B ) 以及小分子激动剂京尼平苷( C )、 京尼平苷酸( D )、 京尼平(E )、 1,10-anhydrogenipin (AG) ( F )、 甲基京尼平(G )、 马钱 苷(H)、 山栀苷甲酯(1)、 8-氧-甲基山栀苷曱酯( J)和梓醇(K)对大 鼠福尔马林致痛模型的影响。 以曲线下面积计算药物对 II相疼痛反应的 量效关系 (L)。
[40] 图 4示出,脊髓注射 GLP-1受体激动剂 exenatide对大鼠骨癌痛模型 ( A )、 神经源性疼痛模型 ( B )和糖尿病疼痛模型 ( C )的抑制作用, 根 据给药后 1小时疼痛阈值进行量效关系计算(D)。
[41] 图 5示出,皮下注射给予 GLP-1受体肽类激动剂 exenatide对小鼠福 尔马林疼痛的抑制作用。
[42] 图 6示出, 皮下注射和淮胃 GLP-1受体小分子激动剂京尼平苷对小 鼠福尔马林疼痛的影响。
[43] 图 7示出, 连续 7日皮下注射 exeantide和京尼平苷对小鼠福尔马林 I相疼痛 (A)和 II相疼痛 (B)的影响。 与生理盐水 +生理盐水对照组相 比, &代表?<0.05; 与生理盐水 +吗啡组比较, 1)代表?<0.05。
[44] 图 8示出,脊髓注射 GLP-1受体拮抗剂 exendin(9-39)阻断 GLP-1受 体激动剂对大鼠福尔马林疼痛的抑制作用。 脊髓注射 GLP-1受体拮抗剂 exendin(9-39 )阻断 exenatide、 GLP-l(7-36)和京尼平苷(A, C)对大鼠 与相应的生理盐水组比较, ^P<0.05;与相应的 exenatide、GLP-l(7-36) 和京尼平苷组比较, ¾代表?<0.05。
[45] 图 9示出, GLP-1受体拮抗剂 exendin(9-39)对皮下注射京尼平苦镇 痛作用的影响。与生理盐水对照组相比, a代表 P< 0.05; 与京尼平苷组比 较, b代表 P<0.05。
[46] 图 10示出, 脊髓给予 GLP-1受体拮抗剂 exendin(9-39)对全身给予 exenatide镇痛作用的影响。 与相应的生理盐水组比较, ¾代表?<0.05; 与相应的 exenatide组比较, b代表 P < 0.05。
[47] 图 11示出,连续 7日脊髓注射 GLP-1受体 siRNA/GLP-lr阻断 GLP-1 受体肽类激动剂 exenatide对大鼠福尔马林疼痛的抑制作用。 脊髓注射 GLP-1受体 siRNA/GLP-lr阻断 exenatide对大鼠福尔马林疼痛的抑制作 用 (A)和福尔马林 II相疼痛曲线下面积 AUC (B)。 与相应的生理盐水 组比较, ¾代表 P < 0.05; 与相应的 exenatide组比较, ¾代表 P < 0.05。 连 续 7日脊髓注射 GLP-1受体 siRNA/GLP-lr抑制脊髓 GLP-1受体蛋白表 达量 (C)和表达图谱(D)。 [48] 图 12示出,连续 7日脊髓注射 GLP-1受体 siRNA/GLP-lr阻断 GLP-1 受体小分子激动剂京尼平苷对大鼠福尔马林疼痛的抑制作用。 脊髓注射 GLP-1受体 siRNA/GLP-lr阻断 exenatide京尼平苷对大鼠福尔马林疼痛 的抑制作用 (A )和福尔马林 II相疼痛曲线下面积 AUC ( B )。 与相应的 生理盐水组比较, 代表?< 0.05; 与相应的京尼平苷组比较, ¾代表?< 0.05。
具体实施方式
[49] 如本公开内容所用,术语"治疗,,是指通过医学干预而使得待治疗对象 的目标疾病或病症和 /或其任何症状和 /或其任何可能的并发症和 /或后遗 症得到根治、 消除、 緩解、 改善、 停止加剧、 和 /或预防, 或者使得待治 疗对象获得立即发生的和 /或潜在的医学意义上的任何积极效果。
[50] 如 ^ 开内容所用,术语"激动剂 "是指能够结合并激活细胞受体从而 诱发该细胞产生应答的化学物质。 术语" GLP-1 受体激动剂"是指能够结 合并激活 GLP-1受体的物质, 它们能够诱导产生与 GLP-1相类似的生物 效应。 需要指出的是, GLP-1本身也包括在 GLP-1受体激动剂内。此外, 在提及 GLP-1受体激动剂时, 其含义不仅包括具有这种活性的化合物、 其溶剂化物、 水合物和盐形式, 还包括所述激动剂的前药等形式。
[51] 发明人意外地发现, GLP-1 受体激动剂能够激活神经系统尤其是中 枢神经系统(包括脊髓) 中的 GLP-1受体, 从而治疗能够通过激活所述 GLP-1受体而得到治疗的病症, 如疼痛, 尤其是慢性疼痛。
[52] 因此, 在一个方面, 本公开内容提供了一种治疗能够通过激活所述 GLP-1 受体而得到治疗之病症的方法, 其中包括给有此需要的对象施用 有效量的 GLP-1受体激动剂。
[53] 在一个实施方案中, 所述能够通过激活所述 GLP-1受体而得到治疗 的病症是疼痛, 尤其是慢性疼痛。在一个具体实施方案中, 所述病症不是 消化道动力紊乱导致的疼痛。
[54] 在一个具体实施方案中, 所述能够通过激活所述 GLP-1受体而得到 治疗的病症选自慢性疼痛, 神经性疼痛, 慢性背痛, 头痛, 偏头痛, 三叉 神经痛, 丛集性头痛,纤维肌痛综合征, 关节痛, 炎性疼痛, 关节炎疼痛, 骨关节炎疼痛, 类风湿性关节炎疼痛, 肿瘤疼痛, 癌症疼痛, 内脏痛, 躯 体痛, 肌肉骨骼痛, 骨痛, 腰骶痛, 颈痛或上背痛, 糖尿病性疼痛, 脊髓 损伤引起的疼痛, 手术疼痛, 术后疼痛, 急性疼痛, 或与感染、镰状细胞 贫血、 自身免疫病、 多发性硬化或炎症相关的疼痛, 由损伤或手术造成的 疼痛, 或它们的组合。
[55] 在另一个具体实施方案中, 所述能够通过激活所述 GLP-1受体而得 到治疗的病症选自与以下有关的疼痛: 糖尿病性神经痛, 外周神经痛, 疱 疹后神经痛, 腰或颈的神经根痛, 纤维肌痛, 舌咽神经痛, 反射交感性营 养不良, 灼痛, 丘脑综合征, 神经根撕脱, 幻肢痛, 开胸术后的疼痛, 癌 症, 化学损伤, 毒素, 营养缺乏, 病毒或细菌感染, 颞下颌关节紊乱综合 征, 纤维肌痛综合征, 骨质疏松, 骨转移或其他未知原因引起的骨痛, 痛 风, 纤维组织炎, 肌筋膜痛, 胸廓出口综合征, 上背部痛, 下腰痛, 骨盆 痛, 心脏性胸痛, 非心脏性胸痛, 脊髓损伤相关性疼痛, 中枢性中风后疼 痛, 癌症痛, AIDS痛, 抗肿瘤药物致神经疼痛, 镰状细胞痛, 老年痛, 或它们的组合。
[56] 在另一个具体实施方案中, 所述 GLP-1 受体激动剂可以是大分子 GLP-1受体激动剂或小分子 GLP-1受体激动剂。 例如所述大分子 GLP-1 受体激动剂包括但不限于 GLP-1 , liraglutide , GTP-010 , exendin-4
( exenatide ), exendin-3和其他 exendins, 及其功能性变体、 片段、衍生 物和类似物。所述大分子 GLP-1受体激动剂可以具有修饰或不具有修饰, 所述修饰例如是缀合 PEG或白蛋白等增加分子量的结构(moeity ) 以延 长所述 GLP-1 受体激动剂的生物活性。 所述功能性变体例如包括各种 GLP-1变体或 exendin变体。 例如所述小分子 GLP-1受体激动剂包括但 不限于京尼平、 京尼平苷和京尼平苷酸, Boc5, S4P, "Compound 2"
( quinoxalines )及其衍生物 ( Knudsen et al., Proc. Natl. Acad. Sci" 104: 937-942, 2007; Teng et al., Bioorg. Med. Chem. Lett., 17: 5472-5478, 2007 ), "Compound A,,和 "Compound B,, ( pyrimidine )及其衍生物 (Sloop et al., Daibetes 59:3099-3107, 2010), ZYOG1, T0632, "6 Cu Compound" (Wang et al., Acta Pharmacologica Sinica 31: 1026-1030, 2010), 及其衍生 物。
