WO2012099231A1 - Active energy ray-curable resin composition and coating agent - Google Patents

Active energy ray-curable resin composition and coating agent Download PDF

Info

Publication number
WO2012099231A1
WO2012099231A1 PCT/JP2012/051147 JP2012051147W WO2012099231A1 WO 2012099231 A1 WO2012099231 A1 WO 2012099231A1 JP 2012051147 W JP2012051147 W JP 2012051147W WO 2012099231 A1 WO2012099231 A1 WO 2012099231A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
active energy
resin composition
energy ray
Prior art date
Application number
PCT/JP2012/051147
Other languages
French (fr)
Japanese (ja)
Inventor
篤志 辻本
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to KR1020137012578A priority Critical patent/KR101839639B1/en
Priority to CN2012800033926A priority patent/CN103168051A/en
Publication of WO2012099231A1 publication Critical patent/WO2012099231A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/10Esters of organic acids
    • C09D101/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints

Definitions

  • the present invention relates to an active energy ray-curable resin composition and a coating agent. More specifically, the present invention relates to an active energy ray for forming a coating film excellent in appearance, coating surface smoothness and transparency. The present invention relates to a curable resin composition and a coating agent using the same.
  • active energy ray-curable resin compositions have been widely used as coating agents, adhesives, anchor coating agents, and the like on various substrates because curing is completed by irradiation with radiation for a very short time.
  • an active energy ray-curable resin composition When an active energy ray-curable resin composition is cured on the surface of a plastic substrate to form a cured coating film, the purpose of suppressing shrinkage during curing and improving the adhesion to the plastic substrate, or curing coating
  • fine particles such as inorganic fillers may be blended in the active energy ray-curable resin composition.
  • Patent Document 1 discloses a polyfunctional urethane acrylate obtained by reacting a radiation-curable polyfunctional (meth) acrylate having at least two (meth) acryloyl groups and active hydrogen in a molecule with a polyisocyanate, and a primary A curable resin composition containing colloidal silica having a particle size of 1 to 200 nanometers is described.
  • Patent Document 2 discloses an ultraviolet curable (meta) group having at least one (meth) acryloyl group in the molecule.
  • An antistatic hard coat resin composition in which a zinc antimonate sol having a primary particle size of 0.5 microns or less is dispersed in an acrylate using a dispersant, and the haze when formed into a coating film is 1.5.
  • An antistatic hard coat resin composition that becomes transparent is described below.
  • Patent Document 3 discloses dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate and isobornyl ( UV light for primer coating for metal deposition containing an acrylic resin comprising at least one monomer selected from (meth) acrylate, a compound having at least two (meth) acryloyl groups in the molecule, and a photopolymerization initiator A curable paint is described.
  • JP 2001-113649 A Japanese Patent Laid-Open No. 10-231444 JP 2002-347175 A
  • Patent Documents 1 and 2 are easy to form unevenness on the surface of the cured coating film because fine particles are blended in the active energy ray-curable resin composition.
  • the transparency was insufficient.
  • unevenness is easily formed on the surface of the cured coating film due to microgels or the like that cannot be removed by filtration in the coating process, or fine foreign matters mixed in the coating process. It was easy to have an adverse effect on sex.
  • the present invention is capable of concealing irregularities caused by fine particles or foreign substances present in the coating material even when the thickness of the cured coating film is thin under such a background, smoothness, and transparency. It aims at providing the active energy ray-curable resin composition for forming the cured coating film excellent in property, and a coating agent using the same.
  • the present inventor evaporates the solvent component by including the polysaccharide derivative in the active energy ray-curable resin composition containing the urethane (meth) acrylate compound.
  • the surface of the cured coating surface can be concealed by increasing the viscosity change at the time and suppressing the lifting of the coating surface.
  • Excellent smoothness and transparency for smooth substrates, and a fine design An active energy ray-curable resin composition for obtaining a cured coating film excellent in appearance and transparency of the coating film was found for a flexible substrate, and the present invention was completed.
  • the gist of the present invention relates to an active energy ray-curable resin composition
  • an active energy ray-curable resin composition comprising a urethane (meth) acrylate compound (A) and a polysaccharide derivative (B).
  • the present invention also provides a coating agent comprising the active energy ray-curable resin composition, particularly a coating agent used as an undercoat agent for metal deposition.
  • the active energy ray-curable resin composition of the present invention is a coating film by thin film coating, it can conceal unevenness caused by fine particles or foreign substances present in the coating, and the appearance and smoothness of the coating film can be concealed.
  • thin coating can be performed without blocking the design portion, and it is included in the cured coating film. It is possible to conceal unevenness due to the influence of fine particles and foreign matters, and is particularly useful as a coating agent, particularly an undercoat agent for metal vapor deposition, because it has an excellent design followability and transparency.
  • the active energy ray-curable resin composition of the present invention comprises a urethane (meth) acrylate compound (A) and a polysaccharide derivative (B).
  • (meth) acryl means acryl or methacryl
  • (meth) acryloyl means acryloyl or methacryloyl
  • (meth) acrylate means acrylate or methacrylate.
  • the urethane (meth) acrylate compound (A) used in the present invention is obtained by reacting a hydroxyl group-containing (meth) acrylate compound (a1), a polyvalent isocyanate compound (a2) and a polyol compound (a3).
  • a urethane (meth) acrylate compound (A2) obtained by reacting a urethane (meth) acrylate compound (A1) or a hydroxyl group-containing (meth) acrylate compound (a1) and a polyvalent isocyanate compound (a2).
  • only one type may be used alone, or two or more types may be used in combination.
  • the urethane (meth) acrylate compound (A1) is preferable in terms of imparting adhesion between the plastic substrate and the undercoat layer, and the undercoat layer and the metal vapor-deposited film, in order to impart functionality to the coating film.
  • the urethane (meth) acrylate compound (A2) is preferable, but is appropriately selected in consideration of imparting various physical properties of the target coating film.
  • the weight average molecular weight of the urethane (meth) acrylate compound (A) used in the present invention is preferably 500 to 50000, more preferably 1000 to 30000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
  • the above-mentioned weight average molecular weight is a weight average molecular weight in terms of standard polystyrene molecular weight, and the column: Shodex GPC KF-806L (excluded) was subjected to high performance liquid chromatography (“Shodex GPC system-11” manufactured by Showa Denko KK). (Limit molecular weight: 2 ⁇ 10 7 , separation range: 100 to 2 ⁇ 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler particle size: 10 ⁇ m) Measured by using series.
  • the viscosity of the urethane (meth) acrylate compound (A) at 60 ° C. is preferably 500 to 150,000 mPa ⁇ s, particularly preferably 500 to 120,000 mPa ⁇ s, and more preferably 1000 to 100,000 mPa ⁇ s. -S.
  • the measuring method of a viscosity is based on an E-type viscometer.
  • hydroxyl group-containing (meth) acrylate compound (a1) examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth).
  • hydroxyalkyl (meth) acrylate such as 6-hydroxyhexyl (meth) acrylate, 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth) ) Acrylate, dipropylene glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) Acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyl-oxypropyl methacrylate, pentaerythritol tri (meth) acrylate, caprolactone-modified penta Erythritol tri (meth) acrylate,
  • a hydroxyl group (meth) acrylate compound having one ethylenically unsaturated group is preferable because it can mitigate cure shrinkage during coating film formation, and more preferably 2-hydroxyethyl (meth).
  • Hydroxyalkyl (meth) acrylates such as acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, It is preferable to use 2-hydroxyethyl (meth) acrylate in terms of excellent reactivity and versatility. Moreover, these can be used 1 type or in combination of 2 or more types.
  • polyvalent isocyanate compound (a2) examples include aromatics such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate.
  • Aliphatic polyisocyanates such as polyisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (Isocyanatomethyl) Cycloaliphatic polyisocyanates such as hexane, trimer compounds or multimeric compounds of these polyisocyanates, allophanate polyisocyanates, burette polyisocyanates, water-dispersed polyisocyanates (for example, manufactured by Nippon Polyurethane Industry Co., Ltd.) "Aquanate 100", “Aquanate 110", “Aquanate 200", “Aquanate 210", etc.).
  • aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,
  • An alicyclic diisocyanate such as 3-bis (isocyanatomethyl) cyclohexane is preferably used, and isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, and hydrogenated xylylene diisocyanate are particularly preferably used in terms of low cure shrinkage. More preferably, isophorone diisocyanate is used in terms of excellent reactivity and versatility.
  • polyol compound (a3) examples include polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, polybutadiene polyols, (meth) acrylic polyols, polysiloxane polyols, and the like.
  • polyether polyol examples include, for example, polyether glycols containing an alkylene structure such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block copolymers of these polyalkylene glycols. Coalescence is mentioned.
  • polyester-based polyol examples include three types of components: a condensation polymer of a polyhydric alcohol and a polycarboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a polyhydric alcohol, a polycarboxylic acid, and a cyclic ester. And the like.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylene diol, 1,3-tetramethylene diol, 2-methyl-1,3-trimethyl.
  • Methylene diol 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, 3-methyl-1,5-pentamethylene diol, 2,4-diethyl-1,5-pentamethylene diol, glycerin , Trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), bisphenols (such as bisphenol A), sugar alcohols (such as xylitol and sorbitol)
  • polyvalent carboxylic acid examples include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, and the like.
  • aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid
  • -Alicyclic dicarboxylic acids such as
  • cyclic ester examples include propiolactone, ⁇ -methyl- ⁇ -valerolactone, and ⁇ -caprolactone.
  • polycarbonate polyol examples include a reaction product of a polyhydric alcohol and phosgene; a ring-opening polymer of a cyclic carbonate (such as alkylene carbonate).
  • polyhydric alcohol examples include polyhydric alcohols exemplified in the description of the polyester-based polyol, and examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate, and the like. It is done.
  • the polycarbonate polyol may be a compound having a carbonate bond in the molecule and having a terminal hydroxyl group, and may have an ester bond together with the carbonate bond.
  • polyolefin-based polyol examples include those having a saturated hydrocarbon skeleton having a homopolymer or copolymer such as ethylene, propylene and butene, and having a hydroxyl group at the molecular end.
  • polybutadiene-based polyol examples include those having a butadiene copolymer as a hydrocarbon skeleton and having a hydroxyl group at the molecular end.
  • the polybutadiene-based polyol may be a hydrogenated polybutadiene polyol in which all or part of the ethylenically unsaturated groups contained in the structure thereof are hydrogenated.
  • Examples of the (meth) acrylic polyol include those having at least two hydroxyl groups in the molecule of the polymer or copolymer of the (meth) acrylic acid ester.
  • polysiloxane polyol examples include dimethyl polysiloxane polyol and methylphenyl polysiloxane polyol.
  • polyester-based polyols and polyether-based polyols are preferable, and polyester-based polyols are particularly preferable because they are excellent in mechanical properties such as flexibility during curing.
  • the weight-average molecular weight of the polyol compound (a3) is preferably 500 to 8000, particularly preferably 550 to 5000, and more preferably 600 to 3000. If the molecular weight of the polyol compound (a3) is too large, mechanical properties such as coating film hardness tend to be reduced during curing, and if too small, curing shrinkage tends to be large and stability tends to be decreased.
  • the production method of the urethane (meth) acrylate compound (A1) is usually the above hydroxyl group-containing (meth) acrylate compound (a1), polyvalent isocyanate compound (a2), and polyol compound (a3) in a reactor.
  • the reaction product obtained by reacting the polyol compound (a3) and the polyvalent isocyanate compound (a2) in advance may be added to the hydroxyl group-containing (meth) acrylate compound (a1). ) Is useful in terms of reaction stability and reduction of by-products.
  • the reaction between the polyol compound (a3) and the polyvalent isocyanate compound (a2) known reaction means can be used.
  • the molar ratio of the isocyanate group in the polyvalent isocyanate compound (a2) to the hydroxyl group in the polyol compound (a3) is usually about 2n: (2n-2) (n is an integer of 2 or more).
  • the addition reaction of the reaction product obtained by reacting the polyol compound (a3) and the polyvalent isocyanate compound (a2) in advance with the hydroxyl group-containing (meth) acrylate compound (a1) is also a known reaction. Means can be used.
  • the reaction molar ratio between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1) is, for example, that the polyisocyanate compound (a2) has two isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a1).
  • ) Has one hydroxyl group
  • the reaction product: hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 2
  • the polyisocyanate compound (a2) has three isocyanate groups.
  • the reaction product: hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 3.
  • reaction In the addition reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.5% by weight or less. A (meth) acrylate compound (A1) is obtained.
  • a catalyst is used for the purpose of promoting the reaction. It is also preferable to use an organic metal compound such as dibutyltin dilaurate, trimethyltin hydroxide, tetra-n-butyltin, zinc octoate, tin octoate, cobalt naphthenate, stannous chloride.
  • Metal salts such as stannic chloride, triethylamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0] undecene, N, N, N ′,
  • Amine catalysts such as N'-tetramethyl-1,3-butanediamine and N-ethylmorpholine, bismuth nitrate, bromide Organic bismuth compounds such as dibutyl bismuth dilaurate and dioctyl bismuth dilaurate, bismuth 2-ethylhexanoate, bismuth naphthenate, bismuth isodecanoate, bismuth neodecanoate, lauryl Organic acid bismuth such as bismuth acid salt, bismuth maleate, bismuth stearate, bismuth oleate, bismuth linoleate, bismuth a
  • Organic solvents having no functional group for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and organic solvents such as aromatics such as toluene and xylene can be used.
  • the reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C.
  • the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
  • the urethane (meth) acrylate compound (A1) used in the present invention has 20 or less ethylenically unsaturated groups in that it makes use of the adhesiveness with the metal vapor deposition layer, which is a structural characteristic.
  • ethylenically unsaturated groups are preferable, particularly preferably those having 10 or less ethylenically unsaturated groups, and more preferably those having 5 or less ethylenically unsaturated groups.
  • the weight average molecular weight of the obtained urethane (meth) acrylate compound (A1) is preferably 500 to 50,000, and more preferably 1,000 to 30,000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
  • the weight average molecular weight is measured in the same manner as described above.
  • the viscosity of the urethane (meth) acrylate compound (A1) at 60 ° C. is preferably 500 to 150,000 mPa ⁇ s, particularly preferably 500 to 120,000 mPa ⁇ s, and further preferably 1000 to 100,000 mPa ⁇ s. It is. When the viscosity is out of the above range, the coatability tends to be lowered. The viscosity is measured by an E-type viscometer as described above.
  • the urethane (meth) acrylate compound (A2) in the present invention is obtained by reacting a hydroxyl group-containing (meth) acrylate compound (a1) and a polyvalent isocyanate compound (a2).
  • the urethane (meth) acrylate-based compound (A2) used in the present invention preferably has 3 or more ethylenically unsaturated groups from the viewpoint of the hardness of the cured coating film, particularly preferably 4 or more. Those having ethylenically unsaturated groups, more preferably those having 6 or more ethylenically unsaturated groups, and among these, 6 obtained by reacting pentaerythritol tri (meth) acrylate with isophorone diisocyanate The urethane (meth) acrylate having an ethylenically unsaturated group is particularly preferred. Moreover, the upper limit of the ethylenically unsaturated group which a urethane (meth) acrylate type compound (A2) contains is 30 normally, Preferably it is 25 or less.
  • the hydroxyl group-containing (meth) acrylate compound (a1) and the polyvalent isocyanate compound (a2) may be appropriately selected and used.
  • a hydroxyl group-containing (meth) acrylate compound (a1) having three ethylenically unsaturated groups and using a diisocyanate compound as the polyvalent isocyanate compound (a2) urethane (meth) acrylate
  • the number of ethylenically unsaturated groups in the compound (A2) is 6.
  • the reaction molar ratio between the polyvalent isocyanate compound (a2) and the hydroxyl group-containing (meth) acrylate compound (a1) is, for example, that the polyisocyanate compound (a2) has two isocyanate groups and has a hydroxyl group content ( When the meth) acrylate compound (a1) has one hydroxyl group, the polyvalent isocyanate compound (a2): hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 2, and the polyisocyanate compound When the compound (a2) has three isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a1) has one hydroxyl group, the polyvalent isocyanate compound (a2): hydroxyl group-containing (meth) acrylate compound (A1) is about 1: 3.
  • the weight average molecular weight of the obtained urethane (meth) acrylate compound (A2) is preferably 500 to 50000, more preferably 1000 to 30000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
  • the weight average molecular weight is measured in the same manner as described above.
  • the viscosity of the urethane (meth) acrylate compound (A2) at 60 ° C. is preferably 500 to 150,000 mPa ⁇ s, particularly preferably 500 to 120,000 mPa ⁇ s, and more preferably 1000 to 100,000 mPa ⁇ s. It is. When the viscosity is out of the above range, the coatability tends to be lowered. The viscosity is measured by an E-type viscometer as described above.
  • the polysaccharide in the present invention is a saccharide in which a large number of monosaccharide molecules are bonded by glycosidic bonds, and is a compound in which 10 or more monosaccharides are bonded. They are obtained as biological biosynthetic products, but as biosynthetic products themselves or artificially chemically modified compounds, industrially, in addition to food, daily necessaries such as fibers, paper, cosmetics and dentifrices It is a group of substances that are applied in a wide range such as adhesives (glue) and medicine.
  • the polysaccharide derivative (B) in the present invention refers to all of the polysaccharide compounds derived from the biosynthetic product itself and the polysaccharide compounds obtained by artificially modifying the biosynthetic product.
  • the polysaccharide derivative (B) used in the present invention includes homopolysaccharides and heteropolysaccharides.
  • ⁇ -1,4-glucan (amylose, amylopectin), ⁇ -1,6-glucan (dextran), ⁇ -1,4-glucan (cellulose), ⁇ -1,6-glucan (pustulan), ⁇ -1,3-glucan (eg, curdlan, dizophyllan, etc.), ⁇ -1,3-glucan, ⁇ -1 , 2-glucan (Crown Gall polysaccharide) and other ⁇ - or ⁇ -glucan derivatives, ⁇ -1,4-galactan, ⁇ -1,4-mannan, ⁇ -1,6-mannan, ⁇ -1,2-fructan (Inulin), ⁇ -2,6-fructan (levan), ⁇ -1,4-xylan, ⁇ -1,3-xylan, ⁇ -1,4-chitosan, ⁇ -1,4-N-acetylchitosan ( Chitin), pullulan, agarose, Examples include alginic acid, and starch
  • ⁇ -glucan derivatives or ⁇ -glucan derivatives are preferable from the viewpoint of compatibility with urethane (meth) acrylate compounds and solvents, and ⁇ -glucan derivatives are particularly preferable, and cellulose derivatives are more preferable.
  • all or a part of the hydroxyl groups of the polysaccharide may be —C (O) R, —C (O) NH (R), —C (O) N (R) (R) and —R.
  • R is an aliphatic group having 1 to 3 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, or an aromatic or heteroaromatic group having 4 to 20 carbon atoms, and R itself is a substituent. It may be optionally substituted. One or more kinds of other substituents may be substituted.
  • More preferred polysaccharide derivatives (B) include acylated polysaccharides.
  • Preferred acyl groups of the acylated polysaccharide include acetyl, butyryl, benzoyl, methylbenzoyl, dimethylbenzoyl, chlorobenzoyl, dichlorobenzoyl.
  • the polysaccharide derivative (B) is preferably one having a number average molecular weight (Mn) of 5,000 to 200,000, particularly preferably from the viewpoint that concavities and convexities caused by fine particles or foreign substances present in the paint can be concealed. It is 7,500 to 150,000, more preferably 10,000 to 100,000. If the number average molecular weight is too small, the unevenness cannot be concealed by suppressing the lifting of fine particles and mixed foreign matter, so that it tends to be difficult to obtain a thin film cured coating having surface smoothness and transparency, If it is too large, the solubility in the solvent and the compatibility with other components tend to decrease.
  • Mn number average molecular weight
  • the above-mentioned number average molecular weight is a number average molecular weight in terms of standard polystyrene molecular weight.
  • the column: Shodex is used in high performance liquid chromatography (manufactured by Japan Waters, “Waters 2695 (main body)” and “Waters 2414 (detector)”).
  • GPC KF-806L exclusion limit molecular weight: 2 ⁇ 10 7 separation range: 100 to 2 ⁇ 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler particle size: It is measured by using three series of 10 ⁇ m).
  • the polysaccharide derivative (B) include cellulose acetate alkylate resins such as cellulose acetate butyrate resin and cellulose acetate propionate resin, and cellulose acetate resins. . Moreover, said polysaccharide derivative (B) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the polysaccharide derivative (B) is preferably 3 parts by weight or more, particularly preferably 3 to 1000 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). More preferably, it is 5 to 500 parts by weight, particularly preferably 8 to 100 parts by weight. If the content of the polysaccharide derivative (B) is too much, the leveling property of the cured coating film is lowered, or the adhesiveness between the cured coating film and the metal deposition layer is lowered when used in an undercoat application of metal deposition, Since the proportion of the active energy ray-curable component is lowered, there is a tendency that sufficient coating surface hardness is difficult to obtain. On the other hand, when the content of the polysaccharide derivative (B) is too small, the concealing effect of unevenness due to fine particles or foreign matters present in the coating tends to be lowered.
  • the ethylenically unsaturated monomer (C) may be any ethylenically unsaturated monomer (excluding the urethane (meth) acrylate compound (A)) having one or more ethylenically unsaturated groups in one molecule. , For example, a monofunctional monomer, a bifunctional monomer, a trifunctional or higher monomer.
  • the monofunctional monomer may be any monomer containing one ethylenically unsaturated group.
  • Michael adduct of acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester examples include acrylic acid dimer, methacrylic acid dimer, acrylic acid trimer. Methacrylic acid trimer, acrylic acid tetramer, methacrylic acid tetramer and the like.
  • 2-acryloyloxyethyl dicarboxylic acid monoester which is a carboxylic acid having a specific substituent include 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, and 2-acryloyloxyethyl.
  • Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, oligoester acrylate is also mentioned.
  • the bifunctional monomer may be any monomer containing two ethylenically unsaturated groups.
  • the tri- or higher functional monomer may be any monomer containing three or more ethylenically unsaturated groups.
  • ethylenically unsaturated monomers (C) may be used alone or in combination of two or more.
  • ethylenically unsaturated monomers (C) it is cross-linked by irradiation with active energy rays to form a network structure, thereby improving the durability such as water resistance and heat resistance in the coating film.
  • It is preferably a polyfunctional monomer containing two or more unsaturated groups, and more preferably a polyfunctional monomer containing three or more ethylenically unsaturated groups from the viewpoint of forming a higher-order network structure. .
  • pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate has a higher-order network structure. It is preferable at the point from which the formed coating film is obtained.
  • the content of the ethylenically unsaturated monomer (C) is preferably 10 to 500 parts by weight, particularly 20 to 200 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). It is preferably 300 parts by weight, more preferably 30 to 100 parts by weight. If the content of the ethylenically unsaturated monomer (C) is too large, the adhesion between the undercoat layer and the metal deposition layer tends to be reduced when the metal is deposited, and if it is too small, a high-order network due to crosslinking is present. No structure is formed, and the durability of the coating film tends to decrease.
  • Photopolymerization initiator (D) in addition to the urethane (meth) acrylate compound (A) and the polysaccharide derivative (B), it is preferable to contain a photopolymerization initiator (D) in order to perform curing with active energy rays.
  • Examples of the photopolymerization initiator (D) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2- Hydroxy-2-propyl) ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino) Acetophenones such as phenyl) butanone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomers; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether Benzoi etc.
  • Benzophenone methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2 , 4,6-Trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride
  • Benzophenones such as 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4 Thiox
  • auxiliary agents include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, 4-dimethylaminobenzoic acid.
  • Ethyl, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone Etc. can be used in combination.
  • benzyl dimethyl ketal 1-hydroxycyclohexyl phenyl ketone, benzoyl isopropyl ether, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1- It is preferable to use phenylpropan-1-one.
  • a photoinitiator (D) As content of a photoinitiator (D), it is 0.1 with respect to 100 weight part of urethane (meth) acrylate type compounds (A) (the total is the case where an ethylenically unsaturated monomer (C) is contained). It is preferably ⁇ 40 parts by weight, particularly preferably 1 to 20 parts by weight, particularly preferably 2 to 20 parts by weight. If the content of the photopolymerization initiator (D) is too small, curing tends to be poor, and if it is too large, solution stability tends to decrease, such as precipitation from the paint, and embrittlement and coloring problems tend to occur. Tend.
  • the active energy ray-curable resin composition containing the urethane (meth) acrylate compound (A) and polysaccharide derivative (B) of the present invention, preferably further containing an ethylenically unsaturated monomer (C) and a photopolymerization initiator (D).
  • a surface conditioner, a leveling agent, a polymerization inhibitor and the like can be further added as necessary.
  • the surface conditioner is not particularly limited, and examples thereof include alkyd resins.
  • Such an alkyd resin has an effect of imparting a film-forming property at the time of application and an effect of increasing the adhesion to a metal vapor deposition surface.
  • leveling agent a known general leveling agent can be used as long as it has a wettability imparting action to the base material of the coating liquid and a surface tension reducing action.
  • a silicone-modified resin, a fluorine-modified resin, An alkyl-modified resin or the like can be used.
  • polymerization inhibitor examples include p-benzoquinone, naphthoquinone, tolquinone, 2,5-diphenyl-p-benzoquinone, hydroquinone, 2,5-di-t-butylhydroquinone, methylhydroquinone, hydroquinone monomethyl ether, mono-t- Examples thereof include butyl hydroquinone and pt-butyl catechol.
  • the active energy ray-curable resin composition of the present invention includes oil, antioxidant, flame retardant, antistatic agent, filler, stabilizer, reinforcing agent, matting agent, abrasive, organic fine particles, and inorganic fine particles. It is also possible to blend polymer compounds (acrylic resin, polyester resin, epoxy resin, etc.) and the like.
  • the active energy ray-curable resin composition of the present invention can be used by blending an organic solvent and adjusting the viscosity as necessary.
  • the organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol, ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone, cellosolves such as ethyl cellosolve, toluene, xylene And the like, glycol ethers such as propylene glycol monomethyl ether, acetates such as methyl acetate, ethyl acetate and butyl acetate, and diacetone alcohol. These organic solvents may be used alone or in combination of two or more.
  • glycol ethers such as propylene glycol monomethyl ether and ketones such as methyl ethyl ketone and alcohols such as methanol
  • ketones such as methyl ethyl ketone and alcohols
  • methanol a combination of ketones such as methyl ethyl ketone and alcohols
  • the active energy ray-curable resin composition of the present invention can be diluted to 3 to 60% by weight, preferably 5 to 40% by weight, using the organic solvent, and can be applied to a substrate.
  • urethane (meth) acrylate compound (A), polysaccharide derivative (B), ethylenically unsaturated monomer (C), photopolymerization initiator (D) is not particularly limited, and can be mixed by various methods.
  • the active energy ray-curable resin composition of the present invention is effectively used as a curable resin composition for coating film formation, such as a topcoat agent and an anchor coat agent on various substrates, and is active energy ray-curable. After applying the functional resin composition to the substrate (after drying further when the composition diluted with the organic solvent is applied), it is cured by irradiating with active energy rays.
  • the coating method is not particularly limited, and examples thereof include wet coating methods such as spray, shower, dipping, roll, spin, screen printing, and the like.
  • rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as X rays and ⁇ rays, electron beams, proton rays, neutron rays, etc.
  • Curing by ultraviolet irradiation is advantageous from the viewpoint of easy availability and price.
  • electron beam irradiation it can harden
  • a high-pressure mercury lamp emitting ultra-high pressure mercury lamp, ultra-high pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, chemical lamp, electrodeless discharge lamp, LED, etc.
  • the irradiation may be about 30 to 3000 mJ / cm 2 . After the ultraviolet irradiation, heating can be performed as necessary to complete the curing.
  • the coating film thickness (film thickness after curing) is usually preferably 1 to 50 ⁇ m, particularly 2 to 30 ⁇ m, more preferably 3 to 25 ⁇ m.
  • it is preferably 1 to 15 ⁇ m
  • thick coating it is preferably 15 to 30 ⁇ m, and particularly preferably 15 to 25 ⁇ m.
  • even a coating film by thin film coating can conceal the influence of unevenness caused by fine particles or foreign substances present in the paint, unevenness existing in the substrate itself, etc. It is very effective for painting.
  • Examples of the base material to which the active energy ray-curable resin composition of the present invention is applied include polyolefin resins, polyester resins, polycarbonate resins, acrylonitrile butadiene styrene copolymers (ABS), polystyrene resins, and the like. These moldings (films, sheets, cups, etc.), metals (aluminum, copper, iron, SUS, zinc, magnesium, alloys thereof, etc.), glass and the like can be mentioned.
  • the active energy ray-curable resin composition of the present invention is also preferably used as an anchor coating agent for metal deposition.
  • the active energy ray-curable resin composition of the present invention is used as a surface of a substrate such as plastic. After being applied to the substrate and cured by irradiation with active energy rays, a metal is vapor-deposited on the coating surface, and a top coat layer is further formed thereon if necessary, which is preferably used to form a multilayer structure. .
  • plastic substrate for example, ABS, polycarbonate, acrylic resin, polyamide resin, a composite substrate thereof, or a composite substrate of the above-described material mixed with glass fiber or an inorganic substance is usually used.
  • the dry film thickness of the cured coating film of the above active energy ray-curable resin composition is preferably 1 to 30 ⁇ m, particularly 2 to 15 ⁇ m.
  • the metal to be deposited include aluminum (Al), tin (Sn), indium (In), and indium-tin (InSn).
  • the active energy ray-curable resin composition comprising the urethane (meth) acrylate compound (A) and the polysaccharide derivative (B) of the present invention is inherent in the paint even if it is a coating film by thin film coating. Unevenness caused by fine particles or foreign matters can be concealed, and the coating film has excellent effects in smoothness and transparency.
  • the active energy ray-curable resin composition of the present invention includes paints, pressure-sensitive adhesives, adhesives, adhesives, inks, protective coating agents, anchor coating agents, magnetic powder coating binders, sandblast coatings, plate materials, etc. It is useful as various film forming materials. Among them, it is very useful as an anchor coating agent for metal deposition.
  • A-1 In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, isophorone diisocyanate 16.1 g (0.07 mol), bifunctional polyester polyol (hydroxyl value 54 mg KOH / g) 75.2 g (0.04 mol), 0.02 g of hydroquinone monomethyl ether as a polymerization inhibitor and 0.02 g of dibutyltin dilaurate as a reaction catalyst were charged and reacted at 60 ° C.
  • B-1) Cellulose acetate butyrate resin (manufactured by Eastman Chemical Japan, trade name “CAB551-0.01”: number average molecular weight 16,000)
  • B-2) Cellulose acetate butyrate resin (manufactured by Eastman Chemical Japan, trade name “CAB551-0.2”: number average molecular weight 30,000)
  • B-3) Cellulose acetate butyrate resin (manufactured by Eastman Chemical Japan, trade name “CAB500-5”: number average molecular weight 57,000)
  • B-4) Cellulose acetate butyrate resin (manufactured by Eastman Chemical Japan, trade name “CAB381-20”: number average molecular weight 70,000)
  • B-5) Cellulose acetate propionate resin (manufactured by Eastman Chemical Japan, trade name “CAB504-0.2”: number average molecular weight 15,000)
  • D-1) 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan, “Irgacure 184”)
  • Examples 1 to 11 After blending the urethane (meth) acrylate compound (A), polysaccharide derivative (B), ethylenically unsaturated monomer (C), and photopolymerization initiator (D) in the ratio shown in Table 1 in terms of solid content, It diluted with ethyl acetate so that solid content except a photoinitiator might be 30%, and the active energy ray-curable resin composition was obtained.
  • A urethane (meth) acrylate compound
  • B polysaccharide derivative
  • C ethylenically unsaturated monomer
  • D photopolymerization initiator
  • Example 2 an active energy ray-curable resin composition was obtained in the same manner as in Example 1 except that the acrylic resin (B′-1) was used instead of the polysaccharide derivative (B-1).
  • the active energy ray-curable resin composition of the present invention contains a urethane (meth) acrylate compound (A) and a polysaccharide derivative (B). In order to evaluate the nature, it was formulated.
  • ⁇ Transparency> The haze value was measured using the haze meter ("NDH 2000" by Nippon Denshoku Industries Co., Ltd.) with respect to the cured coating film obtained by coating-film surface formation for said evaluation. [Evaluation] ⁇ ⁇ ⁇ ⁇ Haze value is less than 0.9 ⁇ ⁇ ⁇ Haze value is 0.9 or more
  • ⁇ Adhesion> The substrate adhesion was evaluated by a cross-cut tape method according to JIS K 5400 (1990 edition) for the cured coating film obtained by forming the coating film surface for evaluation. [Evaluation] ⁇ ... 100/100 (all close contact) ⁇ 99/100 to 0/100 (partially peeled to all peeled)
  • the cured coating films of Examples 1 to 11 obtained from the active energy ray-curable resin composition containing the urethane (meth) acrylate compound (A) and the polysaccharide derivative (B) contain fine particles. Nevertheless, it can be seen that a cured coating film having excellent smoothness and transparency can be obtained.
  • the cured coating film of Comparative Example 1 obtained from the active energy ray-curable resin composition not containing the polysaccharide derivative (B) was inferior in surface smoothness and transparency.
  • the cured coating film of Comparative Example 2 obtained from the active energy ray-curable resin composition containing the acrylic resin (B ′) instead of the polysaccharide derivative (B) has excellent transparency but poor smoothness.
  • the active energy ray-curable resin composition comprising the urethane (meth) acrylate compound (A) and the polysaccharide derivative (B) of the present invention is inherent in the paint even if it is a coating film by thin film coating. Unevenness caused by fine particles or foreign matters can be concealed, and the coating film has excellent effects in smoothness and transparency.
  • the active energy ray-curable resin composition of the present invention includes paints, pressure-sensitive adhesives, adhesives, adhesives, inks, protective coating agents, anchor coating agents, magnetic powder coating binders, sandblast coatings, plate materials, etc. It is useful as various film forming materials. Among them, it is very useful as an anchor coating agent for metal deposition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The purpose of the present invention is to provide an active energy ray-curable resin composition, which forms a coating film that is capable of covering up projections and recesses formed because of fine particles or foreign substances present inside a coating material even if the coating film is formed by thin-film coating, and which exhibits excellent effects on appearance, smoothness and transparency of the coating film. The purpose of the present invention is to provide especially an active energy ray-curable resin composition for forming a coating film that has excellent transparency and followability to a design, said active energy ray-curable resin composition being capable of forming a thin coating film on a base that has a fine design without filling up the designed portion, while covering up projections and recesses formed because of fine particles or foreign substances contained in the cured coating film. In order to achieve the purpose, an active energy ray-curable resin composition of the present invention has a configuration that contains (A) a urethane (meth)acrylate compound and (B) a polysaccharide derivative.

