WO2012100741A1 - 利用压缩热再生的吸附式压缩气体干燥工艺及装置 - Google Patents

利用压缩热再生的吸附式压缩气体干燥工艺及装置 Download PDF

Info

Publication number
WO2012100741A1
WO2012100741A1 PCT/CN2012/070721 CN2012070721W WO2012100741A1 WO 2012100741 A1 WO2012100741 A1 WO 2012100741A1 CN 2012070721 W CN2012070721 W CN 2012070721W WO 2012100741 A1 WO2012100741 A1 WO 2012100741A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting pipe
gas
adsorbent
dryer
regenerated
Prior art date
Application number
PCT/CN2012/070721
Other languages
English (en)
French (fr)
Inventor
李大明
张志全
吉军
Original Assignee
西安超滤净化工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安超滤净化工程有限公司 filed Critical 西安超滤净化工程有限公司
Publication of WO2012100741A1 publication Critical patent/WO2012100741A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption

Definitions

  • the invention relates to an adsorption type compressed gas drying process and device, and particularly to an adsorption type compressed gas drying process and device using compression heat regeneration.
  • the adsorption dryer In the compressed gas drying technology, the adsorption dryer is widely used because it can obtain a low dew point gas.
  • the commonly used models are classified into no-heat regeneration, micro-heat regeneration, external heat regeneration, and compression heat (waste heat) regeneration depending on the regeneration mode. .
  • Micro-heated regenerative adsorption dryers are also high in energy consumption due to high gas consumption of finished products. Will be eliminated by the market. External heating regeneration and compression heat (waste heat) Although the regenerative adsorption dryer has obvious energy-saving effect, it is difficult to obtain a dry gas with a lower dew point (normal atmospheric dew point at -20 ⁇ - 40 °C), and because of the amount of air blown. Insufficient, it is difficult for the adsorbent temperature to return to normal temperature, causing the dew point to rise (drift) after a period of switching.
  • dew point normal atmospheric dew point at -20 ⁇ - 40 °C
  • centrifugal compressors In the world, large-flow gas compressors generally use centrifugal compressors, of which about 50% of centrifugal compressors are put into the Chinese market. This year, it has risen to about 1,500 units, and the Chinese market accounts for more than 50% of the centrifugal compressor market. .
  • the dryers associated with centrifugal compressors often use a heat of compression (waste heat) to regenerate the adsorption dryer.
  • Centrifugal compressor technology continues to advance, and the compression process has tended to be an isothermal compression process, resulting in lower compressor discharge temperatures and an optimum exhaust temperature of 95-105 °C. Therefore, the advantages of energy saving and consumption reduction in the mainframe field are very significant, and the market share has recently increased rapidly.
  • the reduction of the exhaust gas temperature of the compressor, the heating temperature of the regenerator used is low, which affects the regeneration effect of the adsorbent, and it is difficult to obtain a dry gas with a lower dew point.
  • the invention aims to overcome the shortcomings of the existing adsorption drying method and the large adsorption type compressed gas dryer, and provides an adsorption type compressed gas drying process capable of obtaining a drying gas with a lower dew point and recovering the blowing cold gas by using the compression heat regeneration. And the device has significant saving and reducing effects.
  • the adsorption-type compressed gas drying process using compressed heat regeneration mainly comprises the following steps:
  • the raw material gas flows through the adsorbent which is regenerated at the full flow rate, and the adsorbent which is regenerated by the residual heat of the raw material gas is heated, and then flows through the adsorbent which adsorbs, and the gas is dried by the adsorbent and is dried. Exhaust gas from the finished product;
  • step 3 part of the product gas generated in step 2 is heated by pressurization, and then flows through the adsorbent which is regenerated in step 1, and the adsorbent which is regenerated by the heated product gas is heated again, after flowing out and in step 2 After the raw material gas is merged, the treatment in step 2 is performed;
  • step 4 part of the product gas generated in step 2 is pressurized, and then flows through the adsorbent which is regenerated in step 1, and the adsorbent which is regenerated by the pressurized product gas is blown and cooled, and the raw material in step 2 is discharged. After the gas is merged, the treatment in the step 2 is performed until the regeneration of the adsorbent is completed.
  • step 5 can be performed.
  • the adsorbent After the regeneration of the adsorbent is completely regenerated, the adsorbent is subjected to an active state exchange; the adsorbent adsorbed in the step 1 is regenerated, and the adsorbent adsorbed is adsorbed.
  • step 2 part of the product gas is processed into step 3 or step 4.
  • the part of the gas is 4 ⁇ 10% of the total product volume in step 2, preferably 5 ⁇ 7%, and the specific value can be adjusted according to the working state. .
  • the raw material gas described above is the raw material gas separated by filtration, and the separated drying gas is filtered and separated before being removed.
  • the adsorption type compressed gas drying device utilizing compressed heat regeneration including drying tank A and drying
  • the dryer 101 of the tank B, the upper and lower ports of the dryer 101 are respectively connected with the upper pipe system 102 and the lower pipe system 103, and the upper pipe system 102 is connected in parallel by the parallel valves A1 and B1 and the parallel valves A2 and B2.
  • the lower pipe system 103 is composed of parallel valves A3 and B3 and parallel valves A4 and B4 connected in parallel; the connecting pipe 11 disposed between the valves A1 and B1 is connected with the connecting pipe 12, and both ends of the connecting pipe 12 are connected. Connected to the end of the fan 1 and the rear end of the fan 1 respectively;
