WO2012099466A2 - Procédé pour la fabrication d'un dispositif électronique par dépôt électrolytique à partir d'un liquide ionique - Google Patents
Procédé pour la fabrication d'un dispositif électronique par dépôt électrolytique à partir d'un liquide ionique Download PDFInfo
- Publication number
- WO2012099466A2 WO2012099466A2 PCT/NL2012/050026 NL2012050026W WO2012099466A2 WO 2012099466 A2 WO2012099466 A2 WO 2012099466A2 NL 2012050026 W NL2012050026 W NL 2012050026W WO 2012099466 A2 WO2012099466 A2 WO 2012099466A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrodeposition
- layer
- conducting layer
- takes place
- electronic conducting
- Prior art date
Links
- 238000004070 electrodeposition Methods 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 65
- 239000002608 ionic liquid Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229910052752 metalloid Inorganic materials 0.000 claims abstract description 74
- 150000002738 metalloids Chemical class 0.000 claims abstract description 66
- 239000007788 liquid Substances 0.000 claims abstract description 42
- -1 metalloid ions Chemical class 0.000 claims abstract description 41
- 239000013067 intermediate product Substances 0.000 claims abstract description 39
- 238000007747 plating Methods 0.000 claims abstract description 18
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 238000000151 deposition Methods 0.000 claims description 27
- 230000008021 deposition Effects 0.000 claims description 22
- 150000002500 ions Chemical group 0.000 claims description 19
- 239000011263 electroactive material Substances 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 239000004411 aluminium Substances 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 230000035699 permeability Effects 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 150
- 229910052751 metal Inorganic materials 0.000 description 33
- 239000002184 metal Substances 0.000 description 33
- 150000001875 compounds Chemical class 0.000 description 26
- 230000004888 barrier function Effects 0.000 description 24
- 239000000758 substrate Substances 0.000 description 21
- 229920000642 polymer Polymers 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 239000001301 oxygen Substances 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 150000003839 salts Chemical class 0.000 description 17
- 125000000217 alkyl group Chemical class 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 125000003118 aryl group Chemical class 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 8
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 7
- 230000005693 optoelectronics Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229920000767 polyaniline Polymers 0.000 description 5
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000001627 detrimental effect Effects 0.000 description 4
- 230000005670 electromagnetic radiation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920002098 polyfluorene Chemical class 0.000 description 4
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 206010027146 Melanoderma Diseases 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 125000003545 alkoxy group Chemical class 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000004693 imidazolium salts Chemical class 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229920000553 poly(phenylenevinylene) Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZGLLUEAYLAHJKB-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethyl)methanamine Chemical compound FC(F)(F)NC(F)(F)F ZGLLUEAYLAHJKB-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- KIWBPDUYBMNFTB-UHFFFAOYSA-N Ethyl hydrogen sulfate Chemical compound CCOS(O)(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- YSRVDLQDMZJEDO-UHFFFAOYSA-N bis(1,1,2,2,2-pentafluoroethyl)phosphinic acid Chemical compound FC(F)(F)C(F)(F)P(=O)(O)C(F)(F)C(F)(F)F YSRVDLQDMZJEDO-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- IDUWTCGPAPTSFB-UHFFFAOYSA-N hexyl hydrogen sulfate Chemical compound CCCCCCOS(O)(=O)=O IDUWTCGPAPTSFB-UHFFFAOYSA-N 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- UZZYXUGECOQHPU-UHFFFAOYSA-M n-octyl sulfate Chemical compound CCCCCCCCOS([O-])(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-M 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229940067739 octyl sulfate Drugs 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920001197 polyacetylene Chemical class 0.000 description 2
- 229920000412 polyarylene Polymers 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920000123 polythiophene Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- UZZYXUGECOQHPU-UHFFFAOYSA-N sulfuric acid monooctyl ester Natural products CCCCCCCCOS(O)(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JIABEENURMZTTI-UHFFFAOYSA-N 1-isocyanato-2-[(2-isocyanatophenyl)methyl]benzene Chemical compound O=C=NC1=CC=CC=C1CC1=CC=CC=C1N=C=O JIABEENURMZTTI-UHFFFAOYSA-N 0.000 description 1
- RICKKZXCGCSLIU-UHFFFAOYSA-N 2-[2-[carboxymethyl-[[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl]methyl]amino]ethyl-[[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl]methyl]amino]acetic acid Chemical compound CC1=NC=C(CO)C(CN(CCN(CC(O)=O)CC=2C(=C(C)N=CC=2CO)O)CC(O)=O)=C1O RICKKZXCGCSLIU-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical class NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical class C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- MKRNVBXERAPZOP-UHFFFAOYSA-N Starch acetate Chemical compound O1C(CO)C(OC)C(O)C(O)C1OCC1C(OC2C(C(O)C(OC)C(CO)O2)OC(C)=O)C(O)C(O)C(OC2C(OC(C)C(O)C2O)CO)O1 MKRNVBXERAPZOP-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical class NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Chemical class C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229940003214 aluminium chloride Drugs 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229920006187 aquazol Polymers 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/66—Electroplating: Baths therefor from melts
- C25D3/665—Electroplating: Baths therefor from melts from ionic liquids
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/008—Current shielding devices
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/04—Electroplating with moving electrodes
Definitions
- the invention relates to a method for manufacturing an electronic device, wherein a metallic or metalloid layer is deposited by electrodeposition on an electronic conducting layer. Further, the invention related to an electronic device.
- the device may be sealed with a protective cap that is substantially impermeable to oxygen and/or water. Such cap adds to the volume of the device.
- inorganic barrier coatings such as a silicon carbide, silicon nitride or silicon oxide coating
- layers of such barrier material generally have defects in the layer structure, known as pinholes.
- pinholes may give rise to increased permeability for oxygen and/or water, the presence of which may have a deteriorating effect on the functioning of the material covered by the coating.
- pinholes are an important cause of the occurrence of black spots in the device, leading to poorer quality of the device, e.g. reduced light intensity in case of a LED, or loss of image resolution in case the device is a device to display an image. Reducing pinholes is in particular a challenge for organic (opto-)electronic devices.
- WO 2008/127110 relates to a method for manufacturing an article comprising a barrier layer, in particular an oxygen and/or water barrier layer, the method wherein a metallic or metalloid layer is electrodeposited on a substrate comprising an organic electro-active material, using a plating liquid comprising an ionic liquid. Such method is effective in considerably reducing pinholes.
- a metallic or metalloid layer electrodeposited from an ionic liquid on an electronic device substrate may have a non-uniform thickness.
- inhomogeneity in thickness is detrimental to the functioning of the electronic device, even to the extent that it will not function at all, at least in some circumstances. In particular, it is contemplated that this may be due to mechanical stress in the inhomogeneous layer. Further, for opto-electronic devices, the elecroluminescent properties may be adversely affected by a inhomogeneity in thickness. In particular, the intensity of light generated in the centre of an electrolumiscent layer may be less than close to the sides of the layer It is an object of the present invention to provide a novel method which can serve as an alternative to known methodology for the manufacture of an electronic device, in particular a method that addresses one or more of the above mentioned disadvantages of known methodology.
