WO2014081004A1 - Active energy ray-curable resin composition, coating agent composition, and laminate - Google Patents

Active energy ray-curable resin composition, coating agent composition, and laminate Download PDF

Info

Publication number
WO2014081004A1
WO2014081004A1 PCT/JP2013/081484 JP2013081484W WO2014081004A1 WO 2014081004 A1 WO2014081004 A1 WO 2014081004A1 JP 2013081484 W JP2013081484 W JP 2013081484W WO 2014081004 A1 WO2014081004 A1 WO 2014081004A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
compound
active energy
urethane
Prior art date
Application number
PCT/JP2013/081484
Other languages
French (fr)
Japanese (ja)
Inventor
篤志 辻本
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013241245A external-priority patent/JP6359265B2/en
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to KR1020157012605A priority Critical patent/KR20150090061A/en
Priority to CN201380059384.8A priority patent/CN104797613A/en
Publication of WO2014081004A1 publication Critical patent/WO2014081004A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8025Masked aliphatic or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to an active energy ray-curable resin composition, a coating agent composition, and a laminate, and more specifically, has a moist touch feeling called soft feel and soft touch when used as a cured coating film, and Active energy ray-curable resin composition for forming a cured coating film excellent in appearance and high quality, a coating agent composition using the same, and further a substrate and a coating layer comprising the coating agent composition It is related with the laminated body which has.
  • polyurethane coating agents containing organic fine particles have been used as coating agents for interior parts such as plastic panels in automobiles in order to give a high-class feeling and a moist touch feeling.
  • a polyurethane-based coating agent is a thermosetting type coating agent obtained by reacting a polyol component and an isocyanate component. Since the reactivity of the polyol component and the isocyanate component is high, it is usually used in two liquids. Since both were mixed immediately before application to the material, the workability and productivity were inferior.
  • Patent Document 1 discloses a first urethane resin obtained by a reaction between a polycarbonate-based polyol and a polyisocyanate.
  • a second urethane resin obtained by the reaction of a polyether polyol and a polyisocyanate, a crosslinking agent containing two or more carbodiimide groups in one molecule, urethane beads, and surface modification that is an organosilicon compound.
  • Patent Document 1 has been devised to extend the pot life as a paint by using an aqueous dispersion of carbodiimide as a crosslinking agent in order to control the reactivity in an aqueous coating solution.
  • an aqueous dispersion of carbodiimide as a crosslinking agent
  • it takes several days in a humidity control atmosphere so the solution stability (workability) is improved to some extent.
  • productivity was still not satisfactory.
  • Patent Document 2 Although the technique disclosed in Patent Document 2 is considered to have improved durability of various coating layers as a solvent-based coating liquid, the stability of the coating liquid in which isocyanate and polyol are mixed is sufficient. However, it was thought that this was not the case, and there were still problems in workability.
  • the present invention is a one-part curable resin composition excellent in workability under such a background, and has a soft and soft touch when used as a coating layer. It is another object of the present invention to provide an active energy ray-curable resin composition excellent in workability during coating and productivity during curing, and a coating agent composition using the same.
  • thermosetting urethane resin as a resin component in a coating composition obtained by adding a fine synthetic resin filler to a resin component.
  • urethane (meth) acrylate having active energy ray curability
  • an active energy ray curable resin composition excellent in workability during coating and productivity during curing can be obtained and cured.
  • the present invention was completed by finding that the coating film (coating layer) obtained later had a moist and soft touch feeling.
  • the gist of the present invention relates to an active energy ray-curable resin composition comprising a urethane (meth) acrylate compound (A) and a fine particle synthetic resin filler (B).
  • the present invention also provides a coating composition comprising the active energy ray-curable resin composition, and a laminate having a substrate and a coating layer comprising the coating composition. .
  • the active energy ray-curable resin composition of the present invention when used as a coating agent, becomes an active energy ray-curable resin composition excellent in workability during coating and productivity during curing, and
  • the coating layer obtained after curing has an effect of having a moist and soft touch feeling and is particularly useful as a coating agent.
  • the active energy ray-curable resin composition of the present invention comprises a urethane (meth) acrylate compound (A) and a fine synthetic resin filler (B).
  • (meth) acryl means acryl or methacryl
  • (meth) acryloyl means acryloyl or methacryloyl
  • (meth) acrylate means acrylate or methacrylate.
  • the content of the ethylenically unsaturated group of the urethane (meth) acrylate compound (A) used in the present invention is preferably 2 to 10, particularly preferably 2 to 6. If the number of such ethylenically unsaturated groups is too large, the crosslinking density after curing becomes too large, and the coating film tends to be too hard and it is difficult to obtain a moist soft feeling. Since it cannot be obtained, there is a tendency that the surface of the cured coating film is sticky or various durability performances are deteriorated.
  • the weight average molecular weight of the urethane (meth) acrylate compound (A) used in the present invention is preferably 1,000 to 50,000, particularly preferably 1,500 to 40,000, particularly preferably 2. , 5,000 to 35,000. If the weight average molecular weight is too small, the crosslink density is relatively increased, so that the surface of the cured coating film is too hard and it is difficult to obtain a moist soft feeling. If it is too large, the viscosity of the curable resin composition is low. There is a tendency to become too high, a sufficient crosslinking density cannot be obtained, the surface of the cured coating film becomes sticky, and various durability tends to decrease.
  • said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, a column is put into a high performance liquid chromatography (Nippon Waters Co., Ltd., "Waters 2695 (main body)” and “Waters 2414 (detector)”).
  • Shidex GPC KF-806L exclusion limit molecular weight: 2 ⁇ 10 7 , separation range: 100 to 2 ⁇ 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler
  • the viscosity of the urethane (meth) acrylate compound (A) at 60 ° C. is preferably 1,000 to 100,000 mPa ⁇ s, and particularly preferably 1,500 to 50,000 mPa ⁇ s. When the viscosity is out of the above range, the coatability tends to be lowered.
  • the measuring method of a viscosity is based on an E-type viscometer.
  • the urethane (meth) acrylate compound (A) used in the present invention is obtained by reacting a hydroxyl group-containing (meth) acrylate compound (a1), a polyvalent isocyanate compound (a2) and a polyol compound (a3).
  • a urethane (meth) acrylate compound (A2) obtained by reacting a urethane (meth) acrylate compound (A1) or a hydroxyl group-containing (meth) acrylate compound (a1) and a polyvalent isocyanate compound (a2).
  • only one type may be used alone, or two or more types may be used in combination.
  • the urethane (meth) acrylate compound (A1) is obtained by reacting the hydroxyl group-containing (meth) acrylate compound (a1), the polyvalent isocyanate compound (a2), and the polyol compound (a3). .
  • the hydroxyl group-containing (meth) acrylate compound (a1), polyvalent isocyanate compound (a2), and polyol compound (a3), which are compounds for obtaining the urethane (meth) acrylate compound (A1), will be described below in order. .
  • hydroxyl group-containing (meth) acrylate compound (a1) examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth).
  • hydroxyalkyl (meth) acrylates such as 6-hydroxyhexyl (meth) acrylate, 2-hydroxyethyl acryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth) ) Acrylate, dipropylene glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) Acrylate, 2-hydroxy-3- (meth) acryloyloxy propyl (meth) acrylate, containing one ethylenically unsaturated group such as (meth) acrylate compound; (Meth) acrylate compounds containing two ethylenically unsaturated groups such as glycerin di (meth) acrylate, 2-hydroxy-3-acryloyl-oxypropy
  • polyvalent isocyanate compound (a2) examples include aromatics such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate.
  • Polyisocyanate Aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate; Cycloaliphatic polyisocyanates such as hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane; Alternatively, trimer compounds or multimeric compounds of these polyisocyanates, allophanate type polyisocyanates, burette type polyisocyanates, water-dispersed polyisocyanates (for example, “Aquanate 100”, “Aquanate 110” manufactured by Nippon Polyurethane Industry Co., Ltd., "Aquanate 200", “Aquanate 210", etc.).
  • the polyol compound (a3) may be any compound containing two or more hydroxyl groups.
  • an aliphatic polyol, an alicyclic polyol, a polyether polyol, a polyester polyol, a polycarbonate polyol, a polyolefin polyol examples thereof include polybutadiene-based polyols, polyisoprene-based polyols, (meth) acrylic polyols, and polysiloxane-based polyols.
  • the weight-average molecular weight of the polyol compound (a3) is preferably 60 to 20,000, particularly preferably 100 to 15,000, and further preferably 150 to 8,000. If the weight-average molecular weight of the polyol-based compound (a3) is too large, a sufficient crosslinking density cannot be obtained at the time of curing, the cured coating film surface tends to be sticky, and various durability tends to decrease. The curable resin composition tends to be highly viscous and difficult to handle. Moreover, when the weight average molecular weight of a polyol type compound (a3) is too small, the softness
  • the polyol compound (a3) contains a polyol compound (a3-1) having a weight average molecular weight of less than 500 and a polyol compound (a3-2) having a weight average molecular weight of 500 to 20,000. From the viewpoint of sex.
  • the weight average molecular weight of the polyol compound (a3-1) is less than 500, preferably 60 to 450, particularly preferably 60 to 400, and further preferably 100 to 300.
  • the weight average molecular weight of the polyol compound (a3-1) is too large, when it is used as a blended composition, the hydrogen bond pseudo-crosslinking degree peculiar to the urethane bond is lowered, so that durability such as chemical resistance of the cured coating film is reduced. There is a tendency to decrease.
  • the weight average molecular weight of the polyol compound (a3-2) is 500 to 20,000, preferably 2,000 to 15,000, and particularly preferably 3,000 to 8,000. If the weight average molecular weight of the polyol compound (a3-2) is too small, the molecular weight of the urethane (meth) acrylate compound (A) becomes relatively small. When it is too large, the coating film made of a resin solution that is blended to form an active energy ray-curable composition tends to be sticky. Further, since the polyol compound (a3-2) has a large weight average molecular weight, the reactivity at the time of synthesis becomes poor, so that the reaction time becomes extremely long, and this is not practically preferable as a synthesis condition.
  • the difference between the polyol compound (a3-1) and the polyol compound (a3-2) is preferably 400 or more, particularly preferably 800 or more, more preferably 1,200 or more. Particularly preferred is 2,000 or more. If the difference is too small, the balance between chemical resistance and elasticity of the cured coating film tends to be inferior, making it difficult to achieve both functions.
  • Examples of the polyol compound (a3-1) having a weight average molecular weight of less than 500 include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, dimethylolpropane, neopentyl glycol, 1,2-hexanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, 2-methyl-1, 3-trimethylenediol, 1,5-pentamethylenediol, 1,6-hexamethylenediol, 3-methyl-1,5-pentamethylenediol, 2,4-diethyl-1,5-pentamethylenediol, 1, 9-nonanediol, 2-methyl-1,8-o Aliphatic alcohols such as tandiol, ditrimethylo
  • Examples of the polyol compound (a3-2) having a weight average molecular weight of 500 to 20,000 include aliphatic polyols, alicyclic polyols, polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, Examples include polybutadiene polyols, (meth) acrylic polyols, and polysiloxane polyols.
  • aliphatic polyol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, dimethylolpropane, neopentyl glycol, 2,2-diethyl-1,3-propanediol, and 2-butyl- 2-ethyl-1,3-propanediol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, 2-methyl-1,3-trimethylenediol, 1,5-pentamethylenediol, 1,6 -Hexamethylenediol, 3-methyl-1,5-pentamethylenediol, 2,4-diethyl-1,5-pentamethylenediol, pentaerythritol diacrylate, 1,9-nonanediol, 2-methyl-1,8 -Two hydroxyl acids such as octanediol , Aliphatic alcohols containing 3
  • alicyclic polyol examples include cyclohexanediols such as 1,4-cyclohexanediol and cyclohexyldimethanol, hydrogenated bisphenols such as hydrogenated bisphenol A, and tricyclodecane dimethanol. Two or more species can be used in combination.
  • polyether polyol examples include, for example, polyether glycols containing alkylene structures such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, polypentamethylene glycol, polyhexamethylene glycol, and the like. A random or block copolymer is mentioned.
  • polyester-based polyol examples include three types of components: a condensation polymer of a polyhydric alcohol and a polycarboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a polyhydric alcohol, a polycarboxylic acid, and a cyclic ester. And the like.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylene diol, 1,3-tetramethylene diol, 2-methyl-1,3-trimethyl.
  • Methylene diol 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, 3-methyl-1,5-pentamethylene diol, 2,4-diethyl-1,5-pentamethylene diol, glycerin , Trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), bisphenols (such as bisphenol A), sugar alcohols (such as xylitol and sorbitol)
  • polyvalent carboxylic acid examples include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, and the like.
  • aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid
  • -Alicyclic dicarboxylic acids such as
  • cyclic ester examples include propiolactone, ⁇ -methyl- ⁇ -valerolactone, and ⁇ -caprolactone.
  • polycarbonate polyol examples include a reaction product of a polyhydric alcohol and phosgene; a ring-opening polymer of a cyclic carbonate (such as alkylene carbonate).
  • polyhydric alcohol examples include polyhydric alcohols exemplified in the description of the polyester-based polyol, and examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate, and the like. It is done.
  • the polycarbonate-based polyol may be a compound having a carbonate bond in the molecule and having a hydroxyl group at the end, and may have an ester bond together with the carbonate bond.
  • polyolefin-based polyol examples include those having a saturated hydrocarbon skeleton having a homopolymer or copolymer such as ethylene, propylene and butene, and having a hydroxyl group at the molecular end.
  • polybutadiene-based polyol examples include those having a butadiene copolymer as a hydrocarbon skeleton and having a hydroxyl group at the molecular end.
  • the polybutadiene-based polyol may be a hydrogenated polybutadiene polyol in which all or part of the ethylenically unsaturated groups contained in the structure thereof are hydrogenated.
  • polyisoprene-based polyol examples include those having a copolymer of isoprene as a hydrocarbon skeleton and a hydroxyl group at the molecular end.
  • the polyisoprene-based polyol may be a hydrogenated polyisoprene polyol in which all or part of the ethylenically unsaturated groups contained in the structure is hydrogenated.
  • Examples of the (meth) acrylic polyol include those having at least two hydroxyl groups in the molecule of the polymer or copolymer of the (meth) acrylic ester.
  • polysiloxane polyol examples include dimethyl polysiloxane polyol and methylphenyl polysiloxane polyol.
  • aliphatic polyols and alicyclic polyols are preferably used in terms of suppressing stickiness when it becomes a cured coating film, and polyester polyols, polyether polyols, and polycarbonate polyols are preferred in terms of imparting flexibility. Preferably used.
  • the production method of the urethane (meth) acrylate compound (A1) is usually a reaction of the hydroxyl group-containing (meth) acrylate compound (a1), the polyvalent isocyanate compound (a2), and the polyol compound (a3) with a reactor.
  • the reaction product obtained by reacting the polyol-based compound (a3) and the polyvalent isocyanate-based compound (a2) in advance may be added to the hydroxyl group-containing (meth) acrylate-based compound ( The reaction of a1) is useful in terms of reaction stability and reduction of byproducts.
  • the reaction between the polyol compound (a3) and the polyvalent isocyanate compound (a2) known reaction means can be used.
  • the molar ratio of the isocyanate group in the polyvalent isocyanate compound (a2) to the hydroxyl group in the polyol compound (a3) is usually about 2n: (2n-2) (n is an integer of 2 or more).
  • the addition reaction of the reaction product obtained by reacting the polyol compound (a3) and the polyvalent isocyanate compound (a2) in advance with the hydroxyl group-containing (meth) acrylate compound (a1) is also a known reaction. Means can be used.
  • reaction In the addition reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.5% by weight or less. A (meth) acrylate compound (A1) is obtained.
  • Metal salts such as stannic chloride, triethylamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0] undecene, N, N, N ′
  • Amine catalysts such as N'-tetramethyl-1,3-butanediamine and N-ethylmorpholine, bismuth nitrate, bibromide
  • organic bismuth compounds such as dibutyl bismuth dilaurate and dioctyl bismuth dilaurate, bismuth 2-ethylhexanoate, bismuth naphthenate, bismuth isodecanoate, bismuth neodecanoate, lauryl Organic acid bismuth such as bismuth acid salt, bismuth maleate, bismuth stea
  • Organic solvents having no functional group for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and organic solvents such as aromatics such as toluene and xylene can be used.
  • the reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C.
  • the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
  • the polyol compound (a3) constituting the urethane (meth) acrylate compound (A1) a polyol compound (a3-1) having a weight average molecular weight of less than 500 and a polyol compound (a3) having a weight average molecular weight of 500 to 20,000 are used.
  • the urethane (meth) acrylate compound (A1) preferably has a weight average molecular weight of 2,500 to 50,000, particularly preferably 2,500 to 40,000, More preferably, it is 3,500 to 30,000.
  • the weight average molecular weight is too small, the unsaturated group equivalent in the compounding will increase relatively, and when it is a cured coating film, the hardness difference from the fine synthetic resin filler (B) becomes remarkable, and the external The stress of the curable resin composition tends to be damaged due to the stress that cannot be released, and if it is too large, the viscosity of the curable resin composition tends to be too high, and a sufficient crosslinking density cannot be obtained. There is a tendency that the surface becomes sticky and various durability tends to decrease.
  • the viscosity of the urethane (meth) acrylate compound (A1) at 60 ° C. is preferably 1,000 to 100,000 mPa ⁇ s, particularly preferably 1,500 to 50,000 mPa ⁇ s. When the viscosity is out of the above range, the coatability tends to be lowered. The viscosity is measured by an E-type viscometer as described above.
  • the content of ethylenically unsaturated groups in the urethane (meth) acrylate compound (A2) used in the present invention is preferably 2 to 10, particularly preferably 2 to 6. If the number of such ethylenically unsaturated groups is too large, the crosslinking density after curing becomes too large, and the coating film tends to be too hard and it is difficult to obtain a moist soft feeling. Since it is difficult to obtain, the surface of the cured coating film tends to be sticky or the durability performance tends to deteriorate.
  • the hydroxyl group-containing (meth) acrylate compound (a1) and the polyvalent isocyanate compound (a2) may be appropriately selected and used.
  • a hydroxyl group-containing (meth) acrylate compound (a1) having three ethylenically unsaturated groups and using a diisocyanate compound as the polyvalent isocyanate compound (a2) urethane (meth) acrylate
  • the number of ethylenically unsaturated groups in the compound (A2) is 6.
  • the reaction molar ratio between the polyvalent isocyanate compound (a2) and the hydroxyl group-containing (meth) acrylate compound (a1) is, for example, that the polyisocyanate compound (a2) has two isocyanate groups and has a hydroxyl group content ( When the meth) acrylate compound (a1) has one hydroxyl group, the polyvalent isocyanate compound (a2): hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 2, and the polyisocyanate compound When the compound (a2) has three isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a1) has one hydroxyl group, the polyvalent isocyanate compound (a2): hydroxyl group-containing (meth) acrylate compound (A1) is about 1: 3.
  • the viscosity of the urethane (meth) acrylate compound (A2) at 60 ° C. is preferably 1,000 to 30,000 mPa ⁇ s, particularly preferably 1,000 to 20,000 mPa ⁇ s. When the viscosity is out of the above range, the coatability tends to be lowered. The viscosity is measured by an E-type viscometer as described above.
  • Examples of the fine particle synthetic resin filler (B) in the present invention include nitrogen atom-containing synthetic resin fillers such as nylon filler, polyurethane filler, polyurea filler, polyamideimide filler, polyacrylamide filler; Polyolefin resin fillers such as polyethylene filler and polypropylene filler; Poly (meth) acrylic filler, polybutyl (meth) acrylic filler, (meth) acrylic group-containing synthetic resin filler consisting of a single polymerization component such as polystyrene filler, (meth) acrylic group-containing synthetic resin consisting of two or more polymerization components (Meth) acrylic synthetic resin fillers such as fillers; Sulfur atom-containing synthetic resin filler such as polyphenylene sulfide filler and polyethersulfone filler; Fluorine atom-containing synthetic resin filler such as polytetrafluoroethylene filler; An epoxy group-containing synthetic resin filler comprising an epoxy resin; Polycarbon
  • Nitrogen atom-containing synthetic resin filler preferably has excellent affinity with urethane (meth) acrylate compound (A), particle aggregation stability, sedimentation stability, moist soft coating and elasticity It is a polyurethane filler because it is easy to do, and a polyethylene filler is preferable as the polyolefin resin filler. Furthermore, in order to give a moist touch feeling to the cured coating film, it is preferable to use the polyurethane filler and the polyethylene filler in combination.
  • nylon filler examples include those manufactured by Toray Industries, Inc. (trade names: “SP-10”, “SP-500”, “TR-1”, “TR-2”, “842-P48”, “842-P70”). , “842-P80”).
  • polyurethane filler examples include cross-linked urethane beads manufactured by Negami Kogyo Co., Ltd. (trade names: “Art Pearl C Series”, “Art Pearl P Series”, “Art Pearl JB Series”, “Art Pearl U Series”, “Art” “Pearl CE Series”, “Art Pearl AK Series”, “Art Pearl HI Series”, “Art Pearl MM Series”, “Art Pearl FF Series”, “Art Pearl TK Series”, “Art Pearl C-TH Series”, “ Art Pearl RW-Z series ",” Art Pearl RU-V series “,” Art Pearl BP series “).
  • transparent fine particles are preferable as those capable of obtaining a transparent to white coating film as a cured coating film without impairing photocurability, and those having a white appearance as a fine particle appearance are preferable.
  • polyamideimide resin filler examples include those manufactured by Toray Industries, Inc. (trade name: “Trepearl PAI”).
  • the polyethylene filler is preferably a solvent-dispersed polyethylene filler.
  • polyethylene wax and modified polyethylene wax (trade names; “Micro Flat UN-8”, “Micro Flat PEX-101” manufactured by Koyo Chemical Co., Ltd.) , “Micro Flat B-501”), polyethylene wax manufactured by Big Chemie Japan, and modified polyethylene wax (trade names; “CERAFLOUR928”, “CERAFLOUR950”, “CERAFLOUR988”, “CERAFLOUR990”, “CERAFLOUR991”, “CERAFLOUR995”) ”,“ CERACOL39 ”,“ CERAFAK111 ”,“ CERAMAT250 ”,“ CERAMAT258 ”,“ MINERPOL221 ”), and the like.
  • the above-mentioned polypropylene filler is preferably a solvent dispersion type, and examples thereof include a polypropylene wax manufactured by Big Chemie Japan, a modified polypropylene wax (trade name “CERAFLOUR970”), and the like.
  • Examples of the (meth) acrylic group-containing synthetic resin filler include acrylic beads manufactured by Negami Kogyo Co., Ltd. (trade names; “Art Pearl GR Series”, “Art Pearl SE Series”, “Art Pearl G Series”, “Art Pearl” GS series “,” Art Pearl J series “,” Art Pearl MF series “,” Art Pearl BE series “).
  • transparent fine particles are preferable as those capable of obtaining a transparent to white coating film as a cured coating film without impairing photocurability, and those having a white appearance as a fine particle appearance are preferable.
  • sulfur atom-containing synthetic resin filler examples include polyphenylene sulfide resin fine particles (trade name: “Trepearl PPS”), polyethersulfone resin (trade name: “Trepearl PES”) manufactured by Toray Industries, Inc.
  • fluorine atom-containing synthetic resin filler examples include polyethylene manufactured by Koyo Chemical Co., Ltd., and polytetrafluoroethylene mixed wax (trade name: “Micro-flat PF-8”), manufactured by Big Chemie Japan Co., Ltd.
  • Fluoroethylene wax (trade names; “CERAFLOUR980”, “CERAFLOUR981”), polyethylene-polytetrafluoroethylene mixed wax (trade name; “CERAFLOUR997”), polytetrafluoroethylene-modified polyethylene wax (trade name; “CERAFLOUR998”, “CERACOL607”), polytetrafluoroethylene microparticles manufactured by Kitamura (trade names: "KTL-8N", “KTL-8F”, “KTL-9S”, “KTL-10N”, “KTL-20N”) It is done.
  • epoxy group-containing synthetic resin filler examples include those manufactured by Toray Industries, Inc. (trade name: “Trepearl EP”).
  • polycarbonate resin filler examples include those manufactured by Koyo Chemical Co., Ltd. (trade name: “Micro-flat MA-07N”).
  • the average particle size of the fine particle synthetic resin filler (B) in the present invention is preferably 1 to 30 ⁇ m, particularly preferably 2 to 20 ⁇ m, and further preferably 4 to 15 ⁇ m. If the average particle size is too small, the gloss of the cured coating film tends to be high, and there is a tendency that it is difficult to feel a high-grade appearance, and if it is too large, the wear contact becomes large and wear resistance decreases, and the cured surface Since the unevenness becomes large and rough, it tends to be difficult to obtain a moist and soft touch feeling.
  • the particle diameter can be determined using a sphere as a basic shape, and generally the number average particle diameter, length average particle diameter, area average Although there are particle diameter, volume average particle diameter, etc., the average particle diameter of the present invention is a volume average particle diameter usually used, and the volume average particle diameter is measured by a laser diffraction / scattering type particle size distribution meter. .
  • the true specific gravity of the fine synthetic resin filler (B) is preferably 0.8 to 2.3, particularly preferably 0.8 to 2, and further preferably 0.8 to 1.5. If the true specific gravity is too large, fine particles will settle in the drying step after coating and tend not to appear as surface irregularities. If it is too small, mixing of the urethane (meth) acrylate compound (A) tends to be difficult. .
  • Examples of the method for producing the fine particle synthetic resin filler (B) include a method for directly producing a fine particle synthetic resin by polymerizing a monomer by suspension polymerization, emulsion polymerization, seed polymerization, and the like, and various methods. There is a method of mechanically pulverizing a normal synthetic resin produced by the above method into fine particles. Among these, the polymerization method is preferable in that fine particles having a uniform shape, particularly spherical particles having excellent fluidity and dispersibility can be obtained.
  • the glass transition temperature (Tg) of the fine particle synthetic resin filler (B) in the present invention is preferably ⁇ 140 to 40 ° C., particularly preferably ⁇ 135 to 20 ° C., more preferably ⁇ 130 to 0 ° C. is there. If the glass transition temperature is too low, the coating surface tends to be too sticky, and if it is too high, a rubbery and moist soft feeling tends to be hardly obtained on the coating surface.
  • the glass transition temperature can be measured by using a temperature modulation DSC (DSC2920 manufactured by TA Instruments). Measurement conditions are such that a sample of about 1 to 5 mg is enclosed in a dedicated aluminum pan, and the temperature is raised within a range of ⁇ 100 ° C. to 100 ° C. and 3 ° C./min.
  • DSC2920 manufactured by TA Instruments
  • the content (solid content) of the particulate synthetic resin filler (B) in the present invention is preferably 25 to 400 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A).
  • the amount is particularly preferably 30 to 350 parts by weight, and further preferably 35 to 250 parts by weight. If the content of the fine-particle synthetic resin filler (B) is too large, the wear of the cured coating film tends to be extremely lowered, and the coating surface tends to be rough. There is a tendency that a touch feeling is difficult to obtain.
  • the content (solid content) of the polyurethane filler is preferably 25 to 400 parts by weight, particularly preferably 30 to 300 parts by weight, with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). More preferably, it is 35 to 250 parts by weight. If the polyurethane filler content is too high, the wear of the cured coating film tends to be extremely reduced, the surface of the coating film tends to be rough, and the amount is too small. There is.
  • the polyethylene filler is 0.1 to 70 parts by weight with respect to 100 parts by weight of the polyurethane filler.
  • the amount is preferably 0.5 to 50 parts by weight, more preferably 1 to 30 parts by weight. If the content of the polyethylene filler in the polyurethane filler is too small, the softness of the coating film is lowered, and the glossiness tends to be impaired due to the increase in gloss, and if it is too much, the scratch resistance performance of the cured coating film is reduced. It tends to be easier.
  • the fine particle synthetic resin filler (B) is a dispersion such as a solvent, it is specified as a weight in terms of solid content.
  • the active energy ray-curable resin composition of the present invention contains the urethane (meth) acrylate compound (A) and the fine particle synthetic resin filler (B) as essential components.
  • A urethane
  • B fine particle synthetic resin filler
  • the ethylenically unsaturated monomer (C) may be any ethylenically unsaturated monomer (excluding the urethane (meth) acrylate compound (A)) having one or more ethylenically unsaturated groups in one molecule. , For example, a monofunctional monomer, a bifunctional monomer, a trifunctional or higher monomer.
  • the monofunctional monomer may be any monomer containing one ethylenically unsaturated group.
  • Michael adduct of acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester examples include acrylic acid dimer, methacrylic acid dimer, acrylic acid trimer. Methacrylic acid trimer, acrylic acid tetramer, methacrylic acid tetramer and the like.
  • 2-acryloyloxyethyl dicarboxylic acid monoester which is a carboxylic acid having a specific substituent include 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, and 2-acryloyloxyethyl.
  • Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, oligoester acrylate is also mentioned.
  • the bifunctional monomer may be any monomer containing two ethylenically unsaturated groups.
  • the tri- or higher functional monomer may be any monomer containing three or more ethylenically unsaturated groups.
  • ethylenically unsaturated monomers (C) may be used alone or in combination of two or more.
  • the ethylenically unsaturated monomer (C) may be separately added to the urethane (meth) acrylate compound (A) or the fine particle synthetic resin filler (B), or may be urethane (meth) acrylate.
  • a part of the compound (A) may be left in the system during production.
  • ethylenically unsaturated monomers (C) monofunctional monomers and bifunctional monomers are preferable, there is no aromatic ring, yellowing of the coating film can be suppressed, and cyclohexyl (meth) acrylate and isobornyl are highly versatile.
  • a hydroxyl group-containing ethylenically unsaturated monomer examples include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meta) because they have no aromatic ring and suppress yellowing of the coating film.
  • the content of the ethylenically unsaturated monomer (C) is preferably 0 to 500 parts by weight, particularly 5 to 500 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). It is preferably 350 parts by weight, more preferably 10 to 150 parts by weight. If the content of the ethylenically unsaturated monomer (C) is too large, in the case of a monofunctional monomer, the coated film becomes sticky, and in the case of a monomer having two or more functions, the cured film becomes too hard. There is a tendency that it is difficult to obtain a moist and soft touch feeling.
  • Photopolymerization initiator (D) In the present invention, in addition to the urethane (meth) acrylate compound (A) and the fine synthetic resin filler (B), a photopolymerization initiator (D) is added in order to efficiently cure with active energy rays. It is preferable to contain.
  • Examples of the photopolymerization initiator (D) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2- Hydroxy-2-propyl) ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino) Acetophenones such as phenyl) butanone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomers; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether Benzoi etc.
  • Benzophenone methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2 , 4,6-Trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride
  • Benzophenones such as 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4 Thiox
  • auxiliary agents include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, 4-dimethylaminobenzoic acid.
  • Ethyl, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone Etc. can be used in combination.
  • benzyl dimethyl ketal 1-hydroxycyclohexyl phenyl ketone, benzoin isopropyl ether, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1- It is preferable to use phenylpropan-1-one.
  • a photoinitiator (D) As content of a photoinitiator (D), it is 0.1 with respect to 100 weight part of urethane (meth) acrylate type-compounds (A) (when it contains an ethylenically unsaturated monomer (C)). It is preferably ⁇ 40 parts by weight, particularly preferably 1 to 20 parts by weight, particularly preferably 2 to 20 parts by weight. If the content of the photopolymerization initiator (D) is too small, curing tends to be poor, and if it is too much, the solution stability tends to decrease such as precipitation when used as a coating agent, and embrittlement or coloring may occur. Problems tend to occur.
  • a curable resin composition is obtained, a leveling agent (E), a surface conditioner, a polymerization inhibitor, etc. can be further added as needed.
  • leveling agent (E) a known general leveling agent can be used as long as it has an action of imparting wettability to fine particles when the fine particles are wetted and dispersed in a solution such as a solvent. Silicone-modified resins, fluorine-modified resins, alkyl-modified resins, and the like can be used.
  • leveling agent (E) Commercially available products of the leveling agent (E) include, for example, Megafac series manufactured by DIC (MCF350-5, F472, F476, F445, F444, F443, F178, F470, F475, F479, F477, F482, F486, TF1025, F478, F178K, etc.); X22-3710, X22-162C, X22-3701E, X22160AS, X22170DX, X224015, X22176DX, X22-176F, X224272, KF8001, X22-2000, etc. manufactured by Shin-Etsu Chemical Co., Ltd .; FM4421, FM0425, FMDA26, FS1265, etc.
  • Examples of the surface conditioner include alkyd resins and cellulose acetate butyrate. Such alkyd resin and cellulose acetate butyrate have an effect of imparting a film-forming property at the time of coating and a solution viscosity adjusting effect.
  • polymerization inhibitor examples include p-benzoquinone, naphthoquinone, tolquinone, 2,5-diphenyl-p-benzoquinone, hydroquinone, 2,5-di-t-butylhydroquinone, methylhydroquinone, hydroquinone monomethyl ether, mono-t- Examples thereof include butyl hydroquinone and pt-butyl catechol.
  • the active energy ray curable resin composition of the present invention includes oil, antioxidant, flame retardant, antistatic agent, stabilizer, reinforcing agent, abrasive, inorganic fine particles, polymer compound (acrylic resin, polyester resin). , Epoxy resin, etc.) can also be blended.
  • the active energy ray-curable resin composition of the present invention is also preferably used by blending an organic solvent (F) and adjusting the viscosity.
  • organic solvent (F) include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol, ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone, cellosolves such as ethyl cellosolve, Aromatics such as toluene and xylene, glycol ethers such as propylene glycol monomethyl ether, acetates such as methyl acetate, ethyl acetate and butyl acetate, and diacetone alcohol. These organic solvents may be used alone or in combination of two or more.
  • the active energy ray-curable resin composition of the present invention can be usually diluted to 3 to 60% by weight using the organic solvent (F) and applied to a substrate.
  • the active energy ray-curable resin composition of the present invention is effectively used as a curable resin composition for coating film formation having a moist and soft touch feeling to various base materials, and active energy ray curing After applying the functional resin composition to the substrate (after further drying if the composition diluted with an organic solvent is applied), it is cured by irradiation with active energy rays.
  • the coating method is not particularly limited, and examples thereof include wet coating methods such as spraying, showering, dipping, flow coating, gravure coating, roll coating, spin coating, dispenser, ink jet, and screen printing. .
  • rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as X rays and ⁇ rays, electron beams, proton rays, neutron rays, etc.
  • Curing by ultraviolet irradiation is advantageous from the viewpoint of easy availability and price.
  • electron beam irradiation it can harden
  • a high pressure mercury lamp that emits light in a wavelength range of 150 to 450 nm
  • an ultrahigh pressure mercury lamp a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrodeless discharge lamp, an LED, etc.
  • Irradiation of about 30 to 3,000 mJ / cm 2 may be performed.
  • heating can be performed as necessary to complete the curing.
  • the coating film thickness (film thickness after curing) is usually preferably 1 to 50 ⁇ m, particularly preferably 2 to 40 ⁇ m, more preferably 5 to 30 ⁇ m.
  • Examples of the base material to which the active energy ray-curable resin composition of the present invention is applied include polyolefin resins, polyester resins, polycarbonate resins, acrylonitrile butadiene styrene copolymers (ABS), polystyrene resins, and polyamides. Resins, etc. and their molded products (films, sheets, cups, etc.), metal substrates (metal deposition layers, metal plates (copper, stainless steel (SUS304, SUSBA, etc.), aluminum, zinc, magnesium, etc.)), glass, etc. , And those composite substrates.
  • the active energy ray-curable resin composition comprising the urethane (meth) acrylate compound (A) of the present invention and the fine particle-like synthetic resin filler (B) has a moist touch feeling called soft feel and soft touch.
  • a moist touch feeling called soft feel and soft touch.
  • the active energy ray-curable resin composition of the present invention is very useful as a coating agent (painting in the non-optical field), and has improved workability (solution storage stability) and productivity (production speed) during coating. Has an excellent effect and is very useful.
  • the coating agent composition preferably contains 2 to 60% by weight of urethane (meth) acrylate compound (A), particularly preferably 3 to 40% by weight, and more preferably 5 to 30% by weight of the entire coating agent composition. % By weight.
  • the coating agent composition may or may not contain an organic solvent. If the content of the urethane (meth) acrylate compound (A) is too small, it tends to be difficult to obtain a moist and soft touch feeling, and if it is too much, the wear property of the cured coating film tends to be extremely lowered. is there.
  • B-1 Polyurethane fine particles (average particle size 6.2 ⁇ m: glass transition temperature ⁇ 52 ° C.)
  • B-2 Polyurethane fine particles (average particle size 16.7 ⁇ m: glass transition temperature ⁇ 34 ° C.)
  • B-3 polyurethane fine particles (average particle size 6.5 ⁇ m: glass transition temperature ⁇ 34 ° C.)
  • B-4 polyurethane fine particles (average particle size 13.5 ⁇ m: glass transition temperature ⁇ 13 ° C.)
  • B-5 Polyethylene wax (particle size 5-10 ⁇ m)
  • Example 1 100 parts of the bifunctional urethane (meth) acrylate compound (A1-1) obtained in Production Example 1 above, 65.9 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B- 5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) are mixed to a solids concentration of 50% using ethyl acetate. Thus, an active energy ray-curable resin composition was obtained.
  • Example 2 100 parts of the bifunctional urethane (meth) acrylate compound (A1-2) obtained in Production Example 2 above, 67.0 parts of fine particle synthetic resin filler (B-3), fine particle synthetic resin filler (B- 5) 2.6 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) are mixed to a solids concentration of 50% using ethyl acetate. Thus, an active energy ray-curable resin composition was obtained.
  • Example 3 100 parts of bifunctional urethane (meth) acrylate compound (A1-3) obtained in Production Example 3 above, 65.9 parts of fine particle synthetic resin filler (B-1), fine particle synthetic resin filler (B- 5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) are mixed to a solids concentration of 50% using ethyl acetate. Thus, an active energy ray-curable resin composition was obtained.
  • Example 5 100 parts of urethane (meth) acrylate compound (A1-5) obtained in Production Example 5 above, 67.2 parts of fine particle synthetic resin filler (B-2), fine particle synthetic resin filler (B-5) 3.3 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.2 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate.
  • the active energy ray-curable resin composition was obtained by blending.
  • Example 6 100 parts of urethane (meth) acrylate compound (A1-5) obtained in Production Example 5 above, 67.2 parts of fine particle synthetic resin filler (B-3), fine particle synthetic resin filler (B-5) 3.3 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.2 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate.
  • the active energy ray-curable resin composition was obtained by blending.
  • Example 7 100 parts of urethane (meth) acrylate compound (A2-1) obtained in Production Example 6 above, 67.2 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B-5) 3.3 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.2 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate.
  • the active energy ray-curable resin composition was obtained by blending.
  • Example 8 100 parts of urethane (meth) acrylate compound (A2-1) obtained in Production Example 6 above, 67.2 parts of fine synthetic resin filler (B-2), fine synthetic resin filler (B-5) 3.3 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.2 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate.
  • the active energy ray-curable resin composition was obtained by blending.
  • Example 9 100 parts of urethane (meth) acrylate compound (A2-1) obtained in Production Example 6 above, 67.2 parts of fine particle synthetic resin filler (B-1), photopolymerization initiator (D-1) 6.
  • a leveling agent (E-1) were blended using ethyl acetate to a solid content concentration of 50% to obtain an active energy ray-curable resin composition.
  • Example 10 100 parts of urethane (meth) acrylate compound (A2-2) obtained in Production Example 7 above, 65.9 parts of fine particle synthetic resin filler (B-1), fine particle synthetic resin filler (B-5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate.
  • the active energy ray-curable resin composition was obtained by blending.
  • Example 11 100 parts of urethane (meth) acrylate compound (A2-3) obtained in Production Example 8 above, 65.9 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B-5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate.
  • the active energy ray-curable resin composition was obtained by blending.
  • Example 5 In Example 5, the fine synthetic resin fillers (B-2) and (B-5) and the leveling agent (E-1) were not blended, and the blending amount of the photopolymerization initiator (D-1) was 4 An active energy ray-curable resin composition was obtained in the same manner as in Example 5 except that the parts were changed to parts.
  • Example 7 the synthetic resin fillers (B-1) and (B-5) in fine particles and the leveling agent (E-1) were not blended, and the blending amount of the photopolymerization initiator (D-1) was 4
  • An active energy ray-curable resin composition was obtained in the same manner as in Example 7 except that the part was changed to part.
  • Example 3 Fine synthetic resin fillers (B-1) and (B-5) were changed to 6.2 parts of (B′-1), and the blending amount of the photopolymerization initiator (D-1) was changed to 4.3 parts and the amount of the leveling agent (E-1) was changed to 1.8 parts to obtain an active energy ray-curable resin composition in the same manner as in Example 3.
  • the active energy ray-curable resin compositions obtained in Examples 1 to 11 and Comparative Examples 1 to 3 are polycarbonate substrates (manufactured by Nippon Test Panel Co., Ltd.) so that the cured coating film has a thickness of 10 ⁇ m using an applicator. After drying at 90 ° C. for 3 minutes, using a high pressure mercury lamp lamp 80W and one lamp, UV irradiation of 2 passes at a conveyor speed of 3.4 m / min from a height of 18 cm (accumulated dose 800 mJ / cm 2 ) to obtain a cured coating film.
  • the soft film properties, substrate adhesion, and surface hardness of the cured coating film were evaluated as follows.
  • the active energy ray-curable resin compositions obtained in the above Examples and Comparative Examples were prepared by using an easy-adhesion PET (manufactured by Toyobo Co., Ltd .; trade name “Cosmo Sunshine A4300”) so that the cured coating film had a thickness of 10 ⁇ m with an applicator. After coating at a film thickness of 125 ⁇ m and drying at 90 ° C.
  • polyol compound (a3) which is one of the components for obtaining the urethane (meth) acrylate compound (A1)
  • a polyol compound (a3-1) having a weight average molecular weight of less than 500 and a weight average molecular weight of 500 to 20
  • An example containing 000 polyol compounds (a3-2) will be described below.
  • 2-hydroxyethyl acrylate ( a1) 6.0 g (0.052 mol) was charged and reacted at 60 ° C. for 3 hours. The reaction was terminated when it became 3% or less, and an ethyl acetate solution (A1-7) of urethane (meth) acrylate compound (weight average molecular weight (Mw); 14,000) (solid content concentration 70%, viscosity) (20 ° C.) 53,000 mPa ⁇ s) was obtained.
  • Mw weight average molecular weight
  • 14,000 solid content concentration 70%, viscosity
  • B-1 Polyurethane fine particles (average particle size 6.2 ⁇ m: glass transition temperature ⁇ 52 ° C.)
  • B-5 Polyethylene wax (particle size 5-10 ⁇ m)
  • (D-1) 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF Japan, “Irgacure 184”)
  • Example 12 27.0 parts of urethane (meth) acrylate compound (A1-6) obtained in Production Example 9 above, 12.7 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B- 5) 4.9 parts, 1.3 parts of photopolymerization initiator (D-1), 0.5 parts of leveling agent (E-1), 35.9 parts of organic solvent (F-1), organic solvent (F- 2) Using 17.7 parts, it mix
  • Example 13 27.0 parts of urethane (meth) acrylate compound (A1-7) obtained in Production Example 10 above, 12.7 parts of fine particle synthetic resin filler (B-1), fine particle synthetic resin filler (B- 5) 4.9 parts, 1.3 parts of photopolymerization initiator (D-1), 0.5 parts of leveling agent (E-1), 35.9 parts of organic solvent (F-1), organic solvent (F- 2) Using 17.7 parts, it mix
  • Example 14 27.0 parts of urethane (meth) acrylate compound (A1-8) obtained in Production Example 11 above, 12.7 parts of fine particle synthetic resin filler (B-1), fine particle synthetic resin filler (B- 5) 4.9 parts, 1.3 parts of photopolymerization initiator (D-1), 0.5 parts of leveling agent (E-1), 35.9 parts of organic solvent (F-1), organic solvent (F- 2) Using 17.7 parts, it mix
  • the active energy ray-curable resin compositions obtained in Examples 12 to 14 were applied to a polycarbonate substrate (manufactured by Nippon Test Panel Co., Ltd.) with an applicator so that the cured coating film had a thickness of 10 ⁇ m, and 90 ° C. After drying for 3 minutes at a high pressure mercury lamp lamp 80W, a single lamp is used to irradiate with 2 passes of ultraviolet light (accumulated dose of 800 mJ / cm 2 ) at a conveyor speed of 3.4 m / min from a height of 18 cm to cure. A coating film was obtained.
  • the active energy ray-curable resin compositions of Examples 12 to 14 in which the fine synthetic resin filler (B) is blended with the urethane (meth) acrylate compound (A1) have a soft feel. It can be seen that a cured coating film that is not only excellent in appearance but also excellent in appearance and excellent in adhesion, hardness, alkali resistance and ethanol resistance can be obtained.
  • thermosetting paints In addition, the formation of these cured coating films is clearly superior to conventional thermosetting paints in that it has low energy, high production rate, and solution stability as a coating agent.
  • an active energy ray-curable resin composition excellent in workability during coating and productivity during curing can be obtained and cured.
  • the coating layer obtained later has an effect of having a moist and soft touch feeling and is particularly useful as a coating agent in a non-optical field.