  • the other end of the fan 1 is connected in series with a valve F3 and a heater 2 through a connecting pipe.
  • the heater 2 is also connected to the connecting pipe 14 through a connecting pipe 13, and one end of the connecting pipe 14 is connected to one end of the valve F2, and the other end is connected.
  • the connecting pipe between A2 and B2 is connected; the other end of the valve F2 is connected to one end of the connecting pipe 15, the other end of the connecting pipe 15 is connected to one end of the pre-filter 7, and the other end of the pre-filter 7 is The trachea 6 is connected;
  • the other end of the rear filter 5 is connected to the exhaust pipe 8;
  • the connecting pipe 15 is connected to one end of the connecting pipe 16, and the connecting pipe 16 is provided with a valve F1, and the other end of the connecting pipe 16 is respectively connected with the connecting pipe 17-end and the connecting pipe 18-end; the connecting pipe 17 is in turn A cooler 3 and a separator 4 are provided, and the other end of the connecting pipe 17 is in communication with a connecting pipe between the valves A3 and B3; the other end of the connecting pipe 18 is in communication with a connecting pipe between the valves A4 and B4.
  • the pre-filter 7 described above is provided with a gas-liquid separator or a precision degreasing filter.
  • the heater 2 described above is a primary heating of one heater or a secondary heating of two heaters.
  • the heater 2 described above is a plate-fin heat exchanger, a tube-fin heat exchanger or a shell-and-tube heat exchanger.
  • the separator 4 described above is an inertial separation filtration separation or a combination of inertia and filtration to form a separation.
  • the adsorption-type compressed gas drying process and apparatus using compressed heat regeneration provided by the present invention utilizes the waste heat of the raw material gas to heat-regenerate the adsorbent in the dry tank, recovers energy by using waste heat, and has a remarkable energy-saving effect.
  • the adsorption-type compressed gas drying process and the device provided by the present invention using the compression heat regeneration can increase the regeneration heating temperature and make the adsorbent regeneration more thoroughly, thereby obtaining a lower dew point (the finished product dew point can reach - Below 70 ° C)
  • the adsorption-type compressed gas drying process and device using the compressed heat regeneration provided by the invention adopts isostatic heating regeneration, isobaric drying and blowing cooling, has no exhaust gas depressurization process, and recovers regenerative heating blowing cold gas, thereby saving compression. Gas, which saves energy and reduces energy consumption. 4.
  • the adsorption-type compressed gas drying process and apparatus using the compressed heat regeneration provided by the present invention utilizes a dry gas to blow the cold and recover the blown cold gas, and the blow cooling is thorough, and the drift of the dew point of the finished product can be avoided.
  • the adsorption-type compressed gas drying process and device using the compressed heat regeneration provided by the invention adopts isostatic heating desorption, dry gas, etc., and the regeneration process, the system has no depressurization process, and the pulverization of the adsorbent can be greatly reduced. Rate, prolong the life of the adsorbent, save the user operating costs, avoid exhaust noise and reduce noise pollution.
  • Figure 1 is a schematic view of a specific structure of the present invention.
  • the adsorption drying method using compressed heat regeneration mainly comprises the following steps:
  • the raw material gas flows through the adsorbent which is regenerated at the full flow rate, and the adsorbent which is regenerated by the residual heat of the raw material gas is heated, and then flows through the adsorbent which adsorbs, and the gas is dried by the adsorbent and is dried. Exhaust gas from the finished product;
  • step 2 After the raw material gas is cooled and separated, the adsorbent adsorbed in step 1 is passed, and the moisture in the adsorbed raw material gas is dried to become a product gas, part of the product gas is discharged, and part of the product gas is processed into step 3;
  • the part of the gas processed in step 4 is 4 ⁇ 10% of the total finished product in step 2, preferably 5 ⁇ 7%, and the actual production can be adjusted according to specific conditions;
  • step 3 part of the product gas generated in step 2 is heated by pressurization, and then flows through the adsorbent which is regenerated in step 1, and the adsorbent which is regenerated by the heated product gas is heated again, after flowing out and in step 2 After the raw material gas is merged, the treatment in step 2 is performed;
  • step 4 part of the product gas generated in step 2 is pressurized, and then flows through the adsorbent which is regenerated in step 1, and the adsorbent which is regenerated by the pressurized product gas is blown and cooled, and the raw material in step 2 is discharged. After the gas is merged, the treatment in the step 2 is performed until the regeneration of the adsorbent is completed.
  • step 5 can be performed.
  • the adsorbent After the regeneration of the adsorbent is completely regenerated, the adsorbent is subjected to an operation state switching; the adsorbent adsorbed in the step 1 is regenerated, and the adsorbent adsorbed is adsorbed.
  • the raw material gas is generally filtered and separated, and the filtered product gas is filtered before being removed.
  • the adsorption type compressed gas drying device utilizing compressed heat regeneration including drying tank A and drying
  • the dryer 101 of the tank B, the upper and lower ports of the dryer 101 are respectively connected with the upper pipe system 102 and the lower pipe system 103, and the upper pipe system 102 is composed of parallel valves A1 and B1 and parallel valves A2 and B2 in parallel.
  • the lower pipe system 103 is composed of parallel valves A3, B3 and parallel valves A4, B4;