- the invention relates to a method for manufacturing an electronic device, the method comprising
- the electronic conducting layer of the intermediate product on which electrodeposition takes place is connected to an electrical power source and the electronic conducting layer on which electrodeposition takes place provides a cathode for the electrodeposition, and wherein the metallic or metalloid layer is formed gradually in the plane parallel to the surface of the electronic conducting layer on which electrodeposition takes place , which gradual forming comprises starting the electrodeposition on a part of the surface of the electronic conducting layer on which electrodeposition takes place relatively close to the connection to the power source before starting the electrodeposition on a part of the surface of the electronic conducting layer on which electrodeposition takes place relatively remote from the connection to the power source.
- the invention relates to a method for manufacturing an electronic device, the method comprising
- said intermediate product having a first electronic conducting layer (for providing a first electrode of the electronic device, in particular an anode), a second electronic conducting layer (for providing a second electrode of the electronic device, in particular a cathode), and an electro-active material at least partially situated between said electronic conducting layers; and
- the electronic conducting layer of the intermediate product on which electrodeposition takes place is connected to an electrical power source and the electronic conducting layer on which electrodeposition takes place provides a cathode for the electrodeposition, and wherein the metallic or metalloid layer is formed gradually in the plane parallel to the surface of the electronic conducting layer on which electrodeposition takes place , which gradual forming comprises starting the electrodeposition on a part of the surface of the electronic conducting layer on which electrodeposition takes place relatively close to the connection to the power source before starting the electrodeposition on a part of the surface of the electronic conducting layer on which electrodeposition takes place relatively remote from the connection to the power source.
- the gradually forming of the metallic or metalloid layer is accomplished using a mask, the mask shielding part of the surface of the electronic conducting layer on which electrodeposition takes place of the intermediate product from electrodeposition of ions from the ionic liquid on the electronic conducting layer on which electrodeposition takes place and which mask has one or more openings allowing the electrodeposition on the part of the layer not shielded by the mask, in which method the surface the
- intermediate product is moved relative to the mask.
- the electronic conducting layer on which electrodeposition takes place may hereafter be referred to as the 'electrodeposition-cathode'.
- the electronic conducting layer that has served as electrodeposition-cathode may either serve as a cathode (as is usually the case if the device is an LED) or as a cathode (as is usually the case if the device is a photovoltaic cell).
- the invention relates to an electronic device obtainable by a method according to the invention.
- electrodeposition-cathode layer relatively remote from the connection to the power source it is possible to provided a deposited layer, in particular a barrier layer against water and/or oxygen with a highly uniform layer thickness.
- a method of the invention is in particular suitable for
- Electrodepositing a metallic or metalloid layer that (optionally after subjecting the layer to oxidation) has adequate barrier function against a gas or a liquid, in particular water (liquid or vaporous) or oxygen, i.e. the electrodeposited layer may in particular serve as a barrier layer.
- the process time for electrodepositing a layer having a specified minimal thickness is decreased.
- the deposition rate of the layer may be increased by up to about 10 times, i.e. a target thickness may be reached up to about 10 times faster.
- the invention allows a deposition rate of the metal or metalloid to be deposited of at least 0.1 ⁇ layer thickness per min, in particular of at least 0.5 ⁇ layer thickness per min, more in particular of at least 1.0 ⁇ layer thickness per min..
- a 10 ⁇ thick (aluminium) layer is deposited within 10 min.
- a method according to the invention is particularly suitable to make a flexible electronic device, in particular a flexible organic (opto-)electronic device.
- a device is in particular considered flexible if it can be rolled onto a roll having a diameter of 20 cm or less, in particular a roll of 10-20 cm. It is possible to carry out a method according to the invention as a roll-to-roll process or as a sheet- to-sheet process.
- On a roll or sheet a plurality of intermediate products for providing a plurality of electronic device are usually present.
- a sheet may comprise a plurality of (intermediate products for) electronic devices, e.g. as illustrated in Figure 3 .
- all devices are electrically connected to the power source. This can be accomplished in a manner known per se.
- the invention is particular suitable to provide a device with a low occurrence of black spots., in particular compared to a device wherein the metallic or metalloid layer has been deposited by vapour deposition.
- the tendency for black spot formation can for instance be carried out be evaluating the number of black spots immediately after manufacture, storing the device at ambient
- the present invention is suitable to provide an organic (opto-)electronic device comprising an metallic, metalloid, metal oxide or metalloid oxide layer (on the first or second electronic conducting layer) with a highly homogenous and/or smooth surface.
- the said layer may be essentially free of crystal defects in the surface
- a method according to the invention is further advantageous in that heat development in the layer that is being electrodeposited is well controllable in accordance with the invention.
- the current through the layer that is deposited is reduced compared to a known method of electrodeposition.
- the electrodeposition can take place without the risk detrimentally affecting the properties of the layer to an unacceptable extent, also at a relatively high deposition rate, in particular since the risk of 'burning off of the layer is reduced.
- a method according to the invention may suitably be carried out at about atmospheric pressure.
- the electrodeposition in accordance with the invention allows a quality check of the layer on which the electrodeposition takes place at an early stage of the process, i.e. it can be established at an early stage whether this layer has satisfactory conducting properties. This advantage applies in particular to roll to roll and sheet to sheet processes.
- the invention is in particular advantageous for electro-depositing a metallic or metalloid layer (for use as a barrier layer, optionally after subjecting the layer to an oxidation treatment) on a relatively thin electrode (cathode or anode), such as an electrode having a thickness of 1 ⁇ or less, in particular of 1-500 nm, more in particular of 10-250 nm, or 50-150 nm.
- a relatively thin electrode cathode or anode
- the electrodeposition-cathode may have been provided in a manner known per se, e.g. by electrodeposition, electroless deposition, chemical vapour deposition or physical vapour deposition.
- a metallic or metalloid layer that has been electrodeposited on a thin electrode by conventional means may in particular show considerable inhomogeneity in thickness. This is thought to be due to the relatively high voltage drop over the thin electrode layer.
- the inventors realised that this can be a reason for a much higher deposition rate at and near the connection(s) of the electrode (cathode) to the power source than remote from the connection, when using a conventional method, thereby causing the inhomogeneity in thickness of the electrodeposited layer.
- a moiety e.g. a compound, an ion, an additive etc.
- the plural is meant to be included.
- 'barrier layer' is used herein for a layer protecting the article from a detrimental effect that may be caused by a gas or liquid to which the article may be exposed, in particular a detrimental effect that would decrease the life-time expectancy of the article.
- a barrier layer has a low permeability or is (essentially) impermeable to such gas and/or liquid.