Abstract

An active energy ray-curable resin composition which is characterized by containing (A) a urethane (meth)acrylate compound and (B) a fine particulate synthetic resin filler, a coating agent composition which uses the active energy ray-curable resin composition, and a laminate are provided as an active energy ray-curable resin composition which forms a coating layer that has moist and soft finger tactile, while having excellent workability during a coating process and excellent productivity during a curing process, a coating agent composition which uses the active energy ray-curable resin composition, and a laminate.

Description

活性エネルギー線硬化性樹脂組成物、コーティング剤組成物、及び積層体Active energy ray-curable resin composition, coating agent composition, and laminate
 本発明は、活性エネルギー線硬化性樹脂組成物、コーティング剤組成物、及び積層体に関し、更に詳しくは、硬化塗膜とした際にソフトフィール、ソフトタッチと呼ばれるしっとりした指触感を備え、かつ、外観上も高級感に優れた硬化塗膜を形成するための活性エネルギー線硬化性樹脂組成物、及びそれを用いてなるコーティング剤組成物、更には基材及び前記コーティング剤組成物からなるコーティング層を有する積層体に関するものである。 The present invention relates to an active energy ray-curable resin composition, a coating agent composition, and a laminate, and more specifically, has a moist touch feeling called soft feel and soft touch when used as a cured coating film, and Active energy ray-curable resin composition for forming a cured coating film excellent in appearance and high quality, a coating agent composition using the same, and further a substrate and a coating layer comprising the coating agent composition It is related with the laminated body which has.
 従来から、自動車内のプラスチックパネル等の内装部品のコーティング剤には、高級感、しっとりした指触感を出すために、有機微粒子を含有させたポリウレタン系コーティング剤が用いられてきた。 Conventionally, polyurethane coating agents containing organic fine particles have been used as coating agents for interior parts such as plastic panels in automobiles in order to give a high-class feeling and a moist touch feeling.
 一般的にポリウレタン系コーティング剤は、ポリオール成分とイソシアネート成分を反応させてなる熱硬化タイプのコーティング剤であり、ポリオール成分とイソシアネート成分の反応性が高いために、通常、2液で用いられ、基材に塗布する直前に両者を混合させて使用されるため作業性、生産性に劣るものであった。 Generally, a polyurethane-based coating agent is a thermosetting type coating agent obtained by reacting a polyol component and an isocyanate component. Since the reactivity of the polyol component and the isocyanate component is high, it is usually used in two liquids. Since both were mixed immediately before application to the material, the workability and productivity were inferior.
 そこで、作業性を改善した種々の熱硬化性のポリウレタン系コーティング剤が開発されており、例えば、特許文献1には、ポリカーボネート系ポリオールとポリイソシアネートとの反応によって得られた第1のウレタン樹脂と、ポリエーテル系ポリオールとポリイソシアネートとの反応によって得られた第2のウレタン樹脂と、1分子中に2個以上のカルボジイミド基を含有する架橋剤と、ウレタンビーズと、有機ケイ素化合物である表面改質剤とを含んでなる水性塗料が提案されており、また、特許文献2には、特定のポリイソシアネートを含む硬化剤組成物(X)及び脂肪族ポリカーボネートジオール(Y)を必須成分として含有し、硬化剤組成物(X)に含有されるNCO基と脂肪族ポリカーボネートジオール(Y)に含有されるOH基の混合モル比がNCO/OH=0.8~2.0である塗料用硬化性組成物が提案されている。 Accordingly, various thermosetting polyurethane-based coating agents with improved workability have been developed. For example, Patent Document 1 discloses a first urethane resin obtained by a reaction between a polycarbonate-based polyol and a polyisocyanate. , A second urethane resin obtained by the reaction of a polyether polyol and a polyisocyanate, a crosslinking agent containing two or more carbodiimide groups in one molecule, urethane beads, and surface modification that is an organosilicon compound. In addition, Patent Document 2 contains a curing agent composition (X) containing a specific polyisocyanate and an aliphatic polycarbonate diol (Y) as essential components. NCO group contained in the curing agent composition (X) and O contained in the aliphatic polycarbonate diol (Y) Mixing molar ratio of the base paint curable compositions have been proposed a NCO / OH = 0.8 ~ 2.0.
特開2007-319836号公報JP 2007-319836 A 特開2010-13529号公報JP 2010-13529 A
 しかしながら、上記特許文献1に開示の技術は、水系コーティング液中の反応性制御のために、架橋剤として、カルボジイミドの水性分散溶液を用いることで、塗料としての可使時間を延長できる工夫がなされているものの、コーティング層を硬化させるためには、80℃にて30分の乾燥条件に加え、調湿雰囲気下にて数日を要することから、溶液安定性(作業性)はある程度改善されているが、生産性としてはまだ満足できるものではなかった。 However, the technique disclosed in Patent Document 1 has been devised to extend the pot life as a paint by using an aqueous dispersion of carbodiimide as a crosslinking agent in order to control the reactivity in an aqueous coating solution. However, in order to cure the coating layer, in addition to the drying conditions at 80 ° C. for 30 minutes, it takes several days in a humidity control atmosphere, so the solution stability (workability) is improved to some extent. However, productivity was still not satisfactory.
 また、上記特許文献2に開示の技術は、溶剤系のコーティング液として、各種コーティング層の耐久性が従来より向上していると考えられるものの、イソシアネートとポリオールを混合したコーティング液の安定性は充分ではないと考えられ、依然として作業性に課題の残るものであった。 In addition, although the technique disclosed in Patent Document 2 is considered to have improved durability of various coating layers as a solvent-based coating liquid, the stability of the coating liquid in which isocyanate and polyol are mixed is sufficient. However, it was thought that this was not the case, and there were still problems in workability.
 そこで、本発明は、このような背景下において、作業性に優れた1液系の硬化性樹脂組成物でありながら、コーティング層とした際にしっとりとしたソフトな指触感を有しており、かつコーティング時の作業性や硬化時の生産性にも優れる活性エネルギー線硬化性樹脂組成物及びそれを用いたコーティング剤組成物を提供することを目的とするものである。 Therefore, the present invention is a one-part curable resin composition excellent in workability under such a background, and has a soft and soft touch when used as a coating layer. It is another object of the present invention to provide an active energy ray-curable resin composition excellent in workability during coating and productivity during curing, and a coating agent composition using the same.
 しかるに本発明者は、かかる事情に鑑み鋭意研究を重ねた結果、樹脂分に微粒子状の合成樹脂フィラーを配合させて得られるコーティング剤組成物において、樹脂分として従来の熱硬化性のウレタン樹脂に代えて、活性エネルギー線硬化性を有するウレタン(メタ)アクリレートを使用することにより、コーティング時の作業性や硬化時の生産性に優れた活性エネルギー線硬化性樹脂組成物が得られ、かつ、硬化後に得られる塗膜(コーティング層)がしっとりとしたソフトな指触感を有することを見出し、本発明を完成した。 However, as a result of intensive studies in view of such circumstances, the present inventor has obtained a conventional thermosetting urethane resin as a resin component in a coating composition obtained by adding a fine synthetic resin filler to a resin component. Instead, by using urethane (meth) acrylate having active energy ray curability, an active energy ray curable resin composition excellent in workability during coating and productivity during curing can be obtained and cured. The present invention was completed by finding that the coating film (coating layer) obtained later had a moist and soft touch feeling.
 即ち、本発明の要旨は、ウレタン(メタ)アクリレート系化合物(A)、及び微粒子状の合成樹脂フィラー(B)を含有してなる活性エネルギー線硬化性樹脂組成物に関するものである。
 また、本発明においては、前記活性エネルギー線硬化性樹脂組成物を含有してなるコーティング剤組成物、更には基材及び前記コーティング剤組成物からなるコーティング層を有する積層体も提供するものである。
That is, the gist of the present invention relates to an active energy ray-curable resin composition comprising a urethane (meth) acrylate compound (A) and a fine particle synthetic resin filler (B).
The present invention also provides a coating composition comprising the active energy ray-curable resin composition, and a laminate having a substrate and a coating layer comprising the coating composition. .
 本発明の活性エネルギー線硬化性樹脂組成物は、コーティング剤として使用する際に、コーティング時の作業性や硬化時の生産性に優れた活性エネルギー線硬化性樹脂組成物となるものであり、かつ、硬化後に得られるコーティング層がしっとりとしたソフトな指触感を有するといった効果を有するものであり、コーティング剤として特に有用である。 The active energy ray-curable resin composition of the present invention, when used as a coating agent, becomes an active energy ray-curable resin composition excellent in workability during coating and productivity during curing, and The coating layer obtained after curing has an effect of having a moist and soft touch feeling and is particularly useful as a coating agent.
 以下に本発明を詳細に説明する。
 本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系化合物(A)及び微粒子状の合成樹脂フィラー(B)を含有してなるものである。
The present invention is described in detail below.
The active energy ray-curable resin composition of the present invention comprises a urethane (meth) acrylate compound (A) and a fine synthetic resin filler (B).
 なお、本発明において、(メタ)アクリルとはアクリルあるいはメタクリルを、(メタ)アクリロイルとはアクリロイルあるいはメタクリロイルを、(メタ)アクリレートとはアクリレートあるいはメタクリレートをそれぞれ意味するものである。 In the present invention, (meth) acryl means acryl or methacryl, (meth) acryloyl means acryloyl or methacryloyl, and (meth) acrylate means acrylate or methacrylate.
〔ウレタン(メタ)アクリレート系化合物(A)〕
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)のエチレン性不飽和基の含有数は、2~10個が好ましく、特に好ましくは2~6個である。かかるエチレン性不飽和基数が多すぎると硬化後の架橋密度が大きくなりすぎることから、塗膜が硬くなりすぎ、しっとりとしたソフト感が得られにくい傾向があり、少なすぎると充分な架橋密度が得られないため、硬化塗膜表面がべたついたり、各種耐久性能が低下してしまう傾向がある。
[Urethane (meth) acrylate compound (A)]
The content of the ethylenically unsaturated group of the urethane (meth) acrylate compound (A) used in the present invention is preferably 2 to 10, particularly preferably 2 to 6. If the number of such ethylenically unsaturated groups is too large, the crosslinking density after curing becomes too large, and the coating film tends to be too hard and it is difficult to obtain a moist soft feeling. Since it cannot be obtained, there is a tendency that the surface of the cured coating film is sticky or various durability performances are deteriorated.
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)の重量平均分子量は、1,000~50,000であることが好ましく、特に好ましくは1,500~40,000、殊に好ましくは2,000~35,000である。
 かかる重量平均分子量が小さすぎると相対的に架橋密度が大きくなるため、硬化塗膜表面が硬くなりすぎ、しっとりしたソフト感が得られにくい傾向があり、大きすぎると硬化性樹脂組成物の粘度が高くなりすぎる傾向があり、また、充分な架橋密度が得られず、硬化塗膜表面がべたついたり、各種耐久性が低下しやすくなったりする傾向がある。
The weight average molecular weight of the urethane (meth) acrylate compound (A) used in the present invention is preferably 1,000 to 50,000, particularly preferably 1,500 to 40,000, particularly preferably 2. , 5,000 to 35,000.
If the weight average molecular weight is too small, the crosslink density is relatively increased, so that the surface of the cured coating film is too hard and it is difficult to obtain a moist soft feeling. If it is too large, the viscosity of the curable resin composition is low. There is a tendency to become too high, a sufficient crosslinking density cannot be obtained, the surface of the cured coating film becomes sticky, and various durability tends to decrease.
 なお、上記の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフィー(日本ウォーターズ社製、「Waters 2695(本体)」と「Waters 2414(検出器)」)に、カラム(Shodex GPC KF-806L(排除限界分子量:2×107、分離範囲:100~2×107、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm))の3本直列を用いることにより測定される。 In addition, said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, a column is put into a high performance liquid chromatography (Nippon Waters Co., Ltd., "Waters 2695 (main body)" and "Waters 2414 (detector)"). (Shodex GPC KF-806L (exclusion limit molecular weight: 2 × 10 7 , separation range: 100 to 2 × 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler) It is measured by using three series of particle diameters: 10 μm)).
 上記ウレタン(メタ)アクリレート系化合物(A)の60℃における粘度は、1,000~100,000mPa・sであることが好ましく、特に好ましくは1,500~50,000mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 なお、粘度の測定法はE型粘度計による。
The viscosity of the urethane (meth) acrylate compound (A) at 60 ° C. is preferably 1,000 to 100,000 mPa · s, and particularly preferably 1,500 to 50,000 mPa · s. When the viscosity is out of the above range, the coatability tends to be lowered.
In addition, the measuring method of a viscosity is based on an E-type viscometer.
 本発明で用いるウレタン(メタ)アクリレート系化合物(A)としては、水酸基含有(メタ)アクリレート系化合物(a1)、多価イソシアネート系化合物(a2)及びポリオール系化合物(a3)を反応させて得られるウレタン(メタ)アクリレート系化合物(A1)、または、水酸基含有(メタ)アクリレート系化合物(a1)及び多価イソシアネート系化合物(a2)を反応させて得られるウレタン(メタ)アクリレート系化合物(A2)が挙げられ、これらの中から1種のみを単独で用いてもよいし、2種以上を併用してもよい。 The urethane (meth) acrylate compound (A) used in the present invention is obtained by reacting a hydroxyl group-containing (meth) acrylate compound (a1), a polyvalent isocyanate compound (a2) and a polyol compound (a3). A urethane (meth) acrylate compound (A2) obtained by reacting a urethane (meth) acrylate compound (A1) or a hydroxyl group-containing (meth) acrylate compound (a1) and a polyvalent isocyanate compound (a2). Among these, only one type may be used alone, or two or more types may be used in combination.
 これらの中でも硬化塗膜とした際に塗膜のべとつきを抑制する点、及び、硬化塗膜に耐久性を付与できる程度の架橋密度が得られる点においては、比較的低分子量として合成されるウレタン(メタ)アクリレート系化合物(A2)が好ましく、また硬化塗膜に柔軟性を付与する点においては、ポリオール系化合物(a3)を反応させて得られるウレタン(メタ)アクリレート系化合物(A1)が好ましい。
 これらは、目的とする硬化塗膜の諸物性付与を考慮して適宜選択される。
Among these, urethane synthesized as a relatively low molecular weight in terms of suppressing the stickiness of the coating film when it is used as a cured coating film, and obtaining a crosslinking density that can impart durability to the cured coating film. The (meth) acrylate compound (A2) is preferable, and the urethane (meth) acrylate compound (A1) obtained by reacting the polyol compound (a3) is preferable in terms of imparting flexibility to the cured coating film. .
These are appropriately selected in consideration of imparting various physical properties of the intended cured coating film.
<ウレタン(メタ)アクリレート系化合物(A1)>
 ウレタン(メタ)アクリレート系化合物(A1)は、上記のように、水酸基含有(メタ)アクリレート系化合物(a1)、多価イソシアネート系化合物(a2)及びポリオール系化合物(a3)を反応させて得られる。ウレタン(メタ)アクリレート系化合物(A1)を得るための化合物である、水酸基含有(メタ)アクリレート系化合物(a1)、多価イソシアネート系化合物(a2)及びポリオール系化合物(a3)について以下順に説明する。
<Urethane (meth) acrylate compound (A1)>
As described above, the urethane (meth) acrylate compound (A1) is obtained by reacting the hydroxyl group-containing (meth) acrylate compound (a1), the polyvalent isocyanate compound (a2), and the polyol compound (a3). . The hydroxyl group-containing (meth) acrylate compound (a1), polyvalent isocyanate compound (a2), and polyol compound (a3), which are compounds for obtaining the urethane (meth) acrylate compound (A1), will be described below in order. .
〈水酸基含有(メタ)アクリレート系化合物(a1)〉
 水酸基含有(メタ)アクリレート系化合物(a1)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、脂肪酸変性-グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、等のエチレン性不飽和基を1つ含有する(メタ)アクリレート系化合物;
グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート、等エチレン性不飽和基を2つ含有する(メタ)アクリレート系化合物;
ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート等エチレン性不飽和基を3つ以上含有する(メタ)アクリレート系化合物が挙げられる。
<Hydroxyl-containing (meth) acrylate compound (a1)>
Examples of the hydroxyl group-containing (meth) acrylate compound (a1) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth). Acrylates, hydroxyalkyl (meth) acrylates such as 6-hydroxyhexyl (meth) acrylate, 2-hydroxyethyl acryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth) ) Acrylate, dipropylene glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) Acrylate, 2-hydroxy-3- (meth) acryloyloxy propyl (meth) acrylate, containing one ethylenically unsaturated group such as (meth) acrylate compound;
(Meth) acrylate compounds containing two ethylenically unsaturated groups such as glycerin di (meth) acrylate, 2-hydroxy-3-acryloyl-oxypropyl methacrylate, and the like;
Pentaerythritol tri (meth) acrylate, caprolactone modified pentaerythritol tri (meth) acrylate, ethylene oxide modified pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, ethylene Examples thereof include (meth) acrylate compounds containing three or more ethylenically unsaturated groups such as oxide-modified dipentaerythritol penta (meth) acrylate.
 これらの中でも、エチレン性不飽和基を1個有する水酸基(メタ)アクリレート系化合物が塗膜形成の際の硬化収縮を緩和することができる理由から好ましく、更に好ましくは、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、特に好ましくは反応性及び汎用性に優れる点で2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレートである。
 また、これらは1種または2種以上組み合わせて使用することができる。
Among these, a hydroxyl group (meth) acrylate compound having one ethylenically unsaturated group is preferable because it can mitigate cure shrinkage during coating film formation, and more preferably 2-hydroxyethyl (meth). Hydroxyalkyl (meth) acrylates such as acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, caprolactone modified 2- Hydroxyethyl (meth) acrylate, particularly preferably 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and caprolactone-modified 2-hydroxyethyl (meth) acrylate in terms of excellent reactivity and versatility. .
Moreover, these can be used 1 type or in combination of 2 or more types.
〈多価イソシアネート系化合物(a2)〉
 多価イソシアネート系化合物(a2)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート;
ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート;
水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等の脂環式系ポリイソシアネート;
或いはこれらポリイソシアネートの3量体化合物または多量体化合物、アロファネート型ポリイソシアネート、ビュレット型ポリイソシアネート、水分散型ポリイソシアネート(例えば、日本ポリウレタン工業社製の「アクアネート100」、「アクアネート110」、「アクアネート200」「アクアネート210」等)、等が挙げられる。
<Polyisocyanate compound (a2)>
Examples of the polyvalent isocyanate compound (a2) include aromatics such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate. Polyisocyanate;
Aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate;
Cycloaliphatic polyisocyanates such as hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane;
Alternatively, trimer compounds or multimeric compounds of these polyisocyanates, allophanate type polyisocyanates, burette type polyisocyanates, water-dispersed polyisocyanates (for example, “Aquanate 100”, “Aquanate 110” manufactured by Nippon Polyurethane Industry Co., Ltd., "Aquanate 200", "Aquanate 210", etc.).
 これらの中でも、黄変が少ない点で、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族系ジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等の脂環式系ジイソシアネートが好ましく、特に好ましくはイソホロンジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、ヘキサメチレンジイソシアネートであり、更に好ましくは、反応性及び汎用性に優れる点でイソホロンジイソシアネート、ヘキサメチレンジイソシアネートである。 Of these, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1, An alicyclic diisocyanate such as 3-bis (isocyanatomethyl) cyclohexane is preferred, particularly preferably isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, hexamethylene diisocyanate, and more preferably reactive. In addition, isophorone diisocyanate and hexamethylene diisocyanate are excellent in versatility.
〈ポリオール系化合物(a3)〉
 ポリオール系化合物(a3)としては、水酸基を2個以上含有する化合物であればよく、例えば、脂肪族ポリオール、脂環族ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、ポリイソプレン系ポリオール、(メタ)アクリル系ポリオール、ポリシロキサン系ポリオール等が挙げられる。
<Polyol compound (a3)>
The polyol compound (a3) may be any compound containing two or more hydroxyl groups. For example, an aliphatic polyol, an alicyclic polyol, a polyether polyol, a polyester polyol, a polycarbonate polyol, a polyolefin polyol, Examples thereof include polybutadiene-based polyols, polyisoprene-based polyols, (meth) acrylic polyols, and polysiloxane-based polyols.
 上記ポリオール系化合物(a3)の重量平均分子量としては、60~20,000が好ましく、特に好ましくは100~15,000、更に好ましくは150~8,000である。ポリオール系化合物(a3)の重量平均分子量が大きすぎると、硬化の際に充分な架橋密度が得られず、硬化塗膜表面がべたついたり、各種耐久性が低下しやすかったりする傾向があり、また硬化性樹脂組成物が高粘度となり取り扱いにくくなる傾向がある。また、ポリオール系化合物(a3)の重量平均分子量が小さすぎると、硬化後の塗膜の柔軟性が低下し、しっとりとしたソフトな指触感が得られにくい傾向がある。 The weight-average molecular weight of the polyol compound (a3) is preferably 60 to 20,000, particularly preferably 100 to 15,000, and further preferably 150 to 8,000. If the weight-average molecular weight of the polyol-based compound (a3) is too large, a sufficient crosslinking density cannot be obtained at the time of curing, the cured coating film surface tends to be sticky, and various durability tends to decrease. The curable resin composition tends to be highly viscous and difficult to handle. Moreover, when the weight average molecular weight of a polyol type compound (a3) is too small, the softness | flexibility of the coating film after hardening falls and there exists a tendency for a moist soft touch feeling to be hard to be obtained.
 また、ポリオール系化合物(a3)として、重量平均分子量500未満のポリオール化合物(a3-1)及び重量平均分子量500~20,000のポリオール化合物(a3-2)を含有することが耐アルカリ性および耐エタノール性の点から好ましい。 Further, it is preferable that the polyol compound (a3) contains a polyol compound (a3-1) having a weight average molecular weight of less than 500 and a polyol compound (a3-2) having a weight average molecular weight of 500 to 20,000. From the viewpoint of sex.
 上記ポリオール化合物(a3-1)の重量平均分子量としては、500未満であり、好ましくは60~450、特に好ましくは60~400、更に好ましくは100~300である。ポリオール化合物(a3-1)の重量平均分子量が大きすぎると、配合組成物とした場合、ウレタン結合特有の水素結合性疑似架橋度が下がることにより、硬化塗膜の耐薬品性等の耐久性が低下する傾向がある。 The weight average molecular weight of the polyol compound (a3-1) is less than 500, preferably 60 to 450, particularly preferably 60 to 400, and further preferably 100 to 300. When the weight average molecular weight of the polyol compound (a3-1) is too large, when it is used as a blended composition, the hydrogen bond pseudo-crosslinking degree peculiar to the urethane bond is lowered, so that durability such as chemical resistance of the cured coating film is reduced. There is a tendency to decrease.
 上記ポリオール化合物(a3-2)の重量平均分子量としては、500~20,000であり、好ましくは2,000~15,000、特に好ましくは3,000~8,000である。ポリオール化合物(a3-2)の重量平均分子量が小さすぎると、ウレタン(メタ)アクリレート系化合物(A)の分子量が相対的に小さくなることから、配合組成物とした場合、硬化塗膜の弾力性が低下する傾向があり、大きすぎると、配合し活性エネルギー線硬化型組成物とした樹脂溶液からなる塗膜はべたつきが生じる傾向にある。また、ポリオール化合物(a3-2)の重量平均分子量が大きいことで、合成時の反応性が乏しくなるため、反応時間が極度に長くなり、合成条件として実用上、好ましくない。 The weight average molecular weight of the polyol compound (a3-2) is 500 to 20,000, preferably 2,000 to 15,000, and particularly preferably 3,000 to 8,000. If the weight average molecular weight of the polyol compound (a3-2) is too small, the molecular weight of the urethane (meth) acrylate compound (A) becomes relatively small. When it is too large, the coating film made of a resin solution that is blended to form an active energy ray-curable composition tends to be sticky. Further, since the polyol compound (a3-2) has a large weight average molecular weight, the reactivity at the time of synthesis becomes poor, so that the reaction time becomes extremely long, and this is not practically preferable as a synthesis condition.
 また、上記ポリオール系化合物の重量平均分子量において、ポリオール化合物(a3-1)とポリオール化合物(a3-2)との差は、好ましくは400以上、特に好ましくは800以上、更に好ましくは1,200以上、殊に好ましくは2,000以上である。上記差が小さすぎると、硬化塗膜の耐薬品性と弾力性とのバランスに劣り、機能を両立させることが難しくなる傾向がある。 Further, in the weight average molecular weight of the polyol compound, the difference between the polyol compound (a3-1) and the polyol compound (a3-2) is preferably 400 or more, particularly preferably 800 or more, more preferably 1,200 or more. Particularly preferred is 2,000 or more. If the difference is too small, the balance between chemical resistance and elasticity of the cured coating film tends to be inferior, making it difficult to achieve both functions.
 上記ポリオール化合物(a3-1)とポリオール化合物(a3-2)との配合割合(mol比)としては、好ましくは(a3-1):(a3-2)=30:70~95:5、特に好ましくは(a3-1):(a3-2)=40:60~90:10、更に好ましくは(a3-1):(a3-2)=50:50~85:15である。
 上記ポリオール化合物(a3-1)の配合割合が多すぎると粘度が上昇しすぎる傾向があり、少なすぎると耐アルカリ性や耐エタノール性が低下しやすい傾向がある。
The blending ratio (mol ratio) of the polyol compound (a3-1) and the polyol compound (a3-2) is preferably (a3-1) :( a3-2) = 30: 70 to 95: 5, particularly Preferably (a3-1) :( a3-2) = 40: 60 to 90:10, more preferably (a3-1) :( a3-2) = 50: 50 to 85:15.
If the blending ratio of the polyol compound (a3-1) is too large, the viscosity tends to increase too much, and if it is too small, the alkali resistance and ethanol resistance tend to decrease.
 上記重量平均分子量500未満のポリオール化合物(a3-1)としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、ジメチロールプロパン、ネオペンチルグリコール、1,2-ヘキサンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、ジトリメチロールプロパン、ジペンタエリスリトール、トリペンタエリスリトール等の脂肪族アルコール類、1,4-シクロヘキサンジオール、シクロヘキシルジメタノール等のシクロヘキサンジオール類、ビスフェノールA等のビスフェノール類、トリシクロデカンジメタノール、キシリトールやソルビトール等の糖アルコール類等があげられ、これらは1種または2種以上を併用して用いることができる。なかでも、ネオペンチルグリコール、1,2-ヘキサンジオール、トリシクロデカンジメタノールが結晶性が低くなることから好ましく用いられる。 Examples of the polyol compound (a3-1) having a weight average molecular weight of less than 500 include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, dimethylolpropane, neopentyl glycol, 1,2-hexanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, 2-methyl-1, 3-trimethylenediol, 1,5-pentamethylenediol, 1,6-hexamethylenediol, 3-methyl-1,5-pentamethylenediol, 2,4-diethyl-1,5-pentamethylenediol, 1, 9-nonanediol, 2-methyl-1,8-o Aliphatic alcohols such as tandiol, ditrimethylolpropane, dipentaerythritol, tripentaerythritol, cyclohexanediols such as 1,4-cyclohexanediol and cyclohexyldimethanol, bisphenols such as bisphenol A, tricyclodecane dimethanol, xylitol And sugar alcohols such as sorbitol and the like, and these can be used alone or in combination of two or more. Of these, neopentyl glycol, 1,2-hexanediol, and tricyclodecane dimethanol are preferably used because of their low crystallinity.
 また、上記重量平均分子量500~20,000のポリオール化合物(a3-2)としては、例えば、脂肪族ポリオール、脂環族ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、(メタ)アクリル系ポリオール、ポリシロキサン系ポリオール等が挙げられる。 Examples of the polyol compound (a3-2) having a weight average molecular weight of 500 to 20,000 include aliphatic polyols, alicyclic polyols, polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, Examples include polybutadiene polyols, (meth) acrylic polyols, and polysiloxane polyols.