[57] 在一个实施方案中, 通过口服或胃肠外途径施用所述 GLP-1受体激 动剂,例如包括皮下注射,脊 用,颅内施用,肌肉注射, 经鼻腔施用, 静脉内施用和 /或腹腔内施用。
[58] 在另一个实施方案中,所述方法还包括向所述对象施用另外的疼痛治 疗剂, 例如所述疼痛治疗剂包括但不限于: 镇痛剂如阿片类镇痛剂, 抗炎 药, 偏头痛制剂, 三环抗抑郁药, 抗癫痫药, α2 受体激动剂, 或选择性 血清素再摄取抑制剂 /选择性去曱肾上腺素招取抑制剂, 或它们的组合。
[59] 在一个具体实施方案中,所述另外的疼痛治疗剂选自吗啡类药物(如 吗啡、 二氢吗啡酮、 芬太尼、 丁丙诺 和叔丁啡), 加巴喷丁, 普瑞巴林, 齐考诺肽, 洛西汀, 可乐定, 利多卡因, DAO 酶抑制剂 (如 5-chlorobenzo[d]isoxazol-3-ol 、 AS057278 、 苯 曱 酸 钠 、 3-hydroxyquinolin-2-(lH)-one 和 4H-thieno[3,2-b]pyrrole-5-carboxylic acid, NMDA受体阻断剂(如 MK-801、 氯胺酮、 右 :沙芬、 苯环利定和 (2 ?)-amino-5-phosphonovaleric acid)。
[60] 在第二方面, 开内 提供 GLP-1受体激动剂在制备用于治疗 能够通过激活神经系统尤其是中枢神经系统中 GLP-1受体而得到治疗之 病症的药物中的用途, 所述病症优选地是疼痛, 尤其是慢性疼痛。在所述 用途的各种实施方案中,尤其包括与上述第一方面治疗方法所涉及各实施 方案相对应的技术方案。
[61] 在第三方面, 本公开内容还提供 GLP-1受体激动剂, 其用于治疗能 够通过激活神经系统尤其是中枢神经系统中 GLP-1受体而得到治疗之病 症,所述病症优选地是疼痛,尤其是慢性疼痛。在所述用于治疗的 GLP-1 受体激动剂的各种实施方案中,尤其包括与上述第一方面治疗方法所涉及 各实施方案相对应的技术方案。
[62] 此外,在第四方面,本公开内容还提供一种鉴定候选药物的方法, 其 包括: 提供测试化合物, 使所述测试化合物与 GLP-1受体(如神经细胞 上 GLP-1受体)相接触, 和测定所述 GLP-1受体的活性; 如果所述测试 化合物能够提高 GLP-1受体的活性, 那么所述测试化合物可用作治疗能 通过激活神经系统中 GLP-1受体而得到治疗之病症的候选药物。 在一个 实施方案中, 所述病症是疼痛, 尤其是慢性疼痛。
[63] 疼痛可分为急性疼痛和慢性疼痛。 开内容所使用的皮下注射福尔 马林引起持续性疼痛 (慢性疼痛, II相反应), 骨癌细胞注射入大鼠胫骨 能引起大鼠患侧 O¾性痛觉过敏 ( hyperalgesia ); 脊神经结扎引起的神 经源性患侧足机械性痛觉过敏,其作用特征均涉及到中枢敏感化( Coderre et al. Pain 54: 43-50, 1993; Jett et al. Pain 69: 161-169, 1997; Yanagisawa et al. Mol Pain 2010; 6: 38-50, 2010 )„ 不限于任何理论, 开内容中所 述的疼痛包括以中柩敏感化为特征的慢性疼痛。 [64] GLP-1 受体激动剂可以分为大分子 GLP-1 受体激动剂和小分子 GLP-1受体激动剂, 其中大分子 GLP-1受体激动剂主要包括肽类 GLP-1 受体激动剂。
[65] 1.肽类: 1 ) GLP-1 ( Mojsov et al., J. Biol. Chem., 261: 11880-11889, 1986; Nathan et al., Diabetes Care, 15:270-276, 1992 )及其衍生物如 liraglutide^ GTP-010等; 2 ) exendin类,如 exendin-4/exenatide ( Goke et al., J. Biol. Chem., 268: 19650-19655, 1993 )及其衍生物等。 已有美国安米 林( Amylin )和;^来( Eli Lilly )公司共同开发的一天注射两次的 exendin-4 制剂 ( exenatide, 商品名: Byetta )于 2005年上市(美国专利 5,424,286, 6,858,576, 6,872,700, 6,902,744, 6,956,026, 7,297,761 )治疗 II型糖尿病。 此外 Liraglutide也已于 2009年被批准上市用于治疗 II型糖尿病。这些肽 类 GLP-1受体激动剂的体内半衰期通常较短, 往往需要在短时间内重复 给药。 已经尝试了多种策略来延长这些肽类激动剂在体内的活性。 例如, 通过改变这些肽的 列来提高这些肽抵抗体内蛋白酶(包括肽酶, 尤其是二肽基肽酶 IV( DPP IV ) )降解的能力,或者抵抗其它降解作用(如 氧化等)的能力。还已经尝试了在这些肽上缀合增加分子量的结构(如白 蛋白和 /或各种分子量的 PEG等), 这也可以增加肽类激动剂的体内半衰 期,从而延长其生物活性。现有技术中已经有大量专利公开以及其它非专 利文献披露了这些延长 GLP-1受体激动剂体内活性的方法和经此修饰而 具有延长体内活性的 GLP-1 受体激动剂, 它们都在本公开内容中所述 GLP-1受体激动剂的范围内。
[66] 2. 小分子激动剂,如: 1 ) Boc 5和 S4P ( Chen et al., Proc. Natl. Acad. Sci., 104: 943-948, 2007 )及其衍生物, 为正构型激动剂, 其生物学作用可 被 exendin(9-39)阻断; 2 ) "Compound 2" ( quinoxalines )及其衍生物 ( Knudsen et al., Proc. Natl. Acad. Sci., 104: 937-942, 2007; Teng et al., Bioorg. Med. Chem. Lett., 17: 5472-5478, 2007 ), 其为别构型调节剂, 生 物学作用不被 exendin(9-39)阻断; 3 ) "Compound A,,和 "Compound B,, ( pyrimidine ) 及其衍生物, 为别构型激动剂, 生物学 ½用不被 exendin(9-39)阻断 (Sloop et al., Daibetes 59:3099-3107, 2010); 4 )京尼平 苷( Liu et al., Neurochem. Int., 51: 361-369, 2007 ); 5 ) ZYOG1, 目前已 iiX I期临床研究治疗 II型糖尿病和肥胖 ( Zydus Cadila公司网站); 6 ) T0632( Kopin et al., WO2004/103310, 2004 ); 7 ) "6Cu compound" (Wang et al., Acta Pharmacologica Sinica 31: 1026-1030, 2010 )等。 [67] 迄今为止, 中枢神经系统尤其脊髓中 GLP-1受体作为疼痛治疗耙标 分子的研究未见任何报道。 发明人意外地发现, GLP-1 受体激动剂能够 作用于神经系统尤其是中枢神经系统(包括脊髓) 中的 GLP-1受体, 从 而实现治疗疼痛的效果。
