WO2016159294A1 - Active-energy-ray-curable resin composition, coating composition, and laminate - Google Patents

Active-energy-ray-curable resin composition, coating composition, and laminate Download PDF

Info

Publication number
WO2016159294A1
WO2016159294A1 PCT/JP2016/060786 JP2016060786W WO2016159294A1 WO 2016159294 A1 WO2016159294 A1 WO 2016159294A1 JP 2016060786 W JP2016060786 W JP 2016060786W WO 2016159294 A1 WO2016159294 A1 WO 2016159294A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
compound
group
urethane
Prior art date
Application number
PCT/JP2016/060786
Other languages
French (fr)
Japanese (ja)
Inventor
篤志 辻本
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to JP2016519400A priority Critical patent/JPWO2016159294A1/en
Priority to KR1020177024519A priority patent/KR20170132729A/en
Priority to CN201680013077.XA priority patent/CN107428894B/en
Publication of WO2016159294A1 publication Critical patent/WO2016159294A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to an active energy ray-curable resin composition, a coating agent composition, and a laminate, and more specifically, when it is used as a cured coating film, it does not have a tacky or moist feeling, has a smooth finger touch, and ,
  • active energy ray-curable resin compositions have been widely used as coating agents for various substrates.
  • interior parts such as home appliances and plastic panels in automobiles are required to have a high-class feel and a touch-sensitive feel, and a coating agent that can provide such a feel is required. It was.
  • Patent Document 1 discloses an ultraviolet curable oligomer or monomer, a silicon compound having at least one functional group copolymerizable with the ultraviolet curable oligomer or monomer, a crosslinked resin particle, a reaction
  • An ultraviolet curable leather-like paint composition comprising an initiator and a diluent added as necessary has been proposed.
  • a cured coating film having a soft feel has a problem that it is easily worn due to a high coefficient of friction and has low durability, and the technique disclosed in Patent Document 1 is not satisfactory in terms of wear resistance. There wasn't.
  • the cured coating film having a soft feel has a problem that dirt such as fingerprints easily adheres.
  • the present invention provides an active energy ray-curable resin composition capable of obtaining a cured coating film having a good touch feeling and excellent wear resistance under such a background, and a coating using the same It aims at providing an agent composition and a laminated body.
  • the present inventor has made a urethane (meth) acrylate compound (A) obtained by reacting an isocyanate compound (a1) and a hydroxyl group-containing (meth) acrylate compound (a2). And an active energy ray-curable resin composition containing the organic fine particles (B), the use of the active energy ray-curable resin composition having an ethylenically unsaturated group concentration in a specific amount range provides good finger touch.
  • the present inventors have found that a cured coating film having excellent wear resistance can be obtained.
  • the gist of the present invention includes a urethane (meth) acrylate compound (A) obtained by reacting an isocyanate compound (a1) and a hydroxyl group-containing (meth) acrylate compound (a2) and organic fine particles (B).
  • An active energy ray-curable resin composition having an ethylenically unsaturated group concentration of 1.0 to 6.3 mmol / g.
  • the present invention also provides a coating composition comprising the active energy ray-curable resin composition, and further a laminate having a substrate and a coating layer comprising the coating composition. is there.
  • the active energy ray-curable resin composition of the present invention is particularly useful as a coating agent because the cured coating film has the effect of having a good touch feeling and excellent wear resistance.
  • (meth) acryl means acryl or methacryl
  • (meth) acryloyl means acryloyl or methacryloyl
  • (meth) acrylate means acrylate or methacrylate.
  • the active energy ray-curable resin composition of the present invention contains a urethane (meth) acrylate compound (A) and organic fine particles (B).
  • A urethane (meth) acrylate compound
  • B organic fine particles
  • the urethane (meth) acrylate compound (A) in the present invention is obtained by reacting an isocyanate compound (a1) and a hydroxyl group-containing (meth) acrylate compound (a2).
  • the urethane (meth) acrylate compound (A) can be used alone or in combination of two or more.
