WO2012100630A1 - 在铺层面内方向上测试气体渗透率的测试装置及其方法 - Google Patents

在铺层面内方向上测试气体渗透率的测试装置及其方法 Download PDF

Info

Publication number
WO2012100630A1
WO2012100630A1 PCT/CN2011/085123 CN2011085123W WO2012100630A1 WO 2012100630 A1 WO2012100630 A1 WO 2012100630A1 CN 2011085123 W CN2011085123 W CN 2011085123W WO 2012100630 A1 WO2012100630 A1 WO 2012100630A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
pressure
sample
sealing
tested
Prior art date
Application number
PCT/CN2011/085123
Other languages
English (en)
French (fr)
Inventor
刘卫平
张东梅
马晓星
刘军
李志远
王欣晶
郑义珠
王旭
苏佳志
辛朝波
顾轶卓
李敏
李艳霞
张佐光
Original Assignee
中国商用飞机有限责任公司
上海飞机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 上海飞机制造有限公司 filed Critical 中国商用飞机有限责任公司
Priority to US13/982,332 priority Critical patent/US20140013826A1/en
Priority to EP11856869.0A priority patent/EP2669655A1/en
Publication of WO2012100630A1 publication Critical patent/WO2012100630A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules

Definitions

  • Test device for testing gas permeability in the direction of the layer and method thereof
  • the present invention relates to an apparatus for testing gas permeability and a method thereof, and more particularly to an apparatus and method for testing a permeability of a sample to be tested in a direction of a layer by using a gas as a fluid. Background technique
  • Permeability is a parameter that characterizes the ease with which a fluid can flow in a porous medium under pressure. A greater permeability indicates a smaller flow resistance of the porous medium to the fluid.
  • the permeability of prepreg layup is one of the key factors affecting the inclusion of air and volatiles under vacuum, thus affecting the composite components to some extent. Forming quality.
  • the prepreg system consists of a fiber reinforcement and a resin matrix. Therefore, the permeability of the prepreg is determined not only by the physical properties of the fiber but also by the fiber network structure, and also by the physical and chemical properties of the resin matrix.
  • the dip system contains a resin matrix.
  • the liquid is used as the test fluid.
  • the flow front is difficult to judge and the permeability cannot be accurately tested.
  • the prepreg layup permeability is much smaller than the fiber layup permeability, and the liquid is deposited through the prepreg.
  • the flow rate is very small.
  • the prepreg permeability is mainly used in the composite molding process.
  • the device and method for testing the permeability of prepreg layup by using gas as fluid not only have important theoretical significance and application value, but also have certain technical difficulties, and it is necessary to take into account the influence of various factors to achieve accurate measurement. . Accordingly, it is an object of the present invention to provide a test apparatus and method for applying a gas permeability of a prepreg in a direction of a laminate layer in a resin-based composite material. Summary of the invention
  • the present invention provides a test apparatus for gas permeability in the direction of the pavement layer, preferably, which is applied to a permeability test of a prepreg in a resin-based composite material, the apparatus being provided in a vacuum chamber
  • the dynamics of the gas moving in the direction of the prepreg layer achieves the test of the gas permeability of the prepreg in the direction of the pavement.
  • the gas permeability of the prepreg during the curing process is measured by adjusting the pressure and temperature.
  • the present invention provides a test apparatus for testing gas permeability in the direction of the pavement layer, comprising: a mold composed of at least a cavity and a cover plate, a loading device for controlling the test pressure, and a control temperature for controlling the test.
  • a temperature control device for controlling the test pressure
  • a vacuuming device for evacuating the cavity
  • a flow detecting element for detecting a gas flow rate.
  • the cover has an opening for receiving the loading device, the cavity and the cover form an internal chamber, the sealing assembly is placed in the internal chamber and the cover is sealed Opening, a sample to be tested is tiled between the sealing assemblies and is hermetically sealed by a sealing assembly corresponding to both ends in a direction of a paving layer, the mold corresponding to a sample to be tested that is not hermetically sealed
  • the two ends are respectively provided with an air inlet and an air outlet; wherein the flow detecting element is in communication with the air inlet, the air outlet is in communication with the vacuuming device, and when the vacuuming device is activated After the pressure of the air inlet is higher than the pressure of the air outlet, the gas flows into the air outlet from the air inlet through the sample to be tested in the direction of the layer of the sample to be tested.
  • the temperature control device has at least a heating rod.
  • the vacuuming device is a vacuum pump.
  • a vacuum gauge is further disposed between the vacuum pump and the air outlet.
  • the air inlet and the air outlet are disposed on the cover, and the cover is fixed in the cavity.
  • the sealing assembly includes an upper sealing sheet and a lower sealing sheet.
  • the sealing assembly comprises an upper sealing sheet, a lower sealing sheet and the upper dense layer A pair of side sealing sheets between the sealing sheet and the lower sealing sheet.
  • the mold further comprises a porous material corresponding between the sealing sheet of the sample to be tested and the lower sealing sheet, disposed between the side sealing sheets in the direction of the layer.
  • the porous material is an airfelt.
  • the loading device has a loading plate and a loading body, the loading plate being received in an opening of the cover plate, and the loading body applies a pressure to the loading plate.
  • the loading body is a press.
  • the seal assembly and the cover plate are respectively grooved on both sides of the inner wall adjacent to the cavity.
  • the sample to be tested is a prepreg.
  • the sample to be tested is tiled between the seal assemblies in a unidirectional layup, orthogonal layup or quasi-isotropic layup.
  • the advantages of the gas permeability testing device of the prepreg of the present invention in the direction of the paving layer are as follows: (1) Accurate testing of the gas permeability of the prepreg in the direction of the paving layer can be achieved under different pressure and temperature conditions; (2) Applicable to various continuous fiber prepregs such as glass fiber, carbon fiber and aramid fiber, and also suitable for various fabric prepregs; (3) Different layering methods and different layers of layers can be realized. Determination of gas permeability; (4) Small measurement error, high test reliability and repeatability; (5) Simple equipment, convenient operation and time saving.
  • the present invention also provides a method of measuring gas permeability, comprising the steps of:
  • step (1) If the test result of step (1) is airtight, the loading device applies a test pressure to the sealing component with and without the test sample, and measures the thickness h of the sample to be tested under the test pressure;
  • C represents a constant related to the type of gas.
  • the permeability calculation formula is - Phb, wherein / and 6 respectively indicate the length and width of the layer to be tested.
  • the step of sealing the seal member and the cavity with a sealing tape is further included.
  • the vacuuming device sets the chamber pressure to -O.lMPa, and does not leak if the vacuum device is not released after the vacuum device is turned off.
  • the pressure P of the vacuuming device ranges from -0.1 to 0 MPa.
  • Figure 1 is a structural view of a cavity of a gas permeability testing device in the direction of the pavement
  • Figure 2 is a structural view of a sealing cover of the gas permeability testing device in the direction of the pavement;
  • Figure 3 is a view showing the assembly of the test mold of the gas permeability test device in the direction of the pavement;
  • Figure 4 is an exploded view of Figure 3;
  • Figure 5 is a schematic view showing the assembly of the gas permeability test device in the direction of the pavement
  • Figure 6 is a graph of gas permeability and test pressure of a carbon fiber/epoxy 914 resin prepreg in the direction of the layer;
  • Figure 7 is a graph of gas permeability and test pressure for the T700 carbon fiber/bismaleimide resin unidirectional prepreg in the pavement.
  • the present invention is a test apparatus for testing the gas permeability of a sample 10 to be tested in the direction of the pavement.
  • the test apparatus is composed of a test mold 1, a loading device 2, a temperature control device 3, a flow detecting member 4, a vacuum detecting member 5, and a vacuuming device 6.
  • the flow rate detecting element 4 is a flow meter
  • the vacuum detecting element 5 is a vacuum gauge
  • the vacuuming device 6 is a vacuum pump. 1 to 4
  • the flow meter 4 is connected to the air inlet hole 123 of the test die 1 through the air pipe 7, and the air outlet 124 of the test die 1 is connected to the vacuum gauge 5 and the vacuum pump 6 through the air pipe 7, and the heating of the test die 1 is tested.
  • the rod 1 14 is temperature controlled by a temperature control device 3, which is preferably a temperature control meter.
  • the loading device 2 has a loading plate 21 and a loading body, and by loading the plate 21, the loading body applies pressure to the test piece 10, which is preferably a press.
  • the test mold 1 is composed of a cavity 1 1 and a sealing cover 12.
  • the cavity 1 1 is as shown in FIG. 1
  • the bottom surface of the cavity has four threaded holes 1 1 1
  • two heating rod holes 1 13 are further disposed below.