[68] 我们对这些 GLP-1受体激动剂进行体内镇痛活性研究, 发现脊髓和 皮下给予 GLP-1受体激动剂包括 GLP-1, exenatide, 京尼平及其衍生物 京尼平苷和京尼平苷酸及其衍生物 (如京尼平、 l,10-anhydrogenipin (AG), 甲基京尼平、 马钱苷、 山栀苷甲酯、 8-氧 -甲基山栀苷甲酯和梓醇) 能够剂量依赖性地有效抑制福尔马林诱导的慢性疼痛 (II相反应)、 肿瘤 疼痛、 神经源性疼痛和 /或糖尿病疼痛。 此外灌胃京尼平苷亦能有效镇痛, 活性生物利用度为皮下注射的 83.5%。 给予 exenatide 最大抑制率高达 70-80%, 脊髓和皮下半数有效剂量 ED5。分别可低达 0.5 pmol/大鼠和 5.4 nmol/kg, 可能为目前已知的最强镇痛药物。 更重要的是, 与吗啡相反, 7 日连续给予 exenatide和京尼平苷不产生耐受性,为 GLP-1受体激动剂治 疗慢性疼痛提供了药理学基础。此外脊髓注射 GLP-l(7-36)、 exenatide以 及京尼平苷、 京尼平苷酸、 京尼平、 10-anhydrogenipin (AG), 曱基京尼 平、 马钱苷、 山栀苷曱酯、 8-氧 -甲基山栀苷甲酯和梓醇抑制大鼠福尔马 林诱导的慢性疼痛 ED5o分别为 0.5 pmol/大鼠、 1.2 pmol/大鼠、 63.0 nmol/ 大氣、 43 nmol/大鼠、 85 nmol/大鼠、 54 nmol/大氣、 48 nmol/大鼠、 61 nmol/ 大鼠、 35 nmol/大鼠、 49 nmol/大鼠和 33.7 nmol/大鼠, 它们激动 GLP-1 受体活性呈正性相关。 同时 GLP-l(7-36)、 exenatide和京尼平苷的镇痛作 用均可被脊髓注射的 GLP-1受体拮抗剂 exendin(9-39)和 siRNA/GLP-lr 完全阻断, 证明激活中枢神经系统尤其脊髓中 GLP-1受体可产生有效镇 痛作用, GLP-1受体为治疗疼痛的靶点分子。
[69] 本发明将通过以下实施例进行进一步说明,其不应以任何方式解释为 对本发明保护范围的限制。本申请中所有引用的参考文献的全部内容(包 含文章参考、授权的专利、公开的专利申请和共同未决的专利申请)均明 确地通过引用并入本文。 以下实施例中, 若未具体指出, 所用试剂和材料 是能够商业获得的至少分析纯或与此相当级别的产品。
实施例
实施例 1 大鼠脊髓 GLP-1受体( GLP-1受体) mR A的表达
[70] 雄性 Wistar大鼠(上海斯莱克实验动物责任有限公司)用戊巴比妥 钠(60 mg/kg ) ( Sigma, 上海, 中国)麻醉, 暴露其胸腔, 用生理盐水进 行心脏濯流, 至全身血液流尽后取大鼠胰腺、 骨狢肌、神经节、脊髓腰膨 大部位和大脑皮层, 放入准备好的 1.5 ml离心管中, 并标记。
[71] GLP-1 受体基因表达按照 100 mg 组织加入 1 ml Trizol 试剂 ( Invitrogen , 上海, 中国), 加入相应体积的 Trizol 试剂。 根据 OD260/OD280 和核酸电泳确定所提取 RNA 的质量。 使用逆转录酶 ( Toyobo, 东洋纺(上海)生物科技有限公司), 才艮据制造商说明, 在相 应的逆转录条件下, 将 1 总 R A逆转录成 cDNA。 以逆转录产生的 cDNA为模板, 以 GAPDH为内参, 用荧光定量 PCR ( Mastercycler ep realplex real-time PCR system, Eppendorf, Hamburg, Germany )检测大 鼠各部位目的基因 GLP-1受体表达, 用 2·ΔΔα方法分析目的基因 GLP-1 受体表达变化。 所用 PCR引物如下:
GAPDH:
正向引物 5,-CCAAGG TCA TCC ATGACAAC -3' ( SEQ ID ΝΟ:1 ), 反向引物 5'-TCC ACAAGT CTT CTGAGT GGC-3' ( SEQ ID NO:2 );
GLP-1受体:
正向引物 5'- ACG CAC TTT TCT TTC TCT CTG CC-3'( SEQ ID NO:3 ), 反向引物 5'-CAA ACA GGT TCA GGT GGA TG-3 ( SEQ ID NO:4 )。
[72] 3只大鼠实验结果如图 1所示, 大鼠胰腺能高表达 GLP-1受体, 脊 髓 GLP-1受体表达量约为胰腺的 16.8%,神经节和大脑皮层 GLP-1受体 表达量较弱分别为胰腺的 1.1%和 1.3%, 而骨骼肌几乎检测不到 GLP-1 受体的表达( 0.04% )。
实施例 2
大鼠脊髓和胰腺 GLP-1受体免疫组织化学特异性染色分布
[73] 雄性 Wistar大鼠(上海斯莱克实验动物责任有限公司)用戊巴比妥 钠(60 mg/kg ) ( Sigma, 上海, 中国)麻醉, 暴露其胸腔, 用生理盐水进 行心脏灌流, 至全身血液流尽后取大鼠胰腺、 骨骼肌、神经节和脊髓腰膨 大部位, 放入 4%多聚甲醛中固定 24小时后进行脱水和透明、 石蜡包埋、 5 μιη切片、 切片脱蜡, 将切片置于 30% Η202/曱醛溶液(1:9 )室温浸泡 15分钟, 以灭活内源性过氧化物酶的活性, 用 PBST冲洗 3次, 每次 2 分钟; 将切片浸入 0.01 M的柠檬酸钠緩冲液(pH6.0 )中加热至沸腾, 间 隔 10分钟, 重复 2次; 冷却后用 PBST洗涤 2次, 甩去多余液体, 滴加 5% BSA封闭液, 室温 20分钟, 甩去多余液体后, 滴加 GLP-1受体一抗
( 1:500, ab39072, Abeam, Cambridge, USA ) 4 。C孵育过夜, PBST 洗 3次,每次 5分钟,山羊抗兔 IgG-HRP( 1:2000, SA00001-2, Proteintech Group, Inc., Chicago, USA ) 37。C孵育 20分钟, PBST洗 3次, 每次 5分钟; 滴加 sABC ( SA1022, 武汉博士德生物工程有限公司) 37 °C孵育 20分钟, PBST洗涤 4次, 每次 5分钟, 甩去多余液体, DAB显色, 15 分钟后蒸馏水洗涤,进行苏木精轻度复染,脱水、透明后用中性树胶封片, 24小时后用光学显微镜进行拍照, 分别取 5、 10、 20和 40倍镜视野下组 织进行结果分析。 GLP-1受体特异染色在胰腺中主要分布在胰岛 P细胞
(图 2A ), 在骨酪肌中未见(未显示)。 GLP-1受体特异染色(棕黄色) 在大鼠脊髓各层均有分布,但主要分布在灰质以及白质的中间层,位于细 胞膜上(图 2B )。 神经节也可见少量 GLP-1受体特异染色(未显示)。
实施例 3
脊髓注射 GLP-1受体肽类激动剂 exenatide和 GLP-l(7-36)以及小分子激 动剂京尼平苷 ( Geniposide ), 京尼平苷酸 ( Geniposidic acid )、 京尼平 ( Genipin )、 1,10-anhydrogenipin (AG)^ 甲基京尼平 ( Me-genipin )、 马 钱苷 ( Loganin )、 山栀苦甲酯 ( Shanzhiside methylester )、 8-氧-曱基山槐 苷甲酯( 8-O-Acetylshanzhiside methylester )和梓醇(Catalpol )对大鼠 福尔马林致痛模型的影响