  • isocyanate compound (a1) examples include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate.
  • aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate.
  • Aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate; hydrogenated diphenylmethane diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1, 4-bis (isocyana Methyl) alicyclic polyisocyanates such as cyclohexane; or trimer compounds of these polyisocyanates or multimeric compounds, allophanate type polyisocyanate, buret type polyisocyanate, and the like.
  • An isocyanate type compound (a1) can be used individually or in combination of 2 or more types.
  • aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) are less yellowed.
  • Cycloaliphatic diisocyanates such as cyclohexane and 1,4-bis (isocyanatomethyl) cyclohexane are preferred, particularly preferably isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene.
  • Examples of the hydroxyl group-containing (meth) acrylate compound (a2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth).
  • hydroxyalkyl (meth) acrylates such as 6-hydroxyhexyl (meth) acrylate, 2-hydroxyethyl acryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth) ) Acrylate, dipropylene glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) ) Acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, and other hydroxyl-containing (meth) acrylate compounds containing one ethylenically unsaturated group; glycerin di (meth) acrylate, 2 Hydroxyl-containing (meth) acrylate compounds containing two ethylenically unsaturated groups such
  • a hydroxyl group-containing (meth) acrylate-based compound containing three or more ethylenically unsaturated groups is preferable in terms of excellent reactivity and versatility, and excellent abrasion resistance of the cured coating film, and pentaerythritol tri ( Particularly preferred are (meth) acrylate and dipentaerythritol penta (meth) acrylate.
  • the production method of the urethane (meth) acrylate compound (A) used in the present invention is a functional group of the isocyanate group of the isocyanate compound (a1) and the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (a2). It can be obtained by adjusting the molar ratio and reacting the isocyanate compound (a1) with the hydroxyl group-containing (meth) acrylate compound (a2) using a catalyst such as dibutyltin dilaurate as necessary.
  • the reaction molar ratio between the isocyanate compound (a1) and the hydroxyl group-containing (meth) acrylate compound (a2) is, for example, that the isocyanate compound (a1) has two isocyanate groups and the hydroxyl group-containing (meta
  • the isocyanate compound (a1): hydroxy group-containing (meth) acrylate compound (a2) is about 1: 2 to 1: 5
  • the isocyanate compound When (a1) has three isocyanate groups and hydroxyl group-containing (meth) acrylate compound (a2) has one hydroxyl group, isocyanate compound (a1): hydroxyl group-containing (meth) acrylate compound (a2) Is about 1: 3 to 1:10.
  • the catalyst for the purpose of accelerating the reaction.
  • the catalyst include dibutyltin dilaurate and dibutyl.
  • an organic solvent having no functional group that reacts with the isocyanate group for example, an ester such as ethyl acetate or butyl acetate.
  • Organic solvents such as ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatics such as toluene and xylene can be used.
  • the urethane (meth) acrylate compound (A) used in the present invention preferably has an ethylenically unsaturated group concentration (mmol / g) of 1.0 mmol / g or more, more preferably 1.5 to 6 0.3 mmol / g, particularly preferably 2.5 to 5.8 mmol / g.
  • mmol / g ethylenically unsaturated group concentration of the urethane (meth) acrylate compound (A)
  • the crosslinking density in the cured coating film tends to be lowered, and the wear resistance tends to be lowered.
  • the adhesion between the coating film and the substrate is lowered by curing shrinkage, the distortion of the resin part in the coating film is increased, and the appearance of the coating film is deteriorated.
  • concentration of a urethane (meth) acrylate type compound (A) can be calculated by following formula (1), for example.
  • Ethylenically unsaturated group concentration (mmol / g) of urethane (meth) acrylate compound (A) ethylenically unsaturated group concentration (mmol / g) of hydroxyl group-containing (meth) acrylate compound (a2) g) ⁇ (weight of hydroxyl group-containing (meth) acrylate compound (a2) in urethane (meth) acrylate compound (A) / weight of urethane (meth) acrylate compound (A))
  • the urethane (meth) acrylate compound (A) used in the present invention preferably has 2 to 15 ethylenically unsaturated groups from the viewpoint of imparting abrasion resistance to the cured coating film.