 上記脂肪族ポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、ジメチロールプロパン、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、ペンタエリスリトールジアクリレート、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール等の2個の水酸基を含有する脂肪族アルコール類、キシリトールやソルビトール等の糖アルコール類、グリセリン、トリメチロールプロパン、トリメチロールエタン等の3個以上の水酸基を含有する脂肪族アルコール類等が挙げられ、これらは1種または2種以上を併用して用いることができる。 Examples of the aliphatic polyol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, dimethylolpropane, neopentyl glycol, 2,2-diethyl-1,3-propanediol, and 2-butyl- 2-ethyl-1,3-propanediol, 1,4-tetramethylenediol, 1,3-tetramethylenediol, 2-methyl-1,3-trimethylenediol, 1,5-pentamethylenediol, 1,6 -Hexamethylenediol, 3-methyl-1,5-pentamethylenediol, 2,4-diethyl-1,5-pentamethylenediol, pentaerythritol diacrylate, 1,9-nonanediol, 2-methyl-1,8 -Two hydroxyl acids such as octanediol , Aliphatic alcohols containing 3 or more hydroxyl groups such as glycerin, trimethylolpropane, trimethylolethane, and the like, and the like. Two or more kinds can be used in combination.
 上記脂環族ポリオールとしては、例えば、1,4-シクロヘキサンジオール、シクロヘキシルジメタノール等のシクロヘキサンジオール類、水添ビスフェノールA等の水添ビスフェノール類、トリシクロデカンジメタノール等が挙げられ、これらは1種または2種以上を併用して用いることができる。 Examples of the alicyclic polyol include cyclohexanediols such as 1,4-cyclohexanediol and cyclohexyldimethanol, hydrogenated bisphenols such as hydrogenated bisphenol A, and tricyclodecane dimethanol. Two or more species can be used in combination.
 上記ポリエーテル系ポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール、ポリペンタメチレングリコール、ポリヘキサメチレングリコール等のアルキレン構造含有ポリエーテル系ポリオールや、これらポリアルキレングリコールのランダム或いはブロック共重合体が挙げられる。 Examples of the polyether polyol include, for example, polyether glycols containing alkylene structures such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, polypentamethylene glycol, polyhexamethylene glycol, and the like. A random or block copolymer is mentioned.
 上記ポリエステル系ポリオールとしては、例えば、多価アルコールと多価カルボン酸との縮合重合物;環状エステル(ラクトン)の開環重合物;多価アルコール、多価カルボン酸及び環状エステルの3種類の成分による反応物などが挙げられる。 Examples of the polyester-based polyol include three types of components: a condensation polymer of a polyhydric alcohol and a polycarboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a polyhydric alcohol, a polycarboxylic acid, and a cyclic ester. And the like.
 前記多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオールなど)、ビスフェノール類(ビスフェノールAなど)、糖アルコール類(キシリトールやソルビトールなど)などが挙げられる。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylene diol, 1,3-tetramethylene diol, 2-methyl-1,3-trimethyl. Methylene diol, 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, 3-methyl-1,5-pentamethylene diol, 2,4-diethyl-1,5-pentamethylene diol, glycerin , Trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), bisphenols (such as bisphenol A), sugar alcohols (such as xylitol and sorbitol)
 前記多価カルボン酸としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸などが挙げられる。 Examples of the polyvalent carboxylic acid include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, and the like.
 前記環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなどが挙げられる。 Examples of the cyclic ester include propiolactone, β-methyl-δ-valerolactone, and ε-caprolactone.
 上記ポリカーボネート系ポリオールとしては、例えば、多価アルコールとホスゲンとの反応物;環状炭酸エステル(アルキレンカーボネートなど)の開環重合物などが挙げられる。 Examples of the polycarbonate polyol include a reaction product of a polyhydric alcohol and phosgene; a ring-opening polymer of a cyclic carbonate (such as alkylene carbonate).
 前記多価アルコールとしては、前記ポリエステル系ポリオールの説明中で例示の多価アルコール等が挙げられ、上記アルキレンカーボネートとしては、例えば、エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネートなどが挙げられる。 Examples of the polyhydric alcohol include polyhydric alcohols exemplified in the description of the polyester-based polyol, and examples of the alkylene carbonate include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate, and the like. It is done.
 なお、ポリカーボネート系ポリオールは、分子内にカーボネート結合を有し、末端がヒドロキシル基である化合物であればよく、カーボネート結合とともにエステル結合を有していてもよい。 The polycarbonate-based polyol may be a compound having a carbonate bond in the molecule and having a hydroxyl group at the end, and may have an ester bond together with the carbonate bond.
 上記ポリオレフィン系ポリオールとしては、飽和炭化水素骨格としてエチレン、プロピレン、ブテン等のホモポリマーまたはコポリマーを有し、その分子末端に水酸基を有するものが挙げられる。 Examples of the polyolefin-based polyol include those having a saturated hydrocarbon skeleton having a homopolymer or copolymer such as ethylene, propylene and butene, and having a hydroxyl group at the molecular end.
 上記ポリブタジエン系ポリオールとしては、炭化水素骨格としてブタジエンの共重合体を有し、その分子末端に水酸基を有するものが挙げられる。
 ポリブタジエン系ポリオールは、その構造中に含まれるエチレン性不飽和基の全部または一部が水素化された水添化ポリブタジエンポリオールであってもよい。
Examples of the polybutadiene-based polyol include those having a butadiene copolymer as a hydrocarbon skeleton and having a hydroxyl group at the molecular end.
The polybutadiene-based polyol may be a hydrogenated polybutadiene polyol in which all or part of the ethylenically unsaturated groups contained in the structure thereof are hydrogenated.
 上記ポリイソプレン系ポリオールとしては、炭化水素骨格としてイソプレンの共重合体を有し、その分子末端に水酸基を有するものが挙げられる。
 ポリイソプレン系ポリオールは、その構造中に含まれるエチレン性不飽和基の全部または一部が水素化された水添化ポリイソプレンポリオールであってもよい。
Examples of the polyisoprene-based polyol include those having a copolymer of isoprene as a hydrocarbon skeleton and a hydroxyl group at the molecular end.
The polyisoprene-based polyol may be a hydrogenated polyisoprene polyol in which all or part of the ethylenically unsaturated groups contained in the structure is hydrogenated.
 上記(メタ)アクリル系ポリオールとしては、(メタ)アクリル酸エステルを重合体または共重合体の分子内にヒドロキシル基を少なくとも2つ有しているものが挙げられ、かかる(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the (meth) acrylic polyol include those having at least two hydroxyl groups in the molecule of the polymer or copolymer of the (meth) acrylic ester. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, (meth) acrylic And (meth) acrylic acid alkyl esters such as 2-ethylhexyl acid, decyl (meth) acrylate, dodecyl (meth) acrylate, and octadecyl (meth) acrylate.
 上記ポリシロキサン系ポリオールとしては、例えば、ジメチルポリシロキサンポリオールやメチルフェニルポリシロキサンポリオール等が挙げられる。 Examples of the polysiloxane polyol include dimethyl polysiloxane polyol and methylphenyl polysiloxane polyol.
 これらの中でも、硬化塗膜となった際のべたつき抑制の点では、脂肪族ポリオール、脂環族ポリオールが好ましく用いられ、柔軟性付与の点ではポリエステル系ポリオール、ポリエーテル系ポリオール、ポリカーボネート系ポリオールが好ましく用いられる。 Among these, aliphatic polyols and alicyclic polyols are preferably used in terms of suppressing stickiness when it becomes a cured coating film, and polyester polyols, polyether polyols, and polycarbonate polyols are preferred in terms of imparting flexibility. Preferably used.
 上記ウレタン(メタ)アクリレート系化合物(A1)の製造法は、通常、上記水酸基含有(メタ)アクリレート系化合物(a1)、多価イソシアネート系化合物(a2)、ポリオール系化合物(a3)を、反応器に一括または別々に仕込み反応させればよいが、ポリオール系化合物(a3)と多価イソシアネート系化合物(a2)とを予め反応させて得られる反応生成物に、水酸基含有(メタ)アクリレート系化合物(a1)を反応させるのが、反応の安定性や副生成物の低減等の点で有用である。 The production method of the urethane (meth) acrylate compound (A1) is usually a reaction of the hydroxyl group-containing (meth) acrylate compound (a1), the polyvalent isocyanate compound (a2), and the polyol compound (a3) with a reactor. The reaction product obtained by reacting the polyol-based compound (a3) and the polyvalent isocyanate-based compound (a2) in advance may be added to the hydroxyl group-containing (meth) acrylate-based compound ( The reaction of a1) is useful in terms of reaction stability and reduction of byproducts.
 ポリオール系化合物(a3)と多価イソシアネート系化合物(a2)との反応には、公知の反応手段を用いることができる。その際、例えば、多価イソシアネート系化合物(a2)中のイソシアネート基:ポリオール系化合物(a3)中の水酸基とのモル比を通常2n:(2n-2)(nは2以上の整数)程度にすることにより、イソシアネート基を残存させた末端イソシアネート基含有ウレタン(メタ)アクリレート系化合物を得た後、水酸基含有(メタ)アクリレート系化合物(a1)との付加反応を可能にする。 For the reaction between the polyol compound (a3) and the polyvalent isocyanate compound (a2), known reaction means can be used. At that time, for example, the molar ratio of the isocyanate group in the polyvalent isocyanate compound (a2) to the hydroxyl group in the polyol compound (a3) is usually about 2n: (2n-2) (n is an integer of 2 or more). Thus, after obtaining the terminal isocyanate group-containing urethane (meth) acrylate compound having the isocyanate group remaining, the addition reaction with the hydroxyl group-containing (meth) acrylate compound (a1) is made possible.
 上記ポリオール系化合物(a3)と多価イソシアネート系化合物(a2)とを予め反応させて得られる反応生成物と、水酸基含有(メタ)アクリレート系化合物(a1)との付加反応にも、公知の反応手段を用いることができる。 The addition reaction of the reaction product obtained by reacting the polyol compound (a3) and the polyvalent isocyanate compound (a2) in advance with the hydroxyl group-containing (meth) acrylate compound (a1) is also a known reaction. Means can be used.
 反応生成物と水酸基含有(メタ)アクリレート系化合物(a1)との反応モル比は、例えば、多価イソシアネート系化合物(a2)のイソシアネート基が2個で、水酸基含有(メタ)アクリレート系化合物(a1)の水酸基が1個である場合は、反応生成物:水酸基含有(メタ)アクリレート系化合物(a1)が1:2程度であり、多価イソシアネート系化合物(a2)のイソシアネート基が3個で、水酸基含有(メタ)アクリレート系化合物(a1)の水酸基が1個である場合は、反応生成物:水酸基含有(メタ)アクリレート系化合物(a1)が1:3程度である。 The reaction molar ratio between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1) is, for example, that the polyisocyanate compound (a2) has two isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a1). ) Has one hydroxyl group, the reaction product: hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 2, and the polyisocyanate compound (a2) has three isocyanate groups. When the hydroxyl group-containing (meth) acrylate compound (a1) has one hydroxyl group, the reaction product: hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 3.
 この反応生成物と水酸基含有(メタ)アクリレート系化合物(a1)との付加反応においては、反応系の残存イソシアネート基含有率が0.5重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(A1)が得られる。 In the addition reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.5% by weight or less. A (meth) acrylate compound (A1) is obtained.
 かかるポリオール系化合物(a3)と多価イソシアネート系化合物(a2)との反応、更にその反応生成物と水酸基含有(メタ)アクリレート系化合物(a1)との反応においては、反応を促進する目的で触媒を用いることも好ましく、かかる触媒としては、例えば、ジブチル錫ジラウレート、トリメチル錫ヒドロキシド、テトラ-n-ブチル錫等の有機金属化合物、オクテン酸亜鉛、オクテン酸錫、ナフテン酸コバルト、塩化第1錫、塩化第2錫等の金属塩、トリエチルアミン、ベンジルジエチルアミン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン、N,N,N′,N′-テトラメチル-1,3-ブタンジアミン、N-エチルモルホリン等のアミン系触媒、硝酸ビスマス、臭化ビスマス、ヨウ化ビスマス、硫化ビスマス等の他、ジブチルビスマスジラウレート、ジオクチルビスマスジラウレート等の有機ビスマス化合物や、2-エチルヘキサン酸ビスマス塩、ナフテン酸ビスマス塩、イソデカン酸ビスマス塩、ネオデカン酸ビスマス塩、ラウリル酸ビスマス塩、マレイン酸ビスマス塩、ステアリン酸ビスマス塩、オレイン酸ビスマス塩、リノール酸ビスマス塩、酢酸ビスマス塩、ビスマスリビスネオデカノエート、ジサリチル酸ビスマス塩、次没食子酸ビスマス塩等の有機酸ビスマス塩等のビスマス系触媒等が挙げられ、中でも、ジブチル錫ジラウレート、1,8-ジアザビシクロ[5,4,0]ウンデセンが好適である。
 また、ジルコニウム系触媒と液状の亜鉛系触媒を併用することも好ましい。
In the reaction between the polyol compound (a3) and the polyvalent isocyanate compound (a2), and further in the reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1), a catalyst is used for the purpose of promoting the reaction. It is also preferable to use, for example, organometallic compounds such as dibutyltin dilaurate, trimethyltin hydroxide, tetra-n-butyltin, zinc octenoate, tin octenoate, cobalt naphthenate, stannous chloride. Metal salts such as stannic chloride, triethylamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0] undecene, N, N, N ′, Amine catalysts such as N'-tetramethyl-1,3-butanediamine and N-ethylmorpholine, bismuth nitrate, bibromide In addition to trout, bismuth iodide, bismuth sulfide, etc., organic bismuth compounds such as dibutyl bismuth dilaurate and dioctyl bismuth dilaurate, bismuth 2-ethylhexanoate, bismuth naphthenate, bismuth isodecanoate, bismuth neodecanoate, lauryl Organic acid bismuth such as bismuth acid salt, bismuth maleate, bismuth stearate, bismuth oleate, bismuth linoleate, bismuth acetate, bismuth bisneodecanoate, bismuth disalicylate, bismuth subgallate Examples thereof include bismuth-based catalysts such as salts, among which dibutyltin dilaurate and 1,8-diazabicyclo [5,4,0] undecene are preferable.
It is also preferable to use a zirconium-based catalyst and a liquid zinc-based catalyst in combination.
 またポリオール系化合物(a3)と多価イソシアネート系化合物(a2)との反応、更にその反応生成物と水酸基含有(メタ)アクリレート系化合物(a1)との反応においては、イソシアネート基に対して反応する官能基を有しない有機溶剤、例えば、酢酸エチル、酢酸ブチル等のエステル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族類等の有機溶剤を用いることができる。 In the reaction between the polyol compound (a3) and the polyvalent isocyanate compound (a2), and in the reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (a1), it reacts with the isocyanate group. Organic solvents having no functional group, for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and organic solvents such as aromatics such as toluene and xylene can be used.
 また、反応温度は、通常30~90℃、好ましくは40~80℃であり、反応時間は、通常2~10時間、好ましくは3~8時間である。 The reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
 上記ウレタン(メタ)アクリレート系化合物(A1)は、硬化塗膜に耐久性を付与する点で2~10個のエチレン性不飽和基を有するものであることが好ましく、特に好ましくは2~6個のエチレン性不飽和基を有するものである。かかるエチレン性不飽和基数が多すぎると硬化後の架橋密度が大きくなりすぎることから、塗膜が硬くなりすぎ、しっとりとしたソフト感が得られにくい傾向があり、少なすぎると充分な架橋密度が得られにくいため、硬化塗膜表面がべたついたり、耐久性能が低下したりする傾向がある。 The urethane (meth) acrylate compound (A1) preferably has 2 to 10 ethylenically unsaturated groups, particularly preferably 2 to 6 in terms of imparting durability to the cured coating film. Having an ethylenically unsaturated group. If the number of such ethylenically unsaturated groups is too large, the crosslinking density after curing becomes too large, and the coating film tends to be too hard and it is difficult to obtain a moist soft feeling. Since it is difficult to obtain, the cured coating film surface tends to be sticky and the durability performance tends to be lowered.
 上記ウレタン(メタ)アクリレート系化合物(A1)の重量平均分子量は、1,000~50,000あることが好ましく、更に好ましくは2,000~40,000である。かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。 The weight average molecular weight of the urethane (meth) acrylate compound (A1) is preferably 1,000 to 50,000, more preferably 2,000 to 40,000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
 また、ウレタン(メタ)アクリレート系化合物(A1)を構成するポリオール系化合物(a3)として、重量平均分子量500未満のポリオール化合物(a3-1)及び重量平均分子量500~20,000のポリオール化合物(a3-2)を使用する場合には、ウレタン(メタ)アクリレート系化合物(A1)の重量平均分子量は、2,500~50,000であることが好ましく、特に好ましくは2,500~40,000、更に好ましくは3,500~30,000である。
 かかる重量平均分子量が小さすぎると相対的に配合中の不飽和基当量が増えることとなるため、硬化塗膜とした場合、微粒子状の合成樹脂フィラー(B)との硬度差が顕著となり、外部からの応力を逃すことができず傷が付きやすくなる傾向があり、大きすぎると硬化性樹脂組成物の粘度が高くなりすぎる傾向があり、また、充分な架橋密度が得られず、硬化塗膜表面がべたついたり、各種耐久性が低下しやすくなったりする傾向がある。
As the polyol compound (a3) constituting the urethane (meth) acrylate compound (A1), a polyol compound (a3-1) having a weight average molecular weight of less than 500 and a polyol compound (a3) having a weight average molecular weight of 500 to 20,000 are used. -2), the urethane (meth) acrylate compound (A1) preferably has a weight average molecular weight of 2,500 to 50,000, particularly preferably 2,500 to 40,000, More preferably, it is 3,500 to 30,000.
If the weight average molecular weight is too small, the unsaturated group equivalent in the compounding will increase relatively, and when it is a cured coating film, the hardness difference from the fine synthetic resin filler (B) becomes remarkable, and the external The stress of the curable resin composition tends to be damaged due to the stress that cannot be released, and if it is too large, the viscosity of the curable resin composition tends to be too high, and a sufficient crosslinking density cannot be obtained. There is a tendency that the surface becomes sticky and various durability tends to decrease.
 なお、上記の重量平均分子量とは、上記と同様にして測定される。 The weight average molecular weight is measured in the same manner as described above.
 ウレタン(メタ)アクリレート系化合物(A1)の60℃における粘度は1,000~100,000mPa・sであることが好ましく、特に好ましくは1,500~50,000mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 なお、粘度の測定法は、上記と同様、E型粘度計による。
The viscosity of the urethane (meth) acrylate compound (A1) at 60 ° C. is preferably 1,000 to 100,000 mPa · s, particularly preferably 1,500 to 50,000 mPa · s. When the viscosity is out of the above range, the coatability tends to be lowered.
The viscosity is measured by an E-type viscometer as described above.
 <ウレタン(メタ)アクリレート系化合物(A2)>
 本発明におけるウレタン(メタ)アクリレート系化合物(A2)は、水酸基含有(メタ)アクリレート系化合物(a1)及び多価イソシアネート系化合物(a2)を反応させて得られるものである。
<Urethane (meth) acrylate compound (A2)>
The urethane (meth) acrylate compound (A2) in the present invention is obtained by reacting a hydroxyl group-containing (meth) acrylate compound (a1) and a polyvalent isocyanate compound (a2).
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A2)のエチレン性不飽和基の含有数は、2~10個が好ましく、特に好ましくは2~6個である。かかるエチレン性不飽和基数が多すぎると硬化後の架橋密度が大きくなりすぎることから、塗膜が硬くなりすぎ、しっとりとしたソフト感が得られにくい傾向があり、少なすぎると充分な架橋密度が得られにくいため、硬化塗膜表面がべたついたり、耐久性能が低下してしまう傾向がある。 The content of ethylenically unsaturated groups in the urethane (meth) acrylate compound (A2) used in the present invention is preferably 2 to 10, particularly preferably 2 to 6. If the number of such ethylenically unsaturated groups is too large, the crosslinking density after curing becomes too large, and the coating film tends to be too hard and it is difficult to obtain a moist soft feeling. Since it is difficult to obtain, the surface of the cured coating film tends to be sticky or the durability performance tends to deteriorate.
 なお、エチレン性不飽和基の個数を調整するためには、水酸基含有(メタ)アクリレート系化合物(a1)と、多価イソシアネート系化合物(a2)とを、適宜選択して用いればよく、例えば、水酸基含有(メタ)アクリレート系化合物(a1)として3個のエチレン性不飽和基を有するものを用いて、多価イソシアネート系化合物(a2)として、ジイソシアネート化合物を用いる場合には、ウレタン(メタ)アクリレート系化合物(A2)中のエチレン性不飽和基数は6個となる。 In order to adjust the number of ethylenically unsaturated groups, the hydroxyl group-containing (meth) acrylate compound (a1) and the polyvalent isocyanate compound (a2) may be appropriately selected and used. When using a hydroxyl group-containing (meth) acrylate compound (a1) having three ethylenically unsaturated groups and using a diisocyanate compound as the polyvalent isocyanate compound (a2), urethane (meth) acrylate The number of ethylenically unsaturated groups in the compound (A2) is 6.
 ウレタン(メタ)アクリレート系化合物(A2)の製造方法については、上記ウレタン(メタ)アクリレート系化合物(A1)の製造方法に準じて製造すればよい。 What is necessary is just to manufacture according to the manufacturing method of the said urethane (meth) acrylate type compound (A1) about the manufacturing method of a urethane (meth) acrylate type compound (A2).
 なお、多価イソシアネート系化合物(a2)と水酸基含有(メタ)アクリレート系化合物(a1)との反応モル比は、例えば、多価イソシアネート系化合物(a2)のイソシアネート基が2個で、水酸基含有(メタ)アクリレート系化合物(a1)の水酸基が1個である場合は、多価イソシアネート系化合物(a2):水酸基含有(メタ)アクリレート系化合物(a1)が1:2程度であり、多価イソシアネート系化合物(a2)のイソシアネート基が3個で、水酸基含有(メタ)アクリレート系化合物(a1)の水酸基が1個である場合は、多価イソシアネート系化合物(a2):水酸基含有(メタ)アクリレート系化合物(a1)が1:3程度である。 The reaction molar ratio between the polyvalent isocyanate compound (a2) and the hydroxyl group-containing (meth) acrylate compound (a1) is, for example, that the polyisocyanate compound (a2) has two isocyanate groups and has a hydroxyl group content ( When the meth) acrylate compound (a1) has one hydroxyl group, the polyvalent isocyanate compound (a2): hydroxyl group-containing (meth) acrylate compound (a1) is about 1: 2, and the polyisocyanate compound When the compound (a2) has three isocyanate groups and the hydroxyl group-containing (meth) acrylate compound (a1) has one hydroxyl group, the polyvalent isocyanate compound (a2): hydroxyl group-containing (meth) acrylate compound (A1) is about 1: 3.
 この多価イソシアネート系化合物(a2)と水酸基含有(メタ)アクリレート系化合物(a1)との付加反応においては、反応系の残存イソシアネート基含有率が0.5重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(A2)が得られる。 In the addition reaction between the polyvalent isocyanate compound (a2) and the hydroxyl group-containing (meth) acrylate compound (a1), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.5% by weight or less. By making it, a urethane (meth) acrylate type compound (A2) is obtained.
 得られたウレタン(メタ)アクリレート系化合物(A2)の重量平均分子量は1,000~20,000であることが好ましく、更に好ましくは1,000~10,000である。かかる重量平均分子量が小さすぎると硬化塗膜の柔軟性が低下し、しっとりしたソフト感が得られない傾向があり、大きすぎると、硬化の際に充分な架橋密度得られず、硬化塗膜表面がべたついたり、耐久性が低下しやすかったりする傾向がある。 The weight average molecular weight of the obtained urethane (meth) acrylate compound (A2) is preferably 1,000 to 20,000, and more preferably 1,000 to 10,000. If the weight average molecular weight is too small, the flexibility of the cured coating film tends to be reduced, and a moist soft feeling tends not to be obtained. If it is too large, a sufficient crosslinking density cannot be obtained during curing, and the cured coating film surface It tends to be sticky or the durability tends to decrease.
 なお、上記の重量平均分子量は、上記と同様にして測定される。 The above weight average molecular weight is measured in the same manner as described above.
 ウレタン(メタ)アクリレート系化合物(A2)の60℃における粘度は1,000~30,000mPa・sであることが好ましく、特に好ましくは1,000~20,000mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 なお、粘度の測定法は、上記と同様、E型粘度計による。
The viscosity of the urethane (meth) acrylate compound (A2) at 60 ° C. is preferably 1,000 to 30,000 mPa · s, particularly preferably 1,000 to 20,000 mPa · s. When the viscosity is out of the above range, the coatability tends to be lowered.
The viscosity is measured by an E-type viscometer as described above.
〔微粒子状の合成樹脂フィラー(B)〕
 本発明における微粒子状の合成樹脂フィラー(B)としては、例えば、ナイロンフィラー、ポリウレタンフィラー、ポリ尿素フィラー、ポリアミドイミドフィラー、ポリアクリルアミドフィラー等の窒素原子含有合成樹脂フィラー;
ポリエチレンフィラー、ポリプロピレンフィラー等のポリオレフィン樹脂フィラー;
ポリ(メタ)アクリルフィラー、ポリブチル(メタ)アクリルフィラー、ポリスチレンフィラーのような単一重合成分からなる(メタ)アクリル基含有合成樹脂フィラー、2種以上の重合成分からなる(メタ)アクリル基含有合成樹脂フィラー等の(メタ)アクリル合成樹脂フィラー;
ポリフェニレンスルフィドフィラー、ポリエーテルスルホンフィラー等の硫黄原子含有合成樹脂フィラー;
ポリテトラフルオロエチレンフィラー等のフッ素原子含有合成樹脂フィラー;
エポキシ樹脂からなるエポキシ基含有合成樹脂フィラー;
ポリカーボネート樹脂フィラー;
上記フィラーの複合型合成樹脂フィラー、コアシェル状多層フィラー等があげられる。
[Fine particle synthetic resin filler (B)]
Examples of the fine particle synthetic resin filler (B) in the present invention include nitrogen atom-containing synthetic resin fillers such as nylon filler, polyurethane filler, polyurea filler, polyamideimide filler, polyacrylamide filler;
Polyolefin resin fillers such as polyethylene filler and polypropylene filler;
Poly (meth) acrylic filler, polybutyl (meth) acrylic filler, (meth) acrylic group-containing synthetic resin filler consisting of a single polymerization component such as polystyrene filler, (meth) acrylic group-containing synthetic resin consisting of two or more polymerization components (Meth) acrylic synthetic resin fillers such as fillers;
Sulfur atom-containing synthetic resin filler such as polyphenylene sulfide filler and polyethersulfone filler;
Fluorine atom-containing synthetic resin filler such as polytetrafluoroethylene filler;
An epoxy group-containing synthetic resin filler comprising an epoxy resin;
Polycarbonate resin filler;
Examples of the filler include composite synthetic resin fillers and core-shell multilayer fillers.
 これらの中でも窒素原子含有合成樹脂フィラー、ポリオレフィン樹脂フィラーが好ましい。窒素原子含有合成樹脂フィラーとして好ましくは、ウレタン(メタ)アクリレート系化合物(A)との親和性、粒子凝集安定性、沈降安定性に優れる点や、硬化塗膜にしっとりしたソフト感や弾性を付与しやすい点でポリウレタンフィラーであり、ポリオレフィン樹脂フィラーとして好ましくはポリエチレンフィラーである。更には、硬化塗膜にしっとりした指触感を付与するためには、上記ポリウレタンフィラーとポリエチレンフィラーとを併用することが好ましい。 Among these, a nitrogen atom-containing synthetic resin filler and a polyolefin resin filler are preferable. Nitrogen atom-containing synthetic resin filler preferably has excellent affinity with urethane (meth) acrylate compound (A), particle aggregation stability, sedimentation stability, moist soft coating and elasticity It is a polyurethane filler because it is easy to do, and a polyethylene filler is preferable as the polyolefin resin filler. Furthermore, in order to give a moist touch feeling to the cured coating film, it is preferable to use the polyurethane filler and the polyethylene filler in combination.
 上記ナイロンフィラーとしては、例えば、東レ社製(商品名;「SP-10」、「SP-500」、「TR-1」、「TR-2」、「842-P48」、「842-P70」、「842-P80」)等が挙げられる。 Examples of the nylon filler include those manufactured by Toray Industries, Inc. (trade names: “SP-10”, “SP-500”, “TR-1”, “TR-2”, “842-P48”, “842-P70”). , “842-P80”).
 上記ポリウレタンフィラーとしては、例えば、根上工業社製の架橋ウレタンビーズ(商品名;「アートパールCシリーズ」、「アートパールPシリーズ」、「アートパールJBシリーズ」、「アートパールUシリーズ」、「アートパールCEシリーズ」、「アートパールAKシリーズ」、「アートパールHIシリーズ」、「アートパールMMシリーズ」、「アートパールFFシリーズ」、「アートパールTKシリーズ」、「アートパールC-THシリーズ」、「アートパールRW~Zシリーズ」、「アートパールRU~Vシリーズ」、「アートパールBPシリーズ」)等が挙げられる。 Examples of the polyurethane filler include cross-linked urethane beads manufactured by Negami Kogyo Co., Ltd. (trade names: “Art Pearl C Series”, “Art Pearl P Series”, “Art Pearl JB Series”, “Art Pearl U Series”, “Art” "Pearl CE Series", "Art Pearl AK Series", "Art Pearl HI Series", "Art Pearl MM Series", "Art Pearl FF Series", "Art Pearl TK Series", "Art Pearl C-TH Series", " Art Pearl RW-Z series "," Art Pearl RU-V series "," Art Pearl BP series ").