- the barrier layer may be a barrier layer against oxygen or water (moisture). With an effective barrier against a specific substance (such as water or oxygen) is in particular meant a barrier with a permeability of
- a barrier layer in particular is a layer by which life-time expectancy of the article is increased.
- such detrimental effect is an effect leading to the (excessive) formation and/or growth of black spots in a LED or another optical electronic device (as may be determined with a light microscope or at least in some circumstances with the naked eye).
- electroactive is used herein for an electrically (semi-) conductive material which is (1) capable of converting a non-electric form of energy into electric energy or vice versa, (2) capable of absorbing or emitting light, or (3) capable of changing colour, reflectivity or transmittance.
- an electroactive material is capable of acting as a (semi-)conductor for electrical energy.
- an electroactive material in a device of the invention is capable of converting electromagnetic radiation (such as UV, visible light or IR) into electrical energy or converting electrical energy into electromagnetic radiation.
- an ionic liquid' is used for a liquid formed of a salt that is liquid under the process conditions, such as a melt of a salt.
- An ionic liquid is liquid (above its melting point) in the absence of a solvent, such as water.
- a solvent such as water.
- an ionic liquid can be free of liquid solvent, and can thus be nonaqueous, which is an advantage since water may adversely affect the electrodeposition or deposited layer of at least some metals or metalloids, for instance aluminium.
- an ionic liquid used in a method of the invention has a melting point below 200 °C, preferably of 100 °C or less, in particular of 50 °C or less. It is in particular preferred that the ionic liquid is liquid at about 20 °C or at about 25 °C. Such liquid may be referred to as a room temperature liquid salt.
- the design and materials of the intermediate product may be based on electronic devices known per se, e.g. as described in WO 2008/127110, in WO 2010/093237 or the prior art cited therein, of which the contents are incorporated herein by reference.
- Figure 4 schematically shows an intermediate product for an LED according tot he invention.
- the electric connection (via A' and 'V') between anode and cathode needs not be present during electrodeposition.
- Figure 1 schematically shows an (organic) electronic device obtainable in a method according to the invention.
- Electronic devices as used herein are devices, usually comprising, a first electrode 2, a second electrode 5, and one or more electro-active layers 3, usually situated between the electrodes.
- Item 6 represents a connector for the second electrode 5.
- the electroactive material may be photo-active, capable of converting electrical energy into mechanical energy and/or capable of converting mechanical energy into electrical energy.
- the electrodes and electro-active layer comprising the electro-active compound, and an electrode are usually applied on a carrier-substrate 1.
- the barrier layer 0 (the electrodeposited metallic or metalloid layer) is usually at least applied to cover electrode 5, and in a preferred embodiment the assembly of electrodes 2, 5 and electro-active compound 3, such that these are
- a barrier layer is also provided between the carrier-substrate 1 (e.g. a glass or polymeric plate, a polymeric sheet, a polymeric foil) and the assembly of electrodes and electro-active compound, i.e. between carrier substrate 1 and electrode 2.
- carrier-substrate 1 e.g. a glass or polymeric plate, a polymeric sheet, a polymeric foil
- One or more other layers may be present, such as an (organic) conducting layer (also referred to a buffer layer), between an electrode, in particular cathode, and electro-active material.
- An example thereof is optional layer 4 in Figure 1.
- Suitable conducting layers are for instance, poly(ethylene dioxythiophene) doped with poly(sodium styrenesulphonate) (PEDOT), polyaniline (PANI) or poly(styrenesulphonate) (PSS), or a combination thereof such as PEDOT+PSS.
- One or more further functional layers for the electronic device such as one or more planarisation layers, etc.
- the layers may be carried out in a manner known per se, e.g. as described in US 2002/0113548, WO 2005/001945, WO 2005/015173, WO 03/026011, WO03/022581 or
- the electrodes (anode, cathode) of the intermediate product (and the resultant device) are generally made of a metallic material or a conductive oxide.
- aluminium is particularly suitable, especially in case the metal to be electrodeposited is also aluminium, silver or molybdenum.
- the electro-active material may in principle be any electro-active material suitable for use in a electronic device. In principle it may be an inorganic semi-conducting material. It is contemplated though that the present invention is particularly advantageous for manufacturing an organic electronic device.
- Organic electronic device' is used for an electronic device comprising an organic electro-active material.
- organic electro-active compounds are known in the art.
- An organic electro- active compound may be polymeric or non-polymeric.
- the electro-active material is a polymer selected from the group of polyarylene compounds, poly(paraphenylene vinylene) compounds, polyfluorene compounds, polyacetylene compounds, polythiophene compounds, polypyrroles, polyanilines, including derivatives of said polymers (in particular alkyl, aryl and alkoxy derivatives), copolymers of said polymers and said polymers which have been derivatised with a dye.
- the photoactive layer may comprise a fullerene and/or a fullerene derivative, preferably [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), as electron-accepting compound.
- PCBM preferably [6,6]-phenyl-C61-butyric acid methyl ester
- the electroactive material comprises a material selected from the group of non-polymeric materials, mixtures and stacks of polymers and non-polymeric compounds, and quantum-dot embedded organic materials.
- the electro- active material comprises an electroluminescent compound.
- An organic light emitting diode is herein understood to mean a light emitting diode whose photoactive layer consists at least substantially of at least one
- a polymeric light emitting diode (hereinafter called PLED) is herein understood to mean a light emitting diode whose photoactive layer consists at least substantially of at least one (semi) conductive electroluminescent organic polymer (including polymer mixtures) or at least one (semi)conductive organic polymer (including polymer mixtures) and at least one other organic compound (for instance a single compound), which is electroluminescent.
- Preferred electroluminescent compounds are polyarylenes, more preferably poly(paraphenylene vinylene) compounds (PPV compounds), polyacetylenes, polyanilines, polythiophenes, polyfluorenes,
- PV compounds poly(paraphenylene vinylene) compounds
- polyvinylcarbazoles polyphenylene compounds polyfluorene compounds polypyrroles, polyanilines, including derivatives of these polymers (in particular alkyl, aryl and alkoxy derivatives), copolymers of these polymers and mixtures thereof
- a non-polymeric electroluminescent compound such as a non- polymeric electroluminescent dye.
- a non-polymeric electroluminescent dye examples of such compounds are monomers and other non-polymerized molecules with conjugated bonds. Often, such compounds have a relatively low molecular weight compared with polymers.
- a compound according to Formula 1 may be used.
- aryl groups (optionally substituted with one or more alkyl groups and/or one or more alkoxy alkyl groups, preferably of the formula -C a H2 a +i, and -0-C a H2 a +i, respectively, as described above), preferably aryl groups having 6 to 12 carbon atoms in the ring structure
- a is preferably chosen in the range of from 1 to 20 and more preferably in the range of 2-10.