Description

活性エネルギー線硬化性樹脂組成物及びコーティング剤Active energy ray-curable resin composition and coating agent
 本発明は、活性エネルギー線硬化性樹脂組成物及びコーティング剤に関し、更に詳しくは、塗膜表面の外観や、塗膜表面の平滑性、透明性に優れた塗膜を形成するための活性エネルギー線硬化性樹脂組成物、及びそれを用いてなるコーティング剤に関するものである。 The present invention relates to an active energy ray-curable resin composition and a coating agent. More specifically, the present invention relates to an active energy ray for forming a coating film excellent in appearance, coating surface smoothness and transparency. The present invention relates to a curable resin composition and a coating agent using the same.
 従来より、活性エネルギー線硬化性樹脂組成物は、ごく短時間の放射線の照射により硬化が完了するため、各種基材へのコーティング剤や接着剤、又はアンカーコート剤等として幅広く用いられている。 Conventionally, active energy ray-curable resin compositions have been widely used as coating agents, adhesives, anchor coating agents, and the like on various substrates because curing is completed by irradiation with radiation for a very short time.
 活性エネルギー線硬化性樹脂組成物をプラスチック基材の表面で硬化させて硬化塗膜を形成させる場合には、硬化時の収縮を抑制しプラスチック基材との密着性を向上させる目的や、硬化塗膜の表面硬度を向上させる目的で、活性エネルギー線硬化性樹脂組成物中に無機フィラー等の微粒子を配合することがある。 When an active energy ray-curable resin composition is cured on the surface of a plastic substrate to form a cured coating film, the purpose of suppressing shrinkage during curing and improving the adhesion to the plastic substrate, or curing coating In order to improve the surface hardness of the film, fine particles such as inorganic fillers may be blended in the active energy ray-curable resin composition.
 例えば、特許文献1には、分子中に少なくとも2個以上の(メタ)アクリロイル基と活性水素を有する放射線硬化型多官能(メタ)アクリレートとポリイソシアネートとを反応させた多官能ウレタンアクリレート、及び一次粒径が1~200ナノメートルのコロイダルシリカを含有する硬化型樹脂組成物が記載されており、特許文献2には、分子中に少なくとも一個以上の(メタ)アクリロイル基を有する紫外線硬化性(メタ)アクリレート中に、分散剤を用いて一次粒子径が0.5ミクロン以下のアンチモン酸亜鉛ゾルを分散させた帯電防止性ハードコート樹脂組成物であり、塗膜にした際のヘイズが1.5以下で透明となる帯電防止性ハードコート樹脂組成物が記載されている。 For example, Patent Document 1 discloses a polyfunctional urethane acrylate obtained by reacting a radiation-curable polyfunctional (meth) acrylate having at least two (meth) acryloyl groups and active hydrogen in a molecule with a polyisocyanate, and a primary A curable resin composition containing colloidal silica having a particle size of 1 to 200 nanometers is described. Patent Document 2 discloses an ultraviolet curable (meta) group having at least one (meth) acryloyl group in the molecule. ) An antistatic hard coat resin composition in which a zinc antimonate sol having a primary particle size of 0.5 microns or less is dispersed in an acrylate using a dispersant, and the haze when formed into a coating film is 1.5. An antistatic hard coat resin composition that becomes transparent is described below.
 一方、活性エネルギー線硬化性樹脂組成物は、上記の通りアンカーコート剤としても有用であり、例えば特許文献3には、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート及びイソボルニル(メタ)アクリレートから選ばれる少なくとも1種のモノマーを構成成分とするアクリル樹脂、分子内に少なくとも2個の(メタ)アクリロイル基を有する化合物、および光重合開始剤を含有する金属蒸着の下塗り塗料用紫外線硬化型塗料が記載されている。 On the other hand, the active energy ray-curable resin composition is also useful as an anchor coating agent as described above. For example, Patent Document 3 discloses dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate and isobornyl ( UV light for primer coating for metal deposition containing an acrylic resin comprising at least one monomer selected from (meth) acrylate, a compound having at least two (meth) acryloyl groups in the molecule, and a photopolymerization initiator A curable paint is described.
特開2001-113649号公報JP 2001-113649 A 特開平10-231444号公報Japanese Patent Laid-Open No. 10-231444 特開2002-347175号公報JP 2002-347175 A
 しかしながら、上記特許文献1及び2に開示の技術は、活性エネルギー線硬化性樹脂組成物中に微粒子を配合しているため硬化塗膜の表面に凹凸が形成されやすく、硬化塗膜の平滑性及び透明性が不十分なものであった。更に、上記微粒子以外にも、塗料化工程の際における濾過等で除ききれないマイクロゲル等や、塗布工程において混入する微細な異物等によっても硬化塗膜表面に凹凸が形成され易く平滑性および透明性に悪影響が及ぼされやすいものであった。 However, the techniques disclosed in Patent Documents 1 and 2 are easy to form unevenness on the surface of the cured coating film because fine particles are blended in the active energy ray-curable resin composition. The transparency was insufficient. Furthermore, in addition to the above fine particles, unevenness is easily formed on the surface of the cured coating film due to microgels or the like that cannot be removed by filtration in the coating process, or fine foreign matters mixed in the coating process. It was easy to have an adverse effect on sex.
 また、微細な意匠性のある基材を塗装する場合は、意匠部分の閉塞を防ぐために、10μm以下といった硬化塗膜の薄膜化が求められるが、上記特許文献3に開示の技術は、下塗り塗膜の膜厚が10μm以下となる場合には、下地が隠蔽できない問題点があった(特許文献3の公開公報段落[0054]参照。)。 Further, in the case of coating a substrate having a fine design property, in order to prevent clogging of the design portion, it is required to make a cured coating film thinner to 10 μm or less. When the film thickness is 10 μm or less, there is a problem that the underlayer cannot be concealed (see paragraph [0054] of Patent Publication 3 of Patent Document 3).
 このように、近年では、特にアンカーコート用途において、硬化塗膜の薄膜化が要求されているが、硬化塗膜の厚みが薄くなるほど、硬化塗膜中に含まれる微粒子や異物等の影響による凹凸を隠蔽することが困難となるため、薄膜化と凹凸隠蔽性を両立することは困難であった。 Thus, in recent years, thinning of the cured coating has been demanded particularly in anchor coating applications, but as the thickness of the cured coating becomes thinner, unevenness due to the influence of fine particles or foreign substances contained in the cured coating is present. Since it is difficult to conceal the film, it has been difficult to achieve both thin film formation and concavity and convexity concealment.
 そこで、本発明は、このような背景下において、硬化塗膜の厚みが薄い場合でも、塗料中に内在する微粒子や異物などに起因する凹凸を隠蔽することが可能であり、平滑性、および透明性に優れた硬化塗膜を形成するための活性エネルギー線硬化性樹脂組成物及びそれを用いたコーティング剤を提供することを目的とするものである。 Therefore, the present invention is capable of concealing irregularities caused by fine particles or foreign substances present in the coating material even when the thickness of the cured coating film is thin under such a background, smoothness, and transparency. It aims at providing the active energy ray-curable resin composition for forming the cured coating film excellent in property, and a coating agent using the same.
 しかるに本発明者は、かかる事情に鑑み鋭意研究を重ねた結果、ウレタン(メタ)アクリレート系化合物を含有する活性エネルギー線硬化性樹脂組成物において、多糖誘導体を含有させることにより、溶剤成分を蒸発させる際の粘度変化を大きくし、塗膜表面の浮き上がりを抑制できるため、硬化塗膜表面の凹凸を隠蔽することができ、平滑な基材に対しては平滑性や透明性に優れ、微細な意匠性のある基材に対しては塗膜の外観や透明性に優れた硬化塗膜を得るための活性エネルギー線硬化性樹脂組成物を見出し、本発明を完成した。 However, as a result of intensive studies in view of such circumstances, the present inventor evaporates the solvent component by including the polysaccharide derivative in the active energy ray-curable resin composition containing the urethane (meth) acrylate compound. The surface of the cured coating surface can be concealed by increasing the viscosity change at the time and suppressing the lifting of the coating surface. Excellent smoothness and transparency for smooth substrates, and a fine design An active energy ray-curable resin composition for obtaining a cured coating film excellent in appearance and transparency of the coating film was found for a flexible substrate, and the present invention was completed.
 即ち、本発明の要旨は、ウレタン(メタ)アクリレート系化合物(A)及び多糖誘導体(B)を含有してなる活性エネルギー線硬化性樹脂組成物に関するものである。
 また、本発明においては、前記活性エネルギー線硬化性樹脂組成物を含有してなるコーティング剤、とりわけ金属蒸着のアンダーコート剤として用いるコーティング剤も提供するものである。
That is, the gist of the present invention relates to an active energy ray-curable resin composition comprising a urethane (meth) acrylate compound (A) and a polysaccharide derivative (B).
The present invention also provides a coating agent comprising the active energy ray-curable resin composition, particularly a coating agent used as an undercoat agent for metal deposition.
 本発明の活性エネルギー線硬化性樹脂組成物は、たとえ薄膜塗装による塗膜であっても、塗料中に内在する微粒子や異物などに起因する凹凸を隠蔽することができ、塗膜の外観、平滑性、透明性に優れた効果を有するものであり、特に微細な意匠性のある基材に対しては、その意匠部分を閉塞することなく、薄膜塗装でき、かつ、硬化塗膜中に含まれる微粒子や異物の影響による凹凸を隠蔽することが可能であり、意匠追従性、透明性に優れた効果を有するために、コーティング剤、とりわけ金属蒸着のアンダーコート剤として特に有用である。 Even if the active energy ray-curable resin composition of the present invention is a coating film by thin film coating, it can conceal unevenness caused by fine particles or foreign substances present in the coating, and the appearance and smoothness of the coating film can be concealed. In particular, for substrates with fine design properties, thin coating can be performed without blocking the design portion, and it is included in the cured coating film. It is possible to conceal unevenness due to the influence of fine particles and foreign matters, and is particularly useful as a coating agent, particularly an undercoat agent for metal vapor deposition, because it has an excellent design followability and transparency.
 以下に本発明を詳細に説明する。
 本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系化合物(A)及び多糖誘導体(B)を含有してなるものである。
The present invention is described in detail below.
The active energy ray-curable resin composition of the present invention comprises a urethane (meth) acrylate compound (A) and a polysaccharide derivative (B).
 なお、本発明において、(メタ)アクリルとはアクリルあるいはメタクリルを、(メタ)アクリロイルとはアクリロイルあるいはメタクリロイルを、(メタ)アクリレートとはアクリレートあるいはメタクリレートをそれぞれ意味するものである。 In the present invention, (meth) acryl means acryl or methacryl, (meth) acryloyl means acryloyl or methacryloyl, and (meth) acrylate means acrylate or methacrylate.
〔ウレタン(メタ)アクリレート系化合物(A)〕
 本発明で用いるウレタン(メタ)アクリレート系化合物(A)としては、水酸基含有(メタ)アクリレート系化合物(a1)、多価イソシアネート系化合物(a2)及びポリオール系化合物(a3)を反応させて得られるウレタン(メタ)アクリレート系化合物(A1)、または、水酸基含有(メタ)アクリレート系化合物(a1)及び多価イソシアネート系化合物(a2)を反応させて得られるウレタン(メタ)アクリレート系化合物(A2)が挙げられ、これらの中から1種のみを単独で用いてもよいし、2種以上を併用してもよい。
[Urethane (meth) acrylate compound (A)]
The urethane (meth) acrylate compound (A) used in the present invention is obtained by reacting a hydroxyl group-containing (meth) acrylate compound (a1), a polyvalent isocyanate compound (a2) and a polyol compound (a3). A urethane (meth) acrylate compound (A2) obtained by reacting a urethane (meth) acrylate compound (A1) or a hydroxyl group-containing (meth) acrylate compound (a1) and a polyvalent isocyanate compound (a2). Among these, only one type may be used alone, or two or more types may be used in combination.
 これらの中でもプラスチック基材とアンダーコート層、アンダーコート層と金属蒸着膜との接着性付与の点で、ウレタン(メタ)アクリレート系化合物(A1)が好ましく、塗膜に機能性を付与するために微粒子を添加し、コーティング剤とする場合はウレタン(メタ)アクリレート系化合物(A2)が好ましいが、目的とする塗膜の諸物性付与を考慮して適宜選択される。 Among these, the urethane (meth) acrylate compound (A1) is preferable in terms of imparting adhesion between the plastic substrate and the undercoat layer, and the undercoat layer and the metal vapor-deposited film, in order to impart functionality to the coating film. When a fine particle is added to form a coating agent, the urethane (meth) acrylate compound (A2) is preferable, but is appropriately selected in consideration of imparting various physical properties of the target coating film.
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)の重量平均分子量は、500~50000であることが好ましく、更に好ましくは1000~30000である。かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。 The weight average molecular weight of the urethane (meth) acrylate compound (A) used in the present invention is preferably 500 to 50000, more preferably 1000 to 30000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
 なお、上記の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフィー(昭和電工社製、「Shodex GPC system-11型」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×107、分離範囲:100~2×107、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本直列を用いることにより測定される。 The above-mentioned weight average molecular weight is a weight average molecular weight in terms of standard polystyrene molecular weight, and the column: Shodex GPC KF-806L (excluded) was subjected to high performance liquid chromatography (“Shodex GPC system-11” manufactured by Showa Denko KK). (Limit molecular weight: 2 × 10 7 , separation range: 100 to 2 × 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler particle size: 10 μm) Measured by using series.
 上記ウレタン(メタ)アクリレート系化合物(A)の60℃における粘度は、500~15万mPa・sであることが好ましく、特に好ましくは500~12万mPa・s、更に好ましくは1000~10万mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 なお、粘度の測定法はE型粘度計による。
The viscosity of the urethane (meth) acrylate compound (A) at 60 ° C. is preferably 500 to 150,000 mPa · s, particularly preferably 500 to 120,000 mPa · s, and more preferably 1000 to 100,000 mPa · s. -S. When the viscosity is out of the above range, the coatability tends to be lowered.
In addition, the measuring method of a viscosity is based on an E-type viscometer.
〈ウレタン(メタ)アクリレート系化合物(A1)〉
 水酸基含有(メタ)アクリレート系化合物(a1)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、脂肪酸変性-グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート、ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 これらの中でも、エチレン性不飽和基を1個有する水酸基(メタ)アクリレート系化合物が塗膜形成の際の硬化収縮を緩和することができる理由から好ましく、更に好ましくは、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートであり、特には2-ヒドロキシエチル(メタ)アクリレートを用いることが、反応性および汎用性に優れる点で好ましい。
 また、これらは1種または2種以上組み合わせて使用することができる。
<Urethane (meth) acrylate compound (A1)>
Examples of the hydroxyl group-containing (meth) acrylate compound (a1) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth). Acrylate, hydroxyalkyl (meth) acrylate such as 6-hydroxyhexyl (meth) acrylate, 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth) ) Acrylate, dipropylene glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) Acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyl-oxypropyl methacrylate, pentaerythritol tri (meth) acrylate, caprolactone-modified penta Erythritol tri (meth) acrylate, ethylene oxide modified pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, ethylene oxide modified dipentaerythritol penta (meth) acrylate, etc. Is mentioned.
Among these, a hydroxyl group (meth) acrylate compound having one ethylenically unsaturated group is preferable because it can mitigate cure shrinkage during coating film formation, and more preferably 2-hydroxyethyl (meth). Hydroxyalkyl (meth) acrylates such as acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, It is preferable to use 2-hydroxyethyl (meth) acrylate in terms of excellent reactivity and versatility.
Moreover, these can be used 1 type or in combination of 2 or more types.
 多価イソシアネート系化合物(a2)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等の脂環式系ポリイソシアネート、或いはこれらポリイソシアネートの3量体化合物又は多量体化合物、アロファネート型ポリイソシアネート、ビュレット型ポリイソシアネート、水分散型ポリイソシアネート(例えば、日本ポリウレタン工業(株)製の「アクアネート100」、「アクアネート110」、「アクアネート200」「アクアネート210」等)、等が挙げられる。
 これらの中でも、黄変が少ない点から、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族系ジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等の脂環式系ジイソシアネートが、好ましく用いられ、特に好ましくは硬化収縮が小さい点でイソホロンジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネートが用いられ、更に好ましくは、反応性および汎用性に優れる点でイソホロンジイソシアネートが用いられる。