  • the upper portion is accommodated in order from the top to the bottom in the accommodating space of the cavity 11.
  • the sealing sheet 131, the porous material 134, and the side sealing sheets 133 and the lower sealing sheets 132 is pressed against the upper sealing piece 131 in the cavity 1 1 through a central opening 125 provided in the sealing cover 12 described below, and the loading pressure can be uniformly transmitted to the sample 10 to be tested.
  • the pressure receiving area of the sample 10 to be tested is effectively controlled.
  • the heating rod 1 14 is placed in the cavity 1 1 through the heating rod hole 1 13 .
  • the upper sealing piece 131 and the lower sealing piece 132 are oppositely disposed and substantially the same in shape, and the two side sealing pieces 133 are disposed between the upper sealing piece 131 and the lower sealing piece 132 and are located on the inner side opposite to the upper sealing piece 131 or the lower sealing piece 132, respectively.
  • An air inlet hole 123 and an air outlet hole 124 are respectively disposed at two ends of the sealing cover 12, and the sealing cover 12 is further provided with a through hole 121, which is connected to the threaded hole 1 1 1 of the cavity 1 1 by the locking bolt 1 12 and utilized
  • the locking bolt 1 12 loads the compression seal and divides the cavity 11 into two separate cavities.
  • the sealing cover 12, the upper sealing piece 131, the side sealing piece 133 and the lower sealing piece 132 are both grooved near the cavity wall, so that the design is convenient to use the sealing strip to eliminate the gap between the sealing piece and the cavity wall. The gap ensures that the two chambers are isolated from one another to prevent gas from flowing through the gap.
  • the upper sealing sheet 131, the lower sealing sheet 132 and the side sealing sheet 133 constitute the sealing assembly of the present invention, however, those skilled in the art can understand that the sealing assembly can also have only the upper sealing sheet and the lower sealing sheet.
  • the upper and lower sealing sheets each have a side sealing end, and the two side sealing ends are engaged with each other to realize the function of the side sealing piece 133, but the gas sealing effect is worse than that of the sealing member having the side sealing piece 133.
  • the sample to be tested 10 is a prepreg applied to a resin-based composite material
  • the fiber in the prepreg may be glass fiber, carbon fiber, aramid fiber or basalt fiber
  • the prepreg reinforcement may be It is a unidirectional fiber, and may also be a fiber fabric, wherein the fiber fabric may be plain weave, twill weave, satin weave, etc.
  • the resin in the prepreg may be epoxy resin, phenolic resin, cyanate resin, double Horse resin and so on.
  • the invention can test the gas permeability of the resin-based composite prepreg in the direction of the pavement layer, and the specific operation is as follows:
  • the prepreg is first cut into a size of 10 X 10 cm 2 and then laid up in a layered manner and a number of layers to form a prepreg layup.
  • the layering method may be a unidirectional layering, an orthogonal layering, a quasi-isotropic layering, or the like, and the number of the layering layers is set according to test requirements.
  • the lower sealing sheet 132 is laid flat in the cavity 1 1 , then the laid prepreg 10 is placed on the lower sealing sheet 132 , and the side sealing sheet 133 is placed close to the prepreg 10 , although the prepreg and the prepreg
  • the side sealing sheets 133 are in close contact during the packaging process, but are not completely sealed between the two, and there is an edge effect. If not treated, the gas flowing along the edges of the prepreg 10 and the side sealing sheets 133 may affect the gas permeation. The accuracy of the rate, therefore, the prepreg 10 is bonded to the side sealing sheet 133 by using an organic silica gel to effectively eliminate the edge effect and provide the accuracy of the test results.
  • the porous material 134 is further disposed at both ends of the prepreg 10, wherein the thickness of the porous material 134 and the side sealing sheet 133 should be equivalent to the thickness of the prepreg 10, wherein the porous material 134 is preferably an airfelt having a certain thickness. .
  • the upper sealing piece 131, the sealing cover 12, the loading plate 21 are sequentially placed according to FIG. 4, and the locking bolts 12 are tightened to fix the sealing cover 12 to the cavity 1 1 by the locking bolt 1
  • the 12 loading compression upper and lower sealing sheets 131, 132 divide the cavity 11 into two separate cavities.
  • sealing cover 12 is sealed with the sealing body 12 and the cavity 1 1 and the locking bolt 1 12 and the sealing cover 12, and the sealing piece of the groove 122 is sealed with the gap of the cavity 1 1 by using a sealing tape. Make sure that the cavity 1 1 is not leaking.
  • the intake hole 123 of the sealed sealing cover 12 is sealed, and the air outlet 124 is connected to the vacuum gauge 5 and the vacuum pump 6 through the air duct 7. Then, start the vacuum pump 6, check and compact the sealing strip. When the vacuum meter 5 shows that it reaches -O.lMPa, close the vacuum pump 6 and check whether the vacuum gauge 5 is relieved. If the pressure is relieved, the leak point should be found. Tape sealed. Repeated many times until the vacuum pump 6 is turned off, the vacuum gauge 5 is not relieved before it can enter Line penetration test.
  • the loading plate 21 is directly pressed against the upper sealing sheet 131 in the cavity 11, and the upper and lower sealing sheets 131, 132 are pressurized by the loading plate 21 by the loading body.
  • the dial gauge is adjusted and fixed. The contact is brought into contact with the upper surface of the loading plate 21, and the dial gauge is read.
  • the loading plate 21 After unloading, the loading plate 21 is removed, the prepreg 10 is directly laid in the cavity 11 and covered with the loading plate 21, and the prepreg 10 is pressurized by the loading plate 21 by the loading body, when the setting is reached. After the pressure, the dial gauge contacts are brought into contact with the upper surface of the loading plate 21, and the dial gauge is read.
  • the air outlet 124 of the sealing cover 12 is connected to the vacuum gauge 5 and the vacuum pump 6 through the air guiding tube 7, and the air inlet hole 123 is connected to the flow meter 4 through the air guiding tube 7;
  • the loading device 2 is adjusted to control the test pressure applied to the prepreg 10 layer.
  • the pressure range is: 0 to 0.6 MPa;
  • the temperature control device 3 is adjusted to control the temperature T in the cavity 11.
  • the temperature range is: room temperature to 200 ° C;
  • the air flows through the flow meter 4, the air inlet 123, the porous material 134, the prepreg 10, and the air outlet 124, and the volumetric flow rate Q of the air is measured by the flow meter 4, and the unit is m3 / s ;
  • the in-plane permeability can be obtained according to Darcy's law, and its unit is m 2 .
  • the in-plane permeability of the prepreg 10 under different pressure and temperature conditions was tested by adjusting the loading device 2, the temperature control device 3, and changing the pressure and temperature acting on the prepreg 10 layup.
  • the viscosity of the gas increases with the increase of the temperature T.
  • the gas viscosity can be calculated by the Sutterland formula:
  • represents the temperature of the test condition, and the unit is K; T. , ;;.
  • the air viscosity at part temperature can be seen in Table 1 below.
  • the gas volume is greatly affected by the temperature, and the flow rate of the flow meter 4 is measured under the condition of ⁇ , and when the test mold temperature is:, the gas flow rate under the temperature condition can be calculated by a correction formula: ⁇ . .
  • a carbon fiber/epoxy 914 resin fabric prepreg was used as a test object.
  • the prepreg was cut into lOxlOcm 2 and then placed in 7 layers.
  • the load was applied by a pressurizing device to measure the gas permeability in the prepreg layer under different pressure conditions.
  • the test temperature was 20 ° C.
  • the air viscosity at this temperature was 18 X 10" 6 Pa ⁇ S, the test results are shown in Figure 6.
  • Example 2 Example 2:
  • a unidirectional prepreg using T700 carbon fiber/bismaleimide resin was used as a test object.
  • the layering method was unidirectional lamination, and the load was applied by a pressurizing device to measure the gas permeability in the prepreg layer under different pressure conditions, and the test temperature was 20 ° C.
  • the air viscosity at this temperature is 18 X 10 _6 Pa ⁇ S, and the test results are shown in Fig. 7.
  • a prepreg using a carbon fiber/epoxy 914 resin fabric was used as a test object. After the prepreg was cut into 10 ⁇ 10 cm 2 , 7 layers were laid, and the pressure of O. HMPa was applied by a pressurizing device to measure the gas permeability in the direction of the prepreg layer under different temperature conditions. The test results are shown in Table 2 below.
  • test pressure ranges are different, as in Example 1, IMPa can be achieved, and in Example 1, 1.5 MPa can be achieved.
  • range of pressures applied when testing using the present invention is not limited to 0-0.6 MPa, but rather a wide range of pressure ranges can be tested depending on the loading capabilities of the pressurizing device.
  • the test temperature range in the present invention is room temperature to 200 ° C, because there is no cooling system attached in the present invention, and the upper limit of the temperature of the test instrument is 200 ° C, therefore, the test temperature ranges from room temperature to 200 °C.
  • the present invention can test for permeability over a wider temperature range as long as the test meter allows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