 これらの中でも、光硬化性を阻害せず、硬化塗膜として透明~白色の塗膜を得られるものとして透明微粒子が好ましく、微粒子外観としては白色であるものが好ましい。かかるフィラーとして具体的には、アートパールC-400T、アートパールC-600T、アートパールC-800T、アートパールP-400T、アートパールP-600T、アートパールP-800T、アートパールJB-400T、アートパールJB-600T、アートパールJB-800T、アートパールU-600T、アートパールCE-400T、アートパールCE-800T、アートパールAK-300TR、アートパールAK-400TR、アートパールAK-800TR、アートパールHI-400T、アートパールMM-120T、アートパールFF-421T、アートパールFF-411T、アートパールFF-413T、アートパールTK-600T、アートパールC-600TH、アートパールRZ-600T、アートパールRY-600T、アートパールRT-600T、アートパールRX-600T、アートパールRW-600T、アートパールRZ-600T、アートパールRV-600T、アートパールRU-600T、アートパールRV-600T、アートパールBP-600Tが挙げられる。 Among these, transparent fine particles are preferable as those capable of obtaining a transparent to white coating film as a cured coating film without impairing photocurability, and those having a white appearance as a fine particle appearance are preferable. Specifically, as such filler, Art Pearl C-400T, Art Pearl C-600T, Art Pearl C-800T, Art Pearl P-400T, Art Pearl P-600T, Art Pearl P-800T, Art Pearl JB-400T, Art Pearl JB-600T, Art Pearl JB-800T, Art Pearl U-600T, Art Pearl CE-400T, Art Pearl CE-800T, Art Pearl AK-300TR, Art Pearl AK-400TR, Art Pearl AK-800TR, Art Pearl HI-400T, Art Pearl MM-120T, Art Pearl FF-421T, Art Pearl FF-411T, Art Pearl FF-413T, Art Pearl TK-600T, Art Pearl C-600TH, Art Pearl RZ-600T, Art Pearl RY- 600T, Art Pearl RT-600T, Art Pearl RX-600T, Art Pearl RW-600T, Art Pearl RZ-600T, Art Pearl RV-600T, Art Pearl RU-600T, Art Pearl RV-600T, Art Pearl BP-600T Can be mentioned.
 上記ポリアミドイミド樹脂フィラーとしては、例えば、東レ社製(商品名;「トレパールPAI」)が挙げられる。 Examples of the polyamideimide resin filler include those manufactured by Toray Industries, Inc. (trade name: “Trepearl PAI”).
 上記ポリエチレンフィラーとしては、溶剤分散系のポリエチレンフィラーが好ましく、例えば、興洋化学社製のポリエチレンワックス及び変性ポリエチレンワックス(商品名;「ミクロ・フラット UN-8」、「ミクロ・フラットPEX-101」、「ミクロ・フラットB-501」)、ビックケミー・ジャパン社製のポリエチレンワックス、及び変性ポリエチレンワックス(商品名;「CERAFLOUR928」、「CERAFLOUR950」、「CERAFLOUR988」、「CERAFLOUR990」、「CERAFLOUR991」、「CERAFLOUR995」、「CERACOL39」、「CERAFAK111」、「CERAMAT250」、「CERAMAT258」、「MINERPOL221」)等が挙げられる。 The polyethylene filler is preferably a solvent-dispersed polyethylene filler. For example, polyethylene wax and modified polyethylene wax (trade names; “Micro Flat UN-8”, “Micro Flat PEX-101” manufactured by Koyo Chemical Co., Ltd.) , “Micro Flat B-501”), polyethylene wax manufactured by Big Chemie Japan, and modified polyethylene wax (trade names; “CERAFLOUR928”, “CERAFLOUR950”, “CERAFLOUR988”, “CERAFLOUR990”, “CERAFLOUR991”, “CERAFLOUR995”) ”,“ CERACOL39 ”,“ CERAFAK111 ”,“ CERAMAT250 ”,“ CERAMAT258 ”,“ MINERPOL221 ”), and the like.
 上記ポリプロピレンフィラーとしては、溶剤分散系のものが好ましく、例えば、ビックケミー・ジャパン社製のポリプロピレンワックス、及び変性ポリプロピレンワックス(商品名「CERAFLOUR970」)等が挙げられる。 The above-mentioned polypropylene filler is preferably a solvent dispersion type, and examples thereof include a polypropylene wax manufactured by Big Chemie Japan, a modified polypropylene wax (trade name “CERAFLOUR970”), and the like.
 上記(メタ)アクリル基含有合成樹脂フィラーとしては、例えば、根上工業社製のアクリルビーズ(商品名;「アートパールGRシリーズ」、「アートパールSEシリーズ」、「アートパールGシリーズ」、「アートパールGSシリーズ」、「アートパールJシリーズ」、「アートパールMFシリーズ」、「アートパールBEシリーズ」)等が挙げられる。これらの中でも、光硬化性を阻害せず、硬化塗膜として透明~白色の塗膜を得られるものとして透明微粒子が好ましく、微粒子外観としては白色であるものが好ましい。かかるフィラーとして具体的には、アートパールGR-300T、アートパールGR-400T、アートパールGR-600T、アートパールGR-800T、アートパールSE-020T、アートパールSE-010T、アートパールSE-006T、アートパールG-400T、アートパールG-800T、アートパールGS-310T、アートパールGS-350T、アートパールGS-850TC、アートパールJ-4P、アートパールJ-5P、アートパールJ-7P、アートパールJ-4PY、アートパールJ-6PF、アートパールJ-7PY、アートパールMF-0063、アートパールBE-006Tが挙げられる。 Examples of the (meth) acrylic group-containing synthetic resin filler include acrylic beads manufactured by Negami Kogyo Co., Ltd. (trade names; “Art Pearl GR Series”, “Art Pearl SE Series”, “Art Pearl G Series”, “Art Pearl” GS series "," Art Pearl J series "," Art Pearl MF series "," Art Pearl BE series "). Among these, transparent fine particles are preferable as those capable of obtaining a transparent to white coating film as a cured coating film without impairing photocurability, and those having a white appearance as a fine particle appearance are preferable. Specifically as such filler, Art Pearl GR-300T, Art Pearl GR-400T, Art Pearl GR-600T, Art Pearl GR-800T, Art Pearl SE-020T, Art Pearl SE-010T, Art Pearl SE-006T, Art Pearl G-400T, Art Pearl G-800T, Art Pearl GS-310T, Art Pearl GS-350T, Art Pearl GS-850TC, Art Pearl J-4P, Art Pearl J-5P, Art Pearl J-7P, Art Pearl Examples include J-4PY, Art Pearl J-6PF, Art Pearl J-7PY, Art Pearl MF-0063, and Art Pearl BE-006T.
 上記硫黄原子含有合成樹脂フィラーとしては、例えば、東レ社製ポリフェニレンスルフィド樹脂微粒子(商品名;「トレパールPPS」)、ポリエーテルスルホン樹脂(商品名;「トレパールPES」)等が挙げられる。 Examples of the sulfur atom-containing synthetic resin filler include polyphenylene sulfide resin fine particles (trade name: “Trepearl PPS”), polyethersulfone resin (trade name: “Trepearl PES”) manufactured by Toray Industries, Inc.
 上記フッ素原子含有合成樹脂フィラーとしては、例えば、興洋化学社製のポリエチレン、ポリテトラフルオロエチレン混合ワックスである(商品名;「ミクロ・フラット PF-8」)、ビックケミー・ジャパン社製のポリテトラフルオロエチレンワックス(商品名;「CERAFLOUR980」、「CERAFLOUR981」)、ポリエチレン-ポリテトラフルオロエチレン混合ワックスである(商品名;「CERAFLOUR997」)、ポリテトラフルオロエチレン変性ポリエチレンワックス(商品名;「CERAFLOUR998」、「CERACOL607」)、喜多村社製ポリテトラフルオロエチレン微粒子(商品名;「KTL-8N」、「KTL-8F」、「KTL-9S」、「KTL-10N」、「KTL-20N」)等が挙げられる。 Examples of the fluorine atom-containing synthetic resin filler include polyethylene manufactured by Koyo Chemical Co., Ltd., and polytetrafluoroethylene mixed wax (trade name: “Micro-flat PF-8”), manufactured by Big Chemie Japan Co., Ltd. Fluoroethylene wax (trade names; “CERAFLOUR980”, “CERAFLOUR981”), polyethylene-polytetrafluoroethylene mixed wax (trade name; “CERAFLOUR997”), polytetrafluoroethylene-modified polyethylene wax (trade name; “CERAFLOUR998”, "CERACOL607"), polytetrafluoroethylene microparticles manufactured by Kitamura (trade names: "KTL-8N", "KTL-8F", "KTL-9S", "KTL-10N", "KTL-20N") It is done.
 上記エポキシ基含有合成樹脂フィラーとしては、例えば、東レ社製(商品名;「トレパールEP」)が挙げられる。 Examples of the epoxy group-containing synthetic resin filler include those manufactured by Toray Industries, Inc. (trade name: “Trepearl EP”).
 上記ポリカーボネート樹脂フィラーとしては、例えば、興洋化学社製の(商品名;「ミクロ・フラットMA-07N」)等が挙げられる。 Examples of the polycarbonate resin filler include those manufactured by Koyo Chemical Co., Ltd. (trade name: “Micro-flat MA-07N”).
 本発明における微粒子状の合成樹脂フィラー(B)の平均粒子径としては、1~30μmであるものが好ましく、特に好ましくは2~20μmであり、更に好ましくは4~15μmである。
 かかる平均粒子径が小さすぎると硬化塗膜の光沢が高くなり、外観として高級感が感じられにくい傾向があり、大きすぎると摩耗接点が大きくなることから耐摩耗性が低下し、また硬化表面の凹凸が大きくなりざらつくため、しっとりとしたソフトな指触感が得られにくい傾向がある。
The average particle size of the fine particle synthetic resin filler (B) in the present invention is preferably 1 to 30 μm, particularly preferably 2 to 20 μm, and further preferably 4 to 15 μm.
If the average particle size is too small, the gloss of the cured coating film tends to be high, and there is a tendency that it is difficult to feel a high-grade appearance, and if it is too large, the wear contact becomes large and wear resistance decreases, and the cured surface Since the unevenness becomes large and rough, it tends to be difficult to obtain a moist and soft touch feeling.
 なお、上記微粒子状の合成樹脂フィラー(B)は、ほぼ球状であることから、粒子径は球を基本形状として求めることができ、一般的に個数平均粒子径、長さ平均粒子径、面積平均粒子径、体積平均粒子径等あるが、本発明の平均粒子径とは通常用いられる体積平均粒子径であり、かかる体積平均粒子径は、レーザー回折・散乱式粒度分布計により測定したものである。 Since the fine synthetic resin filler (B) is substantially spherical, the particle diameter can be determined using a sphere as a basic shape, and generally the number average particle diameter, length average particle diameter, area average Although there are particle diameter, volume average particle diameter, etc., the average particle diameter of the present invention is a volume average particle diameter usually used, and the volume average particle diameter is measured by a laser diffraction / scattering type particle size distribution meter. .
 上記微粒子状の合成樹脂フィラー(B)の真比重としては、好ましくは0.8~2.3、特に好ましくは0.8~2、更に好ましくは0.8~1.5である。
 かかる真比重が大きすぎるとコーティング後の乾燥工程において微粒子が沈降し、表面凹凸として顕在化しない傾向があり、小さすぎるとウレタン(メタ)アクリレート系化合物(A)の混合が困難となりやすい傾向がある。
The true specific gravity of the fine synthetic resin filler (B) is preferably 0.8 to 2.3, particularly preferably 0.8 to 2, and further preferably 0.8 to 1.5.
If the true specific gravity is too large, fine particles will settle in the drying step after coating and tend not to appear as surface irregularities. If it is too small, mixing of the urethane (meth) acrylate compound (A) tends to be difficult. .
 上記微粒子状の合成樹脂フィラー(B)の製造方法としては、例えば、モノマーを懸濁重合、乳化重合、シード重合等により重合し直接的に微粒子状の合成樹脂を製造する方法や、種々の方法により製造された通常の合成樹脂を機械的に粉砕し微粒子状にする方法が挙げられる。
 これらの中でも、形状の整った微粒子、特には流動性や分散性に優れる真球状の微粒子が得られる点で重合法が好ましい。
Examples of the method for producing the fine particle synthetic resin filler (B) include a method for directly producing a fine particle synthetic resin by polymerizing a monomer by suspension polymerization, emulsion polymerization, seed polymerization, and the like, and various methods. There is a method of mechanically pulverizing a normal synthetic resin produced by the above method into fine particles.
Among these, the polymerization method is preferable in that fine particles having a uniform shape, particularly spherical particles having excellent fluidity and dispersibility can be obtained.
 本発明における微粒子状の合成樹脂フィラー(B)のガラス転移温度(Tg)としては-140~40℃であることが好ましく、特に好ましくは-135~20℃、更に好ましくは-130~0℃である。
 かかるガラス転移温度が低すぎると、塗膜表面のべたつきが大きくなりすぎる傾向があり、高すぎると塗膜表面にゴム状のしっとりしたソフト感が得られにくくなる傾向がある。
The glass transition temperature (Tg) of the fine particle synthetic resin filler (B) in the present invention is preferably −140 to 40 ° C., particularly preferably −135 to 20 ° C., more preferably −130 to 0 ° C. is there.
If the glass transition temperature is too low, the coating surface tends to be too sticky, and if it is too high, a rubbery and moist soft feeling tends to be hardly obtained on the coating surface.
 上記ガラス転移温度は、温度変調DSC(ティー・エイ・インスツルメント社製 DSC2920)を用いることで測定できる。測定条件は、専用アルミパンに1~5mg程度のサンプルを封入し-100℃~100℃の範囲で、3℃/分の昇温条件とする。 The glass transition temperature can be measured by using a temperature modulation DSC (DSC2920 manufactured by TA Instruments). Measurement conditions are such that a sample of about 1 to 5 mg is enclosed in a dedicated aluminum pan, and the temperature is raised within a range of −100 ° C. to 100 ° C. and 3 ° C./min.
 本発明における微粒子状の合成樹脂フィラー(B)の含有量(固形分)としては、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して、25~400重量部であることが好ましく、特に好ましくは30~350重量部、更に好ましくは35~250重量部である。微粒子状の合成樹脂フィラー(B)の含有量が多すぎると硬化塗膜の摩耗性が極端に低下する傾向があり、また塗膜表面がざらつきやすくなる傾向があり、少なすぎるとしっとりしたソフトな指触感が得られにくい傾向がある。 The content (solid content) of the particulate synthetic resin filler (B) in the present invention is preferably 25 to 400 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). The amount is particularly preferably 30 to 350 parts by weight, and further preferably 35 to 250 parts by weight. If the content of the fine-particle synthetic resin filler (B) is too large, the wear of the cured coating film tends to be extremely lowered, and the coating surface tends to be rough. There is a tendency that a touch feeling is difficult to obtain.
 また、ポリウレタンフィラーの含有量(固形分)としては、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して、25~400重量部であることが好ましく、特に好ましくは30~300重量部、更に好ましくは35~250重量部である。ポリウレタンフィラーの含有量が多すぎると硬化塗膜の摩耗性が極端に低下する傾向があり、また塗膜表面がざらつきやすくなる傾向があり、少なすぎるとしっとりしたソフトな指触感が得られにくい傾向がある。 The content (solid content) of the polyurethane filler is preferably 25 to 400 parts by weight, particularly preferably 30 to 300 parts by weight, with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). More preferably, it is 35 to 250 parts by weight. If the polyurethane filler content is too high, the wear of the cured coating film tends to be extremely reduced, the surface of the coating film tends to be rough, and the amount is too small. There is.
 更に、上記ポリウレタンフィラーとポリエチレンフィラーとを併用する際の含有割合(固形分の重量比)としては、ポリウレタンフィラーを100重量部に対して、ポリエチレンフィラーが0.1~70重量部であることが好ましく、特に好ましくは0.5~50重量部、更に好ましくは1~30重量部である。
 ポリウレタンフィラーに対するポリエチレンフィラーの含有割合が少なすぎると、塗膜のソフト感が低下し、また光沢が上がるため高級感が損なわれやすい傾向があり、多すぎると硬化塗膜の耐傷つき性能が低下しやすくなる傾向がある。
Furthermore, as a content ratio (weight ratio of solid content) when the polyurethane filler and the polyethylene filler are used in combination, the polyethylene filler is 0.1 to 70 parts by weight with respect to 100 parts by weight of the polyurethane filler. The amount is preferably 0.5 to 50 parts by weight, more preferably 1 to 30 parts by weight.
If the content of the polyethylene filler in the polyurethane filler is too small, the softness of the coating film is lowered, and the glossiness tends to be impaired due to the increase in gloss, and if it is too much, the scratch resistance performance of the cured coating film is reduced. It tends to be easier.
 なお、上記含有量の規定において、微粒子状の合成樹脂フィラー(B)が溶剤等の分散体である場合は、固形分換算での重量として特定したものである。 In addition, in the regulation of the above content, when the fine particle synthetic resin filler (B) is a dispersion such as a solvent, it is specified as a weight in terms of solid content.
 本発明の活性エネルギー線硬化性樹脂組成物は、上記ウレタン(メタ)アクリレート系化合物(A)及び微粒子状の合成樹脂フィラー(B)を必須成分として含有するものであるが、更に、活性エネルギー線照射により架橋させ網目構造を形成させることで、塗膜における硬度と柔軟性のバランスを調整できる点や、耐水性、耐熱性等の耐久性を向上することができる点でエチレン性不飽和モノマー(C)を配合することが好ましい。 The active energy ray-curable resin composition of the present invention contains the urethane (meth) acrylate compound (A) and the fine particle synthetic resin filler (B) as essential components. By forming a network structure by crosslinking by irradiation, it is possible to adjust the balance between hardness and flexibility in the coating film and to improve durability such as water resistance and heat resistance. C) is preferably blended.
〔エチレン性不飽和モノマー(C)〕
 上記エチレン性不飽和モノマー(C)としては、1分子中に1個以上のエチレン性不飽和基を有するエチレン性不飽和モノマー(ウレタン(メタ)アクリレート系化合物(A)を除く)であればよく、例えば、単官能モノマー、2官能モノマー、3官能以上のモノマーが挙げられる。
[Ethylenically unsaturated monomer (C)]
The ethylenically unsaturated monomer (C) may be any ethylenically unsaturated monomer (excluding the urethane (meth) acrylate compound (A)) having one or more ethylenically unsaturated groups in one molecule. , For example, a monofunctional monomer, a bifunctional monomer, a trifunctional or higher monomer.
 単官能モノマーとしては、エチレン性不飽和基を1つ含有するモノマーであればよく、例えば、スチレン、ビニルトルエン、クロロスチレン、α-メチルスチレン、メチル(メタ)アクリレート、エチル(メタ)アクリレート、アクリロニトリル、酢酸ビニル、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、ラウリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノールプロピレンオキサイド変性(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート等のフタル酸誘導体のハーフエステル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カルビトール(メタ)アクリレート、ベンジル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、アクリロイルモルフォリン、2-ヒドロキシエチルアクリルアミド、N-メチロール(メタ)アクリルアミド、N-ビニルピロリドン、2-ビニルピリジン、2-(メタ)アクリロイルオキシエチルアシッドホスフェートモノエステル等が挙げられる。 The monofunctional monomer may be any monomer containing one ethylenically unsaturated group. For example, styrene, vinyl toluene, chlorostyrene, α-methylstyrene, methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile , Vinyl acetate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerol mono (meth) acrylate, glycidyl (meth) acrylate, lauryl (meth) acrylate Rate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate , Octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate, phenol ethylene oxide modified ( Phthalic acid derivatives such as (meth) acrylate, nonylphenol propylene oxide modified (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate -Efester (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, carbitol (meth) acrylate, benzyl (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, allyl (meth) acrylate Acryloylmorpholine, 2-hydroxyethylacrylamide, N-methylol (meth) acrylamide, N-vinylpyrrolidone, 2-vinylpyridine, 2- (meth) acryloyloxyethyl acid phosphate monoester, and the like.
 また、前記の単官能モノマーの他にアクリル酸のミカエル付加物あるいは2-アクリロイルオキシエチルジカルボン酸モノエステルも挙げられ、アクリル酸のミカエル付加物としては、アクリル酸ダイマー、メタクリル酸ダイマー、アクリル酸トリマー、メタクリル酸トリマー、アクリル酸テトラマー、メタクリル酸テトラマー等が挙げられる。また、特定の置換基をもつカルボン酸である2-アクリロイルオキシエチルジカルボン酸モノエステルとしては、例えば2-アクリロイルオキシエチルコハク酸モノエステル、2-メタクリロイルオキシエチルコハク酸モノエステル、2-アクリロイルオキシエチルフタル酸モノエステル、2-メタクリロイルオキシエチルフタル酸モノエステル、2-アクリロイルオキシエチルヘキサヒドロフタル酸モノエステル、2-メタクリロイルオキシエチルヘキサヒドロフタル酸モノエステル等が挙げられる。更に、オリゴエステルアクリレートも挙げられる。 In addition to the monofunctional monomer, there may be mentioned Michael adduct of acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester. Examples of the Michael adduct of acrylic acid include acrylic acid dimer, methacrylic acid dimer, acrylic acid trimer. Methacrylic acid trimer, acrylic acid tetramer, methacrylic acid tetramer and the like. Examples of 2-acryloyloxyethyl dicarboxylic acid monoester which is a carboxylic acid having a specific substituent include 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, and 2-acryloyloxyethyl. Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, oligoester acrylate is also mentioned.
 2官能モノマーとしては、エチレン性不飽和基を2つ含有するモノマーであればよく、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールエチレンオキサイド変性ジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート、2-(メタ)アクリロイルオキシエチルアシッドホスフェートジエステル等が挙げられる。 The bifunctional monomer may be any monomer containing two ethylenically unsaturated groups. For example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol Di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide Modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate 1,6-hexanediol ethylene oxide modified di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (Meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified diacrylate, 2- ( And (meth) acryloyloxyethyl acid phosphate diester.
 3官能以上のモノマーとしては、エチレン性不飽和基を3個以上含有するモノマーであればよく、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリアクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、コハク酸変性ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。 The tri- or higher functional monomer may be any monomer containing three or more ethylenically unsaturated groups. For example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) Acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanuric acid ethylene oxide modified triacrylate, ethylene Oxide-modified dipentaerythritol penta (meth) acrylate, ethylene oxide-modified dipentaerythritol hexa (meth) acrylate, ethylene Koxide modified pentaerythritol tri (meth) acrylate, ethylene oxide modified pentaerythritol tetra (meth) acrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) acrylate, caprolactone modified pentaerythritol tri (meth) ) Acrylate, caprolactone-modified pentaerythritol tetra (meth) acrylate, succinic acid-modified pentaerythritol tri (meth) acrylate, and the like.
 これらエチレン性不飽和モノマー(C)は単独で用いてもよいし、2種以上を併用してもよい。また、エチレン性不飽和モノマー(C)は、ウレタン(メタ)アクリレート系化合物(A)や微粒子状の合成樹脂フィラー(B)に別途配合するものであってもよいし、ウレタン(メタ)アクリレート系化合物(A)の製造原料として製造時に一部を系中に残存させたものであってもよい。 These ethylenically unsaturated monomers (C) may be used alone or in combination of two or more. In addition, the ethylenically unsaturated monomer (C) may be separately added to the urethane (meth) acrylate compound (A) or the fine particle synthetic resin filler (B), or may be urethane (meth) acrylate. As a production raw material for the compound (A), a part of the compound (A) may be left in the system during production.
 上記エチレン性不飽和モノマー(C)の中でも、単官能モノマー、及び2官能モノマーが好ましく、芳香環がなく、塗膜の黄変を抑制でき、汎用性が高い点でシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートが特に好ましい。 Among the ethylenically unsaturated monomers (C), monofunctional monomers and bifunctional monomers are preferable, there is no aromatic ring, yellowing of the coating film can be suppressed, and cyclohexyl (meth) acrylate and isobornyl are highly versatile. (Meth) acrylate, dicyclopentenyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di ( Particularly preferred are meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,6-hexanediol di (meth) acrylate.
 また、水酸基含有エチレン性不飽和モノマーを用いることも好ましく、具体例には、芳香環がなく、塗膜の黄変を抑制する点で2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが好ましく、特に好ましくは2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレートが汎用性の点で好ましい。 It is also preferable to use a hydroxyl group-containing ethylenically unsaturated monomer. Specific examples include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meta) because they have no aromatic ring and suppress yellowing of the coating film. ) Acrylate, 2-hydroxybutyl (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, particularly preferably 2-hydroxyethyl ( From the viewpoint of versatility, (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and caprolactone-modified 2-hydroxyethyl (meth) acrylate are preferable.
 本発明において、エチレン性不飽和モノマー(C)の含有量としては、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して、0~500重量部であることが好ましく、特には5~350重量部、更には10~150重量部であることが好ましい。エチレン性不飽和モノマー(C)の含有量が多すぎると、単官能モノマーの場合は、硬化後の塗膜にべとつきが生じ、2官能以上のモノマーの場合は硬化後の塗膜が硬くなりすぎ、しっとりとしたソフトな指触感が得られにくい傾向がある。 In the present invention, the content of the ethylenically unsaturated monomer (C) is preferably 0 to 500 parts by weight, particularly 5 to 500 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). It is preferably 350 parts by weight, more preferably 10 to 150 parts by weight. If the content of the ethylenically unsaturated monomer (C) is too large, in the case of a monofunctional monomer, the coated film becomes sticky, and in the case of a monomer having two or more functions, the cured film becomes too hard. There is a tendency that it is difficult to obtain a moist and soft touch feeling.
〔光重合開始剤(D)〕
 本発明では、更に、ウレタン(メタ)アクリレート系化合物(A)、微粒子状の合成樹脂フィラー(B)の他に、活性エネルギー線による硬化を効率的に行なうために光重合開始剤(D)を含有することが好ましい。
[Photopolymerization initiator (D)]
In the present invention, in addition to the urethane (meth) acrylate compound (A) and the fine synthetic resin filler (B), a photopolymerization initiator (D) is added in order to efficiently cure with active energy rays. It is preferable to contain.
 光重合開始剤(D)としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類;等があげられる。なお、これら光重合開始剤(D)は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the photopolymerization initiator (D) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2- Hydroxy-2-propyl) ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino) Acetophenones such as phenyl) butanone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomers; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether Benzoi etc. Benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2 , 4,6-Trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride Benzophenones such as 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4 Thioxanthones such as dimethyl-9H-thioxanthone-9-one mesochloride; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphos And acylphosphine oxides such as fin oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. In addition, as for these photoinitiators (D), only 1 type may be used independently and 2 or more types may be used together.
 また、これらの助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4′-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4′-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。 These auxiliary agents include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, 4-dimethylaminobenzoic acid. Ethyl, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone Etc. can be used in combination.
 これらの中でも、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインイソプロピルエーテル、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンを用いることが好ましい。 Among these, benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, benzoin isopropyl ether, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1- It is preferable to use phenylpropan-1-one.
 光重合開始剤(D)の含有量としては、ウレタン(メタ)アクリレート系化合物(A)(エチレン性不飽和モノマー(C)を含有する場合はその合計)100重量部に対して、0.1~40重量部であることが好ましく、特に好ましくは1~20重量部、殊に好ましくは2~20重量部である。
 光重合開始剤(D)の含有量が少なすぎると硬化不良となる傾向があり、多すぎるとコーティング剤とした際に析出するなど溶液安定性が低下する傾向があったり、脆化や着色の問題が起こりやすい傾向がある。
As content of a photoinitiator (D), it is 0.1 with respect to 100 weight part of urethane (meth) acrylate type-compounds (A) (when it contains an ethylenically unsaturated monomer (C)). It is preferably ˜40 parts by weight, particularly preferably 1 to 20 parts by weight, particularly preferably 2 to 20 parts by weight.
If the content of the photopolymerization initiator (D) is too small, curing tends to be poor, and if it is too much, the solution stability tends to decrease such as precipitation when used as a coating agent, and embrittlement or coloring may occur. Problems tend to occur.
 かくして本発明のウレタン(メタ)アクリレート系化合物(A)及び微粒子状の合成樹脂フィラー(B)、好ましくは更にエチレン性不飽和モノマー(C)、光重合開始剤(D)を含有する活性エネルギー線硬化性樹脂組成物が得られるが、必要に応じて更に、レベリング剤(E)、表面調整剤、重合禁止剤等を添加することができる。 Thus, the active energy ray containing the urethane (meth) acrylate compound (A) of the present invention and the particulate synthetic resin filler (B), preferably further containing an ethylenically unsaturated monomer (C) and a photopolymerization initiator (D). Although a curable resin composition is obtained, a leveling agent (E), a surface conditioner, a polymerization inhibitor, etc. can be further added as needed.