[74] 雄性 Wistar大鼠(体重 200 ~ 250 g )每组 4只。 在福尔马林致痛前 30 分钟分别 鞘 内 注射 10 μΐ/大鼠生理盐水、 exenatide ( His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu- Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser -Gly-Ala-Pro-Pro-Pro-Ser-NH2, SEQ ID NO:5 ) ( 1, 3, 10, 30和 100 ng/ 大鼠, 成都凯捷生物医药科技 JL L公司)、 GLP-l(7-36) ( His - Ala - Glu - Gly - Thr - Phe - Thr - Ser - Asp - Val - Ser - Ser - Tyr - Leu - Glu - Gly - Gin - Ala - Ala - Lys - Glu - Phe - lie - Ala - Trp - Leu - Val - Lys - Gly - Arg - NH2, SEQ ID NO:6 ) ( 1 , 3, 10, 30和 100 ng/大鼠, 上海肽仕生物 科 4支有限公司,)、 京尼平苷(3, 10, 30, 100和 300 g/大鼠, 南京泽朗 医药科技有限公司)、 京尼平苷酸(3, 10, 30, 100和 300 g/大鼠, 临川 之信生物科 4支有限公司)、 京尼平(3, 10, 30, 100和 300 g/大鼠, 临川 之信生物科技有限公司)、 1,10-anhydrogenipin (AG) ( 3, 10, 30, 100 和 300 g/大鼠, 上海交通大学药学院合成)、 甲基京尼平(3, 10, 30, 100和 300 g/大鼠,上海交通大学药学院合成)、马钱苷(3, 10, 30, 100 和 300 μ§/大鼠, 成都普瑞发科技开发有限公司)、 山栀苷甲酯(3, 10, 30, 100和 300 μδ/大鼠, 成都普瑞发科技开发有限公司)、 8-氧-曱基山栀 苷甲酯(3, 10, 30, 100和 300 g/大鼠,成都普瑞发科技开发有限公司)、 梓醇(3, 10, 30, 100和 300 μδ/大鼠, 成都普瑞发科技开发有!^^司)。 大鼠右后足背注射 50 μΐ 5%福尔马林致痛, 在福尔马林注射后 0-90分钟 间,每隔十分钟观察 1分钟内大鼠抬脚或抖脚次数作为疼痛指标。 实验结 果如图 3所示, 脊髓注射 GLP-1受体肽类激动剂 exenatide (图 3A )和 GLP-l(7-36) (图 3B )、 小分子激动剂京尼平苷(图 3C )、京尼平苷酸 (图 3D )、 京尼平(图 3E )、 1,10-anhydrogenipin (AG) (图 3F )、 甲基京尼 平(图 3G )、 马钱苷(图 3H )、 山栀苷甲酯(图 31 )、 8-氧-甲基山栀苷甲 酯(图 3J )和梓醇(图 3K )均呈剂量依赖式抑制福尔马林慢性疼痛 ( II 相反应),以曲线下面积计算,最大抑制率为分别为 69.8%, 60.1%、 57.2%、 63.7%, 66.4%, 66.7%, 74%、 88.6%, 82.7%, 78.2%和 63.3%; ED50 值分别为 2.0 ng/大鼠 (0.5 pmol/大鼠), 3.8 ng/大鼠( 1.2 pmol/大鼠)、 24.4 g/大鼠 (63.0 nmol/大鼠)、16.1 g/大鼠(43 nmol大鼠)、19.2 g/大鼠 (85 nmol/大鼠)、 11.3 g/大鼠 (54 nmol/大鼠)、 11.5 g/大鼠 (48 nmol/大鼠)、 23.8 g/大鼠(61 nmol/大鼠)、 20.5 g/大鼠 (35 nmol/大鼠)、 21.8 g/大鼠 (49 nmol/大鼠)和 12.2 g/大鼠 (33.7 nmol/大鼠)(图 3L )。
[75] 行为观察表明给予 GLP-1受体激动剂如 GLP-l(7-36)、 exenatide,京 尼平苷、 京尼平苷酸和京尼平无明显行为学变化如镇静、抖动、瘫痪、 激 怒、 活动增加, 说明 GLP-1受体激动剂对疼痛的镇痛作用并非由于其非 特异性地产生镇静作用或运动协调功能受损而产生的。
实施例 4
脊髓注射 GLP-1受体肽类激动剂 exenatide对大鼠骨癌痛模型、神经源性 疼痛模型和糖尿病疼痛模型的抑制作用
[76] 雌性 Sprague Dawley大鼠( 150 ~ 180 g, 上海斯莱克实验动物责任 有 P 司)用戊巴比妥钠 ( 50 mg/kg, i.p. )麻醉, 在距胫骨头下 0.5 cm处 钻孔, 注射 5 μ1大鼠 Walker 256细胞悬液(lxlO7个细胞 /ml, 中国科学 院上海生科院细胞资源中心)到骨髓腔内。 手术后第 14天选取造模成功 的骨癌痛大鼠, 检测机械性痛觉阈值, 大鼠手术足机械性痛觉阈值小于 8 g视为骨癌疼痛造模成功。 选取造模成功的骨癌痛大鼠, 分 6组: 生理盐 水(ΙΟ μΙ大鼠), 3、 10、 30、 100和 300 ng/大鼠 exenatide剂量组( η = 4 ), 检测给药前及给药后 0.5、 1、 2、 4小时时间点的积减性痛阈的变化。 实 验结果如图 4Α所示, 大鼠患侧足机械性痛阈呈明显的量效关系和时效关 系, 脊髓注射 exenatide不影响大鼠正常肢体机械性痛觉阈值, 但抑制患 侧足机械性痛觉阈值,持续时间 2个小时以上,给药后 4小时机械性痛阈 开始降低。 根据给药后 1小时疼痛阈值进行量效关系计算, exenatide呈 剂量依赖式抑制骨癌痛痛觉过敏, 最大可能镇痛效果(% Maximum Possible Effect, % MPE )为 55.6%, ED50为 10.5 ng/大鼠 (2.5 pmol大鼠) (图 4D )。
[77] 雄性 Wistar大鼠(体重 150-170 g ), 动物适应环境 3天。 用戊巴比 妥钠 ( 50 mg/kg, i.p. )麻醉大鼠。 在髂骨位置脊髓插入 PE-10导管到腰 脊髓膨大处, 并对大鼠左侧进行 L5/L6脊神经结扎。 待大鼠恢复 3 ~ 7天 后, 使用 IITC CE220 (Electronic von Frey Anesthesiometer, IITC Life Science Inc., California, USA)检测大鼠左侧脚掌机械性痛觉阈值; 挑选左 侧机械性痛觉阈值小于 8 g的大鼠, 为造模成功的大鼠。 选取造模成功的 神经源性疼痛大鼠, 分 6组: 生理盐水 ( 10 μΐ/大鼠), 3、 10、 30、 100 和 300 ng/大鼠 exenatide剂量组( n = 4 ),检测给药前及给药后 0.5、 1、 2、 4小时时间点的机械性痛阈的变化。 实验结果如图 4B所示, 大鼠患侧足 才 性痛阈呈明显的量效关系和时效关系, 脊髓注射 exenatide不影响大 鼠正常肢体机械性痛觉阈值, 但抑制患侧足机械性痛觉阈值, 持续时间 2 个小时以上,给药后 4小时机械性痛阈开始降低。根据给药后 1小时疼痛 阈值进行量效关系计算, exenatide呈剂量依赖式抑制神经源性疼痛痛觉 过敏, 最大可能镇痛效果(% Maximum Possible Effect, % MPE )为 54.3%, ED50为 11.3 ng/大鼠(2.7 pmol/大鼠)(图 4D )。
[78] 雄性 Wistar大鼠(体重 200-250 g ), 动物适应环境 3天。 用异氟烷 呼吸麻醉大鼠, 尾静脉注射链脲佐菌素(50 mg/kg )„ 30天后使用 IITC CE220 (Electronic von Frey Anesthesiometer, IITC Life Science Inc., California, USA)检测大鼠双侧脚掌机械性痛觉阈值, 挑选机械性痛觉阈 值小于 10 g的大鼠, 为造模成功的糖尿病疼痛大鼠。 选取造模成功的糖 尿病疼痛大鼠, 分 6组: 生理盐水(10 μΐ/大鼠), 3、 10、 30、 100和 300 ng/大鼠 exenatide剂量组(11 = 4 ), 检测给药前及给药后 0.5、 1、 2、 4小 时时间点的机械性痛阈的变化。 实验结果如图 4C所示, 大鼠患侧足机械 性痛阈呈明显的量效关系和时效关系, 脊髓注射 exenatide能显著抑制患 侧足机械性痛觉阈值,持续时间 2个小时以上,给药后 4小时机械性痛阈 开始降低。 根据给药后 1小时疼痛阈值进行量效关系计算, exenatide呈 剂量依赖式抑制糖尿病疼痛痛觉过敏, 最大可能镇痛效果(% Maximum Possible Effect, % MPE )为 64.1%, ED50为 86.0 ng/大鼠 (20.5 pmol/大 鼠)(图 4D )。
实施例 5
皮下注射给予 GLP-1受体肽类激动剂 exenatide对小鼠福尔马林疼痛的抑 制作用