  • the number is preferably 3 to 10. If the number of such ethylenically unsaturated groups is too large, the crosslinking density after curing becomes too large, the adhesion between the coating film and the substrate deteriorates due to curing shrinkage, or the distortion of the resin part in the coating film increases, The coating film appearance tends to deteriorate, and if it is too small, it is difficult to obtain a sufficient crosslinking density, so that the surface of the cured coating film tends to be sticky or wear resistance tends to decrease.
  • the weight average molecular weight of the urethane (meth) acrylate compound (A) used in the present invention is preferably 1,000 to 50,000, particularly preferably 1,200 to 30,000, particularly preferably 1. , 500 to 20,000. If the weight average molecular weight is too small, the cross-linking density is relatively increased, so that the surface of the cured coating film becomes too hard, and the adhesion between the coating film and the substrate decreases due to curing shrinkage. The distortion tends to increase and the appearance of the coating film tends to be poor. If it is too large, a sufficient crosslinking density cannot be obtained, and the surface of the cured coating film tends to be sticky or wear resistance tends to decrease.
  • said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, a column is put into a high performance liquid chromatography (Nippon Waters Co., Ltd., "Waters 2695 (main body)” and “Waters 2414 (detector)”).
  • Shidex GPD KF-806L exclusion limit molecular weight: 2 ⁇ 10 7 , separation range: 100 to 2 ⁇ 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler
  • the viscosity at 60 ° C. of the urethane (meth) acrylate compound (A) used in the present invention is preferably 500 to 100,000 mPa ⁇ s, particularly preferably 1,000 to 50,000 mPa ⁇ s. When the viscosity is out of the above range, the coatability tends to be lowered. In addition, the measuring method of a viscosity is based on an E-type viscometer.
  • the active energy ray-curable resin composition of the present invention when the polysiloxane structure-containing urethane (meth) acrylate compound (C) described later is contained, the urethane (meth) acrylate compound (A) The siloxane structure-containing urethane (meth) acrylate compound (C) is excluded.
  • organic fine particles (B) examples include nitrogen atom-containing organic fine particles such as nylon filler, polyurethane filler, polyurea filler, polyamideimide filler, and polyacrylamide filler; polyolefin resin filler such as polyethylene filler and polypropylene filler; (Meth) acrylic filler, polybutyl (meth) acrylic filler, (meth) acrylic group-containing organic fine particles composed of a single polymerization component such as polystyrene filler, (meth) acrylic group-containing organic fine particles composed of two or more polymerization components, etc.
  • nitrogen atom-containing organic fine particles such as nylon filler, polyurethane filler, polyurea filler, polyamideimide filler, and polyacrylamide filler
  • polyolefin resin filler such as polyethylene filler and polypropylene filler
  • (Meth) acrylic synthetic resin filler sulfur atom-containing synthetic resin filler such as polyphenylene sulfide filler and polyethersulfone filler; fluorine atom-containing organic fine particles such as polytetrafluoroethylene filler; Epoxy group-containing organic fine particles made of epoxy resin; organic fine particles composed of a fatty acid-based polymers; polycarbonate resin filler; hybrid organic fine particles of the filler, the core-shell-shaped multilayer filler and the like. These organic fine particles can be used individually by 1 type or in combination of 2 or more types.
  • polyolefin resin filler polyurethane filler
  • organic fine particles composed of a fatty acid polymer are preferable because they have easy dispersibility in the resin solution.
  • organic fine particles made of a fatty acid polymer are preferable in that a certain elasticity can be imparted to the cured coating film and a smooth touch feeling can be imparted.
  • nylon filler examples include those manufactured by Toray Industries, Inc. (trade names: “SP-10”, “SP-500”, “TR-1”, “TR-2”, “842-P48”, “842-P70”). , “842-P80”), manufactured by Arkema (trade names: “Orgasol 4000EXD NAT COS”, “Orgasol 2022EXD NAT COS”), and the like.