 レベリング剤(E)としては、微粒子を溶剤等の溶液へ湿潤、分散させる際に微粒子への濡れ性を付与する作用を有するものであれば、公知一般のレベリング剤を用いることができ、例えば、シリコーン変性樹脂、フッ素変性樹脂、アルキル変性の樹脂等を用いることができる。 As the leveling agent (E), a known general leveling agent can be used as long as it has an action of imparting wettability to fine particles when the fine particles are wetted and dispersed in a solution such as a solvent. Silicone-modified resins, fluorine-modified resins, alkyl-modified resins, and the like can be used.
 上記レベリング剤(E)の市販品としては、例えば、DIC社製のメガファックシリーズ(MCF350-5、F472、F476、F445、F444、F443、F178、F470、F475、F479、F477、F482、F486、TF1025、F478、F178K等);
信越化学工業社製のX22-3710、X22-162C、X22-3701E、X22160AS、X22170DX、X224015、X22176DX、X22-176F、X224272、KF8001、X22-2000等;
チッソ社製のFM4421、FM0425、FMDA26、FS1265等;
東レ・ダウコーニング社製のBY16-750、BY16880、BY16848、SF8427、SF8421、SH3746、SH8400、SF3771、SH3749、SH3748、SH8410等;
モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のTSFシリーズ(TSF4460、TSF4440、TSF4445、TSF4450、TSF4446、TSF4453、TSF4452、TSF4730、TSF4770等)、FGF502、SILWETシリーズ(SILWETL77、SILWETL2780、SILWETL7608、SILWETL7001、SILWETL7002、SILWETL7087、SILWETL7200、SILWETL7210、SILWETL7220、SILWETL7230、SILWETL7500、SILWETL7510、SILWETL7600、SILWETL7602、SILWETL7604、SILWETL7604、SILWETL7605、SILWETL7607、SILWETL7622、SILWETL7644、SILWETL7650、SILWETL7657、SILWETL8500、SILWETL8600、SILWETL8610、SILWETL8620、SILWETL720)等;
ネオス社製のフタ―ジェントシリーズ(FTX218、250、245M、209F、222F、245F、208G、218G、240G、206D、240D等)やKBシリーズ等;
ビックケミー・ジャパン社製のBYK333、300等;
共栄社化学社製のKL600等;が挙げられる。
Commercially available products of the leveling agent (E) include, for example, Megafac series manufactured by DIC (MCF350-5, F472, F476, F445, F444, F443, F178, F470, F475, F479, F477, F482, F486, TF1025, F478, F178K, etc.);
X22-3710, X22-162C, X22-3701E, X22160AS, X22170DX, X224015, X22176DX, X22-176F, X224272, KF8001, X22-2000, etc. manufactured by Shin-Etsu Chemical Co., Ltd .;
FM4421, FM0425, FMDA26, FS1265, etc. manufactured by Chisso Corporation;
BY16-750, BY16880, BY16848, SF8427, SF8421, SH3746, SH8400, SF3771, SH3749, SH3748, SH8410, etc. manufactured by Toray Dow Corning;
Momentive Performance Materials Japan TSF series (TSF4460, TSF4440, TSF4445, TSF4450, TSF4446, TSF4453, TSF4452, TSF4730, TSF4770, etc.), FGF502, SILWETL77, SILWTLWETL700L , SILWETL7200, SILWETL7210, SILWETL7220, SILWETL7230, SILWETL7500, SILWETL7510, SILWETL7600, SILWETL7602, SILWETL7604, SILWETL7604, SILWETL7605, SI WETL7607, SILWETL7622, SILWETL7644, SILWETL7650, SILWETL7657, SILWETL8500, SILWETL8600, SILWETL8610, SILWETL8620, SILWETL720) or the like;
Neos Inc.'s Fantient Series (FTX218, 250, 245M, 209F, 222F, 245F, 208G, 218G, 240G, 206D, 240D, etc.), KB Series, etc .;
BYK333, 300, etc. manufactured by Big Chemie Japan;
KL600 manufactured by Kyoeisha Chemical Co., etc.
 表面調整剤としては、例えば、アルキッド樹脂やセルロースアセテートブチレート等を挙げることができる。
 かかるアルキッド樹脂やセルロースアセテートブチレートは、塗布時の造膜性を付与する作用や、溶液粘度調整作用を有する。
Examples of the surface conditioner include alkyd resins and cellulose acetate butyrate.
Such alkyd resin and cellulose acetate butyrate have an effect of imparting a film-forming property at the time of coating and a solution viscosity adjusting effect.
 重合禁止剤としては、例えば、p-ベンゾキノン、ナフトキノン、トルキノン、2,5-ジフェニル-p-ベンゾキノン、ハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、モノ-t-ブチルハイドロキノン、p-t-ブチルカテコール等を挙げることができる。 Examples of the polymerization inhibitor include p-benzoquinone, naphthoquinone, tolquinone, 2,5-diphenyl-p-benzoquinone, hydroquinone, 2,5-di-t-butylhydroquinone, methylhydroquinone, hydroquinone monomethyl ether, mono-t- Examples thereof include butyl hydroquinone and pt-butyl catechol.
 また、本発明の活性エネルギー線硬化性樹脂組成物には、油、酸化防止剤、難燃剤、帯電防止剤、安定剤、補強剤、研削剤、無機微粒子、高分子化合物(アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、等)等を配合することも可能である。 The active energy ray curable resin composition of the present invention includes oil, antioxidant, flame retardant, antistatic agent, stabilizer, reinforcing agent, abrasive, inorganic fine particles, polymer compound (acrylic resin, polyester resin). , Epoxy resin, etc.) can also be blended.
 また、本発明の活性エネルギー線硬化性樹脂組成物は、有機溶剤(F)を配合し、粘度を調整して使用することも好ましい。かかる有機溶剤(F)としては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類、アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類、エチルセロソルブ等のセロソルブ類、トルエン、キシレン等の芳香族類、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類、ジアセトンアルコール等が挙げられる。これら上記の有機溶剤は、単独で用いてもよいし、2種以上を併用してもよい。 The active energy ray-curable resin composition of the present invention is also preferably used by blending an organic solvent (F) and adjusting the viscosity. Examples of the organic solvent (F) include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol, ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone, cellosolves such as ethyl cellosolve, Aromatics such as toluene and xylene, glycol ethers such as propylene glycol monomethyl ether, acetates such as methyl acetate, ethyl acetate and butyl acetate, and diacetone alcohol. These organic solvents may be used alone or in combination of two or more.
 本発明の活性エネルギー線硬化性樹脂組成物は、上記有機溶剤(F)を用いて、通常3~60重量%に希釈し、基材に塗布することができる。 The active energy ray-curable resin composition of the present invention can be usually diluted to 3 to 60% by weight using the organic solvent (F) and applied to a substrate.
 なお、本発明の活性エネルギー線硬化性樹脂組成物を製造するにあたり、ウレタン(メタ)アクリレート系化合物(A)、微粒子状の合成樹脂フィラー(B)、必要に応じて用いられるエチレン性不飽和モノマー(C)、光重合開始剤(D)、レベリング剤(E)の混合方法については、特に限定されるものではなく、種々の方法により混合することができる。 In producing the active energy ray-curable resin composition of the present invention, the urethane (meth) acrylate compound (A), the fine synthetic resin filler (B), and the ethylenically unsaturated monomer used as necessary (C) About the mixing method of a photoinitiator (D) and a leveling agent (E), it does not specifically limit and can be mixed by various methods.
 本発明の活性エネルギー線硬化性樹脂組成物は、各種基材へのしっとりとしたソフトな指触感を有する塗膜形成用の硬化性樹脂組成物として有効に用いられるものであり、活性エネルギー線硬化性樹脂組成物を基材に塗工した後(有機溶剤で希釈した組成物を塗工した場合には、更に乾燥させた後)、活性エネルギー線を照射することにより硬化される。塗工方法としては、特に限定されるものではなく、例えば、スプレー、シャワー、ディッピング、フローコート、グラビアコート、ロールコート、スピンコート、ディスペンサー、インクジェット、スクリーン印刷等のようなウェットコーティング法が挙げられる。 The active energy ray-curable resin composition of the present invention is effectively used as a curable resin composition for coating film formation having a moist and soft touch feeling to various base materials, and active energy ray curing After applying the functional resin composition to the substrate (after further drying if the composition diluted with an organic solvent is applied), it is cured by irradiation with active energy rays. The coating method is not particularly limited, and examples thereof include wet coating methods such as spraying, showering, dipping, flow coating, gravure coating, roll coating, spin coating, dispenser, ink jet, and screen printing. .
 かかる活性エネルギー線としては、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のし易さ、価格等から紫外線照射による硬化が有利である。なお、電子線照射を行う場合は、光重合開始剤(D)を用いなくても硬化し得る。 As such active energy rays, rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as X rays and γ rays, electron beams, proton rays, neutron rays, etc. can be used. Curing by ultraviolet irradiation is advantageous from the viewpoint of easy availability and price. In addition, when performing electron beam irradiation, it can harden | cure even without using a photoinitiator (D).
 紫外線照射により硬化させる方法としては、150~450nm波長域の光を発する高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、LED等を用いて、30~3,000mJ/cm2程度照射すればよい。
 紫外線照射後は、必要に応じて加熱を行って硬化の完全を図ることもできる。
As a method of curing by ultraviolet irradiation, a high pressure mercury lamp that emits light in a wavelength range of 150 to 450 nm, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrodeless discharge lamp, an LED, etc. Irradiation of about 30 to 3,000 mJ / cm 2 may be performed.
After the ultraviolet irradiation, heating can be performed as necessary to complete the curing.
 塗工膜厚(硬化後の膜厚)としては、通常1~50μmであることが好ましく、特には2~40μm、更には5~30μmであることが好ましい。 The coating film thickness (film thickness after curing) is usually preferably 1 to 50 μm, particularly preferably 2 to 40 μm, more preferably 5 to 30 μm.
 本発明の活性エネルギー線硬化性樹脂組成物を塗工する対象である基材としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリスチレン系樹脂、ポリアミド樹脂等やそれらの成型品(フィルム、シート、カップ、等)、金属基材(金属蒸着層、金属板(銅、ステンレス鋼(SUS304、SUSBA等)、アルミニウム、亜鉛、マグネシウ等))、ガラス等、それらの複合基材が挙げられる。 Examples of the base material to which the active energy ray-curable resin composition of the present invention is applied include polyolefin resins, polyester resins, polycarbonate resins, acrylonitrile butadiene styrene copolymers (ABS), polystyrene resins, and polyamides. Resins, etc. and their molded products (films, sheets, cups, etc.), metal substrates (metal deposition layers, metal plates (copper, stainless steel (SUS304, SUSBA, etc.), aluminum, zinc, magnesium, etc.)), glass, etc. , And those composite substrates.
 本発明のウレタン(メタ)アクリレート系化合物(A)及び微粒子状の合成樹脂フィラー(B)を含有してなる活性エネルギー線硬化性樹脂組成物は、ソフトフィール、ソフトタッチと呼ばれるしっとりした指触感を備え、かつ、硬化塗膜の外観上においては高級感に優れた硬化塗膜を形成することができる。そして、本発明の活性エネルギー線硬化性樹脂組成物は、コーティング剤(非光学分野の塗装)として非常に有用であり、コーティング時の作業性(溶液保存安定性)や生産性(製造速度)にも優れた効果を有するものであり、非常に有用である。 The active energy ray-curable resin composition comprising the urethane (meth) acrylate compound (A) of the present invention and the fine particle-like synthetic resin filler (B) has a moist touch feeling called soft feel and soft touch. In addition, it is possible to form a cured coating film having a high-class feeling on the appearance of the cured coating film. The active energy ray-curable resin composition of the present invention is very useful as a coating agent (painting in the non-optical field), and has improved workability (solution storage stability) and productivity (production speed) during coating. Has an excellent effect and is very useful.
 上記コーティング剤組成物は、ウレタン(メタ)アクリレート系化合物(A)をコーティング剤組成物全体の2~60重量%含有することが好ましく、特に好ましくは3~40重量%、更に好ましくは5~30重量%である。なお、上記コーティング剤組成物には有機溶剤を含んでも含まなくてもよい。
 かかるウレタン(メタ)アクリレート系化合物(A)の含有量が少なすぎると、しっとりとしたソフトな指触感が得られにくい傾向があり、多すぎると硬化塗膜の摩耗性が極端に低下する傾向がある。
The coating agent composition preferably contains 2 to 60% by weight of urethane (meth) acrylate compound (A), particularly preferably 3 to 40% by weight, and more preferably 5 to 30% by weight of the entire coating agent composition. % By weight. In addition, the coating agent composition may or may not contain an organic solvent.
If the content of the urethane (meth) acrylate compound (A) is too small, it tends to be difficult to obtain a moist and soft touch feeling, and if it is too much, the wear property of the cured coating film tends to be extremely lowered. is there.
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、例中、「部」、「%」は、重量基準を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the examples, “parts” and “%” mean weight standards.
 実施例及び比較例に先立ち、ウレタン(メタ)アクリレート系化合物(A)として、以下のものを製造した。 Prior to Examples and Comparative Examples, the following were produced as urethane (meth) acrylate compounds (A).
<製造例1:ウレタン(メタ)アクリレート系化合物(A1-1)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート13.2g(0.06モル)、2官能ポリエステルポリオール(水酸基価54mgKOH/g)82.1g(0.04モル)、重合禁止剤としてハイドロキノンメチルエーテル0.02g、反応触媒としてジブチルスズジラウレート0.02gを仕込み、60℃で3時間反応させ、2-ヒドロキシエチルアクリレート4.7g(0.04モル)、を仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、2官能ウレタンアクリレート(A1-1)(重量平均分子量(Mw):16,500)を得た。
<Production Example 1: Urethane (meth) acrylate compound (A1-1)>
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, 13.2 g (0.06 mol) of isophorone diisocyanate, 82.1 g (hydroxyl value 54 mgKOH / g) 0.04 g of hydroquinone methyl ether as a polymerization inhibitor and 0.02 g of dibutyltin dilaurate as a reaction catalyst and reacted at 60 ° C. for 3 hours to give 4.7 g (0.04 mol) of 2-hydroxyethyl acrylate, Was reacted at 60 ° C. for 3 hours, and when the residual isocyanate group became 0.3% or less, the reaction was terminated, and the bifunctional urethane acrylate (A1-1) (weight average molecular weight (Mw): 16,500 )
<製造例2:ウレタン(メタ)アクリレート系化合物(A1-2)> 
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート16.1g(0.07モル)、2官能ポリエステルポリオール(水酸基価54mgKOH/g)75.2g(0.04モル)、重合禁止剤としてハイドロキノンメチルエーテル0.02g、反応触媒としてジブチルスズジラウレート0.02gを仕込み、60℃で3時間反応させ、2-ヒドロキシエチルアクリレート8.6g(0.07モル)、を仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、2官能ウレタンアクリレート(A1-2)(重量平均分子量(Mw):9,500)を得た。
<Production Example 2: Urethane (meth) acrylate compound (A1-2)>
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, isophorone diisocyanate 16.1 g (0.07 mol), bifunctional polyester polyol (hydroxyl value 54 mg KOH / g) 75.2 g (0 0.04 g of hydroquinone methyl ether as a polymerization inhibitor and 0.02 g of dibutyltin dilaurate as a reaction catalyst, reacted at 60 ° C. for 3 hours, 8.6 g (0.07 mol) of 2-hydroxyethyl acrylate, Was reacted at 60 ° C. for 3 hours, and when the residual isocyanate group became 0.3% or less, the reaction was terminated. Bifunctional urethane acrylate (A1-2) (weight average molecular weight (Mw): 9,500) )
<製造例3:ウレタン(メタ)アクリレート系化合物(A1-3)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添キシリレンジイソシアネート16.1g(0.08モル)、2官能ポリエステルポリオール(水酸基価63.9mgKOH/g)73.7g(0.04モル)、重合禁止剤としてハイドロキノンメチルエーテル0.02g、反応触媒としてジブチルスズジラウレート0.02gを仕込み、60℃で3時間反応させ、2-ヒドロキシエチルアクリレート9.9g(0.09モル)、を仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、2官能ウレタンアクリレート(A1-3)(重量平均分子量(Mw):10,400)を得た。
<Production Example 3: Urethane (meth) acrylate compound (A1-3)>
Hydrogenated xylylene diisocyanate 16.1 g (0.08 mol), bifunctional polyester polyol (hydroxyl value 63.9 mgKOH / g) in a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas inlet 73.7 g (0.04 mol), hydroquinone methyl ether 0.02 g as a polymerization inhibitor and 0.02 g of dibutyltin dilaurate as a reaction catalyst were charged and reacted at 60 ° C. for 3 hours to obtain 9.9 g of 2-hydroxyethyl acrylate (0 0.09 mol), and reacted at 60 ° C. for 3 hours. The reaction was terminated when the residual isocyanate group became 0.3% or less, and the bifunctional urethane acrylate (A1-3) (weight average molecular weight (Mw ): 10,400).
<製造例4:ウレタン(メタ)アクリレート系化合物(A1-4)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添キシリレンジイソシアネート30.0g(0.13モル)、2官能ポリカーボネートポリオール(水酸基価139.4mgKOH/g)54.2g(0.07モル)、重合禁止剤としてハイドロキノンメチルエーテル0.02g、反応触媒としてジブチルスズジラウレート0.02gを仕込み、60℃で3時間反応させ、2-ヒドロキシエチルアクリレート15.9g(0.14モル)、を仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、2官能ウレタンアクリレート(A1-4)(重量平均分子量(Mw):5,000)を得た。
<Production Example 4: Urethane (meth) acrylate compound (A1-4)>
Hydrogenated xylylene diisocyanate 30.0 g (0.13 mol), bifunctional polycarbonate polyol (hydroxyl value 139.4 mg KOH / g) in a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas inlet 54.2 g (0.07 mol), 0.02 g of hydroquinone methyl ether as a polymerization inhibitor and 0.02 g of dibutyltin dilaurate as a reaction catalyst were charged and reacted at 60 ° C. for 3 hours to obtain 15.9 g (0 .14 mol) was reacted at 60 ° C. for 3 hours, and the reaction was terminated when the residual isocyanate group became 0.3% or less, and the bifunctional urethane acrylate (A1-4) (weight average molecular weight (Mw ): 5,000).
<製造例5:ウレタン(メタ)アクリレート系化合物(A1-5)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソシアネート化合物((a2)と(a3)の反応物)(旭化成ケミカルズ社製「デュラネートE402」ヘキサメチレンジイソシアネートのアダクトタイプ、0.056モル)を78g充填し、2-ヒドロキシエチルアクリレートを22g(a1)(0.17モル)、重合禁止剤としてハイドロキノンメチルエーテルを0.02g、反応触媒として、ジブチルスズラウレートを0.02gを加え、内温を70℃にした後、3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A1-5)(重量平均分子量(Mw):3,700)を得た。
<Production Example 5: Urethane (meth) acrylate compound (A1-5)>
Isocyanate compound (reaction product of (a2) and (a3)) ("Duranate E402" hexamethylene diisocyanate adduct made by Asahi Kasei Chemicals Co., Ltd.) in a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser and nitrogen gas inlet 78 g of type, 0.056 mol), 22 g (a1) (0.17 mol) of 2-hydroxyethyl acrylate, 0.02 g of hydroquinone methyl ether as a polymerization inhibitor, 0 dibutyltin laurate as a reaction catalyst 0.02 g was added and the internal temperature was raised to 70 ° C., followed by reaction for 3 hours. The reaction was terminated when the residual isocyanate group was 0.3% or less, and the urethane (meth) acrylate compound (A1-5) (Weight average molecular weight (Mw): 3,700) was obtained.
<製造例6:ウレタン(メタ)アクリレート系化合物(A2-1)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソシアネート化合物(a2)(日本ポリウレタン工業社製「コロネート HX」ヘキサメチレンジイソシアネートの3量体からなるイソシアネート化合物、0.070モル)を42.2g充填し、ポリカプロラクトン変性水酸基含有アクリレート化合物(a1)(MIWON社製「SC1010A」を48.5g(0.21モル)、重合禁止剤としてハイドロキノンメチルエーテルを0.2g、反応触媒として、ジブチルスズラウレートを0.02gを加え、内温を70℃にした後、3時間反応させ、更に追加でSC1010Aを9.3g添加し、70℃で1時間保持し、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A2-1)(重量平均分子量(Mw):3,500)を得た。
 なお、ウレタン(メタ)アクリレート系化合物(A2-1)には、エチレン性不飽和モノマー(C-1)として、ポリカプロラクトン変性水酸基含有アクリレート化合物「SC1010A」を9.3%含んでいる。
<Production Example 6: Urethane (meth) acrylate compound (A2-1)>
Into a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser and a nitrogen gas inlet, an isocyanate compound (a2) (an isocyanate compound composed of a trimer of “Coronate HX” hexamethylene diisocyanate manufactured by Nippon Polyurethane Industry Co., Ltd., 0 0.02 mol) is charged with 42.2 g, polycaprolactone-modified hydroxyl group-containing acrylate compound (a1) (48.5 g (0.21 mol) of “SC1010A” manufactured by MIWON), and 0.2 g of hydroquinone methyl ether as a polymerization inhibitor. Then, 0.02 g of dibutyltin laurate was added as a reaction catalyst, and the internal temperature was raised to 70 ° C., followed by reaction for 3 hours. Further, 9.3 g of SC1010A was added, and the mixture was maintained at 70 ° C. for 1 hour, and the remaining isocyanate When the group becomes 0.3% or less, the reaction is terminated and urethane (medium A) Acrylate compound (A2-1) (weight average molecular weight (Mw): 3,500) was obtained.
The urethane (meth) acrylate compound (A2-1) contains 9.3% of the polycaprolactone-modified hydroxyl group-containing acrylate compound “SC1010A” as the ethylenically unsaturated monomer (C-1).
<製造例7:ウレタン(メタ)アクリレート系化合物(A2-2)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソシアネート化合物(a2)(日本ポリウレタン工業社製「コロネート HX」ヘキサメチレンジイソシアネートの3量体からなるイソシアネート化合物、0.10モル)を 60.4g充填し、2-ヒドロキシプロピルアクリレート(a1)を 39.6g(0.30モル)、重合禁止剤としてハイドロキノンメチルエーテルを0.2g、反応触媒として、ジブチルスズラウレートを0.02gを加え、内温を70℃にした後、3時間反応させ、70℃で1時間保持し、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A2-2)(重量平均分子量(Mw):2,200)を得た。
<Production Example 7: Urethane (meth) acrylate compound (A2-2)>
Into a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser and a nitrogen gas inlet, an isocyanate compound (a2) (an isocyanate compound composed of a trimer of “Coronate HX” hexamethylene diisocyanate manufactured by Nippon Polyurethane Industry Co., Ltd., 0 .10 mol) 60.4 g, 2-hydroxypropyl acrylate (a1) 39.6 g (0.30 mol), hydroquinone methyl ether 0.2 g as a polymerization inhibitor, dibutyltin laurate as a reaction catalyst 0.02 g was added, and the internal temperature was raised to 70 ° C., followed by reaction for 3 hours, held at 70 ° C. for 1 hour, and when the remaining isocyanate group became 0.3% or less, the reaction was terminated. ) Acrylate compound (A2-2) (weight average molecular weight (Mw): 2,200) was obtained.
<製造例8:ウレタン(メタ)アクリレート系化合物(A2-3)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソシアネート化合物(a2)(バイエルマテリアルサイエンス社製「デスモジュールN3200」ヘキサメチレンジイソシアネートのビウレット変性タイプ、0.06モル)を34.2g充填し、ポリカプロラクトン変性水酸基含有アクリレート化合物(a1)(MIWON社製「M100D」を65.8g(0.19モル)、重合禁止剤としてハイドロキノンメチルエーテルを0.2g、反応触媒として、ジブチルスズラウレートを0.02gを加え、内温を70℃にした後、3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A2-3)(重量平均分子量(Mw):3,600)を得た。
<Production Example 8: Urethane (meth) acrylate compound (A2-3)>
Into a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, an isocyanate compound (a2) (“Desmodur N3200” manufactured by Bayer MaterialScience, a biuret-modified type of hexamethylene diisocyanate, 0.06 mol) ), 35.8 g of polycaprolactone-modified hydroxyl group-containing acrylate compound (a1) (65.8 g (0.19 mol) of “M100D” manufactured by MIWON), 0.2 g of hydroquinone methyl ether as a polymerization inhibitor, reaction catalyst Then, 0.02 g of dibutyltin laurate was added and the internal temperature was adjusted to 70 ° C., followed by reaction for 3 hours. When the remaining isocyanate group became 0.3% or less, the reaction was terminated, and urethane (meth) acrylate Compound (A2-3) (weight average molecular weight (Mw): 3, 00) was obtained.
 微粒子状の合成樹脂フィラー(B)として以下のものを用意した。
(B-1):ポリウレタン微粒子(平均粒子径6.2μm:ガラス転移温度-52℃)
(B-2):ポリウレタン微粒子(平均粒子径16.7μm:ガラス転移温度-34℃)
(B-3):ポリウレタン微粒子(平均粒子径6.5μm:ガラス転移温度-34℃)
(B-4):ポリウレタン微粒子(平均粒子径13.5μm:ガラス転移温度-13℃)
(B-5):ポリエチレンワックス(粒子径5~10μm)
The following were prepared as fine-particle synthetic resin filler (B).
(B-1): Polyurethane fine particles (average particle size 6.2 μm: glass transition temperature −52 ° C.)
(B-2): Polyurethane fine particles (average particle size 16.7 μm: glass transition temperature −34 ° C.)
(B-3): polyurethane fine particles (average particle size 6.5 μm: glass transition temperature −34 ° C.)
(B-4): polyurethane fine particles (average particle size 13.5 μm: glass transition temperature −13 ° C.)
(B-5): Polyethylene wax (particle size 5-10 μm)
 また、上記微粒子状の合成樹脂フィラー(B)の比較例用フィラーとして以下の非合成樹脂フィラーを用意した。
(B’-1:比較例用):フュームドシリカ(粒子径50nm)
Moreover, the following non-synthetic resin fillers were prepared as comparative fillers for the fine particulate synthetic resin filler (B).
(B′-1: for comparative example): fumed silica (particle diameter 50 nm)
 光重合開始剤(D)として、以下のものを用意した。
(D-1):1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASFジャパン社製、イルガキュア184)
The following were prepared as the photopolymerization initiator (D).
(D-1): 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF Japan, Irgacure 184)
 レベリング剤(E)として、以下のものを用意した。
(E-1):ポリエーテル変性ポリジメチルシロキサン(ビックケミー・ジャパン社製、BYK-UV3510)
The following were prepared as the leveling agent (E).
(E-1): Polyether-modified polydimethylsiloxane (BYK-UV3510, manufactured by BYK Japan)
〔実施例1〕
 上記製造例1で得られた2官能ウレタン(メタ)アクリレート系化合物(A1-1)100部、微粒子状の合成樹脂フィラー(B-1)65.9部、微粒子状の合成樹脂フィラー(B-5)0.5部(固形分量)、光重合開始剤(D-1)6.8部、レベリング剤(E-1)2.7部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
[Example 1]
100 parts of the bifunctional urethane (meth) acrylate compound (A1-1) obtained in Production Example 1 above, 65.9 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B- 5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) are mixed to a solids concentration of 50% using ethyl acetate. Thus, an active energy ray-curable resin composition was obtained.
〔実施例2〕
 上記製造例2で得られた2官能ウレタン(メタ)アクリレート系化合物(A1-2)100部、微粒子状の合成樹脂フィラー(B-3)67.0部、微粒子状の合成樹脂フィラー(B-5)2.6部(固形分量)、光重合開始剤(D-1)6.9部、レベリング剤(E-1)2.7部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
[Example 2]
100 parts of the bifunctional urethane (meth) acrylate compound (A1-2) obtained in Production Example 2 above, 67.0 parts of fine particle synthetic resin filler (B-3), fine particle synthetic resin filler (B- 5) 2.6 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) are mixed to a solids concentration of 50% using ethyl acetate. Thus, an active energy ray-curable resin composition was obtained.
〔実施例3〕
 上記製造例3で得られた2官能ウレタン(メタ)アクリレート系化合物(A1-3)100部、微粒子状の合成樹脂フィラー(B-1)65.9部、微粒子状の合成樹脂フィラー(B-5)0.5部(固形分量)、光重合開始剤(D-1)6.8部、レベリング剤(E-1)2.7部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 3
100 parts of bifunctional urethane (meth) acrylate compound (A1-3) obtained in Production Example 3 above, 65.9 parts of fine particle synthetic resin filler (B-1), fine particle synthetic resin filler (B- 5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) are mixed to a solids concentration of 50% using ethyl acetate. Thus, an active energy ray-curable resin composition was obtained.
〔実施例4〕
 上記製造例4で得られた2官能ウレタン(メタ)アクリレート系化合物(A1-4)100部、微粒子状の合成樹脂フィラー(B-1)65.9部、微粒子状の合成樹脂フィラー(B-5)0.5部(固形分量)、光重合開始剤(D-1)6.8部、レベリング剤(E-1)2.7部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 4
100 parts of the bifunctional urethane (meth) acrylate compound (A1-4) obtained in Production Example 4 above, 65.9 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B- 5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) are mixed to a solids concentration of 50% using ethyl acetate. Thus, an active energy ray-curable resin composition was obtained.