Examples of the polyvalent isocyanate compound (a2) include aromatics such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate. Aliphatic polyisocyanates such as polyisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (Isocyanatomethyl) Cycloaliphatic polyisocyanates such as hexane, trimer compounds or multimeric compounds of these polyisocyanates, allophanate polyisocyanates, burette polyisocyanates, water-dispersed polyisocyanates (for example, manufactured by Nippon Polyurethane Industry Co., Ltd.) "Aquanate 100", "Aquanate 110", "Aquanate 200", "Aquanate 210", etc.).
Among these, from the point of less yellowing, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1, An alicyclic diisocyanate such as 3-bis (isocyanatomethyl) cyclohexane is preferably used, and isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, and hydrogenated xylylene diisocyanate are particularly preferably used in terms of low cure shrinkage. More preferably, isophorone diisocyanate is used in terms of excellent reactivity and versatility.
 ポリオール系化合物(a3)としては、例えば、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、(メタ)アクリル系ポリオール、ポリシロキサン系ポリオール等が挙げられる。 Examples of the polyol compound (a3) include polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, polybutadiene polyols, (meth) acrylic polyols, polysiloxane polyols, and the like.
 上記ポリエーテル系ポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール、ポリヘキサメチレングリコール等のアルキレン構造含有ポリエーテル系ポリオールや、これらポリアルキレングリコールのランダム或いはブロック共重合体が挙げられる。 Examples of the polyether polyol include, for example, polyether glycols containing an alkylene structure such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block copolymers of these polyalkylene glycols. Coalescence is mentioned.
 上記ポリエステル系ポリオールとしては、例えば、多価アルコールと多価カルボン酸との縮合重合物;環状エステル(ラクトン)の開環重合物;多価アルコール、多価カルボン酸及び環状エステルの3種類の成分による反応物などが挙げられる。 Examples of the polyester-based polyol include three types of components: a condensation polymer of a polyhydric alcohol and a polycarboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a polyhydric alcohol, a polycarboxylic acid, and a cyclic ester. And the like.
 前記多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオールなど)、ビスフェノール類(ビスフェノールAなど)、糖アルコール類(キシリトールやソルビトールなど)などが挙げられる。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylene diol, 1,3-tetramethylene diol, 2-methyl-1,3-trimethyl. Methylene diol, 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, 3-methyl-1,5-pentamethylene diol, 2,4-diethyl-1,5-pentamethylene diol, glycerin , Trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), bisphenols (such as bisphenol A), sugar alcohols (such as xylitol and sorbitol)
 前記多価カルボン酸としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸などが挙げられる。 Examples of the polyvalent carboxylic acid include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, and the like.
 前記環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなどが挙げられる。 Examples of the cyclic ester include propiolactone, β-methyl-δ-valerolactone, and ε-caprolactone.
 上記ポリカーボネート系ポリオールとしては、例えば、多価アルコールとホスゲンとの反応物;環状炭酸エステル(アルキレンカーボネートなど)の開環重合物などが挙げられる。 Examples of the polycarbonate polyol include a reaction product of a polyhydric alcohol and phosgene; a ring-opening polymer of a cyclic carbonate (such as alkylene carbonate).
 前記多価アルコールとしては、前記ポリエステル系ポリオールの説明中で例示の多価アルコール等が挙げられ、上記アルキレンカーボネートとしては、例えば、エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネートなどが挙げられる。 Examples of the polyhydric alcohol include polyhydric alcohols exemplified in the description of the polyester-based polyol, and examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate, and the like. It is done.
 なお、ポリカーボネートポリオールは、分子内にカーボネート結合を有し、末端がヒドロキシル基である化合物であればよく、カーボネート結合とともにエステル結合を有していてもよい。 The polycarbonate polyol may be a compound having a carbonate bond in the molecule and having a terminal hydroxyl group, and may have an ester bond together with the carbonate bond.
 上記ポリオレフィン系ポリオールとしては、飽和炭化水素骨格としてエチレン、プロピレン、ブテン等のホモポリマーまたはコポリマーを有し、その分子末端に水酸基を有するものが挙げられる。 Examples of the polyolefin-based polyol include those having a saturated hydrocarbon skeleton having a homopolymer or copolymer such as ethylene, propylene and butene, and having a hydroxyl group at the molecular end.
 上記ポリブタジエン系ポリオールとしては、炭化水素骨格としてブタジエンの共重合体を有し、その分子末端に水酸基を有するものが挙げられる。
 ポリブタジエン系ポリオールは、その構造中に含まれるエチレン性不飽和基の全部または一部が水素化された水添化ポリブタジエンポリオールであってもよい。
Examples of the polybutadiene-based polyol include those having a butadiene copolymer as a hydrocarbon skeleton and having a hydroxyl group at the molecular end.
The polybutadiene-based polyol may be a hydrogenated polybutadiene polyol in which all or part of the ethylenically unsaturated groups contained in the structure thereof are hydrogenated.
 上記(メタ)アクリル系ポリオールとしては、(メタ)アクリル酸エステルを重合体又は共重合体の分子内にヒドロキシル基を少なくとも2つ有しているものが挙げられ、かかる(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the (meth) acrylic polyol include those having at least two hydroxyl groups in the molecule of the polymer or copolymer of the (meth) acrylic acid ester. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, (meth) acrylic And (meth) acrylic acid alkyl esters such as 2-ethylhexyl acid, decyl (meth) acrylate, dodecyl (meth) acrylate, and octadecyl (meth) acrylate.
 上記ポリシロキサン系ポリオールとしては、例えば、ジメチルポリシロキサンポリオールやメチルフェニルポリシロキサンポリオール等が挙げられる。 Examples of the polysiloxane polyol include dimethyl polysiloxane polyol and methylphenyl polysiloxane polyol.
 これらの中でも、ポリエステル系ポリオール、ポリエーテル系ポリオールが好ましく、特に好ましくは硬化時に柔軟性等の機械的物性に優れる点でポリエステル系ポリオールである。 Among these, polyester-based polyols and polyether-based polyols are preferable, and polyester-based polyols are particularly preferable because they are excellent in mechanical properties such as flexibility during curing.
 上記ポリオール系化合物(a3)の重量平均分子量としては、500~8000が好ましく、特に好ましくは550~5000、更に好ましくは600~3000である。ポリオール系化合物(a3)の分子量が大きすぎると、硬化時に塗膜硬度等の機械的物性が低下する傾向があり、小さすぎると硬化収縮が大きく安定性が低下する傾向がある。 The weight-average molecular weight of the polyol compound (a3) is preferably 500 to 8000, particularly preferably 550 to 5000, and more preferably 600 to 3000. If the molecular weight of the polyol compound (a3) is too large, mechanical properties such as coating film hardness tend to be reduced during curing, and if too small, curing shrinkage tends to be large and stability tends to be decreased.
 ウレタン(メタ)アクリレート系化合物(A1)の製造法は、通常、上記水酸基含有(メタ)アクリレート系化合物(a1)、多価イソシアネート系化合物(a2)、ポリオール系化合物(a3)を、反応器に一括又は別々に仕込み反応させればよいが、ポリオール系化合物(a3)と多価イソシアネート系化合物(a2)とを予め反応させて得られる反応生成物に、水酸基含有(メタ)アクリレート系化合物(a1)を反応させるのが、反応の安定性や副生成物の低減等の点で有用である。 The production method of the urethane (meth) acrylate compound (A1) is usually the above hydroxyl group-containing (meth) acrylate compound (a1), polyvalent isocyanate compound (a2), and polyol compound (a3) in a reactor. The reaction product obtained by reacting the polyol compound (a3) and the polyvalent isocyanate compound (a2) in advance may be added to the hydroxyl group-containing (meth) acrylate compound (a1). ) Is useful in terms of reaction stability and reduction of by-products.
 ポリオール系化合物(a3)と多価イソシアネート系化合物(a2)との反応には、公知の反応手段を用いることができる。その際、例えば、多価イソシアネート系化合物(a2)中のイソシアネート基:ポリオール系化合物(a3)中の水酸基とのモル比を通常2n:(2n-2)(nは2以上の整数)程度にすることにより、イソシアネート基を残存させた末端イソシアネート基含有ウレタン(メタ)アクリレート系化合物を得た後、水酸基含有(メタ)アクリレート系化合物(a1)との付加反応を可能にする。 For the reaction between the polyol compound (a3) and the polyvalent isocyanate compound (a2), known reaction means can be used. At that time, for example, the molar ratio of the isocyanate group in the polyvalent isocyanate compound (a2) to the hydroxyl group in the polyol compound (a3) is usually about 2n: (2n-2) (n is an integer of 2 or more). Thus, after obtaining the terminal isocyanate group-containing urethane (meth) acrylate compound having the isocyanate group remaining, the addition reaction with the hydroxyl group-containing (meth) acrylate compound (a1) is made possible.
 上記ポリオール系化合物(a3)と多価イソシアネート系化合物(a2)とを予め反応させて得られる反応生成物と、水酸基含有(メタ)アクリレート系化合物(a1)との付加反応にも、公知の反応手段を用いることができる。 The addition reaction of the reaction product obtained by reacting the polyol compound (a3) and the polyvalent isocyanate compound (a2) in advance with the hydroxyl group-containing (meth) acrylate compound (a1) is also a known reaction. Means can be used.
 反応生成物と水酸基含有(メタ)アクリレート系化合物(a1)との反応モル比は、例えば、多価イソシアネート系化合物(a2)のイソシアネート基が2個で、水酸基含有(メタ)アクリレート系化合物(a1)の水酸基が1個である場合は、反応生成物:水酸基含有(メタ)アクリレート系化合物(a1)が1:2程度であり、多価イソシアネート系化合物(a2)のイソシアネート基が3個で、水酸基含有(メタ)アクリレート系化合物(a1)の水酸基が1個である場合は、反応生成物:水酸基含有(メタ)アクリレート系化合物(a1)が1:3程度である。 The reaction molar ratio between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1) is, for example, that the polyisocyanate compound (a2) has two isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a1). ) Has one hydroxyl group, the reaction product: hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 2, and the polyisocyanate compound (a2) has three isocyanate groups. When the hydroxyl group-containing (meth) acrylate compound (a1) has one hydroxyl group, the reaction product: hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 3.
 この反応生成物と水酸基含有(メタ)アクリレート系化合物(a1)との付加反応においては、反応系の残存イソシアネート基含有率が0.5重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(A1)が得られる。 In the addition reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.5% by weight or less. A (meth) acrylate compound (A1) is obtained.
 かかるポリオール系化合物(a3)と多価イソシアネート系化合物(a2)との反応、更にその反応生成物と水酸基含有(メタ)アクリレート系化合物(a1)との反応においては、反応を促進する目的で触媒を用いることも好ましく、かかる触媒としては、例えば、ジブチル錫ジラウレート、トリメチル錫ヒドロキシド、テトラ-n-ブチル錫等の有機金属化合物、オクトエ酸亜鉛、オクトエ酸錫、ナフテン酸コバルト、塩化第1錫、塩化第2錫等の金属塩、トリエチルアミン、ベンジルジエチルアミン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン、N,N,N′,N′-テトラメチル-1,3-ブタンジアミン、N-エチルモルホリン等のアミン系触媒、硝酸ビスマス、臭化ビスマス、ヨウ化ビスマス、硫化ビスマス等の他、ジブチルビスマスジラウレート、ジオクチルビスマスジラウレート等の有機ビスマス化合物や、2-エチルヘキサン酸ビスマス塩、ナフテン酸ビスマス塩、イソデカン酸ビスマス塩、ネオデカン酸ビスマス塩、ラウリル酸ビスマス塩、マレイン酸ビスマス塩、ステアリン酸ビスマス塩、オレイン酸ビスマス塩、リノール酸ビスマス塩、酢酸ビスマス塩、ビスマスリビスネオデカノエート、ジサリチル酸ビスマス塩、ジ没食子酸ビスマス塩等の有機酸ビスマス塩等のビスマス系触媒等が挙げられ、中でも、ジブチル錫ジラウレート、1,8-ジアザビシクロ[5,4,0]ウンデセンが好適である。 In the reaction between the polyol compound (a3) and the polyvalent isocyanate compound (a2), and further in the reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1), a catalyst is used for the purpose of promoting the reaction. It is also preferable to use an organic metal compound such as dibutyltin dilaurate, trimethyltin hydroxide, tetra-n-butyltin, zinc octoate, tin octoate, cobalt naphthenate, stannous chloride. Metal salts such as stannic chloride, triethylamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0] undecene, N, N, N ′, Amine catalysts such as N'-tetramethyl-1,3-butanediamine and N-ethylmorpholine, bismuth nitrate, bromide Organic bismuth compounds such as dibutyl bismuth dilaurate and dioctyl bismuth dilaurate, bismuth 2-ethylhexanoate, bismuth naphthenate, bismuth isodecanoate, bismuth neodecanoate, lauryl Organic acid bismuth such as bismuth acid salt, bismuth maleate, bismuth stearate, bismuth oleate, bismuth linoleate, bismuth acetate, bismuth bisneodecanoate, bismuth disalicylate, bismuth digallate Examples thereof include bismuth-based catalysts such as salts, among which dibutyltin dilaurate and 1,8-diazabicyclo [5,4,0] undecene are preferable.
 またポリオール系化合物(a3)と多価イソシアネート系化合物(a2)との反応、更にその反応生成物と水酸基含有(メタ)アクリレート系化合物(a1)との反応においては、イソシアネート基に対して反応する官能基を有しない有機溶剤、例えば、酢酸エチル、酢酸ブチル等のエステル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族類等の有機溶剤を用いることができる。 In the reaction between the polyol compound (a3) and the polyvalent isocyanate compound (a2), and in the reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1), it reacts with the isocyanate group. Organic solvents having no functional group, for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and organic solvents such as aromatics such as toluene and xylene can be used.
 また、反応温度は、通常30~90℃、好ましくは40~80℃であり、反応時間は、通常2~10時間、好ましくは3~8時間である。 The reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A1)は、構造上の特性である金属蒸着層との接着性を活かす点で、20個以下のエチレン性不飽和基を有するものであることが好ましく、特に好ましくは10個以下のエチレン性不飽和基を有するものであり、更に好ましくは5個以下のエチレン性不飽和基を有するものである。 The urethane (meth) acrylate compound (A1) used in the present invention has 20 or less ethylenically unsaturated groups in that it makes use of the adhesiveness with the metal vapor deposition layer, which is a structural characteristic. Are preferable, particularly preferably those having 10 or less ethylenically unsaturated groups, and more preferably those having 5 or less ethylenically unsaturated groups.
 得られたウレタン(メタ)アクリレート系化合物(A1)の重量平均分子量は500~50000であることが好ましく、更に好ましくは1000~30000である。かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。 The weight average molecular weight of the obtained urethane (meth) acrylate compound (A1) is preferably 500 to 50,000, and more preferably 1,000 to 30,000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
 なお、上記の重量平均分子量とは、上記と同様にして測定される。 The weight average molecular weight is measured in the same manner as described above.
 ウレタン(メタ)アクリレート系化合物(A1)の60℃における粘度は500~15万mPa・sであることが好ましく、特に好ましくは500~12万mPa・s、更に好ましくは1000~10万mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 尚、粘度の測定法は、上記と同様、E型粘度計による。
The viscosity of the urethane (meth) acrylate compound (A1) at 60 ° C. is preferably 500 to 150,000 mPa · s, particularly preferably 500 to 120,000 mPa · s, and further preferably 1000 to 100,000 mPa · s. It is. When the viscosity is out of the above range, the coatability tends to be lowered.
The viscosity is measured by an E-type viscometer as described above.
 〈ウレタン(メタ)アクリレート系化合物(A2)〉
 本発明におけるウレタン(メタ)アクリレート系化合物(A2)は、水酸基含有(メタ)アクリレート系化合物(a1)及び多価イソシアネート系化合物(a2)を反応させて得られるものである。
<Urethane (meth) acrylate compound (A2)>
The urethane (meth) acrylate compound (A2) in the present invention is obtained by reacting a hydroxyl group-containing (meth) acrylate compound (a1) and a polyvalent isocyanate compound (a2).
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A2)は、硬化塗膜の硬度の点から3個以上のエチレン性不飽和基を有するものであることが好ましく、特に好ましくは4個以上のエチレン性不飽和基を有するものであり、更に好ましくは6個以上のエチレン性不飽和基を有するものであり、これらの中でもペンタエリスリトールトリ(メタ)アクリレートとイソホロンジイソシアネートとを反応させてなる6個のエチレン性不飽和基を有するウレタン(メタ)アクリレートが殊に好ましい。
 また、ウレタン(メタ)アクリレート系化合物(A2)が含有するエチレン性不飽和基の上限は通常30個であり、好ましくは25個以下である。