- the OLED has at least two maxima. Light of a wavelength on or near one maximum can then serve, for instance, as a reference signal, and light of a wavelength at another maximum can then serve as detection signal.
- An OLED with more than one maximum can be provided for in that the OLED contains at least one electroluminescent active layer which comprises at least two different electroluminescent functionalities.
- the photoactive layer can contain a mixture of two different electroluminescent compounds. Examples include mixtures of the polymers mentioned herein, mixtures of the polymers mentioned herein with other electroluminescent compounds, for instance single conjugated compounds, and copolymers with different electroluminescent segments. Suitable examples thereof are described in WO 2005/001945, of which the contents with respect to the suitable electroluminescent compounds are incorporated herein by reference, in particular the part from page 10 line 10 to page 14, line 17.
- the electronic device is an actuator for converting between electrical and mechanical energy. Suitable examples thereof are e.g. described in European patent application 06076435.4 and in European patent application 06075808.3.
- the actuator may in particular comprise at least one polymer selected from the group of polyvinyl chlorides, polysaccharides, aromatic urethanes, aromatic urethane acrylates, (alkyl)acrylates,
- alkylmethacrylates acrylonitrile polymers
- polysaccharide derivatives such as starch acetate, cellulose (tri)acetate
- polyethers polyvinylpyrrolidone, polyethyloxazoline and polyvinylidene fluoride.
- the actuator comprises an electro-active polymer which comprises aromatic moieties in the chain and flexible moieties in the chain, the polymer further comprising side groups bound to the chain, which side groups are selected from the group consisting of polar side groups and side groups comprising an aromatic moiety.
- Said flexible moieties of the polymer may in particular be selected from the group of (cyclo) aliphatic ether moieties, (cyclo)aliphatic ester moieties, (cyclo)aliphatic thioether moieties and
- aromatic moieties in the chain and - when present - in the side groups may in particular be selected from
- unsubstituted and substituted aromatic moieties having 6-20 carbon atoms may comprise a moiety selected from the group consisting of -OH, -CN, -NH2, -NO2 , aryloxy , phenyl, halogens, -COOH, NHR, NRR, -(CO)(NH 2 ), -(CO)(NHR) and -(CO)(NRR), wherein each R is the same or a different C1-C6 substituted or unsubstituted alkyl group.
- the actuator comprises an electro-active polyurethane-(meth)acrylate copolymer comprising aromatic urethane units and (alkyl)acrylate units, wherein preferably at least part of (alkyl)acrylate units are based on a monomer represented by formula II
- Ri is hydrogen, an optionally substituted alkyl (in particular methyl) or a polar moiety
- R2 is a polar moiety, an aromatic moiety (in particular a moiety comprising a phenyl), an optionally substituted alkyl or hydrogen;
- At least one or Ri and R2 is a polar moiety or an aromatic moiety; and/or wherein preferably at least part of the aromatic moieties in the chain are selected from the group of toluenediisocyanates and methylene diphenyl isocyanate.
- the plating liquid used in a method according to the invention comprises an ionic liquid.
- Salts that form an ionic liquid are known in the art.
- US- A 4,764,440 discloses a composition comprising a mixture of a metal halide and a hydrocarbyl-saturated onium salt, wherein at least one of the hydrocarbyl groups is an aromatic hydrocarbyl group.
- US-A 5,731, 101 discloses an ionic liquid composition
- an ionic liquid composition comprising a mixture of a metal halide and an alkyl-containing amine hydrohalide salt of the formula R3 N.HX, where at least one R is alkyl and X is halogen, which amine hydrohalide salt contains either one or two alkyl groups therein.
- suitable is an ionic liquid selected from the ionic liquids described in WO 02/26381, of which the contents of this publication with respect to the description of suitable ionic liquids, in particular as specified in the claims thereof is incorporated herein by reference.
- Such ionic compound can be formed by the reaction of at least one amine salt of the formula R !
- R ⁇ R ⁇ R ⁇ N + X- (I) with at least one hydrated salt which is a chloride, nitrate, sulphate or acetate of Li, Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Bi, La or Ce;
- R 1 , R 2 and R 3 are each independently a Ci to C5 alkyl or a C6 to Cio cycloalkyl group, or wherein R2 and R3 taken together represent a C 4 to Cio alkylene group, thereby forming with the N atom of formula I a 5 to 11 membered heterocyclic ring, and wherein R 4 is hydrogen, or phenyl, or a Ci to C 12 alkyl or cycloalkyl group, optionally substituted with at least one group selected from OH, CI, Br, F, I, phenyl, NH 2 , CN, NO3 ⁇ 4 COOR 5 , CHO, COR 5 and OR 5 ,
- the ionic liquid comprises a salt of the following cations and/or anions:
- - cations selected from the group of monosubstitued imidazolium compounds, disubstituted imidazolium compounds, trissubstitued imidazolium compounds, pyridinium compounds, pyrrolidinium compounds, phosphonium compounds, ammonium compounds, guanidinium compounds and isouronium compounds, including combinations thereof.
- the substituents may in particular be selected from the substituents described above, when referring to R ! -R 5 in the amine salt of the formula ⁇ 3 ⁇ 43 ⁇ 4 4 ⁇ 3 ⁇ 4- (I).
- - anions selected from the group of chloride, bromide, iodide, nitrate, nitrite, fluoride, phosphate, imide, amide, borate, tosylate, tetrafluoroborate, hexafluoroborate, hexafluorophosphate, trifluoromethanesulfonate,
- methylsulfate bis(pentafluoroethyl)phosphinate, thiocynate, octylsulfate, hexylsulfate, buthylsulfate, ethylsulfate, dicyanamide, hexafluoroantimonate, bis-(pentafluoroethyl)phospinate, bis-(trifluoromethyl)imide, trifluoroacetate, bis-trifluorsulfonimide, triflate and dicyanamide, including combinations thereof.
- the plating liquid may comprise a solvent, solvents being materials other than the liquid salt which are liquid under the conditions at which the method is carried out.
- the solvent may be chosen from inorganic solvents other than water and organic solvents, such as benzene or an alcohol.
- the solvent concentration will usually be less than 25 wt. %, based on total liquid salt, in particular 20 wt. % or less, more in particular 15 wt. % or less.
- the solvent concentration is up to 2 wt. % based on total liquid salt, more preferably less than 1 wt. %.
- the plating liquid is essentially free of water and/or other solvents.
- a plating liquid is in particular considered to be essentially free of a solvent if the concentration of that solvent is less than 0.5 wt. %, based on total liquid salt, more in particular less than 0. lwt. % of a solvent, or less than 0.01 wt. %.
- the (essential) absence of water during the plating may be beneficial to the lifetime of the article, especially in case an aluminium, barium or lithium layer is electrodeposited from the ionic liquid.
- a maximum desired water level depends on the metal to be deposited.
- the standard potential is higher than the standard potential of water to hydrogen (e.g. Ag, Au, Cu)
- the water concentration is preferably 0.1 wt. % or less.