  • the connecting pipe 11 disposed between the valves A1 and B1 is in communication with the connecting pipe 12, and the two ends of the connecting pipe 12 are respectively provided with the end of the fan 1 and the rear end of the rear filter 5;
  • the other end of the fan 1 is connected in series with a valve F3 and a heater 2 through a connecting pipe;
  • the fan 1 can be replaced by a compressor, and the heater 2 can be used for one-stage heating of one heater or secondary heating of two heaters;
  • it is a plate-fin heat exchanger, a tube-fin heat exchanger or a shell-and-tube heat exchanger;
  • the heater 2 is also connected to the connecting pipe 14 through a connecting pipe 13, and one end of the connecting pipe 14 is connected to one end of the valve F2.
  • the other end is connected to the connecting pipe between A2 and B2; the other end of the valve F2 is connected to one end of the connecting pipe 15, the other end of the connecting pipe 15 is connected to one end of the pre-filter 7, and the other end of the pre-filter 7 Connected to the intake pipe 6; the pre-filter 7 is generally configured with a gas-liquid separator or a precision degreasing filter; the other end of the rear filter 5 is connected to the exhaust pipe 8;
  • the connecting pipe 15 is connected to one end of the connecting pipe 16, and the connecting pipe 16 is provided with a valve F1, and the other end of the connecting pipe 16 is respectively connected with the connecting pipe 17-end and the connecting pipe 18-end; the connecting pipe 17 is sequentially provided with a cooler. 3 and the separator 4, the separator 4 is generally selected by inertial separation filtration separation or inertia and filtration combination.
  • the other end of the connecting pipe 17 communicates with the connecting pipe between the valves A3 and B3; the other end of the connecting pipe 18 communicates with the connecting pipe between the valves A4 and B4.
  • the drying tank B When the drying tank A performs the adsorption work, the drying tank B simultaneously performs the regeneration of the adsorbent, and the regeneration is performed by the online pressure equalization heating desorption and the equal pressure blowing cooling; the drying tank B is regenerated, and the two drying tanks are switched by the valve; After completion, the drying tank B is adsorbed, and the drying tank A is subjected to the adsorbent regeneration process, and thus circulating;
  • the drying tank A When the drying tank A performs the adsorption work, the drying tank B performs the regeneration process of the adsorbent, and the concrete can be divided into the following two parts:
  • Drying tank A adsorption process is divided into three periods:
  • valve Fl, valve F3, valve A3, valve Al, valve B2, valve B4 open, valve F2, valve A2, valve Bl, valve A4, valve B3 are closed, the specific process is as follows:
  • the raw material gas passes through the intake pipe 6 After entering the desiccator, it is filtered through the pre-filter 7 and then flows through the connecting pipe 15, the valve Fl, the connecting pipe 16, the connecting pipe 17, the cooler 3, the separator 4 and the valve A3, and then enters the drying tank A, After the adsorbent in the drying tank A is adsorbed and dried, the valve A1, the connecting pipe 11, and the connecting pipe 12 are sequentially passed through, and a part of the drying gas (product gas) is passed through the rear filter 5 connected to the end of the connecting pipe 12, and finally passed.
  • Exhaust pipe 8 is discharged;
  • Drying tank B Another part of the dry gas (product gas) is connected to the fan 1 connected to the other end of the pipe 12, pressurized by the fan 1 to overcome the system resistance, and then enters through the valve F3, the heater 2, the connecting pipe 13, the connecting pipe 14 and the valve B2. Drying tank B, at this time, the heater is turned on and works; the adsorbent regenerated in the drying tank B is heated by the heated product gas, and then passed through the connecting pipe 16 through the valve B4, the connecting pipe 18, and the connecting pipe 16 17 raw material gas sink;
  • valve Fl, valve F3, valve A3, valve Al, valve B2, valve B4 open, valve F2, valve A2, valve Bl, valve A4, valve B3 are closed, the specific process is as follows:
  • the raw material gas passes through the intake pipe 6 After entering the desiccator, it is filtered through the pre-filter 7 and then flows through the connecting pipe 15, the valve Fl, the connecting pipe 16, the connecting pipe 17, the cooler 3, the separator 4 and the valve A3, and then enters the drying tank A, After the adsorbent in the drying tank A is adsorbed and dried, it is sequentially passed through the valve A1, the connecting pipe 11, the connecting pipe 12, and the partially dried gas (finished product) is passed through the rear filter 5 connected to the end of the connecting pipe 12, and finally passed through the row.
  • the trachea 8 is discharged; Another part of the drying gas (product gas) passes through the fan connected to the other end of the connecting pipe 12 and then passes through the valve F3, the heater 2, the connecting pipe 13, the connecting pipe 14 and the valve B2, and then enters the drying tank B, at which time the heater 2 stops.
  • Drying tank B regeneration is divided into two periods:
  • the raw material gas does not pass through the drying tank B (regeneration), directly enters the drying tank A (adsorption), the heater is turned on and works, and some of the drying gas (product gas) is heated by the heater and then enters the drying tank B to further heat the adsorbent. After completing the heating stage work, enter the blowing cooling stage.
  • the raw material gas does not pass through the drying tank B (regeneration), directly enters the drying tank A (adsorption), at which time the heater stops heating, and some of the drying gas (product gas) directly blows the adsorbent in the drying tank B to The regeneration of the drying tank B is completed; the valve opening and closing state and the gas flow are the same as in step 1.2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)