The urethane (meth) acrylate-based compound (A2) used in the present invention preferably has 3 or more ethylenically unsaturated groups from the viewpoint of the hardness of the cured coating film, particularly preferably 4 or more. Those having ethylenically unsaturated groups, more preferably those having 6 or more ethylenically unsaturated groups, and among these, 6 obtained by reacting pentaerythritol tri (meth) acrylate with isophorone diisocyanate The urethane (meth) acrylate having an ethylenically unsaturated group is particularly preferred.
Moreover, the upper limit of the ethylenically unsaturated group which a urethane (meth) acrylate type compound (A2) contains is 30 normally, Preferably it is 25 or less.
 なお、エチレン性不飽和基の個数を調整するためには、水酸基含有(メタ)アクリレート系化合物(a1)と、多価イソシアネート系化合物(a2)とを、適宜選択して用いればよく、例えば、水酸基含有(メタ)アクリレート系化合物(a1)として3個のエチレン性不飽和基を有するものを用いて、多価イソシアネート系化合物(a2)として、ジイソシアネート化合物を用いる場合には、ウレタン(メタ)アクリレート系化合物(A2)中のエチレン性不飽和基数は6個となる。 In order to adjust the number of ethylenically unsaturated groups, the hydroxyl group-containing (meth) acrylate compound (a1) and the polyvalent isocyanate compound (a2) may be appropriately selected and used. When using a hydroxyl group-containing (meth) acrylate compound (a1) having three ethylenically unsaturated groups and using a diisocyanate compound as the polyvalent isocyanate compound (a2), urethane (meth) acrylate The number of ethylenically unsaturated groups in the compound (A2) is 6.
 ウレタン(メタ)アクリレート系化合物(A2)の製造方法については、上記ウレタン(メタ)アクリレート系化合物(A1)の製造方法に準じて製造すればよい。 What is necessary is just to manufacture according to the manufacturing method of the said urethane (meth) acrylate type compound (A1) about the manufacturing method of a urethane (meth) acrylate type compound (A2).
 なお、多価イソシアネート系化合物(a2)と水酸基含有(メタ)アクリレート系化合物(a1)との反応モル比は、例えば、多価イソシアネート系化合物(a2)のイソシアネート基が2個で、水酸基含有(メタ)アクリレート系化合物(a1)の水酸基が1個である場合は、多価イソシアネート系化合物(a2):水酸基含有(メタ)アクリレート系化合物(a1)が1:2程度であり、多価イソシアネート系化合物(a2)のイソシアネート基が3個で、水酸基含有(メタ)アクリレート系化合物(a1)の水酸基が1個である場合は、多価イソシアネート系化合物(a2):水酸基含有(メタ)アクリレート系化合物(a1)が1:3程度である。 The reaction molar ratio between the polyvalent isocyanate compound (a2) and the hydroxyl group-containing (meth) acrylate compound (a1) is, for example, that the polyisocyanate compound (a2) has two isocyanate groups and has a hydroxyl group content ( When the meth) acrylate compound (a1) has one hydroxyl group, the polyvalent isocyanate compound (a2): hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 2, and the polyisocyanate compound When the compound (a2) has three isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a1) has one hydroxyl group, the polyvalent isocyanate compound (a2): hydroxyl group-containing (meth) acrylate compound (A1) is about 1: 3.
 この多価イソシアネート系化合物(a2)と水酸基含有(メタ)アクリレート系化合物(a1)との付加反応においては、反応系の残存イソシアネート基含有率が0.5重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(A2)が得られる。 In the addition reaction between the polyvalent isocyanate compound (a2) and the hydroxyl group-containing (meth) acrylate compound (a1), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.5% by weight or less. By making it, a urethane (meth) acrylate type compound (A2) is obtained.
 得られたウレタン(メタ)アクリレート系化合物(A2)の重量平均分子量は500~50000であることが好ましく、更に好ましくは1000~30000である。かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。 The weight average molecular weight of the obtained urethane (meth) acrylate compound (A2) is preferably 500 to 50000, more preferably 1000 to 30000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
 尚、上記の重量平均分子量は、上記と同様にして測定される。 The weight average molecular weight is measured in the same manner as described above.
 ウレタン(メタ)アクリレート系化合物(A2)の60℃における粘度は500~15万mPa・sであることが好ましく、特に好ましくは500~12万mPa・s、更に好ましくは1000~10万mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 尚、粘度の測定法は、上記と同様、E型粘度計による。
The viscosity of the urethane (meth) acrylate compound (A2) at 60 ° C. is preferably 500 to 150,000 mPa · s, particularly preferably 500 to 120,000 mPa · s, and more preferably 1000 to 100,000 mPa · s. It is. When the viscosity is out of the above range, the coatability tends to be lowered.
The viscosity is measured by an E-type viscometer as described above.
〔多糖誘導体(B)〕
 本発明における多糖とは、単糖分子がグリコシド結合によって多数結合した糖のことであり、単糖類が10個以上結合した化合物である。それらは、生物による生合成産物として得られるが、生合成産物そのものとして、あるいは、人工的に化学改変した化合物として、工業的には食品の他に、繊維、製紙、化粧品や歯磨剤等の日用品、接着剤(糊)、医療など広い範囲に適用されている物質群である。
[Polysaccharide derivative (B)]
The polysaccharide in the present invention is a saccharide in which a large number of monosaccharide molecules are bonded by glycosidic bonds, and is a compound in which 10 or more monosaccharides are bonded. They are obtained as biological biosynthetic products, but as biosynthetic products themselves or artificially chemically modified compounds, industrially, in addition to food, daily necessaries such as fibers, paper, cosmetics and dentifrices It is a group of substances that are applied in a wide range such as adhesives (glue) and medicine.
 本発明中における多糖誘導体(B)とは、生合成産物由来そのもの、および、生合成産物を人工的に改変した多糖化合物の全てを指すものとする。
 本発明で用いられる多糖誘導体(B)としては、ホモ多糖類、ヘテロ多糖類が含まれ、例えば、α-1,4-グルカン(アミロース、アミロペクチン)、α-1,6-グルカン(デキストラン)、β-1,4-グルカン(セルロース)、β-1,6-グルカン(プスツラン)、β-1,3-グルカン(例えば、カードラン、ジゾフィラン等)、α-1,3-グルカン、β-1,2-グルカン(Crown Gall多糖)等のα-又はβ-グルカン誘導体、β-1,4-ガラクタン、β-1,4-マンナン、α-1,6-マンナン、β-1,2-フラクタン(イヌリン)、β-2,6-フラクタン(レバン)、β-1,4-キシラン、β-1,3-キシラン、β-1,4-キトサン、β-1,4-N-アセチルキトサン(キチン)、プルラン、アガロース、アルギン酸等が挙げられ、アミロースを含有する澱粉なども含まれる。
 これらの中でも、ウレタン(メタ)アクリレート系化合物や溶剤との相溶性の点でα-グルカン誘導体又はβ-グルカン誘導体が好ましく、特に好ましくはβ-グルカン誘導体、更に好ましくはセルロース誘導体である。
The polysaccharide derivative (B) in the present invention refers to all of the polysaccharide compounds derived from the biosynthetic product itself and the polysaccharide compounds obtained by artificially modifying the biosynthetic product.
The polysaccharide derivative (B) used in the present invention includes homopolysaccharides and heteropolysaccharides. For example, α-1,4-glucan (amylose, amylopectin), α-1,6-glucan (dextran), β-1,4-glucan (cellulose), β-1,6-glucan (pustulan), β-1,3-glucan (eg, curdlan, dizophyllan, etc.), α-1,3-glucan, β-1 , 2-glucan (Crown Gall polysaccharide) and other α- or β-glucan derivatives, β-1,4-galactan, β-1,4-mannan, α-1,6-mannan, β-1,2-fructan (Inulin), β-2,6-fructan (levan), β-1,4-xylan, β-1,3-xylan, β-1,4-chitosan, β-1,4-N-acetylchitosan ( Chitin), pullulan, agarose, Examples include alginic acid, and starch containing amylose is also included.
Among these, α-glucan derivatives or β-glucan derivatives are preferable from the viewpoint of compatibility with urethane (meth) acrylate compounds and solvents, and β-glucan derivatives are particularly preferable, and cellulose derivatives are more preferable.
 多糖誘導体(B)としては、多糖の水酸基の全部または一部が、-C(O)R、-C(O)NH(R)、-C(O)N(R)(R)および-Rのような他の置換基で置換されたものが好ましい。ここで、Rは、炭素数1~3の脂肪族基、炭素数3~10の脂環式基または炭素数4~20の芳香族もしくはヘテロ芳香族であって、そのR自体は置換基で任意に置換されていても良い。他の置換基は1種又は2種以上が置換されていても良い。 As the polysaccharide derivative (B), all or a part of the hydroxyl groups of the polysaccharide may be —C (O) R, —C (O) NH (R), —C (O) N (R) (R) and —R. Those substituted with other substituents such as are preferred. Here, R is an aliphatic group having 1 to 3 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, or an aromatic or heteroaromatic group having 4 to 20 carbon atoms, and R itself is a substituent. It may be optionally substituted. One or more kinds of other substituents may be substituted.
 より好ましい多糖誘導体(B)としては、アシル化多糖が挙げられる。アシル化多糖の好ましいアシル基としては、アセチル、ブチリル、ベンゾイル、メチルベンゾイル、ジメチルベンゾイル、クロロベンゾイル、ジクロロベンゾイルが挙げられる。 More preferred polysaccharide derivatives (B) include acylated polysaccharides. Preferred acyl groups of the acylated polysaccharide include acetyl, butyryl, benzoyl, methylbenzoyl, dimethylbenzoyl, chlorobenzoyl, dichlorobenzoyl.
 また、多糖誘導体(B)としては、塗料中に内在する微粒子や異物などに起因する凹凸が隠蔽できる点で数平均分子量(Mn)が5,000~200,000のものが好ましく、特に好ましくは7,500~150,000であり、更に好ましくは10,000~100,000である。かかる数平均分子量が小さすぎると微粒子や混入する異物の浮き上がりを抑制することにより凹凸を隠蔽することができないため、表面平滑性および透明性を持つ薄膜硬化塗膜が得られにくくなる傾向があり、大きすぎると溶剤に対する溶解性や他の成分との相溶性が低下する傾向がある。 Further, the polysaccharide derivative (B) is preferably one having a number average molecular weight (Mn) of 5,000 to 200,000, particularly preferably from the viewpoint that concavities and convexities caused by fine particles or foreign substances present in the paint can be concealed. It is 7,500 to 150,000, more preferably 10,000 to 100,000. If the number average molecular weight is too small, the unevenness cannot be concealed by suppressing the lifting of fine particles and mixed foreign matter, so that it tends to be difficult to obtain a thin film cured coating having surface smoothness and transparency, If it is too large, the solubility in the solvent and the compatibility with other components tend to decrease.
 上記の数平均分子量は、標準ポリスチレン分子量換算による数平均分子量であり、高速液体クロマトグラフィー(日本Waters社製、「Waters 2695(本体)」と「Waters 2414(検出器)」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×107分離範囲:100~2×107、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本直列を用いることにより測定されるものである。 The above-mentioned number average molecular weight is a number average molecular weight in terms of standard polystyrene molecular weight. The column: Shodex is used in high performance liquid chromatography (manufactured by Japan Waters, “Waters 2695 (main body)” and “Waters 2414 (detector)”). GPC KF-806L (exclusion limit molecular weight: 2 × 10 7 separation range: 100 to 2 × 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler particle size: It is measured by using three series of 10 μm).
 本発明においては、上記の中でも、好適な多糖誘導体(B)としては、例えば、セルロースアセテートブチレート樹脂、セルロースアセテートプロピオネート樹脂等のセルロースアセテートアルキレート樹脂、セルロースアセテート樹脂等を挙げることができる。
 また、上記の多糖誘導体(B)は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
In the present invention, among the above, preferable examples of the polysaccharide derivative (B) include cellulose acetate alkylate resins such as cellulose acetate butyrate resin and cellulose acetate propionate resin, and cellulose acetate resins. .
Moreover, said polysaccharide derivative (B) may be used individually by 1 type, and may use 2 or more types together.
 本発明において、多糖誘導体(B)の含有量としては、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して、3重量部以上であることが好ましく、特に好ましくは3~1000重量部、更に好ましくは5~500重量部、殊に好ましくは8~100重量部であることが好ましい。多糖誘導体(B)の含有量が多すぎると硬化塗膜のレベリング性を低下させたり、金属蒸着のアンダーコート用途で使用する際に硬化塗膜と金属蒸着層との接着性を低下させたり、活性エネルギー線硬化性成分割合が低下することとなるため充分な塗膜表面硬度が得難くなる傾向がある。
 一方、多糖誘導体(B)の含有量が少なすぎると、塗料中に内在する微粒子や異物などに起因する凹凸の隠蔽効果が低下する傾向がある。
In the present invention, the content of the polysaccharide derivative (B) is preferably 3 parts by weight or more, particularly preferably 3 to 1000 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). More preferably, it is 5 to 500 parts by weight, particularly preferably 8 to 100 parts by weight. If the content of the polysaccharide derivative (B) is too much, the leveling property of the cured coating film is lowered, or the adhesiveness between the cured coating film and the metal deposition layer is lowered when used in an undercoat application of metal deposition, Since the proportion of the active energy ray-curable component is lowered, there is a tendency that sufficient coating surface hardness is difficult to obtain.
On the other hand, when the content of the polysaccharide derivative (B) is too small, the concealing effect of unevenness due to fine particles or foreign matters present in the coating tends to be lowered.
〔エチレン性不飽和モノマー(C)〕
 上記エチレン性不飽和モノマー(C)としては、1分子中に1個以上のエチレン性不飽和基を有するエチレン性不飽和モノマー(ウレタン(メタ)アクリレート系化合物(A)を除く)であればよく、例えば、単官能モノマー、2官能モノマー、3官能以上のモノマーが挙げられる。
[Ethylenically unsaturated monomer (C)]
The ethylenically unsaturated monomer (C) may be any ethylenically unsaturated monomer (excluding the urethane (meth) acrylate compound (A)) having one or more ethylenically unsaturated groups in one molecule. , For example, a monofunctional monomer, a bifunctional monomer, a trifunctional or higher monomer.
 単官能モノマーとしては、エチレン性不飽和基を1つ含有するモノマーであればよく、例えば、スチレン、ビニルトルエン、クロロスチレン、α-メチルスチレン、メチル(メタ)アクリレート、エチル(メタ)アクリレート、アクリロニトリル、酢酸ビニル、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、ラウリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノールプロピレンオキサイド変性(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート等のフタル酸誘導体のハーフエステル(メタ)アクリレート、フルフリル(メタ)アクリレート、カルビトール(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、アクリロイルモルフォリン、2-ヒドロキシエチルアクリルアミド、N-メチロール(メタ)アクリルアミド、N-ビニルピロリドン、2-ビニルピリジン、2-(メタ)アクリロイルオキシエチルアシッドホスフェートモノエステル等が挙げられる。 The monofunctional monomer may be any monomer containing one ethylenically unsaturated group. For example, styrene, vinyl toluene, chlorostyrene, α-methylstyrene, methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile , Vinyl acetate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerol mono (meth) acrylate, glycidyl (meth) acrylate, lauryl (meth) acrylate Rate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate , Octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate, phenol ethylene oxide modified ( Phthalic acid derivatives such as (meth) acrylate, nonylphenol propylene oxide modified (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate -Furester (meth) acrylate, furfuryl (meth) acrylate, carbitol (meth) acrylate, benzyl (meth) acrylate, butoxyethyl (meth) acrylate, allyl (meth) acrylate, acryloylmorpholine, 2-hydroxyethylacrylamide, N- Examples include methylol (meth) acrylamide, N-vinylpyrrolidone, 2-vinylpyridine, 2- (meth) acryloyloxyethyl acid phosphate monoester and the like.
 また、前記の単官能モノマーの他にアクリル酸のミカエル付加物あるいは2-アクリロイルオキシエチルジカルボン酸モノエステルも挙げられ、アクリル酸のミカエル付加物としては、アクリル酸ダイマー、メタクリル酸ダイマー、アクリル酸トリマー、メタクリル酸トリマー、アクリル酸テトラマー、メタクリル酸テトラマー等が挙げられる。また、特定の置換基をもつカルボン酸である2-アクリロイルオキシエチルジカルボン酸モノエステルとしては、例えば2-アクリロイルオキシエチルコハク酸モノエステル、2-メタクリロイルオキシエチルコハク酸モノエステル、2-アクリロイルオキシエチルフタル酸モノエステル、2-メタクリロイルオキシエチルフタル酸モノエステル、2-アクリロイルオキシエチルヘキサヒドロフタル酸モノエステル、2-メタクリロイルオキシエチルヘキサヒドロフタル酸モノエステル等が挙げられる。更に、オリゴエステルアクリレートも挙げられる。 In addition to the monofunctional monomer, there may be mentioned Michael adduct of acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester. Examples of the Michael adduct of acrylic acid include acrylic acid dimer, methacrylic acid dimer, acrylic acid trimer. Methacrylic acid trimer, acrylic acid tetramer, methacrylic acid tetramer and the like. Examples of 2-acryloyloxyethyl dicarboxylic acid monoester which is a carboxylic acid having a specific substituent include 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, and 2-acryloyloxyethyl. Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, oligoester acrylate is also mentioned.