[79] 雄性 Swiss 小鼠(体重 20 - 25 g ), 自由饮水、 进食, 分成 5组, 每 组 4只。 在福尔马林致痛前 30分钟 5组小鼠分别皮下注射给予 10 ml/kg 生理盐水和 exenatide ( 10, 30, 100和 300 g/kg )。 小鼠右后足背注射 10 μΐ 5%福尔马林致痛,观察福尔马林注射后 0-5分钟( I相反应)和 20-40 分钟(II相反应)小鼠持续舔足时间作为疼痛指标。 实验结果表明, 皮下 给予 exenatide呈剂量依赖式抑制福尔马林慢性疼痛 ( II相反应 X图 5A ), 最大抑制率为 82.0%, ED5o值为 22.7 g/kg (5.4 nmol/kg) (图 5B )。
实施例 6
皮下和灌胃给予 GLP-1受体小分子激动剂京尼平苷对小鼠福尔马林疼痛 的影响
[80] 雄性 Swiss 小鼠(体重 20 ~ 25 g ), 自由饮水、 进食, 分成 7组, 每 组 3只。 在福尔马林致痛前 30分钟 7组小鼠分别皮下给予 10 ml/kg生理 盐水和京尼平苷(3, 10, 30, 100和 300 mg/kg ), 以及濯胃 (口 给 予京尼平苷(100 mg/kg )„ 实验结果表明, 皮下给予 GLP-1受体小分子 激动剂京尼平苷呈剂量依赖式抑制福尔马林慢性疼痛 (II相反应)(图 6A ), 最大抑制率为 71.5%, ED5。值为 13.1 mg/kg (图 6B )。 '灌胃给予京 尼平苷亦能有效抑制小鼠福尔马林慢性疼痛 (II相疼痛)(图 6A )。 濯胃 与皮下注射给予同等剂量 100 mg/kg京尼平苷, 抑制 II相疼痛分别为 53.3%和 63.8%。 用生物活性比较, 口服生物利用度为皮下注射的 83.5% (图 6C )。
实施例 7
连续 7日皮下注射 exeantide和京尼平苷对小鼠福尔马林疼痛的影响
[81] 雄性 Swiss 小鼠(体重 20 ~ 25 g ), 自由饮水、 进食, 分成 7组, 每组 4只。 4组小鼠分别皮下注射生理盐水(10 ml/kg/每次, 每日 2次), 连续 7日。 12小时后分别皮下单剂量注射生理盐水( 10 ml/kg ), exenatide ( 100 g/kg ), 京尼平苷 (100 mg/kg)和吗啡( 5 mg/kg ); 3组小鼠分别皮 下注射 exenatide ( 100 g/kg/每次, 每日 2次), 京尼平苷(100 mg/kg/每 次, 每日 2次)和吗啡(10 mg/kg/每次, 每日 2次), 连续 7日。 12小时 后分别皮下单剂量注射 exenatide ( 100 g/kg ), 京尼平苷 (100 mg/kg)和 吗啡(5 mg/kg )。 单剂量注射 30分钟后, 小鼠右后足背注射 10 μΐ 5%福 尔马林致痛,观察福尔马林注射后 0-5分钟 ( I相反应 )和 20-40分钟 ( II 相反应)小鼠持续舔足时间作为疼痛指标。 如图 7Α和 7Β所示, 实验结 果表明在连续 7日皮下注射生理盐水的对照小鼠中,单剂量注射 exenatide 和京尼平苷均可抑制福尔马林 II相疼痛,抑制率分别为 65.0%和 67.5%; 单剂量注射吗啡对福尔马林 I相疼痛和 II相疼痛均有抑制作用, 抑制率 分别为 84.8%和 100%。 而连续 7日皮下注射 exeantide和京尼平苷不产 生耐受性,此时单剂量注射 exeantide和京尼平苷对福尔马林 II相疼痛抑 制率分别为 67.0%和 50.9%, 与相应的单剂量注射对照相同; 相反连续 7 日皮下注射吗啡产生明显耐受性,单剂量注射吗啡对福尔马林 I相疼痛和 II相疼痛的抑制率分别为 12.2%和 12.4%。
实施例 8
脊髓注射 GLP-1 受体拮抗剂 exendin(9-39)对激动剂 exenatide, GLP-l(7-36)和京尼平苷抑制大鼠福尔马林疼痛的影响
[82] 雄性 Wistar大鼠(体重 200 ~ 250 g ), 自由饮水、 进食, 分成 6组。 在福尔马林致痛前 30分钟分别鞘内注射 ΙΟ μΙ/大鼠生理盐水(n = 4 ), 30 ng/大鼠 exenatide ( n = 4 ), 15 g/大鼠 exendin(9-39) ( n = 4 ) (上海肽 仕生物科技有限公司, H - Asp - Leu - Ser - Lys - Gin - Met - Glu - Glu - Glu - Ala - Val - Arg - Leu - Phe - lie - Glu - Trp - Leu - Lys - Asn - Gly - Gly - Pro - Ser - Ser - Gly - Ala - Pro - Pro - Pro - Ser - NH2, SEQ ID NO:7 ), 100 ng/大鼠 exendin(9-39) + 30 ng/大鼠 exenatide ( n = 3 ), 2 g/ 大鼠 exendin(9-39)+ 30 ng/大鼠 exenatide ( n = 3 ) 和 15 g/大鼠 exendin(9-39)+ 30 ng/大鼠 exenatide ( n = 4 )。参照大鼠福尔马林致痛模型 观察实验指标, 进行镇痛关系分析。 实验结果如图 8A和 8B所示, 脊髓 注射 GLP-1受体肽类激动剂 exenatide ( 30 ng/大鼠)能有效抑制福尔马 林慢性疼痛(II相反应), 抑制率为 61.2%。 脊髓注射 GLP-1受体肽类拮 抗剂 exendin(9-39) ( 15 g/大鼠)不影响大鼠福尔马林疼痛反应 (I相和 II相)。 exendin(9-39) ( 100 ng/大鼠)不能阻断 exenatide ( 30 ng/大鼠) 对大鼠福尔马林 II相慢性疼痛产生的镇痛作用,但当 exendin(9-39)达到 2 g/大鼠或以上时即能完全阻断 exenatide ( 30 ng/大鼠)产生的镇痛作用。
[83] 5组雄性 Wistar大鼠(体重 200 ~ 250 g), 每组 4只。 在福尔马林致 痛前 30分钟分别鞘内注射 10 μΐ/大鼠生理盐水、 30 ng/大鼠 GLP-l(7-36)、 2 g/大鼠 exendin(9-39)+30 ng/大鼠 GLP-l(7-36)、 100 g/大鼠京尼平苷和 2 g/大鼠 exendin(9-39)+100 g/大鼠京尼平苷。参照大鼠福尔马林致痛模 型观察实验指标, 进行镇痛关系分析。 实验结果如图 8C和 8D所示, 脊 髓注射 GLP-l(7-36)和京尼平苷均能有效抑制福尔马林慢性疼痛 (Π相反 应), 抑制率分别为 57.0%和 57.3%。 脊髓注射 GLP-1受体肽类拮抗剂 exendin(9-39) ( 2 μ§/大鼠)完全阻断 GLP-l(7-36)和京尼平苷的镇痛作用。 这些结果证明 exenatide、 GLP-l(7-36)和京尼平苷通过激动脊髓 GLP-1 受体产生镇痛作用, 并且推测京尼平苷为 GLP-1受体正构型激动剂。
实施例 9
GLP-1受体拮抗剂 exendin(9-39)对京尼平苷镇痛作用的影响
[84] 雄性 Swiss 小鼠(体重 20 ~ 25 g ), 自由饮水、 进食, 分成 4组, 每 组 4个。 在福尔马林致痛前 30分钟 4组小鼠分别皮下给予生理盐水( 10 ml/kg ),京尼平苷( 300 mg/kg ), exendin(9-39) ( 60 g/kg )和 exendin(9-39) ( 60 g/kg ) +京尼平苷( 300 mg/kg )。参照小鼠福尔马林致痛模型观察实 检指标, 进行镇痛关系分析。 实验结果如图 9所示, 皮下注射 GLP-1受 体小分子激动剂京尼平苷能有效抑制福尔马林慢性疼痛 (II相反应), 抑 制率为 64.4%。皮下注射 GLP-1受体肽类拮抗剂 exendin(9-39)( 60 g/kg ) 不影响大鼠福尔马林疼痛反应 ( I相和 II相), 但能完全阻断京尼平苷对 小鼠福尔马林 II相慢性疼痛产生的镇痛作用, 提示 exendin(9-39)可透过 血脑屏障阻断脊髓 GLP-1受体, 并进一步证明京尼平苷可正构型地激动 GLP-1受体而产生镇痛作用。