Description

利用压缩热再生的吸附式压缩气体干燥工艺及装置 技术领域
本发明涉及一种吸附式压缩气体干燥工艺及装置, 具体涉及一种利用压 缩热再生的吸附式压缩气体干燥工艺及装置。
背景技术
压缩气体干燥技术中, 吸附式干燥器由于能获得低露点气体而大量使用, 常用的机型按其再生方式不同, 分为无热再生、 微加热再生、 外加热再生和 压缩热 (余热) 再生。
在当前国际国内节能降耗的大形势下, 原有的各种吸附式干燥器尽显其 不足之处, 如无热再生吸附式干燥器, 由于成品气耗量大 (约总流量的
15-20% ) , 耗能高浪费大而被限制使用(目前仅限用于 20cm3/min以下机型); 微加热再生吸附式干燥器也因成品气耗量大, 加热能耗高而即将被市场淘汰。 外加热再生和压缩热 (余热) 再生吸附式干燥器虽具有明显的节能效果, 却 难获得更低露点 (一般常压露点在 -20〜- 40 °C ) 的干燥气体, 且由于吹冷气量 不足, 吸附剂温度难于恢复正常温度, 造成切换后一段时间露点升高(漂移)。
在世界范围内, 大流量的气体压缩机一般选用离心式压缩机, 其中 50% 左右的离心压缩机投放进了中国市场, 今年已升至 1500台左右, 中国市场占 离心压缩机市场 50%以上。 与离心压缩机配套的干燥器常采用压缩热(余热) 再生吸附式干燥器。 离心压缩机技术在不断进步, 压缩过程已趋于等温压缩 过程, 由此带来压缩机排气温度更低, 最优机型的排气温度可达到 95-105 °C。 因此, 在大型机领域节能降耗优势十分显著, 近来市场占有量高速增长。 压 缩机排气温度的降低, 采用的干燥器再生的加热温度偏低, 从而影响吸附剂 再生效果, 难以获得更低露点的干燥气体。
目前市场上使用的压缩热(余热)再生吸附式干燥器, 都采用压缩热(余 热) 加热, 吹冷气排放的工艺, 因此存在以下问题:
1 ) 再生加热温度偏低, 脱附不彻底, 难以获得更低露点的干燥气体;
2 ) 吹冷气量小, 吹冷不彻底, 导致气体露点偏高 (漂移);
3 ) 吹冷气排放到大气中, 排放过程有噪音, 也污染环境; 4) 排放减压易造成分子筛粉化加剧。
发明内容
本发明旨在克服现有吸附干燥方法及大型吸附式压缩气体干燥器的缺 点, 提供一种能获得更低露点的干燥气体, 并回收吹冷气体的利用压缩热再 生的吸附式压缩气体干燥工艺及装置, 具有显著节约降耗效果。
本发明的具体技术解决方案如下:
该利用压缩热再生的吸附式压缩气体干燥工艺, 主要包括以下步骤:
1]原料气先全流量流经进行再生的吸附剂,利用原料气的余热对进行再生 的吸附剂进行加热, 再流经进行吸附的吸附剂, 上述气体经吸附剂吸附水分 被干燥后, 成为成品气排出;
2]对原料气进行冷却分离后流经步骤 1中进行吸附的吸附剂,吸附原料气 中的水分干燥后, 成为成品气, 部分成品气排出, 部分成品气进入步骤 3 处 理;
3]步骤 2生成的部分成品气经增压加热后,再流经步骤 1中进行再生的吸 附剂, 利用经加热的成品气对进行再生的吸附剂再一次进行加热, 流出后与 步骤 2中的原料气汇合后进行步骤 2中的处理;
4]步骤 2生成的部分成品气经增压, 再流经步骤 1中进行再生的吸附剂, 利用经增压的成品气对进行再生的吸附剂进行吹冷, 流出后与步骤 2 中的原 料气汇合后进行步骤 2中的处理, 直至进行再生的吸附剂完成再生。
以上所述的步骤 4完成后可进行步骤 5,
5]进行再生的吸附剂完全再生后,与进行吸附的吸附剂进行工作状态的切 换; 由步骤 1中进行吸附的吸附剂再生, 进行再生的吸附剂吸附。
以上所述步骤 2中部分成品气进入步骤 3或步骤 4处理, 该部分气体为 步骤 2中总成品气量的 4~10%, 以 5~7%为佳, 其具体值可根据工作状态进行 调整。
以上所述的原料气是经过滤分离的原料气, 完成了吸附的干燥气排除前 均进行过滤分离。 该利用压缩热再生的吸附式压缩气体干燥装置, 包括由干燥罐 A和干燥 罐 B构成的干燥器 101, 干燥器 101的上、 下端口分别与上管系 102及下管 系 103连通, 所述上管系 102由并联的阀门 Al、 B1和并联的阀门 A2、 B2并 联构成, 下管系 103由并联的阀门 A3、 B3和并联的阀门 A4、 B4并联构成; 所述阀门 Al、 B1之间设置的连接管 11与连接管 12连通, 所述连接管 12的两端分别与风机 1一端和后置过滤器 5—端连接;
所述风机 1另一端通过连接管依次串联有阀门 F3和加热器 2, 所述加热 器 2还通过连接管 13与连接管 14连通, 连接管 14的一端与阀门 F2的一端 连接, 另一端与 A2和 B2之间的连接管连通; 所述阀门 F2另一端与连接管 15的一端连接, 连接管 15的另一端与前置过滤器 7的一端连接, 前置过滤器 7的另一端与进气管 6连接;
所述后置过滤器 5另一端与排气管 8连接;