 2官能モノマーとしては、エチレン性不飽和基を2つ含有するモノマーであればよく、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールエチレンオキサイド変性ジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート、2-(メタ)アクリロイルオキシエチルアシッドホスフェートジエステル等が挙げられる。 The bifunctional monomer may be any monomer containing two ethylenically unsaturated groups. For example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol Di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide Modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate 1,6-hexanediol ethylene oxide modified di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) ) Acrylate, phthalic acid diglycidyl ester di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified diacrylate, 2- (meth) acryloyloxyethyl acid phosphate diester, etc. .
 3官能以上のモノマーとしては、エチレン性不飽和基を3個以上含有するモノマーであればよく、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリアクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、コハク酸変性ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。 The tri- or higher functional monomer may be any monomer containing three or more ethylenically unsaturated groups. For example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) Acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanuric acid ethylene oxide modified triacrylate, ethylene Oxide-modified dipentaerythritol penta (meth) acrylate, ethylene oxide-modified dipentaerythritol hexa (meth) acrylate, ethylene Koxide modified pentaerythritol tri (meth) acrylate, ethylene oxide modified pentaerythritol tetra (meth) acrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) acrylate, caprolactone modified pentaerythritol tri (meth) ) Acrylate, caprolactone-modified pentaerythritol tetra (meth) acrylate, succinic acid-modified pentaerythritol tri (meth) acrylate, and the like.
 これらエチレン性不飽和モノマー(C)は単独で用いてもよいし、2種以上を併用してもよい。 These ethylenically unsaturated monomers (C) may be used alone or in combination of two or more.
 本発明では、上記エチレン性不飽和モノマー(C)の中でも、活性エネルギー線照射により架橋させ網目構造を形成させることで、塗膜における耐水性、耐熱性等の耐久性を向上させる点でエチレン性不飽和基を2つ以上含有する多官能モノマーであることが好ましく、更には高次な網目構造を形成させる点でエチレン性不飽和基を3つ以上含有する多官能性モノマーであることが好ましい。
 具体的には、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートであることが高次な網目構造を形成した塗膜が得られる点で好ましい。
In the present invention, among the above-mentioned ethylenically unsaturated monomers (C), it is cross-linked by irradiation with active energy rays to form a network structure, thereby improving the durability such as water resistance and heat resistance in the coating film. It is preferably a polyfunctional monomer containing two or more unsaturated groups, and more preferably a polyfunctional monomer containing three or more ethylenically unsaturated groups from the viewpoint of forming a higher-order network structure. .
Specifically, for example, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate has a higher-order network structure. It is preferable at the point from which the formed coating film is obtained.
 本発明において、エチレン性不飽和モノマー(C)の含有量としては、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して、10~500重量部であることが好ましく、特には20~300重量部、更には30~100重量部であることが好ましい。エチレン性不飽和モノマー(C)の含有量が多すぎると、金属を蒸着する際にアンダーコート層と金属蒸着層との接着性が低下する傾向があり、少なすぎると、架橋による高次な網目構造が形成されず、塗膜の耐久性が低下する傾向がある。 In the present invention, the content of the ethylenically unsaturated monomer (C) is preferably 10 to 500 parts by weight, particularly 20 to 200 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). It is preferably 300 parts by weight, more preferably 30 to 100 parts by weight. If the content of the ethylenically unsaturated monomer (C) is too large, the adhesion between the undercoat layer and the metal deposition layer tends to be reduced when the metal is deposited, and if it is too small, a high-order network due to crosslinking is present. No structure is formed, and the durability of the coating film tends to decrease.
〔光重合開始剤(D)〕
 本発明では、更に、ウレタン(メタ)アクリレート系化合物(A)、多糖誘導体(B)の他に、活性エネルギー線による硬化を行うために光重合開始剤(D)を含有することが好ましい。
[Photopolymerization initiator (D)]
In the present invention, in addition to the urethane (meth) acrylate compound (A) and the polysaccharide derivative (B), it is preferable to contain a photopolymerization initiator (D) in order to perform curing with active energy rays.
 光重合開始剤(D)としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類;等があげられる。なお、これら光重合開始剤(D)は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the photopolymerization initiator (D) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2- Hydroxy-2-propyl) ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino) Acetophenones such as phenyl) butanone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomers; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether Benzoi etc. Benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2 , 4,6-Trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride Benzophenones such as 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4 Thioxanthones such as dimethyl-9H-thioxanthone-9-one mesochloride; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphos And acylphosphine oxides such as fin oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. In addition, as for these photoinitiators (D), only 1 type may be used independently and 2 or more types may be used together.
 また、これらの助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4′-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4′-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。 These auxiliary agents include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, 4-dimethylaminobenzoic acid. Ethyl, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone Etc. can be used in combination.
 これらの中でも、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾイルイソプロピルエーテル、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンを用いることが好ましい。 Among these, benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, benzoyl isopropyl ether, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1- It is preferable to use phenylpropan-1-one.
 光重合開始剤(D)の含有量としては、ウレタン(メタ)アクリレート系化合物(A)(エチレン性不飽和モノマー(C)を含有する場合はその合計)100重量部に対して、0.1~40重量部であることが好ましく、特に好ましくは1~20重量部、殊に好ましくは2~20重量部である。
 光重合開始剤(D)の含有量が少なすぎると硬化不良となる傾向があり、多すぎると塗料から析出するなど溶液安定性が低下する傾向があったり、脆化や着色の問題が起こりやすい傾向がある。
As content of a photoinitiator (D), it is 0.1 with respect to 100 weight part of urethane (meth) acrylate type compounds (A) (the total is the case where an ethylenically unsaturated monomer (C) is contained). It is preferably ˜40 parts by weight, particularly preferably 1 to 20 parts by weight, particularly preferably 2 to 20 parts by weight.
If the content of the photopolymerization initiator (D) is too small, curing tends to be poor, and if it is too large, solution stability tends to decrease, such as precipitation from the paint, and embrittlement and coloring problems tend to occur. Tend.
 かくして本発明のウレタン(メタ)アクリレート系化合物(A)及び多糖誘導体(B)、好ましくは更にエチレン性不飽和モノマー(C)、光重合開始剤(D)を含有する活性エネルギー線硬化性樹脂組成物が得られるが、必要に応じて更に、表面調整剤、レベリング剤、重合禁止剤等を添加することができる。 Thus, the active energy ray-curable resin composition containing the urethane (meth) acrylate compound (A) and polysaccharide derivative (B) of the present invention, preferably further containing an ethylenically unsaturated monomer (C) and a photopolymerization initiator (D). Although a product is obtained, a surface conditioner, a leveling agent, a polymerization inhibitor and the like can be further added as necessary.
 表面調整剤としては特に限定されず、例えば、アルキッド樹脂等を挙げることができる。
 かかるアルキッド樹脂は、塗布時の造膜性を付与する作用や、金属蒸着面との接着性を上げる作用を有する。
The surface conditioner is not particularly limited, and examples thereof include alkyd resins.
Such an alkyd resin has an effect of imparting a film-forming property at the time of application and an effect of increasing the adhesion to a metal vapor deposition surface.
 レベリング剤としては、塗液の基材への濡れ性付与作用、表面張力の低下作用を有するものであれば、公知一般のレベリング剤を用いることができ、例えば、シリコーン変性樹脂、フッ素変性樹脂、アルキル変性の樹脂等を用いることができる。 As the leveling agent, a known general leveling agent can be used as long as it has a wettability imparting action to the base material of the coating liquid and a surface tension reducing action. For example, a silicone-modified resin, a fluorine-modified resin, An alkyl-modified resin or the like can be used.
 重合禁止剤としては、例えば、p-ベンゾキノン、ナフトキノン、トルキノン、2,5-ジフェニル-p-ベンゾキノン、ハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、モノ-t-ブチルハイドロキノン、p-t-ブチルカテコール等を挙げることができる。 Examples of the polymerization inhibitor include p-benzoquinone, naphthoquinone, tolquinone, 2,5-diphenyl-p-benzoquinone, hydroquinone, 2,5-di-t-butylhydroquinone, methylhydroquinone, hydroquinone monomethyl ether, mono-t- Examples thereof include butyl hydroquinone and pt-butyl catechol.
 また、本発明の活性エネルギー線硬化性樹脂組成物には、油、酸化防止剤、難燃剤、帯電防止剤、充填剤、安定剤、補強剤、艶消し剤、研削剤、有機微粒子、無機微粒子、高分子化合物(アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、等)等を配合することも可能である。 The active energy ray-curable resin composition of the present invention includes oil, antioxidant, flame retardant, antistatic agent, filler, stabilizer, reinforcing agent, matting agent, abrasive, organic fine particles, and inorganic fine particles. It is also possible to blend polymer compounds (acrylic resin, polyester resin, epoxy resin, etc.) and the like.
 また、本発明の活性エネルギー線硬化性樹脂組成物は、必要に応じて、有機溶剤を配合し、粘度を調整して使用することも可能である。かかる有機溶剤としては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類、アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類、エチルセロソルブ等のセロソルブ類、トルエン、キシレン等の芳香族類、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類、ジアセトンアルコール等が挙げられる。これら上記の有機溶剤は、単独で用いてもよいし、2種以上を併用してもよい。 Moreover, the active energy ray-curable resin composition of the present invention can be used by blending an organic solvent and adjusting the viscosity as necessary. Examples of the organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol, ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone, cellosolves such as ethyl cellosolve, toluene, xylene And the like, glycol ethers such as propylene glycol monomethyl ether, acetates such as methyl acetate, ethyl acetate and butyl acetate, and diacetone alcohol. These organic solvents may be used alone or in combination of two or more.
 2種以上を併用する場合は、プロピレングリコールモノメチルエーテル等のグリコールエーテル類とメチルエチルケトン等のケトン類やメタノール等のアルコール類との組み合わせや、メチルエチルケトン等のケトン類とメタノール等のアルコール類の組み合わせ、メタノール等のアルコール類の中から2種以上を選び併用すること等が、塗膜外観の点で好ましい。 When two or more types are used in combination, a combination of glycol ethers such as propylene glycol monomethyl ether and ketones such as methyl ethyl ketone and alcohols such as methanol, a combination of ketones such as methyl ethyl ketone and alcohols such as methanol, methanol From the viewpoint of the appearance of the coating film, it is preferable to use two or more alcohols such as alcohols in combination.
 本発明の活性エネルギー線硬化性樹脂組成物は、上記有機溶剤を用いて、通常3~60重量%、好ましくは5~40重量%に希釈し、基材に塗布することができる。 The active energy ray-curable resin composition of the present invention can be diluted to 3 to 60% by weight, preferably 5 to 40% by weight, using the organic solvent, and can be applied to a substrate.
 なお、本発明の活性エネルギー線硬化性樹脂組成物を製造するにあたり、ウレタン(メタ)アクリレート系化合物(A)、多糖誘導体(B)、エチレン性不飽和モノマー(C)、光重合開始剤(D)の混合方法については、特に限定されるものではなく、種々の方法により混合することができる。 In producing the active energy ray-curable resin composition of the present invention, urethane (meth) acrylate compound (A), polysaccharide derivative (B), ethylenically unsaturated monomer (C), photopolymerization initiator (D The mixing method is not particularly limited, and can be mixed by various methods.
 本発明の活性エネルギー線硬化性樹脂組成物は、各種基材へのトップコート剤やアンカーコート剤など、塗膜形成用の硬化性樹脂組成物として有効に用いられるものであり、活性エネルギー線硬化性樹脂組成物を基材に塗工した後(有機溶剤で希釈した組成物を塗工した場合には、さらに乾燥させた後)、活性エネルギー線を照射することにより硬化される。塗工方法としては、特に限定されるものではなく、例えば、スプレー、シャワー、ディッピング、ロール、スピン、スクリーン印刷等のようなウェットコーティング法が挙げられる。 The active energy ray-curable resin composition of the present invention is effectively used as a curable resin composition for coating film formation, such as a topcoat agent and an anchor coat agent on various substrates, and is active energy ray-curable. After applying the functional resin composition to the substrate (after drying further when the composition diluted with the organic solvent is applied), it is cured by irradiating with active energy rays. The coating method is not particularly limited, and examples thereof include wet coating methods such as spray, shower, dipping, roll, spin, screen printing, and the like.
 かかる活性エネルギー線としては、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のし易さ、価格等から紫外線照射による硬化が有利である。尚、電子線照射を行う場合は、光重合開始剤(D)を用いなくても硬化し得る。 As such active energy rays, rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as X rays and γ rays, electron beams, proton rays, neutron rays, etc. can be used. Curing by ultraviolet irradiation is advantageous from the viewpoint of easy availability and price. In addition, when performing electron beam irradiation, it can harden | cure even if it does not use a photoinitiator (D).
 紫外線照射により硬化させる方法としては、150~450nm波長域の光を発する高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、LED等を用いて、30~3000mJ/cm2程度照射すればよい。
 紫外線照射後は、必要に応じて加熱を行って硬化の完全を図ることもできる。
As a method of curing by ultraviolet irradiation, using a high-pressure mercury lamp emitting ultra-high pressure mercury lamp, ultra-high pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, chemical lamp, electrodeless discharge lamp, LED, etc. The irradiation may be about 30 to 3000 mJ / cm 2 .
After the ultraviolet irradiation, heating can be performed as necessary to complete the curing.
 塗工膜厚(硬化後の膜厚)としては、通常1~50μmであることが好ましく、特には2~30μm、更には3~25μmであることが好ましい。中でも特に、薄塗りの場合は、1~15μmであることが好ましく、厚塗りの場合は、15~30μmであることが好ましく、特に好ましくは15~25μmである。 The coating film thickness (film thickness after curing) is usually preferably 1 to 50 μm, particularly 2 to 30 μm, more preferably 3 to 25 μm. In particular, in the case of thin coating, it is preferably 1 to 15 μm, and in the case of thick coating, it is preferably 15 to 30 μm, and particularly preferably 15 to 25 μm.
 本発明においては、たとえ薄膜塗装による塗膜であっても、塗料中に内在する微粒子や異物などに起因する凹凸や、基材自身に存在する凹凸などの影響を隠蔽することができるため、薄塗りの場合に非常に有効である。 In the present invention, even a coating film by thin film coating can conceal the influence of unevenness caused by fine particles or foreign substances present in the paint, unevenness existing in the substrate itself, etc. It is very effective for painting.