实施例 10
脊髓给予 GLP-1受体拮抗剂 exendin(9-39)对全身给予 exenatide镇痛作 用的影响
[85] 雄性 Swiss 小鼠(体重 20 ~ 25 g ), 自由饮水、 进食, 分成 4组, 每 组 4个。分别给予 4组小鼠:生理盐水( 5 μΐ/小鼠) +生理盐水( 10 ml/kg ), exendin(9-39) ( 1 g/小鼠) +生理盐水 ( 10 ml/kg ), 生理盐水( 5 μΐ/小鼠) +exenatide ( 100 g/kg )和 exendin(9-39) ( 1 g/小鼠 ) +exenatide ( 100 g/kg )o 在福尔马林致痛前 45分钟给予第一次给药, 在福尔马林致痛前 30分钟给予第二次给药, 参照小鼠福尔马林致痛模型观察实验指标, 进 行镇痛关系分析。 实验结果如图 10所示, 皮下注射 GLP-1受体肽类激动 剂 exenatide能有效抑制小鼠福尔马林慢性疼痛 ( II相反应), 抑制率为 81.1%。 脊髓注射 GLP-1受体肽类拮抗剂 exendin(9-39) ( 1 g/小鼠)不 影响小鼠福尔马林疼痛反应 ( I相和 II相),但能完全阻断 exenatide对小 鼠福尔马林 II相慢性疼痛产生的镇痛作用, 提示 exendin(9-39)是通过阻 断脊髓 GLP-1受体从而阻断 exenatide的镇痛作用。
实施例 11
连续 7日脊髓注射 GLP-1受体 siRNA/GLP-lr对 GLP-1受体肽类激动剂 exenatide抑制大鼠福尔马林疼痛的影响
[86] 雄性 Wistar大鼠(体重 200 ~ 250 g ), 自由饮水、 进食, 分成 4组。 分别连续 Ί日脊髓给予 PEI ( 7.5 Invitrogen, 上海, 中国)、 PEI ( 7.5 ) +Non-sense siRNA ( 5 )和 PEI ( 7.5 ) +siRNA/GLP-lr ( 5 ), 于第 8日行福尔马林致痛实验, 实验前 30分钟 7.5 PEI组大鼠鞘内注 射 10 μΐ/大鼠生理盐水, ΡΕΙ ( 7.5 )、 PEI ( 7.5 ) +Non-sense siRNA ( 5 g )和 PEI ( 7.5 g ) +siRNA/GLP-lr ( 5 g )组大鼠分别鞘内注射 30 ng/大鼠 exenatide ( n = 4 ),参照大鼠福尔马林致痛模型观察实验指标, 进行镇痛关系分析。 siRNA/GLP-lr序列为 5,-GUA UCU CUA CGA GGA CGA GUU-3' ( SEQ ID NO:8 ) /5,-CUC GUC CUC GUA GAG AUA CUU-3' ( SEQ ID NO:9 ), Non-sense siRNA序列为 5,-UUC UCC GAA CGU GUC ACG UUU-3'( SEQ ID NO:10 )/5'-ACG UGA CAC GUU CGG AGAAUU-3' ( SEQ ID NO: 11 )。 实验结果如图 11A和 11B所示, 连续 7 日脊髓注射 PEI (7.5 g)后, 与第 8日鞘内注射生理盐水组大鼠比较, 鞘内注射 GLP-1受体肽类激动剂 exenatide (30 ng/大鼠)能有效抑制福 尔马林慢性疼痛 ( II相反应),抑制率为 80.7%。连续 7日脊髓注射 GLP-1 受体 PEI ( 7.5 ) +siRNA/GLP-lr ( 5 )完全阻断 GLP-1受体肽类激 动剂 exenatide (30ng/大鼠)对大鼠福尔马林慢性疼痛反应(II相反应) 的镇痛作用。 连续 7日脊髓注射 PEI ( 7.5 ) +Non-sense siRNA ( 5 ) 不能阻断 exenatide (30 ng/大鼠)对大鼠福尔马林 II相慢性疼痛产生的 镇痛作用, 抑制率为 79.3%。
[87] 福尔马林实验完成后, 取大鼠脊 JS^膨大部分行 WestornBlot实验, GLP-1受体蛋白表达按照 100 m 组织加入 1 ml RIPA组织裂解液 (碧云 天生物技^究所,海门,中国),加入相应体积的 RIPA溶液。匀浆( 1000 rpm, 15 s), 离心( 14000 rpm, 10 min ), 测定上清液组织蛋白浓度, 加 入 SDS-PAGE (5X)蛋白上样緩冲液(碧云天生物技^究所, 海门, 中国)调整蛋白浓度至 500 g/inl,上样 100 g/20 μ1, 80-120 V电泳 1.5 h, 400 mA转膜 1 h, GLP-1受体一抗( 1:500, ab39072, Abeam, Cambridge, USA) 4 。(:孵育过夜, PBST洗 3次, 每次 10分钟, 山羊抗兔 IgG-HRP
( 1:2000, SA00001-2, Proteintech Group, Inc., Chicago, USA)室温 孵育 40分钟, PBST洗 3次, 每次 10分钟, 使用 BeyoECL Plus (超敏 ECL化学发光试剂盒, 碧云天生物技^究所, 海门, 中国)显色制片, 拍照, 结果分析表明 (图 11C和 11D), 与对照组相比, 连续 7日脊髓注 射 GLP-1受体 PEI (7.5 g) +siRNA/GLP-lr (5 g)大鼠脊髓 GLP-1 受体基本不表达, 蛋白表达抑制率高达 81.2%; 连续 7 日脊髓注射 PEI
( 7.5 ) +Non-sense siRNA ( 5 )不影响 GLP-1受体的表达。
实施例 12
连续 7日脊髓注射 GLP-1受体 siR A/GLP-lr对 GLP-1受体小分子激动 剂京尼平苷抑制大鼠福尔马林疼痛的影响
[88] 雄性 Wistar大鼠(体重 200~250g), 自由饮水、 进食, 分成 5组。 分别连续 Ί日脊髓给予 PEI ( 7.5 Invitrogen, 上海, 中国)、 PEI ( 7.5 ) +Non-sense siRNA ( 5 )和 PEI ( 7.5 ) +siRNA/GLP-lr ( 5 ), 于第 8日行福尔马林致痛实验, 实验前 30^ 7.5 μ^ ΡΕΙ组大鼠鞘内注 射 10 μΐ/大鼠生理盐水, ΡΕΙ ( 7.5 )、 PEI ( 7.5 ) +Non-sense siRNA (5 g)和 PEI (7.5 g) +siRNA/GLP-lr (5 g)组大鼠分别鞘内注射 100 g/大鼠京尼平苷(n = 4)或生理盐水(10μ1), 参照大鼠福尔马林致 痛模型观察实验指标, 进行镇痛关系分析。 实验结果如图 12A和 12B所 示, 连续 7日脊髓注射 ΡΕΙ (7.5 μg)后, 与笫 8日鞘内注射生理盐水组 大鼠比较, 鞘内注射 GLP-1受体小分子激动剂京尼平苷(100 g/大鼠) 能有效抑制福尔马林慢性疼痛 ( II相反应), 抑制率为 76.7%。 连续 7日 脊髓注射 GLP-1受体 PEI ( 7.5 ) +siRNA/GLP-lr ( 5 )完全阻断 GLP-1受体小分子激动剂京尼平苷(100 g/大鼠)对大鼠福尔马林慢性 疼痛反应 (II相反应)的镇痛作用, GLP-1 受体表达减少对疼痛不产生 内源性影响。 连续 7日脊髓注射 PEI ( 7.5 ) +Non-sense siRNA ( 5 ) 不能阻断京尼平苷(100 g/大鼠)对大鼠福尔马林 II相慢性疼痛产生的 镇痛作用, 京尼平苷(100 g/大鼠)对大鼠福尔马林 II相慢性疼痛抑制 率为 88.0%。
[89] 基于以上内容,本领域技术人员可以理解,本申请要求保护的技术方 案以及其等同技术方案将是显而易见的。此外,本领域技术人员还可以根 据需要对所公开的技术方案进行适当的修改和改变,这些修改和改进的技 术方案也在本申请权利要求书的保护范围内。