所述连接管 15与连接管 16的一端连通,连接管 16上设置有阀门 F1 ,连 接管 16的另一端分别与连接管 17—端和连接管 18—端连接;所述连接管 17 上依次设置有冷却器 3和分离器 4,连接管 17另一端与阀门 A3和 B3之间的 连接管连通; 所述连接管 18的另一端与阀门 A4和 B4之间的连接管连通。
以上所述前置过滤器 7配置气液分离器或精密除油过滤器。
以上所述加热器 2是一个加热器的一级加热或两个加热器的二级加热。 以上所述加热器 2是板翅式换热器、 管翅式换热器或管壳式换热器。 以上所述分离器 4是惯性分离过滤分离或惯性和过滤组合形成分离。 本发明的优点如下:
1、 本发明提供的利用压缩热再生的吸附式压缩气体干燥工艺及装置利用 原料气的余热对干燥罐中吸附剂进行加热再生, 利用了余热回收了能量, 节 能降耗效果显著。
2、 本发明提供的利用压缩热再生的吸附式压缩气体干燥工艺及装置两时 段加热, 可提高再生加热温度, 使吸附剂再生更彻底, 因而可获得更低的露 点 (成品气露点可达 -70°C以下)
3、 本发明提供的利用压缩热再生的吸附式压缩气体干燥工艺及装置采用 等压加热再生, 等压干燥吹冷, 没有排气降压过程, 还回收了再生加热吹冷 气体, 节省了压缩气体, 即是节约了能量, 降低了能耗。 4、 本发明提供的利用压缩热再生的吸附式压缩气体干燥工艺及装置利用 干燥气体吹冷并回收吹冷气, 吹冷彻底, 可避免成品气露点的漂移。
5、 本发明提供的利用压缩热再生的吸附式压缩气体干燥工艺及装置采用 等压加热脱附, 干气等呀吹冷, 再生工艺, 系统无降压过程, 可大大降低吸 附剂的粉化率, 延长吸附剂使用寿命, 为用户节省了设备运行成本, 同时避 免了排气噪音, 降低噪音污染。
附图说明
图 1为本发明具体结构示意图。
具体实施方式
该利用压缩热再生的吸附干燥方法, 主要包括以下步骤:
1]原料气先全流量流经进行再生的吸附剂,利用原料气的余热对进行再生 的吸附剂进行加热, 再流经进行吸附的吸附剂, 上述气体经吸附剂吸附水分 被干燥后, 成为成品气排出;
2]对原料气进行冷却分离后流经步骤 1中进行吸附的吸附剂,吸附原料气 中的水分干燥后, 成为成品气, 部分成品气排出, 部分成品气进入步骤 3 处 理; 进入步骤 3或步骤 4处理的部分气体为步骤 2中总成品量的 4~10%, 以 5~7%为佳, 实际生产中可以根据具体情况调整比例;
3]步骤 2生成的部分成品气经增压加热后,再流经步骤 1中进行再生的吸 附剂, 利用经加热的成品气对进行再生的吸附剂再一次进行加热, 流出后与 步骤 2中的原料气汇合后进行步骤 2中的处理;
4]步骤 2生成的部分成品气经增压, 再流经步骤 1中进行再生的吸附剂, 利用经增压的成品气对进行再生的吸附剂进行吹冷, 流出后与步骤 2 中的原 料气汇合后进行步骤 2中的处理, 直至进行再生的吸附剂完成再生。
以上所述的步骤 4完成后可进行步骤 5,
5] 进行再生的吸附剂完全再生后, 与进行吸附的吸附剂进行工作状态的 切换; 由步骤 1中进行吸附的吸附剂再生, 进行再生的吸附剂吸附。
原料气一般需经过过滤分离, 完成了吸附的成品气排除前均进行过滤。 该利用压缩热再生的吸附式压缩气体干燥装置, 包括由干燥罐 A和干燥 罐 B构成的干燥器 101, 干燥器 101的上、 下端口分别与上管系 102及下管 系 103连通, 上管系 102由并联的阀门 Al、 B1和并联的阀门 A2、 B2并联构 成, 下管系 103由并联的阀门 A3、 B3和并联的阀门 A4、 B4并联构成;
阀门 Al、 B1之间设置的连接管 11与连接管 12连通, 连接管 12的两端 分别设置有与风机 1一端和后置过滤器 5—端连接;
风机 1另一端通过连接管依次串联有阀门 F3和加热器 2; 风机 1可以用 压缩机替代, 加热器 2可以选用一个加热器的一级加热或两个加热器的二级 加热; 加热器 2—般为板翅式换热器、 管翅式换热器或管壳式换热器等; 加热器 2还通过连接管 13与连接管 14连通,连接管 14的一端与阀门 F2 的一端连接, 另一端与 A2和 B2之间的连接管连通; 阀门 F2另一端与连接 管 15的一端连接, 连接管 15的另一端与前置过滤器 7的一端连接, 前置过 滤器 7的另一端与进气管 6连接; 前置过滤器 7—般配置气液分离器或精密 除油过滤器; 后置过滤器 5另一端与排气管 8连接;
连接管 15与连接管 16的一端连通,连接管 16上设置有阀门 F1 ,连接管 16的另一端分别与连接管 17—端和连接管 18—端连接;连接管 17上依次设 置有冷却器 3和分离器 4,分离器 4一般选用惯性分离过滤分离或惯性和过滤 组合形成分离。连接管 17另一端与阀门 A3和 B3之间的连接管连通;连接管 18的另一端与阀门 A4和 B4之间的连接管连通。