 本発明の活性エネルギー線硬化性樹脂組成物を塗工する対象である基材としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリスチレン系樹脂等やそれらの成型品(フィルム、シート、カップ、等)、金属(アルミニウム、銅、鉄、SUS,亜鉛、マグネシウム、これらの合金等)、ガラス等が挙げられる。 Examples of the base material to which the active energy ray-curable resin composition of the present invention is applied include polyolefin resins, polyester resins, polycarbonate resins, acrylonitrile butadiene styrene copolymers (ABS), polystyrene resins, and the like. These moldings (films, sheets, cups, etc.), metals (aluminum, copper, iron, SUS, zinc, magnesium, alloys thereof, etc.), glass and the like can be mentioned.
 また、本発明の活性エネルギー線硬化性樹脂組成物は、金属蒸着のアンカーコート剤として用いることも好ましく、具体的には、本発明の活性エネルギー線硬化性樹脂組成物をプラスチックなどの基材表面に塗布し、活性エネルギー線照射により硬化させた後、塗膜面上に、金属が蒸着され、必要に応じて更にその上にトップコート層が形成され、多層構造体とするのに好ましく用いられる。 The active energy ray-curable resin composition of the present invention is also preferably used as an anchor coating agent for metal deposition. Specifically, the active energy ray-curable resin composition of the present invention is used as a surface of a substrate such as plastic. After being applied to the substrate and cured by irradiation with active energy rays, a metal is vapor-deposited on the coating surface, and a top coat layer is further formed thereon if necessary, which is preferably used to form a multilayer structure. .
 かかるプラスチック基材としては、例えば、ABS、ポリカーボネート、アクリル樹脂、ポリアミド樹脂、それらの複合基材、またはガラス繊維や無機物を混合した前記材料の複合基材等が通常用いられる。 As such a plastic substrate, for example, ABS, polycarbonate, acrylic resin, polyamide resin, a composite substrate thereof, or a composite substrate of the above-described material mixed with glass fiber or an inorganic substance is usually used.
 上記の活性エネルギー線硬化性樹脂組成物の硬化塗膜の膜厚としては、乾燥膜厚が1~30μmであることが好ましく、特には2~15μmである。
 また、蒸着する金属としては、例えば、アルミニウム(Al)、スズ(Sn)、インジウム(In)、インジウム-スズ(InSn)等が挙げられる。
As the film thickness of the cured coating film of the above active energy ray-curable resin composition, the dry film thickness is preferably 1 to 30 μm, particularly 2 to 15 μm.
Examples of the metal to be deposited include aluminum (Al), tin (Sn), indium (In), and indium-tin (InSn).
 本発明のウレタン(メタ)アクリレート系化合物(A)及び多糖誘導体(B)を含有してなる活性エネルギー線硬化性樹脂組成物は、たとえ薄膜塗装による塗膜であっても、塗料中に内在する微粒子や異物などに起因する凹凸を隠蔽することができ、塗膜の平滑性、透明性に優れた効果を有するものである。そして、本発明の活性エネルギー線硬化性樹脂組成物は、塗料、粘着剤、接着剤、粘接着剤、インク、保護コーティング剤、アンカーコーティング剤、磁性粉コーティングバインダー、サンドブラスト用被膜、版材など、各種の被膜形成材料として有用である。中でも、金属蒸着のアンカーコート剤として非常に有用である。 The active energy ray-curable resin composition comprising the urethane (meth) acrylate compound (A) and the polysaccharide derivative (B) of the present invention is inherent in the paint even if it is a coating film by thin film coating. Unevenness caused by fine particles or foreign matters can be concealed, and the coating film has excellent effects in smoothness and transparency. The active energy ray-curable resin composition of the present invention includes paints, pressure-sensitive adhesives, adhesives, adhesives, inks, protective coating agents, anchor coating agents, magnetic powder coating binders, sandblast coatings, plate materials, etc. It is useful as various film forming materials. Among them, it is very useful as an anchor coating agent for metal deposition.
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、例中、「部」、「%」は、重量基準を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the examples, “parts” and “%” mean weight standards.
・ウレタン(メタ)アクリレート系化合物(A)として以下のものを調製した。
(A-1):温度計、攪拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート16.1g(0.07モル)、2官能ポリエステルポリオール(水酸基価54mgKOH/g)75.2g(0.04モル)、重合禁止剤としてハイドロキノンモノメチルエーテル0.02g、反応触媒としてジブチルスズジラウレート0.02gを仕込み、60℃で3時間反応させ、2-ヒドロキシエチルアクリレート8.6g(0.07モル)、を仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%となった時点で反応を終了し、2官能ウレタンアクリレート(A-1)(重量平均分子量10,000、60℃粘度15,000mPa・s)を得た。
-The following were prepared as a urethane (meth) acrylate type compound (A).
(A-1): In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, isophorone diisocyanate 16.1 g (0.07 mol), bifunctional polyester polyol (hydroxyl value 54 mg KOH / g) 75.2 g (0.04 mol), 0.02 g of hydroquinone monomethyl ether as a polymerization inhibitor and 0.02 g of dibutyltin dilaurate as a reaction catalyst were charged and reacted at 60 ° C. for 3 hours to obtain 8.6 g of 2-hydroxyethyl acrylate (0 0.07 mol), and reacted at 60 ° C. for 3 hours. When the residual isocyanate group reached 0.3%, the reaction was terminated, and the bifunctional urethane acrylate (A-1) (weight average molecular weight 10,000) , 60 ° C. viscosity 15,000 mPa · s).
・多糖誘導体(B)として、以下のものを用意した。
(B-1):セルロースアセテートブチレート系樹脂(イーストマン ケミカル ジャパン株式会社製、商品名「CAB551-0.01」:数平均分子量16,000)
(B-2):セルロースアセテートブチレート系樹脂(イーストマン ケミカル ジャパン株式会社製、商品名「CAB551-0.2」:数平均分子量30,000)
(B-3):セルロースアセテートブチレート系樹脂(イーストマン ケミカル ジャパン株式会社製、商品名「CAB500-5」:数平均分子量57,000)
(B-4):セルロースアセテートブチレート系樹脂(イーストマン ケミカル ジャパン株式会社製、商品名「CAB381-20」:数平均分子量70,000)
(B-5):セルロースアセテートプロピオネート系樹脂(イーストマン ケミカル ジャパン株式会社製、商品名「CAB504-0.2」:数平均分子量15,000)
-The following were prepared as a polysaccharide derivative (B).
(B-1): Cellulose acetate butyrate resin (manufactured by Eastman Chemical Japan, trade name “CAB551-0.01”: number average molecular weight 16,000)
(B-2): Cellulose acetate butyrate resin (manufactured by Eastman Chemical Japan, trade name “CAB551-0.2”: number average molecular weight 30,000)
(B-3): Cellulose acetate butyrate resin (manufactured by Eastman Chemical Japan, trade name “CAB500-5”: number average molecular weight 57,000)
(B-4): Cellulose acetate butyrate resin (manufactured by Eastman Chemical Japan, trade name “CAB381-20”: number average molecular weight 70,000)
(B-5): Cellulose acetate propionate resin (manufactured by Eastman Chemical Japan, trade name “CAB504-0.2”: number average molecular weight 15,000)
・エチレン性不飽和モノマー(C)として、以下のものを用意した。
(C-1):ペンタエリスリトールトリアクリレート
-The following were prepared as ethylenically unsaturated monomer (C).
(C-1): Pentaerythritol triacrylate
・光重合開始剤(D)として、以下のものを用意した。
(D-1):1-ヒドロキシシクロヘキシルフェニルケトン(BASF・ジャパン社製、「イルガキュア184」)
-The following were prepared as a photoinitiator (D).
(D-1): 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan, “Irgacure 184”)
・アクリル系樹脂(B’)溶液として、以下のものを調整した。
(B’-1):還流冷却器、撹拌器、窒素ガス吹き込み口および温度計を備えた4ツ口丸底フラスコに、酢酸エチル55部、トルエン45部を仕込み、撹拌しながら90℃に昇温し、ブチルアクリレート100部に重合開始剤としてアゾビスブチロニトリル(AIBN)を0.05部加えた溶液を2時間にわたり滴下した。その後、1時間後と2時間後に酢酸エチル10部にAIBN0.05部を溶解させた重合開始剤溶液を追加し、還流下で7時間反応させた後、酢酸エチルで希釈してアクリル樹脂(B’-1)溶液(重量平均分子量18万、数平均分子量65,000、固形分30%)を得た。
-The following were prepared as an acrylic resin (B ') solution.
(B'-1): A four-necked round bottom flask equipped with a reflux condenser, a stirrer, a nitrogen gas inlet and a thermometer was charged with 55 parts of ethyl acetate and 45 parts of toluene, and the temperature was raised to 90 ° C while stirring. Then, a solution obtained by adding 0.05 part of azobisbutyronitrile (AIBN) as a polymerization initiator to 100 parts of butyl acrylate was added dropwise over 2 hours. Thereafter, after 1 hour and 2 hours, a polymerization initiator solution in which 0.05 part of AIBN was dissolved in 10 parts of ethyl acetate was added and reacted for 7 hours under reflux, then diluted with ethyl acetate to obtain an acrylic resin (B '-1) A solution (weight average molecular weight 180,000, number average molecular weight 65,000, solid content 30%) was obtained.
〔実施例1~11〕
 上記のウレタン(メタ)アクリレート系化合物(A)、多糖誘導体(B)、エチレン性不飽和モノマー(C)、光重合開始剤(D)を固形分換算で表1に示す割合で配合した後、光重合開始剤を除いた固形分が30%になるように酢酸エチルで希釈し、活性エネルギー線硬化性樹脂組成物を得た。
[Examples 1 to 11]
After blending the urethane (meth) acrylate compound (A), polysaccharide derivative (B), ethylenically unsaturated monomer (C), and photopolymerization initiator (D) in the ratio shown in Table 1 in terms of solid content, It diluted with ethyl acetate so that solid content except a photoinitiator might be 30%, and the active energy ray-curable resin composition was obtained.
〔比較例1〕
 固形分換算で、ウレタン(メタ)アクリレート系化合物(A)を100部、エチレン性不飽和モノマー(C)を42.9部、光重合開始剤(D)5.7部配合した後、光重合開始剤(D)を除いた固形分が30%になるように酢酸エチルで希釈し、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 1]
In terms of solid content, 100 parts of urethane (meth) acrylate compound (A), 42.9 parts of ethylenically unsaturated monomer (C), and 5.7 parts of photopolymerization initiator (D) are blended and then photopolymerized. It diluted with ethyl acetate so that solid content except an initiator (D) might be 30%, and the active energy ray-curable resin composition was obtained.
〔比較例2〕
 実施例1において、多糖誘導体(B-1)の代わりにアクリル系樹脂(B’-1)を用いた以外は実施例1と同様にして、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 2]
In Example 1, an active energy ray-curable resin composition was obtained in the same manner as in Example 1 except that the acrylic resin (B′-1) was used instead of the polysaccharide derivative (B-1).
 得られた活性エネルギー線硬化性樹脂組成物について、以下の評価を行った。
 評価結果は表1に示す。
The following evaluation was performed about the obtained active energy ray-curable resin composition.
The evaluation results are shown in Table 1.
 <評価用硬化塗膜の形成>
 上記で得られた活性エネルギー線硬化性樹脂組成物において、活性エネルギー線硬化性樹脂組成物から溶剤を除いた成分100部に対して、微粒子(アクリルビーズ:平均粒子径5μm、新日本石油株式会社製「NMB-0520」)を0.1部配合したものを、バーコーターにて硬化塗膜が4~5μmとなるように易接着層付のポリエチレンテレフタレートフィルム基材(厚さ125μm)に塗工し、60℃で5分間乾燥した後、高圧水銀灯ランプ80W、1灯を用いて、18cmの高さから3.4m/minのコンベア速度で2パスの紫外線照射(積算照射量800mJ/cm2)を行い、硬化塗膜を得た。
<Formation of cured coating film for evaluation>
In the active energy ray-curable resin composition obtained above, fine particles (acrylic beads: average particle diameter of 5 μm, Shin Nippon Oil Co., Ltd.) with respect to 100 parts of the active energy ray-curable resin composition except the solvent "NMB-0520" manufactured by NBM) was blended on a polyethylene terephthalate film substrate (thickness 125µm) with an easy-adhesion layer so that the cured coating film would be 4-5µm with a bar coater. After drying at 60 ° C. for 5 minutes, using a high pressure mercury lamp 80W, 1 lamp, UV irradiation of 2 passes at a conveyor speed of 3.4 m / min from a height of 18 cm (accumulated dose 800 mJ / cm 2 ) And a cured coating film was obtained.
 なお、本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系化合物(A)と多糖誘導体(B)を含有するものであり、上記の微粒子の配合については、凹凸形状の隠蔽性を評価するために、あえて配合したものである。 The active energy ray-curable resin composition of the present invention contains a urethane (meth) acrylate compound (A) and a polysaccharide derivative (B). In order to evaluate the nature, it was formulated.
<平滑性(表面粗さ)>
 上記の評価用のための塗膜表面形成にて得られた硬化塗膜に対して、表面粗さ計(株式会社東京精密社製「SURFCOM 480A」)を用いて、フィルター種別:ガウシアン、λsフィルタ:カットオフ比300、算出規格:JIS’01、評価長さ10mm、測定速度0.3mm/s、カットオフ値0.8mmの条件において測定し、表面粗さRa値を測定した。
[評価]
◎・・・Ra値が0.050未満
○・・・Ra値が0.050以上0.100未満
△・・・Ra値が0.100以上0.120未満
×・・・Ra値が0.120以上
<Smoothness (surface roughness)>
Using a surface roughness meter (“SURFCOM 480A” manufactured by Tokyo Seimitsu Co., Ltd.) for the cured coating film obtained in the above-described coating film surface formation for evaluation, filter type: Gaussian, λs filter : Cut-off ratio 300, calculation standard: JIS'01, evaluation length 10 mm, measurement speed 0.3 mm / s, cut-off value 0.8 mm, measurement of surface roughness Ra value.
[Evaluation]
A Ra value is less than 0.050 A Ra value is 0.050 or more and less than 0.100 A R Ra value is 0.100 or more but less than 0.120 x A Ra value is 0.00. 120 or more
<透明性>
 上記の評価用のための塗膜表面形成にて得られた硬化塗膜に対して、ヘイズメータ(日本電色工業株式会社製「NDH 2000」)を用いて、ヘイズ値を測定した。
[評価]
○・・・ヘイズ値が0.9未満
×・・・ヘイズ値が0.9以上
<Transparency>
The haze value was measured using the haze meter ("NDH 2000" by Nippon Denshoku Industries Co., Ltd.) with respect to the cured coating film obtained by coating-film surface formation for said evaluation.
[Evaluation]
○ ・ ・ ・ Haze value is less than 0.9 × ・ ・ ・ Haze value is 0.9 or more
<密着性>
 上記の評価用のための塗膜表面形成にて得られた硬化塗膜に対して、JIS K 5400(1990年版)に準じて碁盤目テープ法により基材密着性を評価した。
[評価]
○・・・100/100(全て密着)
×・・・99/100~0/100(一部剥離~全て剥離)
<Adhesion>
The substrate adhesion was evaluated by a cross-cut tape method according to JIS K 5400 (1990 edition) for the cured coating film obtained by forming the coating film surface for evaluation.
[Evaluation]
○ ... 100/100 (all close contact)
× 99/100 to 0/100 (partially peeled to all peeled)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記評価結果より、ウレタン(メタ)アクリレート系化合物(A)及び多糖誘導体(B)を含有してなる活性エネルギー線硬化性樹脂組成物から得られる実施例1~11の硬化塗膜は微粒子を含有するにも関わらず、平滑性に優れ、透明性に優れた硬化塗膜が得られることが分かる。
 一方、多糖誘導体(B)を含有しない活性エネルギー線硬化性樹脂組成物から得られる比較例1の硬化塗膜は、表面平滑性、透明性に劣るものであった。
 また、多糖誘導体(B)の代わりにアクリル系樹脂(B’)を含有する活性エネルギー線硬化性樹脂組成物から得られる比較例2の硬化塗膜は、透明性は優れるが平滑性に劣るものであり、凹凸を隠蔽する効果は有しないものであった。
 なお、上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
From the above evaluation results, the cured coating films of Examples 1 to 11 obtained from the active energy ray-curable resin composition containing the urethane (meth) acrylate compound (A) and the polysaccharide derivative (B) contain fine particles. Nevertheless, it can be seen that a cured coating film having excellent smoothness and transparency can be obtained.
On the other hand, the cured coating film of Comparative Example 1 obtained from the active energy ray-curable resin composition not containing the polysaccharide derivative (B) was inferior in surface smoothness and transparency.
The cured coating film of Comparative Example 2 obtained from the active energy ray-curable resin composition containing the acrylic resin (B ′) instead of the polysaccharide derivative (B) has excellent transparency but poor smoothness. And had no effect of concealing the irregularities.
In addition, in the said Example, although it showed about the specific form in this invention, the said Example is only a mere illustration and is not interpreted limitedly. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明のウレタン(メタ)アクリレート系化合物(A)及び多糖誘導体(B)を含有してなる活性エネルギー線硬化性樹脂組成物は、たとえ薄膜塗装による塗膜であっても、塗料中に内在する微粒子や異物などに起因する凹凸を隠蔽することができ、塗膜の平滑性、透明性に優れた効果を有するものである。そして、本発明の活性エネルギー線硬化性樹脂組成物は、塗料、粘着剤、接着剤、粘接着剤、インク、保護コーティング剤、アンカーコーティング剤、磁性粉コーティングバインダー、サンドブラスト用被膜、版材など、各種の被膜形成材料として有用である。中でも、金属蒸着のアンカーコート剤として非常に有用である。 The active energy ray-curable resin composition comprising the urethane (meth) acrylate compound (A) and the polysaccharide derivative (B) of the present invention is inherent in the paint even if it is a coating film by thin film coating. Unevenness caused by fine particles or foreign matters can be concealed, and the coating film has excellent effects in smoothness and transparency. The active energy ray-curable resin composition of the present invention includes paints, pressure-sensitive adhesives, adhesives, adhesives, inks, protective coating agents, anchor coating agents, magnetic powder coating binders, sandblast coatings, plate materials, etc. It is useful as various film forming materials. Among them, it is very useful as an anchor coating agent for metal deposition.