Claims

权 利 要 求 书
1. 一种治疗对象中病症的方法, 其中所述病症能够通过激活神经系 统尤其是中枢神经系统中 GLP-1受体而得到治疗, 所述方法包括给有此 需要的对象施用有效量的 GLP-1受体激动剂。
2. 权利要求 1的方法, 其中所述病症是疼痛, 尤其是慢性疼痛。
3. 权利要求 1或 2的方法, 其中所述病症不是消化道动力紊乱导致 的疼痛。
4. 前述任一项权利要求的方法, 其中所述病症选自慢性疼痛, 神经 性疼痛, 慢性腰背痛, 头痛, 偏头痛, 三叉神经痛, 丛集性头痛, 纤维肌 痛综合征, 关节痛, 炎性疼痛, 关节炎疼痛, 骨关节炎疼痛, 类风湿性关 节炎疼痛, 肿瘤疼痛, 癌症疼痛, 内脏痛, 躯体痛, 肌肉骨骼痛, 骨痛, 腰骶痛,颈痛或上背痛,糖尿病性疼痛,脊髓损伤引起的疼痛,手术疼痛, 术后疼痛, 急性疼痛, 或与感染、镰状细胞贫血、 自身免疫病、 多发性硬 化或炎症相关的疼痛, 由损伤或手术造成的疼痛, 或它们的组合。
5. 前述任一项权利要求的方法, 其中所述病症选自与以下有关的疼 痛: 糖尿病性神经痛, 外周神经痛, 疱疹后神经痛, 腰或颈的神经根痛, 纤维肌痛, 舌咽神经痛, 反射交感性营养不良, 灼痛, 丘脑综合征, 神经 根撕脱, 幻肢痛, 开胸术后的疼痛, 癌症, 化学损伤, 毒素, 营养缺乏, 病毒或细菌感染, 颞下颌关节紊乱综合征, 纤维肌痛综合征, 骨质疏松, 骨转移或其他未知原因引起的骨痛, 痛风, 纤维组织炎, 肌筋膜痛, 胸廓 出口综合征, 上背部痛, 下腰痛, 骨盆痛, 心脏性胸痛, 非心脏性胸痛, 脊髓损伤相关性疼痛, 中枢性中风后疼痛, 癌症痛, AIDS痛, 抗肿瘤药 物致神经疼痛, 镰状细胞痛, 老年痛, 或它们的组合。
6. 前述任一项权利要求的方法, 其中所述 GLP-1受体激动剂选自大 分子 GLP-1 受体激动剂和小分子 GLP-1 受体激动剂, 例如所述大分子 GLP-1 受体激动剂选自 GLP-1 , liraglutide , GTP-010 , exenatide (exendin-4), exendin-3和其他 exendins, 及其功能性变体、 片段、 衍生 物和类似物,所述大分子 GLP-1受体激动剂可以具有修饰或不具有修饰, 所述修饰例如是缀合 PEG或白蛋白等增加分子量的结构(moeity )以延 长所述 GLP-1 受体激动剂的生物活性, 所述功能性变体例如包括各种 GLP-1变体或 exendin变体; 例如所述小分子 GLP-1受体激动剂选自京 尼平苷及其衍生物京尼平苷酸和京尼平, Boc 5, S4P, "Compound 2" ( quinoxalines )及其衍生物 ( Knudsen et al., Proc. Natl. Acad. Sci" 104: 937-942, 2007; Teng et al., Bioorg. Med. Chem. Lett., 17: 5472-5478, 2007 ), "Compound A,,和 "Compound B,,( pyrimidine )及其衍生物( Sloop et al., Diabetes 59:3099-3107, 2010 ), ZYOG1 , T0632, "6 Cu Compound" (Wang et al., Acta Pharmacologica Sinica 31: 1026-1030, 2010), 及其衍生 物。
7. 前述任一项权利要求的方法, 其中通过口服或胃肠外途径施用所 述 GLP-1受体激动剂, 例如包括皮下注射, 脊 用, 颅内施用、 肌肉 注射, 经鼻腔施用, 静脉内施用和 /或 内施用。
8. 前述任一项权利要求的方法, 其中还向所 象施用另外的疼痛 治疗剂, 例如所述疼痛治疗剂选自: 镇痛剂如阿片类镇痛剂, 抗炎药, 偏 头痛制剂, 三环抗抑郁药, 抗癫痫药, α2 受体激动剂, 或选择性血清素 再摄取抑制剂 /选择性去甲腎上腺素摄取抑制剂, 或它们的组合。
9. 权利要求 8的方法, 其中所述另外的疼痛治疗剂选自吗啡类药物 (如吗啡、 二氢吗啡酮、 芬太尼、 丁丙诺啡和叔丁啡), 加巴喷丁, 普瑞 巴林, 齐考诺肽, 洛西汀, 可乐定, 利多卡因, DAO 酶抑制剂 (如 5-chlorobenzo[d]isoxazol-3-ol 、 AS057278 、 苯 曱 酸 钠 、 3-hydroxyquinolin-2-(lH)-one 和 4H-thieno[3,2-b]pyrrole-5-carboxylic acid, NMDA受体阻断剂(如 MK-801、 氯胺酮、 右 :沙芬、 和苯环利定 ^(2 ?)-amino-5-phosphonovaleric acid )。
10. GLP-1 受体激动剂在制备用于治疗能够通过激活神经系统尤其 是中枢神经系统中 GLP-1受体而得到治疗之病症的药物中的用途, 所述 病症优选地是疼痛, 尤其是慢性疼痛。
11. GLP-1受体激动剂,其用于治疗能够通过激活神经系统尤其是中 枢神经系统中 GLP-1受体而得到治疗之病症, 所述病症优选地是疼痛, 尤其是 '匱性疼痛。
12. 一种鉴定治疗能通过激活神经系统中 GLP-1受体而得到治疗之 病症的药剂的方法, 其包括:
提供测试化合物,
使所述测试化合物与 GLP-1受体相接触, 和
测定所述 GLP-1受体的活性, 如果所述测试化合物能够提高 GLP-1受体的活性, 那么所述测试化 合物可用作治疗能通过激活神经系统中 GLP-1受体而得到治疗之病症的 药剂。
13. 权利要求 12的方法, 其中所述病症是疼痛, 尤其是慢性疼痛。
PCT/CN2012/070741 2011-01-26 2012-01-29 Glp-1受体激动剂用于治疗疼痛 WO2012100748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110028944.6 2011-01-26
CN201110028944.6A CN102614514B (zh) 2011-01-26 2011-01-26 Glp-1受体激动剂用于治疗疼痛

Publications (1)

Publication Number Publication Date
WO2012100748A1 true WO2012100748A1 (zh) 2012-08-02

Family

ID=46554958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070741 WO2012100748A1 (zh) 2011-01-26 2012-01-29 Glp-1受体激动剂用于治疗疼痛

Country Status (2)

Country Link
CN (1) CN102614514B (zh)
WO (1) WO2012100748A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088631A1 (en) * 2012-12-06 2014-06-12 Stealth Peptides International, Inc. Peptide therapeutics and methods for using same
US20150209411A1 (en) * 2012-08-30 2015-07-30 Universite Pierre et Marie Curie (Paris6) Treatment of osteoarthritis with incretin hormones or analogues thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103536907B (zh) * 2013-07-18 2015-10-21 上海交通大学医学院附属瑞金医院 利拉鲁肽在骨质疏松治疗药物中的应用