在铺层面内方向上测试气体渗透率的测试装置及其方法 技术领域
本发明涉及一种测试气体渗透率的装置及其方法, 更具体地说, 是指以气体为流体测试待测试样在铺层面内方向上测试渗透率的装 置及其方法。 背景技术
渗透率是表征压力作用下流体在多孔介质中流动难易程度的参 数, 渗透率越大表示多孔介质对流体的流动阻力越小。 釆用热压罐 或真空袋工艺制备树脂基复合材料过程中, 预浸料铺层渗透率是影 响真空作用下夹杂空气及挥发份排出的关键因素之一, 从而在一定 程度上影响复合材料构件成型质量。 预浸料体系由纤维增强体及树 脂基体构成, 因此预浸料铺层渗透率不仅由纤维的物理特性及纤维 网络结构决定, 同时还与树脂基体的物理化学特性有关。 目前, 利 用液体为流体测试纤维铺层渗透率的方法趋于成熟, 并有相关的文 献及专利存在, 然而利用液体来测试预浸料渗透率存在很大的局限 性, 例如: ( 1 )预浸料体系含有树脂基体, 采用液体作为测试流体, 流动前锋难以判断, 无法准确测试渗透率; (2 )预浸料铺层渗透率 远小于纤维铺层渗透率, 通过预浸料铺层的液体流量非常小, 一方 面在测试过程中铺层与模具间极小的液体流动都会引起结果上的巨 大偏差, 另一方面浪费时间; (3 ) 复合材料成型工艺中预浸料渗透 率主要用以表征夹杂空气及挥发份等气体在真空作用下排出的能 力, 因此以液体作为测试流体与实际情况存在差异; (4 )预浸料铺 层在固化过程中受温度及压力的影响, 传统方法难以实现固化过程 中渗透率的在线测试。
由此可见, 利用气体作为流体来测试预浸料铺层渗透率的装置 及方法不但具有重要的理论意义和应用价值, 而且具有一定的技术 难度, 需要兼顾多方面因素的影响才能实现准确的测量。 为此, 本发明的目的是提供一种应用于树脂基复合材料中预浸 料在铺层面内方向上气体渗透率的测试装置和方法。 发明内容
本发明提供了一种在铺层面内方向上气体渗透率的测试装置, 较优地, 其应用于树脂基复合材料中预浸料的渗透率测试中, 该装 置通过在真空腔体中提供使气体沿预浸料铺层面内方向运动的动 力, 实现了预浸料在铺层面内方向上气体渗透率的测试。 通过调节 压力及温度, 实现预浸料在固化工艺中气体渗透率的测量。
本发明提供了一种在铺层面内方向上测试气体渗透率的测试装 置, 其包括: 至少由腔体和盖板所构成的模具、 用于控制测试压强 的加载装置、 用于控制测试温度的控温装置、 用于将所述腔体抽真 空的抽真空装置和用于检测气体流量的流量检测元件。 其中, 所述 盖板上具有容纳所述加载装置的开口, 所述腔体和所述盖板形成了 内部腔室, 密封组件置于所述内部腔室中并密封所述盖板的所述开 口, 一待测试样平铺于所述密封组件之间并且除了在一个铺层面内 方向上的两端外均被密封组件气密封, 所述模具对应于未被气密封 的待测试样的两端分别设有进气口和出气口; 其中, 所述流量检测 元件与所述进气口相通, 所述出气口与所述抽真空装置相通, 当启 动所述抽真空装置而使得所述进气口的压强高于所述出气口的压强 后, 气体从所述进气口在所述待测试样的铺层面内方向上流经所述 待测试样后进入所述出气口。
具体地, 所述控温装置至少具有加热棒。
具体地, 所述抽真空装置为真空泵。
优选地, 所述真空泵和所述出气口之间还设有真空表。
可选择地, 所述进气口和所述出气口设于所述盖板上, 所述盖板 固定于所述腔体中。
具体地, 所述密封组件包括上密封片和下密封片。
优选地, 所述密封组件包括上密封片、 下密封片和位于所述上密 封片和所述下密封片之间的一对侧密封片。
更优选地, 所述模具还包括多孔材料, 其对应于所述待测试样的 密封片和所述下密封片之间, 在铺层面内方向上设置于所述侧密封 片之间。
更具体地, 所述多孔材料为透气毡。
具体地, 所述加载装置具有加载平板和加载主体, 所述加载平板 容纳于所述盖板的开口中, 所述加载主体向所述加载平板上施加压 力。
更具体的, 所述加载主体为压机。
具体地,所述密封组件和所述盖板分别在靠近所述腔体的内壁的 两侧面上开有凹槽。
可选择地, 所述待测试样为预浸料。
可选择地,' 所述待测试样以单向铺层、 正交铺层或准各向同性 铺层的方式平铺于所述密封组件之间。
本发明预浸料在铺层面内方向上气体渗透率测试装置的优点在 于: ( 1 )在不同压力及温度状态下, 均可实现预浸料在铺层面内方 向上气体渗透率的准确测试; (2 )适用于玻璃纤维、 碳纤维、 芳纶 纤维等各种连续纤维预浸料, 也适用于各种织物预浸料; (3 ) 可以 实现不同的铺层方式、 不同的铺层层数的气体渗透率的测定; (4 ) 测量误差小, 测试可靠性和重复性高; (5 ) 设备简单, 操作方便, 节省时间。
本发明还提供了一种测量气体渗透率的方法, 其包括如下步骤:
( 1 ) 将模具的进气口密封, 启动与模具的出气口相连通的抽真 空装置来检验是否漏气;
( 2 ) 若步驟 ( 1 ) 的检验结果为不漏气, 则加载装置分别对有、 无待测试样的密封组件施加测试压强, 测量出待测试样在该测试压 强下的厚度 h;
( 3 ) 将抽真空装置的压强设置为 P从而使出气口与进气口形成 压力差进而使气体流动, 将腔体的温度通过控温装置设置为测试温 度 T并根据温度-粘度计算公式得到对应的气体粘度 通过流量检 测元件来检测气体流速 Q;
( 4 ) 根据渗透率计算公式计算面内渗透率。 具体地, 所述温度-粘度公式为
Figure imgf000006_0001
别表示参考温度和相应粘度, C表示和气体种类有关的常数。
κ二 Qui
具体地, 所述渗透率计算公式为 — Phb , 其中, /和 6分别表示 所述待测试样铺层的长度和宽度。
优选地, 在步驟 ( 1 ) 中, 还包括利用密封胶带将所述密封组件 和所述腔体之间进行密封的步骤。
优选地, 在步骤 ( 1 ) 中, 所述抽真空装置将腔体压力设置为 -O. lMPa, 若关闭真空装置后不卸压则不漏气。