Claims (8)

  1.  ウレタン(メタ)アクリレート系化合物(A)及び多糖誘導体(B)を含有してなることを特徴とする活性エネルギー線硬化性樹脂組成物。 An active energy ray-curable resin composition comprising a urethane (meth) acrylate compound (A) and a polysaccharide derivative (B).
  2.  多糖誘導体(B)が、セルロース誘導体であることを特徴とする請求項1記載の活性エネルギー線硬化性樹脂組成物。 2. The active energy ray-curable resin composition according to claim 1, wherein the polysaccharide derivative (B) is a cellulose derivative.
  3.  多糖誘導体(B)の数平均分子量が、1万~10万であることを特徴とする請求項1または2記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to claim 1 or 2, wherein the polysaccharide derivative (B) has a number average molecular weight of 10,000 to 100,000.
  4.  多糖誘導体(B)の含有量が、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して3重量部以上であることを特徴とする請求項1~3いずれか記載の活性エネルギー線硬化性樹脂組成物。 4. The active energy ray curing according to claim 1, wherein the content of the polysaccharide derivative (B) is 3 parts by weight or more with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). Resin composition.
  5.  エチレン性不飽和モノマー(C)を含有してなることを特徴とする請求項1~4いずれか記載の活性エネルギー線硬化性樹脂組成物。 5. The active energy ray-curable resin composition according to claim 1, comprising an ethylenically unsaturated monomer (C).
  6.  更に、光重合開始剤(D)を含有してなることを特徴とする請求項1~5いずれか記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of claims 1 to 5, further comprising a photopolymerization initiator (D).
  7.  請求項1~6いずれか記載の活性エネルギー線硬化性樹脂組成物を含有してなることを特徴とするコーティング剤。 A coating agent comprising the active energy ray-curable resin composition according to any one of claims 1 to 6.
  8.  金属蒸着のアンダーコート剤として用いることを特徴とする請求項7記載のコーティング剤。 The coating agent according to claim 7, which is used as an undercoat agent for metal deposition.
PCT/JP2012/051147 2011-01-21 2012-01-20 Active energy ray-curable resin composition and coating agent WO2012099231A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137012578A KR101839639B1 (en) 2011-01-21 2012-01-20 Active energy ray-curable resin composition and coating agent
CN2012800033926A CN103168051A (en) 2011-01-21 2012-01-20 Active energy ray-curable resin composition and coating agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-010837 2011-01-21
JP2011010837 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012099231A1 true WO2012099231A1 (en) 2012-07-26