CN106729717A (zh) * 2016-12-12 2017-05-31 深圳市健翔生物制药有限公司 Glp‑1类似物和齐考诺肽组合物缓释微球制剂
CN110051677A (zh) * 2019-01-11 2019-07-26 广东医科大学 一种栀子苷在缓解糖皮质激素副作用方面的应用
CN109939119B (zh) * 2019-03-29 2021-09-21 山东省分析测试中心 栀子苷在制备治疗多发性硬化症药物中的应用
EP3965754A1 (de) * 2019-05-09 2022-03-16 Jahan Panah, Mohammad Amin Kombinierte verabreichung von diazepam und diclofenac zur behandlung von schmerzen
CN114984002B (zh) * 2022-07-25 2023-11-17 山西医科大学 一种式(i)化合物制备镇痛药物中的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638792A (zh) * 2002-01-31 2005-07-13 马普科技促进协会 Fgfr激动剂
WO2007061434A2 (en) * 2005-11-10 2007-05-31 Nastech Pharmaceutical Company Inc. A pharmaceutical formulation of glp-1 and its use for treating a metabolic syndrome

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1937297A2 (en) * 2005-09-08 2008-07-02 Gastrotech Pharma A/S Use of a glp-1 molecule for treatment of biliary dyskinesia and/or biliary pain/discomfort
CN1839870A (zh) * 2006-01-18 2006-10-04 刘建辉 一种京尼平甙作为胰高血糖素样肽1受体激动剂的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638792A (zh) * 2002-01-31 2005-07-13 马普科技促进协会 Fgfr激动剂
WO2007061434A2 (en) * 2005-11-10 2007-05-31 Nastech Pharmaceutical Company Inc. A pharmaceutical formulation of glp-1 and its use for treating a metabolic syndrome

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150209411A1 (en) * 2012-08-30 2015-07-30 Universite Pierre et Marie Curie (Paris6) Treatment of osteoarthritis with incretin hormones or analogues thereof
US9592272B2 (en) * 2012-08-30 2017-03-14 Universite Pierre Et Marie Curie (Paris 6) Treatment of osteoarthritis with incretin hormones or analogues thereof
WO2014088631A1 (en) * 2012-12-06 2014-06-12 Stealth Peptides International, Inc. Peptide therapeutics and methods for using same

Also Published As

Publication number Publication date
CN102614514A (zh) 2012-08-01
CN102614514B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
JP7094327B2 (ja) 新規なオキシントモジュリン誘導体及びそれを含む肥満治療用組成物
Pilitsi et al. Pharmacotherapy of obesity: available medications and drugs under investigation
WO2012100748A1 (zh) Glp-1受体激动剂用于治疗疼痛
Cooke et al. The obesity pipeline: current strategies in the development of anti-obesity drugs
JP7079301B2 (ja) 安定性が増加されたグルカゴン誘導体
Neary et al. Gut hormones: implications for the treatment of obesity
Bays et al. Anti-obesity medications and investigational agents: an obesity medicine association (OMA) clinical practice statement (CPS) 2022
Aylwin et al. Emerging concepts in the medical and surgical treatment of obesity
TWI696631B (zh) 升糖素衍生物
JP6262661B2 (ja) 筋萎縮性側索硬化症治療剤
Atanes et al. GPCR targets in type 2 diabetes
Handjieva-Darlenska et al. Emerging pharmacotherapies to fight obesity and related disorders.
US20240091318A1 (en) Combination therapy comprising long acting glp-1/glucagon and npy2 receptor agonists
WO2024091863A1 (en) Combinatorial, and rotational combinatorial therapies for obesity and other diseases
NZ733649A (en) Glucagon derivatives
Tan Regulation of metabolism and food intake by enteropancreatic hormones
BR112017014205B1 (pt) Derivados de glucagon e seu uso, e uso de uma composição farmacêutica
NZ731342B2 (en) Novel oxyntomodulin derivatives and pharmaceutical composition for treating obesity comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 02/10/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 12739634

Country of ref document: EP

Kind code of ref document: A1