具体地, 在步骤 (2 ) 中, 若加载装置对无待测试样的密封组件 加压测量的厚度为 hi , 对有待测试样的腔体加压测量的厚度为 h2 , 则所述的待测试样的厚度 h=h2-hl。
具体地, 在步骤 (3 ) 中, 所述抽真空装置的压强 P 的范围为 -0.1 -0MPa„ 附图说明
为了解释本发明, 将在下文中参考附图描述其示例性实施方式, 附图中:
图 1是在铺层面内方向上气体渗透率测试装置的腔体的结构图; 图 2 是在铺层面内方向上气体渗透率测试装置的密封盖板的结 构图;
图 3 是在铺层面内方向上气体渗透率测试装置的测试模具的装 配图;
图 4是图 3的爆炸图;
图 5是在铺层面内方向上气体渗透率测试装置的组装示意图; 图 6是碳纤维 /环氧 914树脂预浸料在铺层面内方向上气体渗透 率与测试压力的曲线图;
图 7是 T700碳纤维 /双马来酰亚胺树脂单向预浸料在铺层面内方 向上气体渗透率与测试压力的曲线图。
其中, 图中的标号说明如下:
1 测试模具 2 加载装置 3 控温装置
4 流量计 5 真空表 6 真空泵
7 导 官 21 加载平板 10 待测试样
1 1 腔体 1 1 1 螺纹孔 1 12 锁紧螺栓
1 13 力口热才奉孑 L 1 14 力口热棒 12 密封盖板
121 通孔 122 凹槽 123 进气孔
124 出气孔 125 中央开口 131 上密封片
132 下密封片 133 侧密封片 134 多孔材料 具体实施方式
下面将结合附图对本发明做进一步的详细说明。
本发明是一种测试待测试样 10在铺层面内方向上气体渗透率的 测试装置。 如图 5所示, 该测试装置由测试模具 1、 加载装置 2、 控 温装置 3、 流量检测元件 4、 真空检测元件 5、 抽真空装置 6组成。 具体地, 所述流量检测元件 4为流量计, 所述真空检测元件 5为真 空表, 所述抽真空装置 6为真空泵。 结合图 1-图 4 , 流量计 4通过导 气管 7与测试模具 1 的进气孔 123连接, 测试模具 1 的出气孔 124 与真空表 5及真空泵 6通过导气管 7连接,测试模具 1的加热棒 1 14 通过控温装置 3进行温度控制, 所述控温装置 3优选地为控温仪表。 加载装置 2具有加载平板 21和加载主体, 通过加载平板 21, 加载主 体对待测试样 10铺层施加压力, 所述加载主体 2优选地为压机。
测试模具 1 由腔体 1 1和密封盖板 12构成。 其中, 腔体 1 1如图 1 所示, 腔体底面具有四个螺纹孔 1 1 1 , 下面还设有两个加热棒孔 1 13。 结合图 4, 在腔体 11的容纳空间内从上到下依次地容纳有上密 封片 131、 多孔材料 134以及侧密封片 133、 下密封片 132。 其中, 加载平板 21通过设于下述密封盖板 12中的中央开口 125平压于腔 体 1 1 中的上密封片 131之上,能将加载压力均勾传递到待测试样 10 上并有效控制待测试样 10的受压面积。加热棒 1 14通过加热棒孔 1 13 设于腔体 1 1 中。 上密封片 131和下密封片 132相对设置并且形状基 本相同, 两块侧密封片 133 均设置在上密封片 131 和下密封片 132 之间并且相对上密封片 131或下密封片 132分别位于内侧和外侧, 上密封片 131和侧密封片 133之间以及侧密封片 133和下密封片 132 之间均为气密封, 两块多孔材料 134设于上密封片 131 与下密封片 132之间以及两块侧密封片之间所形成的左、 右两端间隙处; 待测试 样 10平铺于上密封片 131、 下密封片 132、 侧密封片 133和多孔材 料 134所形成的空间内。 密封盖板 12两端分别设有进气孔 123和出 气孔 124, 密封盖板 12还设有通孔 121 , 通过锁紧螺栓 1 12和腔体 1 1的螺紋孔 1 1 1连接, 并利用锁紧螺栓 1 12加载压缩密封片, 将腔 体 1 1分割为两个独立的腔体。 密封盖板 12、 上密封片 131、 侧密封 片 133及下密封片 132两侧靠近腔体壁处均开有凹槽, 这样设计便 于利用密封胶条来消除密封片与腔体壁之间的空隙, 确保两个腔体 相互隔离, 防止气体通过该空隙流动。
其中, 上密封片 131、 下密封片 132和侧密封片 133构成了本发 明的密封组件, 然而, 本领域的技术人员可以理解, 密封组件也可 以仅具有上密封片和下密封片, 在这种设计中, 上、 下密封片均具 有侧密封端,两个侧密封端一起相互啮合即可实现上述侧密封片 133 的功能, 但是气密封效果相比具有侧密封片 133 的密封组件要差一 些„
在本发明中, 待测试样 10为应用于树脂基复合材料的预浸料, 所述预浸料中纤维可以为玻璃纤维、 碳纤维、 芳纶纤维或者玄武岩 纤维等; 预浸料增强体可以是单向纤维, 也可以是纤维织物, 其中, 所述纤维织物可以为平紋织物、 斜紋织物、 缎纹织物等; 预浸料中 树脂可以为环氧树脂、 酚醛树脂、 氰酸酯树脂、 双马树脂等。 利用该发明能对树脂基复合材料预浸料在铺层面内方向上气体 渗透率进行测试, 具体操作如下:
试样制备
先将预浸料剪裁成 10 X 10cm2的尺寸大小,然后按照铺层方式和 铺层层数进行铺叠形成预浸料铺层。 其中, 所述铺层方式可以为单 向铺层、 正交铺层、 准各向同性铺层等, 所述铺层层数根据测试要 求来设定。
试样封装