干燥罐 A进行吸附工作时, 干燥罐 B同时进行吸附剂再生, 再生采用在 线压下等压加热脱附和等压吹冷的再生工艺; 干燥罐 B再生结束, 两干燥罐 通过阀门进行切换; 切换完成后, 干燥罐 B进行吸附, 干燥罐 A则进行吸附 剂再生过程, 如此循环;
干燥罐 A进行吸附工作时干燥罐 B进行吸附剂再生过程, 其具体可分为 以下两个部分:
1]干燥罐 A吸附流程
干燥罐 A吸附流程分为三个时段:
1.1]原料气全流量经干燥罐 B (再生), 再进入干燥罐 A (吸附); 该时段内, 阀门 F2、 阀门 B2、 阀门 B4、 阀门 Al、 阀门 A3开启; 阀门 Fl、 阀门 Bl、 阀门 A2、 阀门 B3、 阀门 A4、 阀门 F3关闭, 其具体流程如下: 原料气先经进气管 6进入干燥器内, 先通过前置过滤器 7过滤后依次经 连接管 15、 阀门 F2、 连接管 14、 阀门 B2后进入干燥罐 B内, 原料气余热对 干燥罐 B内进行再生的吸附剂进行加热后依次经阀门 B4、连接管 18、连接管 17进、 冷却器 3、 分离器 4、 阀门 A3后进入干燥罐 A内, 经干燥罐 A内的 吸附剂吸附干燥后, 再依次经阀门 Al、 连接管 11、 连接管 12、 后置过滤器 5 后, 最后通过排气管 8排出;
1.2]原料气不经干燥罐 B (再生), 直接进入干燥罐 A (吸附), 加热器开 启并进行工作;
该时段内, 阀门 Fl、 阀门 F3、 阀门 A3、 阀门 Al、 阀门 B2、 阀门 B4开 启, 阀门 F2、 阀门 A2、 阀门 Bl、 阀门 A4、 阀门 B3关闭, 其具体流程如下: 原料气经进气管 6进入干燥器内, 先通过前置过滤器 7过滤后依次流经 连接管 15、 阀门 Fl、 连接管 16、 连接管 17、 冷却器 3、 分离器 4和阀门 A3 后进入干燥罐 A内, 经干燥罐 A内的吸附剂吸附干燥处理后, 再依次经阀门 Al、 连接管 11、 连接管 12, 部分干燥气体 (成品气) 通过连接管 12—端连 接的后置过滤器 5后, 最后通过排气管 8排出;
另一部分干燥气体 (成品气) 通过连接管 12另一端连接的风机 1, 经风 机 1增压以克服系统阻力后依次经过阀门 F3、 加热器 2、 连接管 13、 连接管 14和阀门 B2后进入干燥罐 B,此时加热器开启并进行工作;通过被加热的成 品气对干燥罐 B内再生的吸附剂进行加热, 然后通过依次经阀门 B4、 连接管 18, 与通过连接管 16进入连接管 17的原料气汇;
1.3]原料气不经干燥罐 B (再生), 直接进入干燥罐 A (吸附), 同时加热 器停止工作;
该时段内, 阀门 Fl、 阀门 F3、 阀门 A3、 阀门 Al、 阀门 B2、 阀门 B4开 启, 阀门 F2、 阀门 A2、 阀门 Bl、 阀门 A4、 阀门 B3关闭, 其具体流程如下: 原料气经进气管 6进入干燥器内, 先通过前置过滤器 7过滤后依次流经 连接管 15、 阀门 Fl、 连接管 16、 连接管 17、 冷却器 3、 分离器 4和阀门 A3 后进入干燥罐 A内, 经干燥罐 A内的吸附剂吸附干燥处理后, 再依次经阀门 Al、 连接管 11、 连接管 12, 部分干燥气体 (成品) 通过连接管 12—端连接 的后置过滤器 5后, 最后通过排气管 8排出; 另一部分干燥气体 (成品气)通过连接管 12另一端连接的风机后依次经 过阀门 F3、 加热器 2、 连接管 13、 连接管 14和阀门 B2后进入干燥罐 B, 此 时段内加热器 2停止工作; 通过加热器 2的成品气对干燥罐 B内进行进行再 生的吸附剂进行吹冷, 然后依次经阀门 B4、 连接管 18, 与通过连接管 16进 入连接管 17的原料气汇;
2]干燥罐 B再生流程
干燥罐 B再生分为两个时段:
2.1]原料气全流量经干燥罐 B (再生), 再进入干燥罐 A (吸附); 原料气 余热加热脱附阶段, 用原料气的余热 (压缩热) 对干燥罐 B (再生) 进行加 热; 其阀门开闭状态以及气体流程与步骤 1.1相同;
2.2]原料气不经干燥罐 B (再生), 直接进入干燥罐 A (吸附), 加热器开 启并进行工作, 部分干燥气体 (成品气) 经加热器加热后进入干燥罐 B对吸 附剂进一步加热完成加热阶段工作后进入吹冷阶段,
2.3] 原料气不经干燥罐 B (再生), 直接进入干燥罐 A (吸附), 此时加 热器停止加热, 部分干燥气体 (成品气) 直接对干燥罐 B内的吸附剂进行吹 冷, 至干燥罐 B再生结束; 其阀门开闭状态以及气体流程与步骤 1.2相同。
3]由于干燥罐 B完成了再生, 因此进行工作状态的切换, 干燥罐 B进行 吸附, 干燥罐 A进行再生。
干燥罐 A与干燥罐 B之间的工作状态切换通过阀门实现,干燥罐 A内的吸附 剂进行再生的同时干燥罐 B内的吸附剂进行吸附。与步骤 1和 2的原理相同。