- the standard potential is equal to or less than the standard potential of water to hydrogen (e.g. Al, Ba, Li) then a water content of less than 10 ppm, in particular of 1 ppm or less is desired.
- the ions to be deposited may be all ions of the same metal or metalloid. It is also possible to deposit ions from different metals/metalloids. In particular, ions to be deposited may be selected from metals or metalloids which form a dense oxide. In particular the oxide should have a low
- valve metals Metals of which the oxide forms a dense layer are also known in the art as valve metals.
- a metallic layer as used herein is an layer comprising one or more metals, thus the term includes layers of a metallic alloy.
- a layer is considered metallic if it shows metallic electrical conductance.
- Metalloids are elements that are generally not considered real metals, but that do show more or less metallic behaviour in one or more specific aspects.
- metalloids are capable of conducting electricity, to the extent that they are semiconductors rather than metallic conductors.
- Boron (B), Silicon (Si), Germanium (Ge), Arsenic (As), Antimony (Sb), Tellurium (Te) and Polonium (Po) are examples of metalloids.
- a metalloid layer as used herein is a layer comprising one or more metalloids, thus the term includes layers comprising a metalloid alloy.
- a layer is considered a metalloid layer if it shows metalloid electrical conductance (i.e. showing semi-conductive properties, such as a semi-metal).
- one or more ions selected from the group of aluminium, silicon, tantalum, titanium, chromium, bismuth, zirconium, hafnium, tungsten, niobum and zinc may be reduced and deposited in accordance with the invention. Layers of any of these metals/metalloids are in particular suitable to form a moisture and/or oxygen barrier layer, optionally after at least partial oxidation.
- the counter ions of the metal ions or metalloid ions used for deposition may be the same or different from the cations of the ionic liquid.
- the counter ions may be chosen from the group of chloride, bromide, iodide, nitrate, nitrite, fluoride, phosphate, imide, amide, borate, tosylate, tetrafluoroborate, hexafluoroborate, hexafluorophosphate,
- trifluoromethanesulfonate methylsulfate, bis(pentafluoroethyl)phosphinate, thiocynate, octylsulfate, hexylsulfate, buthylsulfate, ethylsulfate, dicyanamide, hexafluoroantimonate, bis-(pentafluoroethyl)phospinate, bis- (trifluoromethyl)imide, trifluoroacetate, bis-trifluorsulfonimide, triflate and dicyanamide, including combinations thereof.
- a layer of an alloy is formed by using co-deposition, This may be achieved by using a single plating liquid comprising more than one type of ions to be deposited on the substrate, to allow co-deposition to take place in a single electro-deposition process.
- the different ions to be deposited are dissolved in separate plating liquids, with which the substrate is sequentially contacted under plating conditions. This allows the formation of different layers on top of each other.
- the total concentration of the salt comprising the ions for forming the electrode preferably is at least 0.1 mol%, more preferably at least 1 mol%, even more preferably at least 5 mol%, or at least 10 mol%.
- a relatively high concentration is in particular advantageous in order to allow a high deposition speed.
- the upper limit is in particular determined by the maximum allowable concentration in order to maintain the plating liquid in a liquid state (the saturation level).
- a relatively high concentration usually advantageous for a high deposition rate.
- a large amount of ions can usually be reduced and deposited before depletion of the liquid may become noticeable.
- the presence of the ions to be deposited in a relatively high concentration may be advantageous for improved liquidity (reduced viscosity, reduced melting temperature of the liquid), and/or improved electrical conductance of the liquid.
- the total concentration of the salt of the metal/metalloid ions for forming the layer by electro-deposition preferably is up 70 mol %, more preferably up to 65 mol %, in particular up to 60 mol%.
- a lower concentration may be chosen, e.g. up to 40 mol %, up to 20 mol %, up to 10 mol %, or 5 mol % or less.
- a "sacrificial electrode” is used as a counter electrode (anode). At least the surface of such an electrode comprises the same metal or metalloid as the metal or metalloid that is to be deposited. While the metal or metalloid is deposited on the substrate during electro- deposition, metal/metalloid at a surface of the sacrificial electrode will be oxidised and dissolve in the plating liquid. Thus, the composition of the plating liquid can be maintained at about the same concentration for a prolonged timed, or at least depletion of the liquid with metal/metalloid ions can be postponed.
- Such electrode may for instance be a plate, foil or thread of the metal/metalloid to be deposited, e.g.
- an aluminium counter electrode can be used when depositing aluminium on a substrate form a aluminium ions containing ionic liquid electrolyte.
- a net or basked of an inert metal or other inert material i.e. a material that does not oxidise or otherwise react under the electrodeposition conditions
- pieces of the metal to be deposited are provided
- electrodeposition is carried out while the surface on which the metal or metalloid layer is formed, or a part thereof is exposed to electromagnetic radiation.
- the wavelength of the electromagnetic radiation is typically of a high enough energy to overcome the band gap of the material on which the metal or metalloid is deposited (such as the organic semiconductive material)
- the deposition is aided and a smaller electric potential is required to achieve deposition.
- the risk of adversely affecting a property of the organic electro-active material is reduced.
- irradiation is in particular useful to provide a more homogenous deposition and/or a more dense deposition (within the deposition formed on the irradiated surface).
- such irradiation may help to reduce the occurrence of pinholes.
- the metallic or metalloid layer is deposited gradually, by first starting electrodeposition on a part of the surface of the electrodeposition-cathode relatively close to the connection to the power source before starting the electrodeposition on a part of the surface of the
- electrodeposition-cathode layer relatively remote from the connection to the power source.
- the part of the electrodeposition-cathode connected to the power source usually is a peripheral section of the electrodeposition- cathode (closer to a side of the electrodeposition-cathode than the centre thereof).
- the connection with the power source can be at one or more sides of the electrodeposition-cathode.
- electrodeposition on a corresponding relatively remote part of the surface is stopped before electrodeposition on the part of the surface relatively remote from the connection is stopped, in order to obtain a good uniformity in layer thickness of the electrodeposited layer.
- This is in particular preferred in a method wherein the mask is moved at essentially constant velocity relative to the substrate, which is usually preferred for ease of carrying out the method of the invention, in particular under continuous conditions.
- corresponding relatively remote part' is generally meant a relatively remote part adjacent to the part of the surface relatively close to the connection on which electrodeposition has started earlier.
- a remote part generally lies in the same line perpendicular to the direction of movement of the intermediate product as the part of the surface relatively close to the connection to which the remote part corresponds.
- the electrodeposition-cathode is connected to the power source at two essentially opposite peripheral sections of the electrodeposition-cathode and the relatively remote part is situated between said opposite peripheral sections.
- the gradual electrodeposition is accomplished in a rather simple manner, namely using a mask.
- the mask, or at least its surface that is in contact with the ionic liquid is generally non- conductive.