Family

ID=46515848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051147 WO2012099231A1 (en) 2011-01-21 2012-01-20 Active energy ray-curable resin composition and coating agent

Country Status (5)

Country Link
JP (1) JP5921893B2 (en)
KR (1) KR101839639B1 (en)
CN (1) CN103168051A (en)
TW (1) TWI550035B (en)
WO (1) WO2012099231A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399504B2 (en) * 2013-07-02 2018-10-03 東洋工業塗料株式会社 Vehicle lamp parts using phosphorescent paint (with gloss) for coating on metal vapor-deposited films
JP6011895B2 (en) * 2014-09-30 2016-10-25 荒川化学工業株式会社 Undercoat agent for substrate with copper thin film, substrate with copper thin film, method for producing substrate with copper thin film, and conductive film
TW201731989A (en) * 2015-12-22 2017-09-16 日本合成化學工業股份有限公司 Active energy ray-curable resin composition and method for producing same
WO2017217522A1 (en) * 2016-06-17 2017-12-21 日本合成化学工業株式会社 Actinic-ray-curable resin composition and coating material comprising same
JP6943117B2 (en) * 2016-10-07 2021-09-29 三菱ケミカル株式会社 Undercoating agent composition for metal thin film, undercoating agent for metal thin film, base film with undercoat layer and laminated film with metal thin film layer
KR101949091B1 (en) * 2018-06-12 2019-05-21 허권 Inorganic paint composition with herb medicine
WO2023195442A1 (en) * 2022-04-04 2023-10-12 幸士 生田 Photocurable composition, cured product and method for producing cured product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190274A (en) * 2000-01-11 2001-07-17 Kansai Paint Co Ltd Method for producing granular formed product for immoibilizing enzyme or microorganism cell
JP2001261916A (en) * 2000-03-17 2001-09-26 Kawamura Inst Of Chem Res Resin composite material having common continuous structure and method for producing the same
JP2001261758A (en) * 2000-03-17 2001-09-26 Kawamura Inst Of Chem Res Resin composite having coconinuous structure and method for producing the same
JP2001278926A (en) * 2000-03-31 2001-10-10 Osaka Gas Co Ltd Photocurable composition and coating film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641116B2 (en) * 1997-10-14 2005-04-20 東京応化工業株式会社 Photosensitive composition for sandblasting and photosensitive film using the same
KR101073620B1 (en) * 2004-05-07 2011-10-14 주식회사 동진쎄미켐 Photoresist resin composition
JP4735003B2 (en) * 2005-03-31 2011-07-27 住友ベークライト株式会社 Transparent resin molding and coating film
JP5026012B2 (en) * 2006-07-25 2012-09-12 大日本塗料株式会社 In-mold coating composition and in-mold coating product using the same
US8263677B2 (en) * 2009-09-08 2012-09-11 Creative Nail Design, Inc. Removable color gel basecoat for artificial nail coatings and methods therefore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190274A (en) * 2000-01-11 2001-07-17 Kansai Paint Co Ltd Method for producing granular formed product for immoibilizing enzyme or microorganism cell
JP2001261916A (en) * 2000-03-17 2001-09-26 Kawamura Inst Of Chem Res Resin composite material having common continuous structure and method for producing the same
JP2001261758A (en) * 2000-03-17 2001-09-26 Kawamura Inst Of Chem Res Resin composite having coconinuous structure and method for producing the same
JP2001278926A (en) * 2000-03-31 2001-10-10 Osaka Gas Co Ltd Photocurable composition and coating film

Also Published As

Publication number Publication date
JP2012162715A (en) 2012-08-30
TW201235424A (en) 2012-09-01
CN103168051A (en) 2013-06-19
TWI550035B (en) 2016-09-21
JP5921893B2 (en) 2016-05-24
KR20130140725A (en) 2013-12-24
KR101839639B1 (en) 2018-03-16

Similar Documents

Publication Publication Date Title
JP5921893B2 (en) Coating agent
JP5886090B2 (en) Active energy ray-curable resin composition and coating agent
JP5566216B2 (en) Active energy ray-curable resin composition, coating agent composition using the same, and cured coating film
JP5851010B2 (en) Active energy ray-curable resin composition and coating agent
JP6057741B2 (en) Polysiloxane structure-containing urethane (meth) acrylate-based compound, active energy ray-curable resin composition, and coating agent using the same
JP5260169B2 (en) Metal surface coating composition and laminated resin molded product
JP2016104859A (en) Active energy ray-curable resin composition and coating agent
WO2014081004A1 (en) Active energy ray-curable resin composition, coating agent composition, and laminate
JP2014122338A (en) Active energy ray curable resin composition, coating agent composition, and laminated body
JP2011208026A (en) Active energy ray-curable resin composition and coating agent
JP2012229412A (en) Resin composition and coating agent
JP2016121346A (en) Method of producing urethane (meth)acrylate
WO2016159294A1 (en) Active-energy-ray-curable resin composition, coating composition, and laminate
JP7408910B2 (en) Active energy ray-curable resin composition and coating agent
JP4863464B2 (en) Method for manufacturing laminate exhibiting iris color
JP2017210607A (en) Active energy ray-curable adhesive composition and adhesive composition for acrylic resin member using the same
JP6075614B2 (en) COATING COMPOSITION AND METHOD FOR PRODUCING LAMINATE
JP6596898B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP2015124265A (en) Urethane (meth)acrylate compound, active energy ray curable resin composition and coating agent using the same
JP6938889B2 (en) Active energy ray-curable resin composition and coating agent
JP6891404B2 (en) Coating agent
WO2018181972A1 (en) Active energy ray-curable resin composition and coating agent
JP2019112627A (en) Active energy ray-curable resin composition, coating agent, and coating agent for precoat metal
JP6452320B2 (en) Urethane (meth) acrylate-based compound, active energy ray-curable resin composition, and coating agent composition
JPWO2017110845A1 (en) Active energy ray-curable resin composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137012578

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737091

Country of ref document: EP

Kind code of ref document: A1