先将下密封片 132平整地铺在腔体 1 1 内, 接着将铺叠完毕的预 浸料 10放在下密封片 132上, 将侧密封片 133紧贴预浸料 10放置, 虽然预浸料与侧密封片 133 在封装过程中紧贴, 但是两者之间并不 能完全密封, 存在着边缘效应, 如果不加以处理, 沿预浸料 10及侧 密封片 133 边缘流动的气体就会影响气体渗透率的准确性, 所以, 在此利用有机硅胶将预浸料 10与侧密封片 133粘结来有效地消除边 缘效应, 提供测试结果的精度。 预浸料 10铺层两端还设置多孔材料 134, 其中, 多孔材料 134和侧密封片 133 的厚度应该与预浸料 10 的铺层厚度相当, 其中多孔材料 134优选为具有一定厚度的透气毡。 然后, 根据图 4所示依次地放置上密封片 131、 密封盖板 12、 加载 平板 21,并拧紧锁紧螺栓 1 12从而将密封盖板 12固定在腔体 1 1上, 通过锁紧螺栓 1 12加载压缩上、 下密封片 131、 132将腔体 1 1分割 为两个独立的腔体。 最后, 利用密封胶带将密封盖板 12 与腔体 1 1 及锁紧螺栓 1 12与密封盖板 12的缝隙密封, 同时利用密封胶带将凹 槽 122处密封片与腔体 1 1的缝隙密封, 确保腔体 1 1不漏气。
测试腔体险漏
将封装完毕的密封盖板 12的进气孔 123密封, 并将出气孔 124 与真空表 5及真空泵 6通过导气管 7连接。 然后, 启动真空泵 6 , 检 查并压实密封胶条, 当真空表 5显示达到 -O.lMPa时, 关闭真空泵 6 , 检查真空表 5 是否卸压, 如果卸压, 应查找漏气点, 利用密封胶带 密封。 重复多次, 直至关闭真空泵 6后, 真空表 5不卸压后方可进 行渗透率测试。
预浸料铺层厚度测试
将加载平板 21 直接压在腔体 11 内的上密封片 131上, 利用加 载主体通过加载平板 21对上、 下密封片 131、 132加压, 当达到设 定压力后, 调整并固定百分表使其触头接触加载平板 21上表面, 百 分表读数 。
卸载后, 移开加载平板 21, 将预浸料 10 铺层直接铺放在腔体 11 内并盖上加载平板 21, 利用加载主体通过加载平板 21对预浸料 10加压,当达到设定压力后,使百分表触头接触加载平板 21上表面, 百分表读数 。
在该压力下, 预浸料 10的厚度 "^—72。。
预浸料铺层面内方向渗透率测试
参见图 5, 首先, 将密封盖板 12的出气孔 124与真空表 5和真 空泵 6通过导气管 7连接, 进气孔 .123与流量计 4通过导气管 7连 接;
其次, 调节加载装置 2来控制施加在预浸料 10铺层上的测试压 强, 在本发明一种实施方式中, 压强范围为: 0~ 0.6MPa;
然后, 调节控温装置 3来控制腔体 11 内的温度 T, 在本发明一 种实施方式中, 温度范围为: 室温〜 200°C;
再开启真空泵 6, 通过气阀来调节真空压 (-0.1 ~ 0MPa) , 利用 真空表 5准确测量真空压尸;
在压力梯度下, 空气依次经过流量计 4、 进气孔 123、 多孔材料 134、 预浸料 10、 出气孔 124而流动, 通过流量计 4测试空气的体积 流速 Q, 其单位为 m3/s;
最后, 根据达西定律可以得到面内渗透率 , 其单位为 m2
κ=Ωηί
所述铺层面内方向的渗透率 Phb , 其中, 表示气体的粘度, 单位为 Pa's; 表示真空表 5读数, 单位为 Pa; 和 6分别表示预浸料 10铺层的长度和宽度, 由于两者相等, 因此面内渗透率计算公式可 κ二 Qn_
简化为: ph
通过调整加载装置 2、 控温装置 3, 改变作用在预浸料 10铺层 上的压强及温度, 测试在不同的压强及温度条件下预浸料 10的面内 渗透率。
工气粘度 随温度 T升高而增大, 在温度 T<2000K时, 气体粘 度可用萨特兰公式计算:
Figure imgf000011_0001
其中, 在公式中, Γ表示测试条件的温度, 单位为 K; T。、 ;;。为 参考温度(Κ)及相应粘度; C为与气体种类有关的常数, 空气的常 数 C= 110.4K。 在部分温度下空气粘度可参见下表 1。
表 1.不同温度条件下空气粘度
Figure imgf000011_0002
气体体积受温度影响较大,流量计 4在测量值为 ^条件下的气体 流量, 而当测试模具温度为: 时, 则该温度条件下气体流量可用修正 公式计算: τ。 。
实施例 1:
在本实施例中, 采用碳纤维 /环氧 914树脂织物预浸料为测试对 象。将预浸料裁剪成 lOxlOcm2后铺放 7层,利用加压装置施加载荷, 测定不同压强状态下预浸料铺层面内方向气体渗透率, 测试温度 20 °C, 该温度条件下空气粘度为 18 X 10"6Pa · S, 测试结果见图 6。 实施例 2:
在本实施例中 ,采用 T700碳纤维 /双马来酰亚胺树脂的单向预浸 料为测试对象。 将织物裁剪成 lOxlOcm2后铺放 16层, 铺层方式为 单向铺层, 利用加压装置施加载荷, 测定不同压力状态下预浸料铺 层面内方向气体渗透率, 测试温度 20°C, 该温度条件下空气粘度为 18 X 10_6Pa · S, 测试结果见图 7。
实施例 3:
在本实施例中, 采用碳纤维 /环氧 914树脂织物的预浸料为测试 对象。 将预浸料裁剪成 10x10cm2后铺放 7 层, 利用加压装置施加 O.HMPa 压强, 测定不同温度条件下预浸料铺层面内方向气体渗透 率, 测试结果见下表 2。
表 2.预浸料铺层在面内方向上不同温度条件气体渗透率
Figure imgf000012_0001
在上述实施例中, 其测试压力范围各有不同, 如在实施例 1中, 可以达到 IMPa, 在实施例 1中可以达到 1.5MPa。 本领域的技术人员 可以理解应用本发明进行测试时所施加的压力范围并非被限制在 0-0.6MPa, 而是可以根据加压装置的加载能力进行较宽的压力范围 测试。 另外, 在本发明中的测试温度范围为室温到 200°C, 这是由于 在本发明中没有附设冷却系统, 且测试仪器的温度上限是 200°C, 因 此, 测试温度的范围为室温到 200°C。 然而, 本领域的技术人员可以 理解只要测试仪表允许, 本发明可以测试更宽温度范围内的渗透率。 本发明不以任何方式限制于在说明书和附图中呈现的示例 ' 实 施方式。 在如权利要求书概括的本发明的范围内, 很多变形是可能 的。 此外, 不应该将权利要求书中的任何参考标记构造为限制本发 明的范围。