- suitable materials are non-conductive plastics, ceramics and glass materials.
- the mask is positioned between the counter electrode (anode) for the electrodeposition process and the intermediate product in such a way that it shields part of the surface of the electrodeposition-cathode from
- the shielding causes at least a significant drop in current flow from the counter electrode to the surface of the intermediate product that is shielded by the mask. Thereby, deposition of metal or metalloid is (temporarily) prevented or at least considerably reduced on the part of the surface that is shielded.
- the mask has one or more openings allowing the electrodeposition on the part of the electrode not shielded by the mask.
- the mask touches the substrate during use. It is generally preferred that the substrate is moved relative to the mask at a distance from the intermediate product, large enough to avoid rubbing of the mask against the surface of the intermediate product on which the layer is deposited.
- a minimum desired distance depends on the intended thickness of the deposited layer. Usually the distance is about 100 ⁇ or more, in particular about 400 ⁇ or more, or about 600 ⁇ or more. Usually this distance is a less than 1 cm, such as 5 mm or less, preferably 2 mm or less, in particular 1 mm or less.
- the movement of mask and intermediate product relative to each other may be accomplished in any way.
- the mask may be moved over the intermediate product. It is also possible that both are moved at different velocity, e.g. in opposite direction.
- the mask is in a fixed position and that the intermediate product is moved during use. This is in particular convenient in a roll to roll process.
- FIGS 2A to 2C schematically illustrate a preferred embodiment, wherein the mask has two baffles, together forming an essentially V-shaped opening.
- various peripheral parts of the surface of product 11 and parts of the surface more remote from the sides of the product 11 are indicated. These parts are shown as lla-f.
- lla-f do not necessarily represent physically distinguishable parts of the product, they are primarily shown to illustrate the position of these parts relative to each other and are used in support of the following description of the Figure, which illustrates an advantageous method according to the invention.
- the gap between the two baffles this can be chosen within wide limits.
- a relatively wide gap is shown, wherein the protruding end-point k of the left baffle does not extend into the area defined by the triangle m, n, 1 in the right baffle.
- the gap is smaller than schematically shown in the Figure, and the protruding end-point k of the left baffle may extend into area defined by the the triangle m, n, 1.
- Baffles 10a and 10b, defining the mask, are positioned between the counter electrode (not shown) and the intermediate product 11. Baffles and intermediate product are all placed in the plating liquid.
- connections of the power source (not shown) to intermediate product will generally be along sides 12.
- the direction arrow shows the movement of the product relative to the mask.
- the verb 'to move' will be used to describe movement of the product relative to the mask.
- it is used to describe embodiments wherein in fact the mask is moved and to describe embodiments wherein the product is moved.
- the intermediate product 11 is moved into the opening 13.
- First peripheral parts of the surface of product 11 (parts at or close to sides 12, illustratively marked 11a') at or near the front 14 reach the opening.
- the product 11 of which a surface facing the counter electrode acts as electrodeposition-cathode
- the counter electrode metal or metalloid is electrodeposited from the ionic liquid onto the surface of the product 11 acting as the electrodeposition-cathode.
- the more central parts lib of product 11 in the same perpendicular line as parts 11a are still shielded by baffle 10a, and no (substantial) deposition takes place yet on those parts of the surface.
- the electrodeposition is generally carried out at a potential equal to or larger than the reduction potential of the ion to be deposited. Suitable potentials for forming a layer of a specific metal or metalloid are generally known in the art.
- the electrodeposition may be carried out under
- Potentiostatic conditions are advantageous for a well-controlled deposition wherein a uniform layer thickness is obtained, in particular in an embodiment wherein the intermediate product is a sheet or the like.
- Galvanostatic conditions are particularly suitable for a roll to roll or sheet to sheet process.
- an electronic device in particular an organic electronic device, with a metallic/metalloid layer that can serve as a barrier against water, oxygen or the like, using a mask with an opening having a constant size, without having to regulate the size of the opening based on monitored parameters such as deposition rate, current, or the like.
- a layer with a highly uniform thickness whereby a subsequent treatment to increase uniformity of the thickness can generally be omitted.
- the invention allows the manufacture of an electronic device on which a metallic/metalloid layer is electrodeposited, wherein essentially all parts of the surface of the electrodeposition-cathode on which the metallic or metalloid layer is deposited are subjected to electrodeposition for essentially the same duration.
- an essentially /-shaped mask parallelogram-shaped mask
- the electrodeposition in accordance with the invention may be carried out to provide a metallic or metalloid layer with satisfactory properties within a wide thickness range.
- a desired thickness e.g. may be determined based on considerations such as the desired barrier properties, transparency (which may or may not be desired), flexibility of the article (which may or may not be desired), etc.
- the thickness may in particular be at least 1 nm, at least 10 nm, at least 100 nm, at least 1 ⁇ , at least 10 ⁇ or at least 100 ⁇ .
- the thickness may in particular be up to 1 mm, up to 400 ⁇ , up to 100 ⁇ , up to 10 ⁇ , up to 1 ⁇ up to 100 nm or up to 10 nm.
- the device may be subjected to one or more post-treatment steps. For instance, excess ionic liquid may be removed.
- One or more further steps, such as the provision of one or more other functional layers, which may be employed are, e.g. described in the prior art identified herein.
- the depositied metal or metalloid is at least partially oxidised after the electrodeposition, to form a metal oxide or metalloid oxide barrier layer.
- Suitable oxidation techniques include thermal oxidation and chemical oxidation, in particular electrochemical oxidation.
- (Electro)chemical oxidation may for instance be accomplished by oxidation in an aqueous liquid (usually comprising more than 50 wt. % water, based on total liquids, and an electrolyte to impart conductivity to the liquid.
- aqueous liquid usually comprising more than 50 wt. % water, based on total liquids, and an electrolyte to impart conductivity to the liquid.
- suitable conditions such as a suitable pH, temperature and reagents, depending upon the metal or metalloid to be oxidised.
- a pH at or near neutral pH neutral pH ⁇ 1 pH
- the oxidation is carried out in the presence of a pH modulator, in particular a (weak) acid or base, more in particular an acid and a base forming a pH-buffer.
- Thermal oxidation may be accomplished by heating the layer in the presence of oxygen or a gas comprising oxygen, e.g. air.
- the invention is further directed to an electronic device, in particular an organic electronic device.
- Suitable designs for electronic devices are generally known in the art, and may in particular have a design as described herein above or in the prior art mentioned in the present description, such as the above mentioned prior art or WO 2010/093237.
- the electronic device may in particular be selected from optoelectronic devices and actuators, preferably from organic opto-electronic devices and organic actuators.
- Preferred opto-electronic devices are (organic) LEDS and (organic) photovoltaic cells.
- the photovoltaic cell may in particular be a solar cell.
- the electronic device (obtainable) according to the invention generally comprises an anode, a cathode, an electro-active material at least partially situated between said anode and said cathode, and a metallic or metalloid layer.