〔実施例5〕
 上記製造例5で得られたウレタン(メタ)アクリレート系化合物(A1-5)100部、微粒子状の合成樹脂フィラー(B-2)67.2部、微粒子状の合成樹脂フィラー(B-5)3.3部(固形分量)、光重合開始剤(D-1)6.9部、レベリング剤(E-1)2.2部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 5
100 parts of urethane (meth) acrylate compound (A1-5) obtained in Production Example 5 above, 67.2 parts of fine particle synthetic resin filler (B-2), fine particle synthetic resin filler (B-5) 3.3 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.2 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate. The active energy ray-curable resin composition was obtained by blending.
〔実施例6〕
 上記製造例5で得られたウレタン(メタ)アクリレート系化合物(A1-5)100部、微粒子状の合成樹脂フィラー(B-3)67.2部、微粒子状の合成樹脂フィラー(B-5)3.3部(固形分量)、光重合開始剤(D-1)6.9部、レベリング剤(E-1)2.2部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 6
100 parts of urethane (meth) acrylate compound (A1-5) obtained in Production Example 5 above, 67.2 parts of fine particle synthetic resin filler (B-3), fine particle synthetic resin filler (B-5) 3.3 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.2 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate. The active energy ray-curable resin composition was obtained by blending.
〔実施例7〕
 上記製造例6で得られたウレタン(メタ)アクリレート系化合物(A2-1)100部、微粒子状の合成樹脂フィラー(B-1)67.2部、微粒子状の合成樹脂フィラー(B-5)3.3部(固形分量)、光重合開始剤(D-1)6.9部、レベリング剤(E-1)2.2部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 7
100 parts of urethane (meth) acrylate compound (A2-1) obtained in Production Example 6 above, 67.2 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B-5) 3.3 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.2 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate. The active energy ray-curable resin composition was obtained by blending.
〔実施例8〕
 上記製造例6で得られたウレタン(メタ)アクリレート系化合物(A2-1)100部、微粒子状の合成樹脂フィラー(B-2)67.2部、微粒子状の合成樹脂フィラー(B-5)3.3部(固形分量)、光重合開始剤(D-1)6.9部、レベリング剤(E-1)2.2部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 8
100 parts of urethane (meth) acrylate compound (A2-1) obtained in Production Example 6 above, 67.2 parts of fine synthetic resin filler (B-2), fine synthetic resin filler (B-5) 3.3 parts (solid content), 6.9 parts of photopolymerization initiator (D-1), and 2.2 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate. The active energy ray-curable resin composition was obtained by blending.
〔実施例9〕
 上記製造例6で得られたウレタン(メタ)アクリレート系化合物(A2-1)100部、微粒子状の合成樹脂フィラー(B-1)67.2部、光重合開始剤(D-1)6.9部、レベリング剤(E-1)2.8部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 9
100 parts of urethane (meth) acrylate compound (A2-1) obtained in Production Example 6 above, 67.2 parts of fine particle synthetic resin filler (B-1), photopolymerization initiator (D-1) 6. Nine parts and 2.8 parts of a leveling agent (E-1) were blended using ethyl acetate to a solid content concentration of 50% to obtain an active energy ray-curable resin composition.
〔実施例10〕
 上記製造例7で得られたウレタン(メタ)アクリレート系化合物(A2-2)100部、微粒子状の合成樹脂フィラー(B-1)65.9部、微粒子状の合成樹脂フィラー(B-5)0.5部(固形分量)、光重合開始剤(D-1)6.8部、レベリング剤(E-1)2.7部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 10
100 parts of urethane (meth) acrylate compound (A2-2) obtained in Production Example 7 above, 65.9 parts of fine particle synthetic resin filler (B-1), fine particle synthetic resin filler (B-5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate. The active energy ray-curable resin composition was obtained by blending.
〔実施例11〕
 上記製造例8で得られたウレタン(メタ)アクリレート系化合物(A2-3)100部、微粒子状の合成樹脂フィラー(B-1)65.9部、微粒子状の合成樹脂フィラー(B-5)0.5部(固形分量)、光重合開始剤(D-1)6.8部、レベリング剤(E-1)2.7部を、酢酸エチルを用いて固形分濃度50%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 11
100 parts of urethane (meth) acrylate compound (A2-3) obtained in Production Example 8 above, 65.9 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B-5) 0.5 parts (solid content), 6.8 parts of photopolymerization initiator (D-1), and 2.7 parts of leveling agent (E-1) were adjusted to a solid content concentration of 50% using ethyl acetate. The active energy ray-curable resin composition was obtained by blending.
〔比較例1〕
 実施例5において、微粒子状の合成樹脂フィラー(B-2),(B-5)、及びレベリング剤(E-1)を配合せず、光重合開始剤(D-1)の配合量を4部に変更した以外は実施例5と同様にして、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 1]
In Example 5, the fine synthetic resin fillers (B-2) and (B-5) and the leveling agent (E-1) were not blended, and the blending amount of the photopolymerization initiator (D-1) was 4 An active energy ray-curable resin composition was obtained in the same manner as in Example 5 except that the parts were changed to parts.
〔比較例2〕
 実施例7において、微粒子状の合成樹脂フィラー(B-1),(B-5)、及びレベリング剤(E-1)を配合せず、光重合開始剤(D-1)の配合量を4部に変更した以外は実施例7と同様にして、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 2]
In Example 7, the synthetic resin fillers (B-1) and (B-5) in fine particles and the leveling agent (E-1) were not blended, and the blending amount of the photopolymerization initiator (D-1) was 4 An active energy ray-curable resin composition was obtained in the same manner as in Example 7 except that the part was changed to part.
〔比較例3〕
 実施例3において、微粒子状の合成樹脂フィラー(B-1),(B-5)を(B’-1)6.2部に変更するとともに、光重合開始剤(D-1)の配合量を4.3部に、レベリング剤(E-1)の配合量を1.8部に変更した以外は、実施例3と同様にして、活性エネルギー線硬化性樹脂組成物を得た。
[Comparative Example 3]
In Example 3, fine synthetic resin fillers (B-1) and (B-5) were changed to 6.2 parts of (B′-1), and the blending amount of the photopolymerization initiator (D-1) Was changed to 4.3 parts and the amount of the leveling agent (E-1) was changed to 1.8 parts to obtain an active energy ray-curable resin composition in the same manner as in Example 3.
 上記実施例1~11、及び比較例1~3で得られた活性エネルギー線硬化性樹脂組成物を、アプリケーターにて硬化塗膜が10μm厚となるようにポリカーボネート基材(日本テストパネル社製)に塗工し、90℃で3分間乾燥した後、高圧水銀灯ランプ80W、1灯を用いて、18cmの高さから3.4m/minのコンベア速度で2パスの紫外線照射(積算照射量800mJ/cm2)を行ない、硬化塗膜を得た。 The active energy ray-curable resin compositions obtained in Examples 1 to 11 and Comparative Examples 1 to 3 are polycarbonate substrates (manufactured by Nippon Test Panel Co., Ltd.) so that the cured coating film has a thickness of 10 μm using an applicator. After drying at 90 ° C. for 3 minutes, using a high pressure mercury lamp lamp 80W and one lamp, UV irradiation of 2 passes at a conveyor speed of 3.4 m / min from a height of 18 cm (accumulated dose 800 mJ / cm 2 ) to obtain a cured coating film.
 上記硬化塗膜を用いて、下記の通り、硬化塗膜のソフトフィール性、基材密着性、表面硬度の評価を行なった。 Using the above cured coating film, the soft film properties, substrate adhesion, and surface hardness of the cured coating film were evaluated as follows.
<ソフトフィール性(指触感)>
 上記硬化塗膜表面を手で触った感触によりソフト感を評価した。評価基準は以下の通りである。評価結果は下記の表1に示す。
(評価基準)
◎:良好なソフト感(なめらかでしっとりした)
○:まずまず良好なソフト感(さらさらした)
×:ソフト感は感じられない(ザラザラした、または、ざらざらしないが、ソフト感なし、または塗膜表面がべたつく)
<Soft feel (finger feeling)>
The soft feeling was evaluated by touching the surface of the cured coating film with a hand. The evaluation criteria are as follows. The evaluation results are shown in Table 1 below.
(Evaluation criteria)
A: Good soft feeling (smooth and moist)
○: Good soft feeling (smooth)
X: Soft feeling is not felt (Rough or rough, but there is no soft feeling or the coating surface is sticky)
<基材密着性>
 上記硬化塗膜を用いて、JIS K 5400(1990年版)に準じて碁盤目テープ法を行ない、基材密着性を評価した。評価結果は下記の表1に示す。
(評価基準)
○:テープ試験後も塗膜が全て基材に密着している(100/100)
×:テープ試験後に塗膜が基材から剥がれている(100未満/100)
<Base material adhesion>
Using the cured coating film, a cross-cut tape method was performed according to JIS K 5400 (1990 edition) to evaluate substrate adhesion. The evaluation results are shown in Table 1 below.
(Evaluation criteria)
○: Even after the tape test, all the coating films are in close contact with the substrate (100/100)
X: The coating film is peeled off from the substrate after the tape test (less than 100/100)
<表面硬度>
 人の爪先端部を用いて、硬化塗膜に500g荷重を掛けながら、爪接地部の長手方向に動かす爪スクラッチテストを行い、塗膜表面の実用物性を評価した。評価結果は下記の表1に示す。
(評価基準)
○:爪スクラッチで傷がつかない。
×:爪スクラッチで傷がつく。
<Surface hardness>
Using a human nail tip, a nail scratch test was performed by applying a load of 500 g to the cured coating film while moving it in the longitudinal direction of the nail contact portion, and the practical properties of the coating film surface were evaluated. The evaluation results are shown in Table 1 below.
(Evaluation criteria)
○: Nail scratches do not scratch.
X: The nail scratch is damaged.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、硬化塗膜の耐摩耗性を評価するため、上記実施例5,7と比較例1の硬化塗膜を用いて、下記の通り、硬化塗膜の耐摩耗性の評価を行なった。 Further, in order to evaluate the wear resistance of the cured coating film, the cured coating film of Examples 5 and 7 and Comparative Example 1 were evaluated as follows.
<耐摩耗性>
 上記実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物を、アプリケーターにて硬化塗膜が10μm厚となるように易接着PET(東洋紡績社製;商品名「コスモサンシャインA4300」、膜厚125μm)上に塗工し、90℃で3分間乾燥した後、高圧水銀灯ランプ80W、1灯を用いて、18cmの高さから3.4m/minのコンベア速度で2パスの紫外線照射(積算照射量800mJ/cm2)を行い、100mm角の塗膜形成フィルムを得た。
 得られた塗膜形成フィルムをテーバー摩耗試験機(テスター産業製;AB-101 TABERTYPE ABRASION TESTER)を使用し、60rpm、250g荷重、500回転、摩耗輪CS10Fの条件で耐摩耗性評価を行った。評価塗膜は、サンプル設置SUS板に両面テープで固定した。評価結果は下記の表2に示す。
(評価基準)
 評価後の塗膜の摩耗輪(12.5mm幅)痕内の塗膜欠損(下地フィルムの露出)部分を定規で計測・累積し、摩耗輪(12.5mm幅)痕の幅に対して最も大きい数値となる部分で比率を算出し比較評価を実施した(累積欠損部/摩耗輪痕(12.5mm))。
○:欠損率が30%未満
△:欠損率が30%以上、50%未満
×:欠損率が50%以上
<Abrasion resistance>
The active energy ray-curable resin compositions obtained in the above Examples and Comparative Examples were prepared by using an easy-adhesion PET (manufactured by Toyobo Co., Ltd .; trade name “Cosmo Sunshine A4300”) so that the cured coating film had a thickness of 10 μm with an applicator. After coating at a film thickness of 125 μm and drying at 90 ° C. for 3 minutes, two passes of UV irradiation at a conveyor speed of 3.4 m / min from a height of 18 cm using a high pressure mercury lamp 80 W and one lamp ( An integrated irradiation amount of 800 mJ / cm 2 ) was performed to obtain a 100 mm square coating film-forming film.
The obtained coating film-formed film was evaluated for wear resistance under the conditions of 60 rpm, 250 g load, 500 rotations, and wear wheel CS10F using a Taber abrasion tester (manufactured by Tester Sangyo; AB-101 TABERTYPE PE ABRASSION TEST). The evaluation coating was fixed to the sample-installed SUS plate with a double-sided tape. The evaluation results are shown in Table 2 below.
(Evaluation criteria)
Measure and accumulate the coating film defect (exposed base film) part in the wear ring (12.5 mm width) mark of the coating film after evaluation with the ruler, and it is the most for the width of the wear wheel (12.5 mm width) mark A ratio was calculated at a portion having a large numerical value, and a comparative evaluation was performed (cumulative defect portion / wear ring mark (12.5 mm)).
○: Defect rate is less than 30% Δ: Defect rate is 30% or more, less than 50% ×: Defect rate is 50% or more
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1及び表2の評価結果より、ウレタン(メタ)アクリレート系化合物(A)に微粒子状の合成樹脂フィラー(B)を配合してなる実施例1~11の活性エネルギー線硬化性樹脂組成物は、ソフトフィール性を備え、かつ、摩耗性、密着性、硬度にも優れる硬化塗膜が得られるのに対し、微粒子状の合成樹脂フィラー(B)を含有していない比較例の活性エネルギー線硬化性樹脂組成物から得られる硬化塗膜は、密着性、硬度には優れるものの、ソフトフィール性、及び、耐摩耗性の劣るものであることがわかる。 From the evaluation results in Tables 1 and 2, the active energy ray-curable resin compositions of Examples 1 to 11 in which the urethane (meth) acrylate compound (A) is blended with the fine particle synthetic resin filler (B). Provides a cured coating film that has soft feel and is excellent in wear, adhesion, and hardness, whereas an active energy ray of a comparative example that does not contain fine-particle synthetic resin filler (B) It can be seen that the cured coating film obtained from the curable resin composition is excellent in adhesion and hardness, but inferior in soft feel and abrasion resistance.
 また、ウレタン(メタ)アクリレート系化合物(A1) を得るため成分の一つであるポリオール系化合物(a3)として、重量平均分子量500未満のポリオール化合物(a3-1)及び重量平均分子量500~20,000のポリオール化合物(a3-2)を含有する実施例を挙げて以下説明する。 In addition, as a polyol compound (a3) which is one of the components for obtaining the urethane (meth) acrylate compound (A1), a polyol compound (a3-1) having a weight average molecular weight of less than 500 and a weight average molecular weight of 500 to 20, An example containing 000 polyol compounds (a3-2) will be described below.
 この実施例に先立ち、ウレタン(メタ)アクリレート系化合物(A1)として、以下のものを製造した。 Prior to this example, the following were produced as urethane (meth) acrylate compounds (A1).
<製造例9:ウレタン(メタ)アクリレート系化合物(A1-6)> 
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、酢酸エチル42.9g、水添キシリレンジイソシアネート(a2)32.3g、ネオペンチルグリコール(a3-1)(重量平均分子量(Mw)104)11.6g、2官能のポリエステルポリオール(a3-2)(水酸基価63mgKOH/g、重量平均分子量(Mw)5,000)49.6g、重合禁止剤としてハイドロキノンメチルエーテル0.02g、反応触媒としてジブチルスズジアウレート0.02gを仕込み、60℃で2時間反応させ、2-ヒドロキシエチルアクリレート(a1)6.50gを仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(重量平均分子量(Mw);14,000)の酢酸エチル溶液(A1-6)(固形分濃度70%、粘度(20℃)11,000mPa・s)を得た。
<Production Example 9: Urethane (meth) acrylate compound (A1-6)>
In a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas inlet, 42.9 g of ethyl acetate, 32.3 g of hydrogenated xylylene diisocyanate (a2), neopentyl glycol (a3-1) (weight) Average molecular weight (Mw) 104) 11.6 g, bifunctional polyester polyol (a3-2) (hydroxyl value 63 mg KOH / g, weight average molecular weight (Mw) 5,000) 49.6 g, hydroquinone methyl ether 0 as a polymerization inhibitor 0.02 g of dibutyltin diaurate as a reaction catalyst was charged and reacted at 60 ° C. for 2 hours, and 6.50 g of 2-hydroxyethyl acrylate (a1) was charged and reacted at 60 ° C. for 3 hours. The reaction was terminated when the level became 0.3% or less, and the urethane (meth) acrylate compound The weight average molecular weight (Mw); 14,000 ethyl acetate solution (A1-6) (solid content of 70%, a viscosity (20 ° C.) of) was obtained 11,000 · s).
<製造例10:ウレタン(メタ)アクリレート系化合物(A1-7)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、酢酸エチル42.9g、水添キシリレンジイソシアネート(a2)29.6g(0.15モル)、トリシクロデカンジメタノール(a3-1)(重量平均分子量(Mw)196)19.9g(0.10モル)、2官能のポリエステルポリオール(a3-2)(水酸基価63.9mgKOH/g、重量平均分子量(Mw)5,000)44.5g(0.025モル)、重合禁止剤としてハイドロキノンメチルエーテル0.02g、反応触媒としてジブチルスズジラウレート0.02gを仕込み、60℃で2時間反応させ、2-ヒドロキシエチルアクリレート(a1)6.0g(0.052モル)を仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(重量平均分子量(Mw);14,000)の酢酸エチル溶液(A1-7)(固形分濃度70%、粘度(20℃)53,000mPa・s)を得た。
<Production Example 10: Urethane (meth) acrylate compound (A1-7)>
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser and a nitrogen gas inlet, 42.9 g of ethyl acetate, 29.6 g of hydrogenated xylylene diisocyanate (a2) (0.15 mol), tricyclodecane Methanol (a3-1) (weight average molecular weight (Mw) 196) 19.9 g (0.10 mol), bifunctional polyester polyol (a3-2) (hydroxyl value 63.9 mgKOH / g, weight average molecular weight (Mw) 5,000) 44.5 g (0.025 mol), 0.02 g of hydroquinone methyl ether as a polymerization inhibitor and 0.02 g of dibutyltin dilaurate as a reaction catalyst were charged and reacted at 60 ° C. for 2 hours to give 2-hydroxyethyl acrylate ( a1) 6.0 g (0.052 mol) was charged and reacted at 60 ° C. for 3 hours. The reaction was terminated when it became 3% or less, and an ethyl acetate solution (A1-7) of urethane (meth) acrylate compound (weight average molecular weight (Mw); 14,000) (solid content concentration 70%, viscosity) (20 ° C.) 53,000 mPa · s) was obtained.
<製造例11:ウレタン(メタ)アクリレート系化合物(A1-8)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、酢酸エチル42.9g、水添キシリレンジイソシアネート(a2)32.9g(0.17モル)、1,2-ヘキサンジオール(a3-1)(重量平均分子量(Mw)118)13.0g(0.11モル)、2官能のポリエステルポリオール(a3-2)(水酸基価63.9mgKOH/g、重量平均分子量(Mw)5,000)48.4g(0.028モル)、重合禁止剤としてハイドロキノンメチルエーテル0.02g、反応触媒としてジブチルスズジラウレート0.02gを仕込み、60℃で2時間反応させ、2-ヒドロキシエチルアクリレート(a1)6.5g(0.056モル)を仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(重量平均分子量(Mw);14,000)の酢酸エチル溶液(A1-8)(固形分濃度70%、粘度(20℃)123,000mPa・s)を得た。
<Production Example 11: Urethane (meth) acrylate compound (A1-8)>
In a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas inlet, 42.9 g of ethyl acetate, 32.9 g (0.17 mol) of hydrogenated xylylene diisocyanate (a2), 1,2- Hexanediol (a3-1) (weight average molecular weight (Mw) 118) 13.0 g (0.11 mol), bifunctional polyester polyol (a3-2) (hydroxyl value 63.9 mgKOH / g, weight average molecular weight (Mw) ) 5,000) 48.4 g (0.028 mol), 0.02 g of hydroquinone methyl ether as a polymerization inhibitor and 0.02 g of dibutyltin dilaurate as a reaction catalyst, reacted at 60 ° C. for 2 hours, and 2-hydroxyethyl acrylate (A1) 6.5 g (0.056 mol) was charged and reacted at 60 ° C. for 3 hours. The reaction was terminated at the time when the ratio was less than%, and a urethane (meth) acrylate compound (weight average molecular weight (Mw): 14,000) in ethyl acetate (A1-8) (solid content concentration 70%, viscosity (20 ° C) 123,000 mPa · s).
 つぎに、微粒子状の合成樹脂フィラー(B)として、以下のものを用意した。
(B-1):ポリウレタン微粒子(平均粒子径6.2μm:ガラス転移温度-52℃)
(B-5):ポリエチレンワックス(粒子径5~10μm)
Next, the following were prepared as the fine particle synthetic resin filler (B).
(B-1): Polyurethane fine particles (average particle size 6.2 μm: glass transition temperature −52 ° C.)
(B-5): Polyethylene wax (particle size 5-10 μm)
 光重合開始剤(D)として、以下のものを用意した。
(D-1):1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASFジャパン社製、「イルガキュア184」)
The following were prepared as the photopolymerization initiator (D).
(D-1): 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF Japan, “Irgacure 184”)
 レベリング剤(E)として、以下のものを用意した。
(E-1):ポリエーテル変性ポリジメチルシロキサン(ビックケミー・ジャパン社製、BYK-UV3510)
The following were prepared as the leveling agent (E).
(E-1): Polyether-modified polydimethylsiloxane (BYK-UV3510, manufactured by BYK Japan)
 有機溶剤(F)として、以下のものを用意した。
(F-1):酢酸エチル
(F-2):イソプロピルアルコール
The following were prepared as the organic solvent (F).
(F-1): Ethyl acetate (F-2): Isopropyl alcohol
〔実施例12〕
 上記製造例9で得られたウレタン(メタ)アクリレート系化合物(A1-6)27.0部、微粒子状の合成樹脂フィラー(B-1)12.7部、微粒子状の合成樹脂フィラー(B-5)4.9部、光重合開始剤(D-1)1.3部、レベリング剤(E-1)0.5部、有機溶剤(F-1)35.9部、有機溶剤(F-2)17.7部を用いて固形分濃度40%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 12
27.0 parts of urethane (meth) acrylate compound (A1-6) obtained in Production Example 9 above, 12.7 parts of fine synthetic resin filler (B-1), fine synthetic resin filler (B- 5) 4.9 parts, 1.3 parts of photopolymerization initiator (D-1), 0.5 parts of leveling agent (E-1), 35.9 parts of organic solvent (F-1), organic solvent (F- 2) Using 17.7 parts, it mix | blended so that it might become solid content concentration 40%, and obtained the active energy ray-curable resin composition.
〔実施例13〕
 上記製造例10で得られたウレタン(メタ)アクリレート系化合物(A1-7)27.0部、微粒子状の合成樹脂フィラー(B-1)12.7部、微粒子状の合成樹脂フィラー(B-5)4.9部、光重合開始剤(D-1)1.3部、レベリング剤(E-1)0.5部、有機溶剤(F-1)35.9部、有機溶剤(F-2)17.7部を用いて固形分濃度40%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 13
27.0 parts of urethane (meth) acrylate compound (A1-7) obtained in Production Example 10 above, 12.7 parts of fine particle synthetic resin filler (B-1), fine particle synthetic resin filler (B- 5) 4.9 parts, 1.3 parts of photopolymerization initiator (D-1), 0.5 parts of leveling agent (E-1), 35.9 parts of organic solvent (F-1), organic solvent (F- 2) Using 17.7 parts, it mix | blended so that it might become solid content concentration 40%, and obtained the active energy ray-curable resin composition.
〔実施例14〕
 上記製造例11で得られたウレタン(メタ)アクリレート系化合物(A1-8)27.0部、微粒子状の合成樹脂フィラー(B-1)12.7部、微粒子状の合成樹脂フィラー(B-5)4.9部、光重合開始剤(D-1)1.3部、レベリング剤(E-1)0.5部、有機溶剤(F-1)35.9部、有機溶剤(F-2)17.7部を用いて固形分濃度40%となるように配合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 14
27.0 parts of urethane (meth) acrylate compound (A1-8) obtained in Production Example 11 above, 12.7 parts of fine particle synthetic resin filler (B-1), fine particle synthetic resin filler (B- 5) 4.9 parts, 1.3 parts of photopolymerization initiator (D-1), 0.5 parts of leveling agent (E-1), 35.9 parts of organic solvent (F-1), organic solvent (F- 2) Using 17.7 parts, it mix | blended so that it might become solid content concentration 40%, and obtained the active energy ray-curable resin composition.
 上記実施例12~14で得られた活性エネルギー線硬化性樹脂組成物を、アプリケーターにて硬化塗膜が10μm厚となるようにポリカーボネート基材(日本テストパネル社製)に塗工し、90℃で3分間乾燥した後、高圧水銀灯ランプ80W、1灯を用いて、18cmの高さから3.4m/minのコンベア速度で2パスの紫外線照射(積算照射量800mJ/cm2)を行ない、硬化塗膜を得た。 The active energy ray-curable resin compositions obtained in Examples 12 to 14 were applied to a polycarbonate substrate (manufactured by Nippon Test Panel Co., Ltd.) with an applicator so that the cured coating film had a thickness of 10 μm, and 90 ° C. After drying for 3 minutes at a high pressure mercury lamp lamp 80W, a single lamp is used to irradiate with 2 passes of ultraviolet light (accumulated dose of 800 mJ / cm 2 ) at a conveyor speed of 3.4 m / min from a height of 18 cm to cure. A coating film was obtained.
 上記硬化塗膜を用いて、下記の通り、硬化塗膜のソフトフィール性、基材密着性、表面硬度、耐アルカリ性、及び耐エタノール性の評価を行なった。 Using the above-mentioned cured coating film, the soft film properties, substrate adhesion, surface hardness, alkali resistance, and ethanol resistance of the cured coating film were evaluated as follows.
<ソフトフィール性(指触感)>
 前記の評価基準と同様のものを用いてソフトフィール性(指触感)の評価を行い、その評価結果を下記の表3に示す。
<Soft feel (finger feeling)>
Using the same evaluation criteria as described above, soft feel (finger feeling) is evaluated, and the evaluation results are shown in Table 3 below.
<基材密着性>
 前記の評価基準と同様のものを用いて基材密着性の評価を行い、その評価結果を下記の表3に示す。
<Base material adhesion>
The substrate adhesion was evaluated using the same evaluation criteria as described above, and the evaluation results are shown in Table 3 below.
<表面硬度>
 上記硬化塗膜を用いて、JIS K 5600-5-4に準じて硬化塗膜表面の鉛筆硬化度を測定した。測定結果とともに、評価結果を下記の表3に示す。
(評価基準)
○:鉛筆硬度がHB以上の硬度であるもの
×:鉛筆硬度がHBより低い硬度であるもの
<Surface hardness>
Using the cured coating film, the pencil curing degree on the surface of the cured coating film was measured according to JIS K 5600-5-4. The evaluation results are shown in Table 3 below together with the measurement results.
(Evaluation criteria)
○: The pencil hardness is HB or higher hardness x: The pencil hardness is lower than HB
<耐アルカリ性>
 5%NaOH水溶液を調製し、硬化塗膜上に、一箇所にスポイト3滴(0.1ml)滴下し、室温で5時間放置した後、流水で洗浄し、液滴痕を目視確認した。評価結果は下記の表3に示す。
(評価基準)
○:目視にて溶解痕がないもの
×:目視にて溶解痕等の塗膜異常がみられたもの
<Alkali resistance>
A 5% NaOH aqueous solution was prepared, and 3 drops (0.1 ml) of a dropper were dropped on one position on the cured coating film, left at room temperature for 5 hours, washed with running water, and the droplet traces were visually confirmed. The evaluation results are shown in Table 3 below.
(Evaluation criteria)
○: No visual indication of dissolution mark ×: Visual observation of coating film abnormality such as dissolution mark
<耐エタノール性>
 硬化塗膜上に、一箇所にスポイト3滴(0.04ml)滴下し、室温で5時間放置した後、流水で洗浄し、液滴痕を目視確認した。評価結果は下記の表3に示す。
(評価基準)
○:目視にて溶解痕がないもの
×:目視にて溶解痕や塗膜異常がみられたもの
<Ethanol resistance>
On the cured coating film, 3 drops (0.04 ml) of dropper were dropped at one place, left at room temperature for 5 hours, washed with running water, and the droplet traces were visually confirmed. The evaluation results are shown in Table 3 below.
(Evaluation criteria)
○: No visual observation of dissolution mark ×: Visual observation of dissolution mark or coating film abnormality
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記評価結果より、ウレタン(メタ)アクリレート系化合物(A1)に微粒子状の合成樹脂フィラー(B)を配合してなる実施例12~14の活性エネルギー線硬化性樹脂組成物は、ソフトフィール性を備えるとともに外観上も高級感に優れるだけでなく、密着性、硬度、耐アルカリ性及び耐エタノール性にも優れる硬化塗膜が得られることが分かる。 From the above evaluation results, the active energy ray-curable resin compositions of Examples 12 to 14 in which the fine synthetic resin filler (B) is blended with the urethane (meth) acrylate compound (A1) have a soft feel. It can be seen that a cured coating film that is not only excellent in appearance but also excellent in appearance and excellent in adhesion, hardness, alkali resistance and ethanol resistance can be obtained.
 またこれらの硬化塗膜形成には、小エネルギー、かつ高生産速度、コーティング剤としての溶液安定性を有していることは、従来の熱硬化型塗料と比較して明らかに優位性がある。 In addition, the formation of these cured coating films is clearly superior to conventional thermosetting paints in that it has low energy, high production rate, and solution stability as a coating agent.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の活性エネルギー線硬化性樹脂組成物は、コーティング剤として使用する際に、コーティング時の作業性や硬化時の生産性に優れた活性エネルギー線硬化性樹脂組成物が得られ、かつ、硬化後に得られるコーティング層がしっとりとしたソフトな指触感を有するといった効果を有するものであり、非光学分野のコーティング剤として特に有用である。 When the active energy ray-curable resin composition of the present invention is used as a coating agent, an active energy ray-curable resin composition excellent in workability during coating and productivity during curing can be obtained and cured. The coating layer obtained later has an effect of having a moist and soft touch feeling and is particularly useful as a coating agent in a non-optical field.