Claims

权利要求书
1、 利用压缩热再生的吸附式压缩气体干燥工艺, 其特征在于, 主要包括 以下步骤:
1]原料气先全流量流经进行再生的吸附剂,利用原料气的余热对进行再生 的吸附剂进行加热, 再流经进行吸附的吸附剂, 上述气体经吸附剂吸附水分 被干燥后, 成为成品气排出;
2]对原料气进行冷却分离后流经步骤 1中进行吸附的吸附剂,吸附原料气 中的水分干燥后, 成为成品气, 部分成品气排出, 部分成品气进入步骤 3 处 理;
3]步骤 2生成的部分成品气经增压加热后,再流经步骤 1中进行再生的吸 附剂, 利用经加热的成品气对进行再生的吸附剂再一次进行加热, 流出后与 步骤 2中的原料气汇合后进行步骤 2中的处理;
4]步骤 2生成的部分成品气经增压, 再流经步骤 1中进行再生的吸附剂, 利用经增压的成品气对进行再生的吸附剂进行吹冷, 流出后与步骤 2 中的原 料气汇合后进行步骤 2中的处理, 直至进行再生的吸附剂完成再生。
2、 根据权利要求 1所述的利用压缩热再生的吸附式压缩气体干燥工艺, 其特征在于: 所述的步骤 4完成后可进行步骤 5, 5] 进行再生的吸附剂完全 再生后, 与进行吸附的吸附剂进行工作状态的切换; 由步骤 1 中进行吸附的 吸附剂再生, 进行再生的吸附剂吸附。
3、 根据权利要求 1或 2所述的利用压缩热再生的吸附式压缩气体干燥工 艺, 其特征在于: 所述步骤 2中部分成品气进入步骤 3处理, 该部分气体为 步骤 2中总成品气量的 5~7%。
4、 根据权利要求 3所述的利用压缩热再生的吸附式压缩气体干燥工艺, 其特征在于: 所述的原料气是经过过滤的原料气, 完成了吸附的成品气排除 前均进行过滤。
5、 利用压缩热再生的吸附式压缩气体干燥装置, 其特征在于: 包括由干 燥罐 A和干燥罐 B构成的干燥器(101 ), 干燥器(101 ) 的上、 下端口分别与 上管系(102 )及下管系(103 )连通, 所述上管系(102 ) 由并联的阀门(Al )、
(B1 ) 和并联的阀门 (A2 )、 (B2 ) 并联构成, 下管系 (103 ) 由并联的阀门 (A3)、 (B3) 和并联的阀门 (A4)、 (B4) 并联构成; 所述阀门 (Al)、 (B1) 之间设置的连接管 (11) 与连接管 (12) 连通, 所述连接管 (12) 的两端分 别与风机 (1) 一端和后置过滤器 (5) —端连接; 所述风机 (1) 另一端通过 连接管依次串联有阀门 (F3) 和加热器 (2), 所述加热器 (2) 还通过连接管
(13) 与连接管 (14) 连通, 连接管 (14) 的一端与阀门 (F2) 的一端连接, 另一端与 (A2) 和 (B2) 之间的连接管连通; 所述阀门 (F2) 另一端与连接 管(15) 的一端连接, 连接管(15) 的另一端与前置过滤器(7) 的一端连接, 前置过滤器 (7) 的另一端与进气管 (6) 连接; 所述后置过滤器 (5) 另一端 与排气管 (8) 连接; 所述连接管 (15) 与连接管 (16) 的一端连通, 连接管
(16) 上设置有阀门 (F1), 连接管 (16) 的另一端分别与连接管 (17) —端 和连接管 (18) —端连接; 所述连接管 (17) 上依次设置有冷却器 (3) 和分 离器 (4), 连接管 (17) 另一端与阀门 (A3) 和 (B3) 之间的连接管连通; 所述连接管 (18) 的另一端与阀门 (A4) 和 (B4) 之间的连接管连通。
6、 根据权利要求 5所述的利用压缩热再生的吸附式压缩气体干燥装置, 其特征在于: 所述前置过滤器 (7) 配置气液分离器或精密除油过滤器。
7、 根据权利要求 6所述的利用压缩热再生的吸附式压缩气体干燥装置, 其特征在于: 所述加热器 (2) 是一个加热器的一级加热或两个加热器的二级 加热。
8、 根据权利要求 6或 7所述的利用压缩热再生的吸附式压缩气体干燥装 置, 其特征在于: 所述加热器 (2) 是板翅式换热器、 管翅式换热器或管壳式 换热器。
9、 根据权利要求 8所述的利用压缩热再生的吸附式压缩气体干燥装置, 其特征在于: 所述分离器 (4) 是惯性分离过滤分离或惯性和过滤组合形成分 离。
PCT/CN2012/070721 2011-01-28 2012-01-27 利用压缩热再生的吸附式压缩气体干燥工艺及装置 WO2012100741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110031761XA CN102101003B (zh) 2011-01-28 2011-01-28 利用压缩热再生的吸附式压缩气体干燥工艺及装置
CN201110031761.X 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012100741A1 true WO2012100741A1 (zh) 2012-08-02

Family

ID=44154187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070721 WO2012100741A1 (zh) 2011-01-28 2012-01-27 利用压缩热再生的吸附式压缩气体干燥工艺及装置

Country Status (2)

Country Link
CN (1) CN102101003B (zh)
WO (1) WO2012100741A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105749696A (zh) * 2016-04-25 2016-07-13 东北大学 一种基于低品位热能的二氧化碳变温吸脱附系统及方法
RU2690271C2 (ru) * 2017-11-24 2019-05-31 Федеральное государственное бюджетное учреждение "4 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Осушитель воздуха кассетный
RU2690285C1 (ru) * 2018-11-02 2019-05-31 Федеральное государственное бюджетное учреждение "4 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Осушитель воздуха кассетный колонного типа