  • polyurethane filler examples include crosslinked urethane beads manufactured by Negami Kogyo Co., Ltd. (trade names; “Art Pearl D Series”, “Art Pearl P Series”, “Art Pearl JC Series”, “Art Pearl U Series”, “Art”. “Pearl DE Series”, “Art Pearl AK Series”, “Art Pearl HI Series”, “Art Pearl MM Series”, “Art Pearl FF Series”, “Art Pearl TK Series”, “Art Pearl D-TH Series”, “ Art Pearl RW-Z series “,” Art Pearl RU-V series “,” Art Pearl CP series ").
  • polyamideimide resin filler examples include those manufactured by Toray Industries, Inc. (trade name: “Trepearl PAI”).
  • the polyethylene filler is preferably a solvent-dispersed polyethylene filler.
  • polyethylene wax and modified polyethylene wax (trade names; “Micro Flat UN-8”, “Micro Flat PEX-101” manufactured by Koyo Chemical Co., Ltd.) , “Micro Flat C-501"), polyethylene wax manufactured by Big Chemie Japan, and modified polyethylene wax (trade names: "DERAFLOUR928”, “DERAFLOUR950”, “DERAFLOUR988”, “DERAFLOUR990”, “DERAFLOUR991”, “DERAFLOUR9999”) ”,“ DERADOL39 ”,“ DERAFAK111 ”,“ DELAMAT250 ”,“ DELAMAT258 ”,“ MINERPOL221 ”,“ CE ” AMAT258 "), and the like.
  • the above-mentioned polypropylene filler is preferably a solvent dispersion type, and examples thereof include a polypropylene wax manufactured by Big Chemie Japan, a modified polypropylene wax (trade name: “DERAFLOUR970”), and the like.
  • Examples of the (meth) acrylic group-containing organic fine particles include acrylic beads manufactured by Negami Kogyo Co., Ltd. (trade names: “Art Pearl GR Series”, “Art Pearl SE Series”, “Art Pearl G Series”, “Art Pearl GS”. Series ”,“ Art Pearl J Series ”,“ Art Pearl MF Series ”,“ Art Pearl CE Series ”) and the like.
  • transparent fine particles are preferable as those capable of obtaining a transparent to white coating film as a cured coating film without impairing photocurability, and those having a white appearance as a fine particle appearance are preferable.
  • sulfur atom-containing synthetic resin filler examples include polyphenylene sulfide resin fine particles (trade name: “Trepearl PPS”), polyethersulfone resin (trade name: “Trepearl PES”) manufactured by Toray Industries, Inc., and the like.
  • fluorine atom-containing organic fine particles for example, polyethylene and polytetrafluoroethylene mixed wax manufactured by Koyo Chemical Co., Ltd. (trade name: “Micro Flat PF-8”), polytetrafluoro manufactured by Big Chemie Japan Co., Ltd.
  • Ethylene wax (trade names: “DERAFLOUR 980”, “DERAFLOUR 981”), polyethylene-polytetrafluoroethylene mixed wax (trade name: “DERAFLOUR 997”), polytetrafluoroethylene-modified polyethylene wax (trade name: “DERAFLOUR 998”, “ DERADOL607 ”), polytetrafluoroethylene fine particles (trade names:“ KTL-8N ”,“ KTL-8F ”,“ KTL-9S ”,“ KTL-10N ”,“ KTL-20N ”) manufactured by Kitamura Co., Ltd. It is below.
  • Examples of the organic fine particles composed of the fatty acid polymer include polymer fine particles composed of a polyhydroxyalkanoate derivative, and specifically include 3-hydroxybutyrate, a co-polymer of 3-hydroxybutyrate and 3-hydroxyvalerate. Examples thereof include a polymerization compound, a copolymer compound of 3-hydroxybutyrate and 3-hydroxyhexanoate, and a copolymer compound of 3-hydroxybutyrate and 4-hydroxybutyrate.