Claims

权 利 要 求 书
1. 一种在铺层面内方向上测试气体渗透率的测试装置, 其包括: 至少由腔体和盖板所构成的模具、 用于控制测试压强的加载装置、 用于控制测试温度的控温装置、 用于将所述腔体抽真空的抽真空装 置和用于检测气体流量的流量检测元件, 其中, 所述盖板上具有容 纳所述加载装置的开口, 所述腔体和所述盖板形成了内部腔室, 密 封组件置于所述内部腔室中并密封所述盖板的所述开口, 一待测试 样平铺于所述密封组件之间并且除了在一个铺层面内方向上的两端 外均被密封组件气密封, 所述模具对应于未被气密封的待测试样的 两端分别设有进气口和出气口; 其中, 所述流量检测元件与所述进 气口相通, 所述出气口与所述抽真空装置相通, 当启动所述抽真空 装置而使得所述进气口的压强高于所述出气口的压强后, 气体从所 述进气口在所述待测试样的铺层面内方向上流经所述待测试样后进 入所述出气口。
2. 根据权利要求 1所述的测试装置, 其中, 所述控温装置至少 具有力口热棒。
3. 根据权利要求 1所述的测试装置, 其中, 所述抽真空装置为 真空泵。
4. 根据权利要求 3所述的测试装置, 其中, 所述真空泵和所述 出气口之间还设有真空表。
5. 根据权利要求 1所述的测试装置, 其中, 所述进气口和所述 出气口设于所述盖板上, 所述盖板固定于所述腔体中。
6. 根据权利要求 1所述的测试装置, 其中, 所述密封组件包括 上密封片和下密封片。
7. 根据权利要求 1所述的测试装置, 其中, 所述密封组件包括 上密封片、 下密封片和位于所述上密封片和所述下密封片之间的一 对侧密封片。
8. 根据权利要求 7所述的测试装置, 其中, 所述模具还包括多 孔材料, 其对应于所述待测试样的一个铺层面内方向上未被气密封 的两端在上下方向上设置于所述上密封片和所述下密封片之间, 在 铺层面内方向上设置于所述侧密封片之间。
9. 根据权利要求 8所述的测试装置, 其中所述多孔材料为透气 毡。
10. 根据权利要求 1所述的测试装置, 其中, 所述加载装置具有 加载平板和加载本体, 所述加载平板容纳于所述盖板的开口中, 所 述加载本体向所述加载平板上施加压力。
1 1. 根据权利要求 1所述的测试装置, 其中, 所述加载主体为压 机。
12. 根据权利要求 1所述的测试装置, 其中, 所述密封组件和所 述盖板分别在靠近所述腔体的内壁的两侧面上开有凹槽。
13. 根据权利要求 1所述的测试装置, 其中, 所述待测试样为预 浸料。
14. 根据权利要求 1所述的测试装置, 其中, 所述待测试样以单 向铺层、 正交铺层或准各向同性铺层的方式平铺于所述密封组件之 间。
15. 一种应用权利要求 1-14中任一项所述的测试装置测量气体 渗透率的方法, 其包括如下步骤:
( 1 ) 将模具的进气口密封, 启动与模具的出气口相连通的抽真 空装置来检验是否漏气;
( 2 ) 若步骤 ( 1 ) 的检验结果为不漏气, 则加载装置分别对有、 无待测试样的密封组件施加测试压强, 测量出待测试样在该测试压 强下的厚度 h;
( 3 ) 将抽真空装置的压强设置为 P从而使出气口与进气口形成 压力差进而使气体流动, 将待测试样的压强通过加载装置设置为与 步骤 2中厚度 h所对应的测试压强,将腔体的温度通过控温装置设置 为测试温度 T并根据温度 -粘度计算公式得到对应的气体粘度 , 通 过流量检测元件来检测气体流速 Q; (4) 根据渗透率计算公式计算面内渗透率。
16. 根据权利要求 15所述的方法, 其中, 所述温度 -粘度公式为
Figure imgf000016_0001
, 其中, τ "。分别表示参考温度和相应粘度, C表示 和气体种类有关的常数。
17. 根据权利要求 15所述的方法, 其中, 所述渗透率计算公式
K=QnL
为 Phb , 其中, /和 6分别表示所述待测试样铺层的长度和宽度。
18. 根据权利要求 15所述的方法, 其中, 在步骤( 1 ) 中, 还包 括利用密封胶带将所述密封组件和所述腔体之间进行密封的步骤。
19. 根据权利要求 15所述的方法, 其中, 在步骤( 1 ) 中, 所述 抽真空装置将腔体压力设置为 -O.lMPa, 若关闭真空装置后不卸压则 不漏气。
20. 根据权利要求 15所述的方法, 其中, 在步骤(2) 中, 若加 载装置对无待测试样的密封组件加压测量的厚度为 hi, 对有待测试 样的腔体加压测量的厚度为 h2, 则所述的待测试样的厚度 h=h2-hl。
21. 根据权利要求 15所述的方法, 其中, 在步骤(3 ) 中, 所述 抽真空装置的压强 P的范围为 -0.1-0MPa。
PCT/CN2011/085123 2011-01-27 2011-12-31 在铺层面内方向上测试气体渗透率的测试装置及其方法 WO2012100630A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/982,332 US20140013826A1 (en) 2011-01-27 2011-12-31 Testing apparatus for testing gas permeability on thickness direction of plastic matrix
EP11856869.0A EP2669655A1 (en) 2011-01-27 2011-12-31 Testing apparatus for testing gas permeability on thickness direction of plastic matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110030090.5 2011-01-27
CN201110030090.5A CN102183444B (zh) 2011-01-27 2011-01-27 在铺层面内方向上测试气体渗透率的测试装置及其方法