Claims (12)

  1.  ウレタン(メタ)アクリレート系化合物(A)、及び微粒子状の合成樹脂フィラー(B)を含有してなることを特徴とする活性エネルギー線硬化性樹脂組成物。 An active energy ray-curable resin composition comprising a urethane (meth) acrylate compound (A) and a fine particle synthetic resin filler (B).
  2.  上記ウレタン(メタ)アクリレート系化合物(A)の重量平均分子量が、1,000~50,000であることを特徴とする請求項1記載の活性エネルギー線硬化性樹脂組成物。 2. The active energy ray-curable resin composition according to claim 1, wherein the urethane (meth) acrylate compound (A) has a weight average molecular weight of 1,000 to 50,000.
  3.  上記ウレタン(メタ)アクリレート系化合物(A)が、水酸基含有(メタ)アクリレート系化合物(a1)、多価イソシアネート系化合物(a2)、及びポリオール系化合物(a3)を反応させてなることを特徴とする請求項1または2に記載の活性エネルギー線硬化性樹脂組成物。 The urethane (meth) acrylate compound (A) is obtained by reacting a hydroxyl group-containing (meth) acrylate compound (a1), a polyvalent isocyanate compound (a2), and a polyol compound (a3). The active energy ray-curable resin composition according to claim 1 or 2.
  4.  上記ポリオール系化合物(a3)が、重量平均分子量500未満のポリオール化合物(a3-1)及び重量平均分子量500~20,000のポリオール化合物(a3-2)を含有することを特徴とする請求項3記載の活性エネルギー線硬化性樹脂組成物。 The polyol compound (a3) contains a polyol compound (a3-1) having a weight average molecular weight of less than 500 and a polyol compound (a3-2) having a weight average molecular weight of 500 to 20,000. The active energy ray-curable resin composition described.
  5.  微粒子状の合成樹脂フィラー(B)が、ポリウレタンフィラー及びポリエチレンフィラーの少なくとも一方を含有することを特徴とする請求項1~4いずれか記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of claims 1 to 4, wherein the fine particle synthetic resin filler (B) contains at least one of a polyurethane filler and a polyethylene filler.
  6.  微粒子状の合成樹脂フィラー(B)の平均粒子径が1~30μmであることを特徴とする請求項1~5いずれか記載の活性エネルギー線硬化性樹脂組成物。 6. The active energy ray-curable resin composition according to claim 1, wherein the fine particle synthetic resin filler (B) has an average particle diameter of 1 to 30 μm.
  7.  微粒子状の合成樹脂フィラー(B)のガラス転移温度が、-140~40℃であることを特徴とする請求項1~6いずれか記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of claims 1 to 6, wherein the glass transition temperature of the fine-particle synthetic resin filler (B) is -140 to 40 ° C.
  8.  微粒子状の合成樹脂フィラー(B)の含有量が、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して25~400重量部であることを特徴とする請求項1~7いずれか記載の活性エネルギー線硬化性樹脂組成物。 8. The fine synthetic resin filler (B) is contained in an amount of 25 to 400 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). Active energy ray-curable resin composition.
  9.  請求項1~8いずれか記載の活性エネルギー線硬化性樹脂組成物を含有してなることを特徴とするコーティング剤組成物。 A coating agent composition comprising the active energy ray-curable resin composition according to any one of claims 1 to 8.
  10.  エチレン性不飽和モノマー(C)、光重合開始剤(D)、及び有機溶剤を含有してなることを特徴とする請求項9記載のコーティング剤組成物。 The coating agent composition according to claim 9, comprising an ethylenically unsaturated monomer (C), a photopolymerization initiator (D), and an organic solvent.
  11.  ウレタン(メタ)アクリレート系化合物(A)の含有割合が2~60重量%であることを特徴とする請求項9または10記載のコーティング剤組成物。 The coating agent composition according to claim 9 or 10, wherein the content of the urethane (meth) acrylate compound (A) is 2 to 60% by weight.
  12.  基材及び請求項9~11いずれか記載のコーティング剤組成物からなるコーティング層を有することを特徴とする積層体。 A laminate comprising a substrate and a coating layer comprising the coating agent composition according to any one of claims 9 to 11.
PCT/JP2013/081484 2012-11-22 2013-11-22 Active energy ray-curable resin composition, coating agent composition, and laminate WO2014081004A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157012605A KR20150090061A (en) 2012-11-22 2013-11-22 Active energy ray-curable resin composition, coating agent composition, and laminate
CN201380059384.8A CN104797613A (en) 2012-11-22 2013-11-22 Active energy ray-curable resin composition, coating agent composition, and laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-255814 2012-11-22
JP2012255814 2012-11-22
JP2013241245A JP6359265B2 (en) 2013-11-21 2013-11-21 Active energy ray-curable resin composition, coating agent composition, and laminate
JP2013-241245 2013-11-21