- the metallic or metalloid layer is adjacent to the cathode on an outer surface of the electronic device (relative to the cathode).
- the metallic or metalloid layer has a permeability to water of 1 mg/m 2 .day or less, of 0.1 mg /m 2 .day or less, or of 1 ⁇ g/m 2 .day or less.
- the metallic or metalloid layer has a permeability to oxygen of 1 mg/m 2 .day or less, of 0.1 mg /m 2 .day or less, or of 1 ⁇ g/m 2 .day or less.
- a permeability to oxygen of 1 mg/m 2 .day or less, of 0.1 mg /m 2 .day or less, or of 1 ⁇ g/m 2 .day or less.
- a polyfluorene light emitting polymer layer (LEP) is coated on top of the PEDOT layer (thickness 70 nm).
- An aluminium cathode layer is evaporated on top of the LEP layer (thickness lOOnm).
- An aluminium barrier layer is
- the counter electrode is an aluminium-sheet 99,98% Al of 100cm x
- the process conditions are as follows.
- the substrate is moved vertically under a V-shaped mask exposing first the edges of the substrate.
- a pulsed current with two current levels is used.
- the first level with a time of 10ms has a current density of -80mA/cm 2 .
- the second level is 80ms with a current density of 0 mA/cm 2 .
- the current is adjusted to the surface area of the substrate exposed to the anode by the mask
- the Temperature of the ionic liquid solution is 80°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Electroplating Methods And Accessories (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
Abstract
L'invention porte sur un procédé pour la fabrication d'un dispositif électronique, le procédé consistant à : utiliser un produit électronique intermédiaire, ledit produit intermédiaire ayant une couche conductrice électronique, et former une couche métallique ou non métallique sur une surface externe de la couche conductrice électronique par dépôt électrolytique à l'aide d'un liquide de placage comprenant un liquide ionique et des ions métalliques ou des ions non métalliques, dans lequel, pendant le dépôt électrolytique, la couche conductrice électronique du produit intermédiaire sur lequel le dépôt électrolytique a lieu est connectée à un bloc d'alimentation électrique et la couche conductrice électronique sur laquelle le dépôt électrolytique a lieu fournit une cathode pour le dépôt électrolytique et dans lequel la couche métallique ou non métallique est formée progressivement dans le plan parallèle à la surface de la couche conductrice électronique sur laquelle le dépôt électrolytique a lieu, laquelle formation progressive consiste à commencer le dépôt électrolytique sur une partie de la surface de la couche conductrice électronique sur laquelle le dépôt électrolytique a lieu relativement proche de la connexion au bloc d'alimentation électrique avant de commencer le dépôt électrolytique sur une partie de la surface de la couche conductrice électronique sur laquelle le dépôt électrolytique a lieu relativement éloignée de la connexion au bloc d'alimentation électrique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11151257.0 | 2011-01-18 | ||
EP11151257A EP2476784A1 (fr) | 2011-01-18 | 2011-01-18 | Procédé de fabrication d'un dispositif électronique par électrodéposition à partir d'un liquide ionique |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012099466A2 true WO2012099466A2 (fr) | 2012-07-26 |
WO2012099466A3 WO2012099466A3 (fr) | 2013-01-03 |
Family
ID=44245687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL2012/050026 WO2012099466A2 (fr) | 2011-01-18 | 2012-01-17 | Procédé pour la fabrication d'un dispositif électronique par dépôt électrolytique à partir d'un liquide ionique |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2476784A1 (fr) |
WO (1) | WO2012099466A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8784690B2 (en) | 2010-08-20 | 2014-07-22 | Rhodia Operations | Polymer compositions, polymer films, polymer gels, polymer foams, and electronic devices containing such films, gels and foams |
CN106801248A (zh) * | 2017-02-03 | 2017-06-06 | 中山大学 | 一种三维微纳结构器件的制备装置及方法 |
JP2019065007A (ja) * | 2017-09-28 | 2019-04-25 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 有機材料精製組成物及びそれを利用した有機材料の精製方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015103895A1 (de) * | 2015-03-17 | 2016-09-22 | Osram Oled Gmbh | Verfahren zum Herstellen eines organischen Bauelements |
FR3047604B1 (fr) | 2016-02-04 | 2018-02-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif electronique hybride protege contre l'humidite et procede de protection contre l'humidite d'un dispositif electronique hybride |
CN105714364B (zh) * | 2016-03-30 | 2018-07-03 | 河南平高电气股份有限公司 | 一种电镀用阴极导电座、电镀用阴极导电装置及电镀设备 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4764440A (en) | 1987-05-05 | 1988-08-16 | Eveready Battery Company | Low temperature molten compositions |
US5731101A (en) | 1996-07-22 | 1998-03-24 | Akzo Nobel Nv | Low temperature ionic liquids |
US5892124A (en) | 1996-12-27 | 1999-04-06 | Institut Français Du Petrole | Process for dienoic condensation known as the diels-alder reaction |
WO2002026381A2 (fr) | 2000-09-27 | 2002-04-04 | Scionix Limited | Liquides ioniques et leur utilisation |
US20020113548A1 (en) | 2001-02-16 | 2002-08-22 | Silvernail Jeffrey Alan | Barrier region for optoelectronic devices |
WO2002082561A1 (fr) | 2001-04-03 | 2002-10-17 | Seiko Epson Corporation | Procede de modelage des contours |
WO2003022581A2 (fr) | 2001-09-10 | 2003-03-20 | Seiko Epson Corporation | Dispositif et procede de depot par jet d'encre |
WO2003026011A2 (fr) | 2001-09-19 | 2003-03-27 | Osram Opto Semiconductors Gmbh | Production d'une diode emettant une lumiere organique par impression selective de couches polymeriques conductrices |
WO2005001945A2 (fr) | 2003-06-17 | 2005-01-06 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Diode electroluminescente |
WO2005015173A1 (fr) | 2003-06-17 | 2005-02-17 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Capteurs comprenant des composants en polymere |
US20060147346A1 (en) | 2001-03-29 | 2006-07-06 | Bouten Petrus C P | Method for measuring a permeation rate, a test and an apparatus for measuring and testing |
WO2008127110A1 (fr) | 2007-04-17 | 2008-10-23 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Couche barrière et procédé de préparation de celle-ci |
WO2010093237A1 (fr) | 2009-02-11 | 2010-08-19 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Dispositif optoélectronique et procédé de fabrication dudit dispositif |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9101544A (nl) * | 1991-09-13 | 1993-04-01 | Meco Equip Eng | Werkwijze en inrichting voor het langs electrolytische weg plaatselijk aanbrengen van uit metaal bestaande bedekkingen op producten. |