Publications (1)

Publication Number Publication Date
WO2012100630A1 true WO2012100630A1 (zh) 2012-08-02

Family

ID=44569670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085123 WO2012100630A1 (zh) 2011-01-27 2011-12-31 在铺层面内方向上测试气体渗透率的测试装置及其方法

Country Status (4)

Country Link
US (1) US20140013826A1 (zh)
EP (1) EP2669655A1 (zh)
CN (1) CN102183444B (zh)
WO (1) WO2012100630A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141504B (zh) * 2011-01-27 2013-06-12 中国商用飞机有限责任公司 在铺层厚度方向上测试气体渗透率的测试装置及其方法
CN102183444B (zh) * 2011-01-27 2013-09-25 中国商用飞机有限责任公司 在铺层面内方向上测试气体渗透率的测试装置及其方法
CN102778423B (zh) * 2012-08-22 2015-04-01 山东大学 一种纤维织物单向面内渗透率测试方法
US20190101426A1 (en) * 2013-06-14 2019-04-04 Dresser, Llc Maintaining redundant data on a gas meter
US20190324005A1 (en) * 2013-06-14 2019-10-24 Natural Gas Solutions North America, Llc Modular metering system
CN103954743B (zh) * 2014-04-02 2016-04-27 北京博简复才技术咨询有限公司 真空辅助成型工艺纤维织物压实特性及渗透率性能一体化测试装置
CN104568695B (zh) * 2014-12-19 2017-05-10 北京卫星制造厂 一种蜂窝芯透气速率及封闭区域的检测方法
CN105115872A (zh) * 2015-08-06 2015-12-02 山东省元丰节能装备科技股份有限公司 节能环保仓储装备内部活化、助流装置试验平台
CN105223119B (zh) * 2015-10-16 2018-07-06 哈尔滨飞机工业集团有限责任公司 一种用于透气毡透气性测试的方法
JP6819678B2 (ja) * 2015-12-16 2021-01-27 東レ株式会社 プリプレグ、積層体、繊維強化複合材料、及び繊維強化複合材料の製造方法
CN107796746A (zh) * 2017-12-12 2018-03-13 南通星球石墨设备有限公司 一种材料渗透系数检测装置
CN110779846B (zh) * 2019-10-15 2021-02-19 北京航空航天大学 非饱和浸渍纤维/树脂预浸料的气体面内渗透率测试方法
CN114594811B (zh) * 2020-12-03 2023-08-25 上海飞机制造有限公司 材料铺放过程中温度调整方法、装置、设备及存储介质
CN113155705A (zh) * 2021-04-29 2021-07-23 上海紫华薄膜科技有限公司 一种薄膜透气率测试装置及测试方法
CN113125326B (zh) * 2021-05-12 2023-05-30 上海氢晨新能源科技有限公司 一种燃料电池用碳纸ip透气率测试工装
CN114739887B (zh) * 2022-04-27 2023-12-12 中国矿业大学 变温变载稳态法高分子材料氢气渗透性测试装置及方法
CN114778296B (zh) * 2022-04-27 2023-01-06 江苏彭澄工业智能科技有限公司 一种用于检测环保塑料可再生性能的测试设备及测试方法
CN115060855A (zh) * 2022-08-19 2022-09-16 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 导热材料可靠性测试装置
CN115493976B (zh) * 2022-08-26 2024-02-06 佛山市麦克罗美的滤芯设备制造有限公司 测试装置和测试系统
CN116430916B (zh) * 2023-06-08 2023-09-29 北京科技大学 基于渗透法精确控制小腔体气体压强集成装置及测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU516947A1 (ru) * 1974-12-23 1976-06-05 Московский технологический институт мясной и молочной промышленности Устройство дл определени газопроницаемости материалов
CN2134650Y (zh) * 1992-09-07 1993-05-26 福州大学轻工系 透气仪
US20030074954A1 (en) * 2001-10-19 2003-04-24 Engle Frank W. Precise measurement system for barrier materials
CN1510398A (zh) * 2002-12-25 2004-07-07 松下电器产业株式会社 透气性测量方法及透气性测量装置
JP2005345342A (ja) * 2004-06-04 2005-12-15 Createc:Kk 透湿度・気体透過度測定装置及び気体透過度測定方法
CN102183444A (zh) * 2011-01-27 2011-09-14 中国商用飞机有限责任公司 在铺层面内方向上测试气体渗透率的测试装置及其方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590634A (en) * 1969-05-05 1971-07-06 Stanford Research Inst Instrument for determining permeation rates through a membrane
US3577767A (en) * 1969-11-24 1971-05-04 Beloit Corp Felt permeability testing apparatus
US4050995A (en) * 1971-02-01 1977-09-27 The Dow Chemical Company Method for determining water vapor transmission rate or water content
US4385517A (en) * 1981-06-26 1983-05-31 The Aro Corporation Method and apparatus for measuring the permeability of a material
US4464927A (en) * 1982-01-07 1984-08-14 Reid Philip L Apparatus for measuring gas transmission through films
GB8705204D0 (en) * 1987-03-05 1987-04-08 British Millerain 1922 Co Ltd Measuring permeability of sheet material
AT394785B (de) * 1991-02-08 1992-06-25 Fehrer Textilmasch Vorrichtung zum bestimmen der luftdurchlaessigkeit einer textilen warenbahn
US5832409A (en) * 1995-03-02 1998-11-03 Schlumberger Technology Corporation Automated gas permeameter
FI981674A (fi) * 1998-04-01 1999-10-02 Juhani Hartikainen Menetelmä ja laite kaasun läpäisevyyden mittaamiseksi huokoisen kalvomaisen materiaalin läpi
WO1999066306A1 (en) * 1998-06-15 1999-12-23 The United States Of America Apparatus and method for determining transport properties of porous materials
US6009743A (en) * 1998-08-24 2000-01-04 Mocon, Inc. Apparatus and method for online or offline measurement of vapor transmission through sheet materials
US6379209B1 (en) * 2000-01-04 2002-04-30 Daktronics, Inc. Alpha-numeric character display panel
US6532797B1 (en) * 2000-02-04 2003-03-18 E. I. Du Pont De Nemours And Company Barrier test apparatus and method
KR100338346B1 (ko) * 2000-05-24 2002-05-30 박호군 막여과 시간에 따른 막오염 진행 추이를 동시에연속적으로 모니터링하기 위한 막여과 장치 및 방법
GB2370649B (en) * 2000-11-09 2003-06-25 Toppan Printing Co Ltd Measurement of rate of transmission of a vapour through a sample
KR100859818B1 (ko) * 2001-03-29 2008-09-24 코닌클리케 필립스 일렉트로닉스 엔.브이. 기판의 침투율을 측정하는 방법 및 장치, 배치로부터 기판 세트를 침투율에 대해 테스트하는 방법 및 캡슐화의 침투율을 측정하는 방법
US6543275B2 (en) * 2001-07-02 2003-04-08 Taiwan Semiconductor Manufacturing Co., Ltd Apparatus and method for testing air permeability of a fabric
US6655192B2 (en) * 2001-10-10 2003-12-02 Borgwarner Inc. Permeameter-porosimeter
CN100344443C (zh) * 2002-04-23 2007-10-24 东丽株式会社 预浸料坯及其制造方法、以及成形品
US6804989B2 (en) * 2002-10-31 2004-10-19 General Atomics Method and apparatus for measuring ultralow water permeation
US7635452B2 (en) * 2003-09-24 2009-12-22 3M Innovative Properties Company System, kit, and method for measuring membrane diffusion
US6981403B2 (en) * 2003-10-31 2006-01-03 Mocon, Inc. Method and apparatus for measuring gas transmission rates of deformable or brittle materials
US7178384B2 (en) * 2004-02-04 2007-02-20 General Atomics Method and apparatus for measuring ultralow permeation
FR2897434B1 (fr) * 2006-02-15 2014-07-11 Commissariat Energie Atomique Procede et dispositif de mesure de permeation
CN102218269B (zh) * 2006-03-02 2013-04-03 真锅征一 非破坏式的平膜检査方法
ITPI20060108A1 (it) * 2006-09-19 2008-03-20 Extrasolution S R L Metodo e dispositivo per misurare la permeabilita' di gas attraverso film sottile o pareti di contenitori
US8272252B2 (en) * 2006-10-10 2012-09-25 Porous Materials, Inc. Pore structure characterization of filtration cartridges at specific locations along cartridge length
CN100554933C (zh) * 2007-05-15 2009-10-28 北京航空航天大学 纤维铺层面内及厚度方向渗透率测试装置与饱和渗透率测试方法
JPWO2009041632A1 (ja) * 2007-09-28 2011-01-27 株式会社アルバック 水蒸気透過度を測定するための装置とその方法
GB0903110D0 (en) * 2009-02-24 2009-04-08 Halliburton Energy Serv Inc Methods and apparatus for determining the permeability and diffusivity of a porous solid
US8424367B2 (en) * 2009-03-04 2013-04-23 University Of South Carolina Systems and methods for measurement of gas permeation through polymer films
US7913572B2 (en) * 2009-03-18 2011-03-29 Korea Institute Of Energy Research Integrated multi-measurement system for measuring physical properties of gas diffusion layer for polymer electrolyte fuel cell with respect to compression
US7985188B2 (en) * 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
KR100972956B1 (ko) * 2010-05-04 2010-07-30 한국에너지기술연구원 연료전지용 기체확산층 품질 검사 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU516947A1 (ru) * 1974-12-23 1976-06-05 Московский технологический институт мясной и молочной промышленности Устройство дл определени газопроницаемости материалов
CN2134650Y (zh) * 1992-09-07 1993-05-26 福州大学轻工系 透气仪
US20030074954A1 (en) * 2001-10-19 2003-04-24 Engle Frank W. Precise measurement system for barrier materials
CN1510398A (zh) * 2002-12-25 2004-07-07 松下电器产业株式会社 透气性测量方法及透气性测量装置
JP2005345342A (ja) * 2004-06-04 2005-12-15 Createc:Kk 透湿度・気体透過度測定装置及び気体透過度測定方法
CN102183444A (zh) * 2011-01-27 2011-09-14 中国商用飞机有限责任公司 在铺层面内方向上测试气体渗透率的测试装置及其方法