Publications (1)

Publication Number Publication Date
WO2014081004A1 true WO2014081004A1 (en) 2014-05-30

Family

ID=50776180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081484 WO2014081004A1 (en) 2012-11-22 2013-11-22 Active energy ray-curable resin composition, coating agent composition, and laminate

Country Status (4)

Country Link
KR (1) KR20150090061A (en)
CN (1) CN104797613A (en)
TW (1) TWI625359B (en)
WO (1) WO2014081004A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187899A1 (en) * 2014-06-04 2015-12-10 Corning Incorporated Optical fiber coating and composition
WO2016159294A1 (en) * 2015-03-31 2016-10-06 日本合成化学工業株式会社 Active-energy-ray-curable resin composition, coating composition, and laminate
JP2018501348A (en) * 2014-12-04 2018-01-18 ペルストルプ アーベーPerstorp AB Electromagnetic radiation curable coating composition
WO2021201104A1 (en) * 2020-03-31 2021-10-07 東レ株式会社 Coating agent for printing films, laminate, and method for manufacturing printed article
WO2021233728A1 (en) 2020-05-19 2021-11-25 Byk-Chemie Gmbh Thermoset polymer powder
EP3825099A4 (en) * 2018-07-19 2022-06-15 GC Corporation Composition for three-dimensional shaping and method for producing dental article
US11904574B2 (en) 2018-01-15 2024-02-20 3M Innovative Properties Company Scratch resistant film and surface coating composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227456B2 (en) * 2014-09-11 2019-03-12 Sekisui Plastics Co., Ltd. High-recoverability resin particles of a crosslinked (meth)acrylic acid ester-based resin, and use thereof
JP6932960B2 (en) * 2016-03-22 2021-09-08 東洋インキScホールディングス株式会社 Coat composition for printing and printed matter
WO2020003780A1 (en) * 2018-06-27 2020-01-02 Dic株式会社 Urethane resin composition, surface treatment agent, and article
CN113661191A (en) * 2019-05-30 2021-11-16 中国涂料株式会社 Ultraviolet-curable urethane acrylate resin and ultraviolet-curable resin composition containing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243412A (en) * 1985-08-21 1987-02-25 Nippon Paint Co Ltd High energy ray curable resin composition
JPS62216947A (en) * 1986-03-14 1987-09-24 Nippon Paint Co Ltd Coating composition for optical fiber
JPH02170867A (en) * 1988-12-23 1990-07-02 Kansai Paint Co Ltd Active energy ray curing type composition
JP2002148798A (en) * 2000-11-14 2002-05-22 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition and method for forming pattern by using the same
JP2005272582A (en) * 2004-03-24 2005-10-06 Dainippon Ink & Chem Inc Active energy ray-curable resin composition and method for forming cured coating film
JP2013082924A (en) * 2011-09-30 2013-05-09 Sanyo Chem Ind Ltd Active energy ray-curable black resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841232B2 (en) * 1996-06-05 2006-11-01 Jsr株式会社 Film forming composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243412A (en) * 1985-08-21 1987-02-25 Nippon Paint Co Ltd High energy ray curable resin composition
JPS62216947A (en) * 1986-03-14 1987-09-24 Nippon Paint Co Ltd Coating composition for optical fiber
JPH02170867A (en) * 1988-12-23 1990-07-02 Kansai Paint Co Ltd Active energy ray curing type composition
JP2002148798A (en) * 2000-11-14 2002-05-22 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition and method for forming pattern by using the same
JP2005272582A (en) * 2004-03-24 2005-10-06 Dainippon Ink & Chem Inc Active energy ray-curable resin composition and method for forming cured coating film
JP2013082924A (en) * 2011-09-30 2013-05-09 Sanyo Chem Ind Ltd Active energy ray-curable black resin composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030164B2 (en) 2014-06-04 2018-07-24 Corning Incorporated Optical fiber coating and composition
US10377915B2 (en) 2014-06-04 2019-08-13 Corning Incorporated Optical fiber coating and composition
US9708491B2 (en) 2014-06-04 2017-07-18 Corning Incorporated Optical fiber coating and composition
WO2015187899A1 (en) * 2014-06-04 2015-12-10 Corning Incorporated Optical fiber coating and composition
JP2018501348A (en) * 2014-12-04 2018-01-18 ペルストルプ アーベーPerstorp AB Electromagnetic radiation curable coating composition
US10167359B2 (en) 2014-12-04 2019-01-01 Perstorp Ab Radiation curing coating composition
CN107428894A (en) * 2015-03-31 2017-12-01 日本合成化学工业株式会社 Actinic energy ray curable resion composition, coating agent composition and layered product
JPWO2016159294A1 (en) * 2015-03-31 2018-01-25 日本合成化学工業株式会社 Active energy ray-curable resin composition, coating agent composition, and laminate
WO2016159294A1 (en) * 2015-03-31 2016-10-06 日本合成化学工業株式会社 Active-energy-ray-curable resin composition, coating composition, and laminate
CN107428894B (en) * 2015-03-31 2020-12-04 三菱化学株式会社 Active energy ray-curable resin composition, coating agent composition, and laminate
US11904574B2 (en) 2018-01-15 2024-02-20 3M Innovative Properties Company Scratch resistant film and surface coating composition
EP3825099A4 (en) * 2018-07-19 2022-06-15 GC Corporation Composition for three-dimensional shaping and method for producing dental article
WO2021201104A1 (en) * 2020-03-31 2021-10-07 東レ株式会社 Coating agent for printing films, laminate, and method for manufacturing printed article
JP7416060B2 (en) 2020-03-31 2024-01-17 東レ株式会社 Coating agent for printing film, laminate, and method for producing printed matter
WO2021233728A1 (en) 2020-05-19 2021-11-25 Byk-Chemie Gmbh Thermoset polymer powder

Also Published As

Publication number Publication date
TW201425465A (en) 2014-07-01
TWI625359B (en) 2018-06-01
CN104797613A (en) 2015-07-22
KR20150090061A (en) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2014081004A1 (en) Active energy ray-curable resin composition, coating agent composition, and laminate
JP6359265B2 (en) Active energy ray-curable resin composition, coating agent composition, and laminate
JP5886090B2 (en) Active energy ray-curable resin composition and coating agent
JP5235263B2 (en) Active energy ray-curable resin composition, method for producing the same, and coating agent composition using the same
JP2014122338A (en) Active energy ray curable resin composition, coating agent composition, and laminated body
JP5566216B2 (en) Active energy ray-curable resin composition, coating agent composition using the same, and cured coating film
JP5665613B2 (en) Method for coating metal substrate
JP6458339B2 (en) Curable resin composition, cured product and laminate
JP6057741B2 (en) Polysiloxane structure-containing urethane (meth) acrylate-based compound, active energy ray-curable resin composition, and coating agent using the same
JP2016104859A (en) Active energy ray-curable resin composition and coating agent
TW201610014A (en) Active-energy-curing resin composition, coating material, coating film, and laminate film
WO2015152110A1 (en) Urethane (meth)acrylate compound, active-energy-ray-curable resin composition, and coating agent
JP6261247B2 (en) Active energy ray-curable resin composition, coating agent composition using the same, and cured coating film
WO2016159294A1 (en) Active-energy-ray-curable resin composition, coating composition, and laminate
JP2012229412A (en) Resin composition and coating agent
JP6861018B2 (en) Active energy ray-curable composition for optical articles and optical articles using the same
JP2018141104A (en) Active energy ray-curable resin composition for floor material, coated floor material, method for producing coated floor material and floor material contamination prevention method
JP2019085558A (en) Active energy ray curable resin composition and coating agent
JP6358789B2 (en) Active energy ray-curable resin composition and coating agent
JP2018178094A (en) Active energy ray-curable resin composition and coating agent
JP6578692B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP2017057297A (en) Energy ray-curable resin composition for floor material, floor material with coating film, method of manufacturing floor material with coating film and antifouling method for floor material
WO2018181972A1 (en) Active energy ray-curable resin composition and coating agent
JP2015143350A (en) Active energy ray curable composition and coating agent, and novel urethane bond-containing compound
WO2019117030A1 (en) Active energy ray-curable resin composition and coating agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157012605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857133

Country of ref document: EP

Kind code of ref document: A1