FR2696478B1 (fr) * | 1992-10-05 | 1994-10-28 | Commissariat Energie Atomique | Procédé de dépôt électrolytique d'un métal sur un substrat souple faiblement conducteur, dispositif de dépôt électrolytique permettant la réalisation de ce procédé et produit obtenu par ce procédé. |
DE19717510C1 (de) * | 1997-04-25 | 1998-10-01 | Atotech Deutschland Gmbh | Vorrichtung zur Abblendung von Galvanisiergut in Durchlaufanlagen |
US6159354A (en) * | 1997-11-13 | 2000-12-12 | Novellus Systems, Inc. | Electric potential shaping method for electroplating |
US6027631A (en) * | 1997-11-13 | 2000-02-22 | Novellus Systems, Inc. | Electroplating system with shields for varying thickness profile of deposited layer |
US6402923B1 (en) * | 2000-03-27 | 2002-06-11 | Novellus Systems Inc | Method and apparatus for uniform electroplating of integrated circuits using a variable field shaping element |
US6802946B2 (en) * | 2000-12-21 | 2004-10-12 | Nutool Inc. | Apparatus for controlling thickness uniformity of electroplated and electroetched layers |
EP1983078A1 (fr) * | 2007-04-17 | 2008-10-22 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Électrodéposition |
-
2011
- 2011-01-18 EP EP11151257A patent/EP2476784A1/fr not_active Withdrawn
-
2012
- 2012-01-17 WO PCT/NL2012/050026 patent/WO2012099466A2/fr active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4764440A (en) | 1987-05-05 | 1988-08-16 | Eveready Battery Company | Low temperature molten compositions |
US5731101A (en) | 1996-07-22 | 1998-03-24 | Akzo Nobel Nv | Low temperature ionic liquids |
US5892124A (en) | 1996-12-27 | 1999-04-06 | Institut Français Du Petrole | Process for dienoic condensation known as the diels-alder reaction |
WO2002026381A2 (fr) | 2000-09-27 | 2002-04-04 | Scionix Limited | Liquides ioniques et leur utilisation |
US20020113548A1 (en) | 2001-02-16 | 2002-08-22 | Silvernail Jeffrey Alan | Barrier region for optoelectronic devices |
US20060147346A1 (en) | 2001-03-29 | 2006-07-06 | Bouten Petrus C P | Method for measuring a permeation rate, a test and an apparatus for measuring and testing |
WO2002082561A1 (fr) | 2001-04-03 | 2002-10-17 | Seiko Epson Corporation | Procede de modelage des contours |
WO2003022581A2 (fr) | 2001-09-10 | 2003-03-20 | Seiko Epson Corporation | Dispositif et procede de depot par jet d'encre |
WO2003026011A2 (fr) | 2001-09-19 | 2003-03-27 | Osram Opto Semiconductors Gmbh | Production d'une diode emettant une lumiere organique par impression selective de couches polymeriques conductrices |
WO2005001945A2 (fr) | 2003-06-17 | 2005-01-06 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Diode electroluminescente |
WO2005015173A1 (fr) | 2003-06-17 | 2005-02-17 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Capteurs comprenant des composants en polymere |
WO2008127110A1 (fr) | 2007-04-17 | 2008-10-23 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Couche barrière et procédé de préparation de celle-ci |
WO2010093237A1 (fr) | 2009-02-11 | 2010-08-19 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Dispositif optoélectronique et procédé de fabrication dudit dispositif |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8784690B2 (en) | 2010-08-20 | 2014-07-22 | Rhodia Operations | Polymer compositions, polymer films, polymer gels, polymer foams, and electronic devices containing such films, gels and foams |
US9552903B2 (en) | 2010-08-20 | 2017-01-24 | Rhodia Operations | Polymer compositions, polymer films, polymer gels, polymer foams, and electronic devices containing such films, gels and foams |
CN106801248A (zh) * | 2017-02-03 | 2017-06-06 | 中山大学 | 一种三维微纳结构器件的制备装置及方法 |
CN106801248B (zh) * | 2017-02-03 | 2020-04-10 | 中山大学 | 一种三维微纳结构器件的制备装置及方法 |
JP2019065007A (ja) * | 2017-09-28 | 2019-04-25 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 有機材料精製組成物及びそれを利用した有機材料の精製方法 |
JP7374580B2 (ja) | 2017-09-28 | 2023-11-07 | 三星ディスプレイ株式會社 | 有機材料精製組成物及びそれを利用した有機材料の精製方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2476784A1 (fr) | 2012-07-18 |
WO2012099466A3 (fr) | 2013-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2142685B1 (fr) | Couche barrière et procédé de préparation de celle-ci | |
US8227293B2 (en) | Method for manufacturing an electrode | |
WO2012099466A2 (fr) | Procédé pour la fabrication d'un dispositif électronique par dépôt électrolytique à partir d'un liquide ionique | |
EP0002109B1 (fr) | Procédé pour la fabrication des couches minces et photoconductives et des cellules solaires en employant lesdites couches minces et photoconductives | |
AU2004303637B2 (en) | Nano-array electrode manufacturing method and photoelectric converter using same | |
US11101079B2 (en) | Solar cell and solar cell manufacturing method | |
US20100065119A1 (en) | ELECTRODE HAVING A CoS LAYER THEREON, PROCESS OF PREPARATION, AND USES THEREOF | |
EP2730622B1 (fr) | Cellules solaires à colorant et leurs procédés de fabrication | |
TW201307256A (zh) | 鈀前驅物組成物 | |
JP2019036598A (ja) | 半導体素子およびその製造方法 | |
Awais et al. | How to make 20% efficient perovskite solar cells in ambient air and encapsulate them for 500 h of operational stability | |
Di Girolamo et al. | Electrodeposition as a versatile preparative tool for perovskite photovoltaics: Aspects of metallization and selective contacts/active layer formation | |
JP2012524973A (ja) | 光電デバイスおよびその製造方法 | |
Ozkaya et al. | Eco-friendly boost for perovskite photovoltaics: harnessing cellulose-modified SnO2 as a high-performance electron transporting material | |
WO2010093237A1 (fr) | Dispositif optoélectronique et procédé de fabrication dudit dispositif | |
KR20180105985A (ko) | 유기 태양전지 및 이의 제조 방법 | |
JP6990219B2 (ja) | 半導体素子の製造方法 | |
JP6434847B2 (ja) | 光電変換素子の製造方法および製造装置 | |
JP5655669B2 (ja) | 半導体層の製造方法、及び、太陽電池の製造方法 | |
CN111244300A (zh) | 量子点发光二极管及其制备方法 | |
US20230422531A1 (en) | Photoelectric conversion element and method for manufacturing the same | |
WO2021131391A1 (fr) | Électrolyte solide et batterie | |
EP2838128B1 (fr) | Cellules solaires à colorant et leurs procédés de fabrication | |
CN111244302B (zh) | 量子点发光二极管及其制备方法 | |
JP2008235668A (ja) | 半導体ダイオード |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12702325 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12702325 Country of ref document: EP Kind code of ref document: A2 |