Also Published As

Publication number Publication date
CN102183444B (zh) 2013-09-25
CN102183444A (zh) 2011-09-14
EP2669655A1 (en) 2013-12-04
EP2669655A9 (en) 2014-02-19
US20140013826A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2012100630A1 (zh) 在铺层面内方向上测试气体渗透率的测试装置及其方法
WO2012100631A1 (zh) 在铺层厚度方向上测试气体渗透率的测试装置及其方法
US20090273107A1 (en) System and method of detecting air leakage in a vartm process
CN101819129B (zh) 纤维织物面外渗透率的测试方法
US20140061962A1 (en) Detection, Monitoring, and Management of Gas Presence, Gas Flow and Gas Leaks in Composites Manufacturing
CN110779846B (zh) 非饱和浸渍纤维/树脂预浸料的气体面内渗透率测试方法
WO2009103736A3 (en) Method and apparatus for detecting leak in a vartm process
Tavares et al. Assessment of semi-impregnated fabrics in honeycomb sandwich structures
JP2012528024A (ja) 複合要素を製造するための装置および方法
CN112858139B (zh) 分级围压下无限体积注入的多联柔性壁渗透仪及试验方法
Kratz et al. Vacuum-bag-only co-bonding prepreg skins to aramid honeycomb core. Part II. In-situ core pressure response using embedded sensors
CN106525683A (zh) 一种薄膜渗透率测量装置和测量方法
RU2009137621A (ru) Усовершенствования, относящиеся к отверждению полимерных композитных материалов
CN110542636B (zh) 部分饱和的水泥基材料渗透系数测定方法及其试验装置
Fan et al. The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets
JP5486896B2 (ja) 透気性中詰め材の透気性確認試験方法及び透気性確認試験装置
CN104297121B (zh) 天然纤维织物面内非饱和渗透率的测量方法
CN105954169A (zh) 一种纤维织物厚向稳态渗透率的测量方法及测量系统
CN106872333A (zh) 一种纤维织物面内渗透率的测量方法及测量系统
Hsiao Gas transport and water vapourization in out-of-autoclave prepreg laminates
Louis Gas transport in out-of-autoclave prepreg laminates
CN118032618B (zh) 一种大型超导线圈vpi绝缘层渗透率测试方法及装置
CN110927044A (zh) 纤维增强复合材料预制件面外渗透率的测试装置和测试方法
CN206440584U (zh) 一种纤维织物面外渗透率测试装置
CN205836037U (zh) 一种测试用复合板材试样的制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011856869

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13982332

Country of ref document: US