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101003B (zh) * 2011-01-28 2013-11-13 西安超滤净化工程有限公司 利用压缩热再生的吸附式压缩气体干燥工艺及装置
CN102553403A (zh) * 2012-01-06 2012-07-11 郭应辉 吸附干燥机
CN103230726B (zh) * 2013-04-28 2019-03-19 西安联合超滤净化设备有限公司 节能型吸附式气体干燥工艺及装置
DE102013109476A1 (de) * 2013-08-30 2015-03-05 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren und Einrichtung zur Regeneration eines Zweikammer-Lufttrockners
CN107088347A (zh) * 2017-01-19 2017-08-25 无锡联合超滤净化设备科技有限公司 变压再生吸附式压缩气体干燥工艺及装置
CN107456838B (zh) * 2017-07-20 2023-05-26 云威能源科技(上海)有限公司 节能型压缩热再生气体干燥装置及工艺
CN108097003A (zh) * 2017-11-09 2018-06-01 无锡联合超滤净化设备科技有限公司 等压变温再生吸附式压缩气体干燥工艺
CN109758837A (zh) * 2017-11-09 2019-05-17 无锡联合超滤净化设备科技有限公司 高效除油高压微加热干燥装置的工作方法
CN109966860A (zh) * 2019-04-16 2019-07-05 北京科技大学 一种多床变温吸附气体净化系统及工艺
CN112755738A (zh) * 2020-12-30 2021-05-07 上海沪盛机械科技有限公司 吸附式气体干燥机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2625818Y (zh) * 2003-06-02 2004-07-14 席玉明 再生气循环吸附干燥机
KR20100110645A (ko) * 2009-04-03 2010-10-13 한국에어로(주) 압축공기 오일제거장치의 열을 열원으로 하는 에어드라이어시스템
CN101940867A (zh) * 2010-08-27 2011-01-12 无锡优元工业机械有限公司 零耗气低露点余热再生吸附式干燥器
CN201768479U (zh) * 2010-08-27 2011-03-23 无锡优元工业机械有限公司 零耗气低露点余热再生吸附式干燥器
CN102101003A (zh) * 2011-01-28 2011-06-22 西安超滤净化工程有限公司 利用压缩热再生的吸附式压缩气体干燥工艺及装置
CN201930694U (zh) * 2011-01-28 2011-08-17 西安超滤净化工程有限公司 利用压缩热再生的吸附式压缩气体干燥装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308101C1 (de) * 1993-03-15 1994-07-28 Degussa Verfahren zur Herstellung platingruppenmetallhaltiger Hydrierkatalysatoren auf Aktivkohle
CN1329117C (zh) * 2003-06-12 2007-08-01 中国石油化工股份有限公司 用于选择性加氢的钯/碳催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2625818Y (zh) * 2003-06-02 2004-07-14 席玉明 再生气循环吸附干燥机
KR20100110645A (ko) * 2009-04-03 2010-10-13 한국에어로(주) 압축공기 오일제거장치의 열을 열원으로 하는 에어드라이어시스템
CN101940867A (zh) * 2010-08-27 2011-01-12 无锡优元工业机械有限公司 零耗气低露点余热再生吸附式干燥器
CN201768479U (zh) * 2010-08-27 2011-03-23 无锡优元工业机械有限公司 零耗气低露点余热再生吸附式干燥器
CN102101003A (zh) * 2011-01-28 2011-06-22 西安超滤净化工程有限公司 利用压缩热再生的吸附式压缩气体干燥工艺及装置
CN201930694U (zh) * 2011-01-28 2011-08-17 西安超滤净化工程有限公司 利用压缩热再生的吸附式压缩气体干燥装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105749696A (zh) * 2016-04-25 2016-07-13 东北大学 一种基于低品位热能的二氧化碳变温吸脱附系统及方法
RU2690271C2 (ru) * 2017-11-24 2019-05-31 Федеральное государственное бюджетное учреждение "4 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Осушитель воздуха кассетный
RU2690285C1 (ru) * 2018-11-02 2019-05-31 Федеральное государственное бюджетное учреждение "4 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Осушитель воздуха кассетный колонного типа

Also Published As

Publication number Publication date
CN102101003B (zh) 2013-11-13
CN102101003A (zh) 2011-06-22

Similar Documents

Publication Publication Date Title
WO2012100741A1 (zh) 利用压缩热再生的吸附式压缩气体干燥工艺及装置
CN102872688A (zh) 零损耗内循环式气体干燥方法及装置
KR101146710B1 (ko) 연소배가스에서 온도변동 흡착공정을 이용한 이산화탄소를 회수 장치 및 그 운전방법
CN202356000U (zh) 真空加热零气耗压缩空气净化装置
CN207951073U (zh) 一种鼓风再生吸附式干燥机
CN110115914A (zh) 一种具有两种工作模式的气体干燥装置及使用方法
CN201493042U (zh) 一种余热式组合低露点干燥机
CN202061533U (zh) 一种余热再生式空气干燥装置
CN108126481A (zh) 外加热表冷器干燥装置的工作方法
CN101940867B (zh) 零耗气低露点余热再生吸附式干燥器
CN207576091U (zh) 一种热回收型零气耗鼓风加热吸附式干燥机
CN113713575A (zh) 一种零气耗低露点压缩热鼓风式干燥机
CN107088347A (zh) 变压再生吸附式压缩气体干燥工艺及装置
CN206240285U (zh) 一种压缩余热零再生气损耗吸附式干燥机
CN201930694U (zh) 利用压缩热再生的吸附式压缩气体干燥装置
CN202724981U (zh) 零气耗压缩热再生吸附式干燥机
CN102451601A (zh) 一种新型余热再生干燥器
CN102179142A (zh) 一种余热再生式空气干燥装置
CN207576094U (zh) 一种热回收型微气耗鼓风加热吸附式干燥机
CN202724980U (zh) 压缩热再生压缩空气净化装置
CN102743957A (zh) 一种高温含油压缩空气余热再生干燥装置
CN206566718U (zh) 紧凑风冷型鼓风热再生吸附式干燥机
CN206676377U (zh) 再生干燥系统
CN102451602B (zh) 零气耗余热再生干燥方法
CN209791236U (zh) 冷凝热鼓风吸附式干燥机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739207

Country of ref document: EP

Kind code of ref document: A1