  • epoxy group-containing organic fine particles examples include those manufactured by Toray Industries, Inc. (trade name: “Trepearl EP”).
  • Examples of the polycarbonate resin filler include (trade name: “Micro Flat MA-07N”) manufactured by Koyo Chemical Co., Ltd.
  • the particle size of the organic fine particles (B) in the present invention is preferably such that the 50% particle size (D50) in particle size distribution measurement by laser diffraction (ISO 13320) is 0.1 to 25 ⁇ m, particularly preferably 0.5 to It is 20 ⁇ m, more preferably 1 to 10 ⁇ m. If the 50% particle size is too small, the gloss of the cured coating film tends to be high, and there is a tendency that it is difficult to feel a high-grade appearance. If the particle size is too large, the wear contact becomes large and the wear resistance is reduced. Since the unevenness of the surface becomes large and rough, it tends to be difficult to obtain a smooth touch feeling.
  • the true specific gravity of the organic fine particles (B) is preferably 0.8 to 2.3, particularly preferably 0.9 to 2, and more preferably 1 to 1.5. If the true specific gravity is too large, fine particles settle in the drying step after coating, and there is a tendency that the surface unevenness does not appear, and if it is too small, mixing of the urethane (meth) acrylate compound (A) tends to be difficult. .
  • the content of the organic fine particles (B) in the present invention is preferably 5 to 100 parts by weight, particularly preferably 10 to 75 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). More preferably, it is 15 to 50 parts by weight. If the content of the organic fine particles (B) is too large, the fine particles fall off from the cured coating film, and the coating film surface tends to be rough. If the content is too small, a smooth touch feeling tends to be difficult to obtain.
  • the organic fine particles (B) are a dispersion such as a solvent in the above-mentioned content definition
  • the weight is specified as a weight in terms of solid content.
  • the active energy ray-curable resin composition of the present invention contains a urethane (meth) acrylate compound (A) and organic fine particles (B).
  • polysiloxane structure-containing urethane (meth) acrylate compound (C) In the active energy ray-curable resin composition of the present invention, from the viewpoint of compatibility, the polysiloxane structure-containing urethane (meth) acrylate compound (C) (hereinafter referred to as “urethane (meth) acrylate compound (C)”) May be described)).
  • the urethane (meth) acrylate compound (C) used in the present invention only needs to contain a polysiloxane structure in its structure.
  • a polysiloxane compound (c1) having a hydroxyl group and an isocyanate compound examples thereof include compounds obtained by reacting c2) with a hydroxyl group-containing (meth) acrylate compound (c3) and, if necessary, a polyol compound (c4).
  • polysiloxane compound (c1) having a hydroxyl group a known general polysiloxane compound can be used.
  • a polysiloxane compound having a hydroxyl group at one end represented by the following general formula (1) or the following Examples thereof include polysiloxane compounds having hydroxyl groups at both ends represented by the general formula (2).
  • the compound represented by the following general formula (2) is excellent in reaction control with the polyvalent isocyanate compound (c2).
  • a polysiloxane compound having hydroxyl groups at both ends is preferred.
  • the said urethane (meth) acrylate type compound (C) may have a structure site
  • R 1 represents an alkyl group
  • R 2 independently represents an alkyl group, a cycloalkyl group or a phenyl group
  • R 3 represents a hydrocarbon group or an organic group containing a hetero atom.
  • a is an integer of 1 or more
  • b is an integer of 1 to 3.
  • R 1 and R 3 represent a hydrocarbon group or an organic group containing a hetero atom
  • R 2 independently represents an alkyl group, a cycloalkyl group or a phenyl group, and a is an integer of 1 or more, b and c are integers of 1 to 3.
  • urethane (meth) acrylate compound (C) of the present invention first, a polysiloxane compound having a hydroxyl group at one end represented by the general formula (1) (hereinafter referred to as “polysiloxane compound (c1-1)”.
  • polysiloxane compound (c1-1) a polysiloxane compound having a hydroxyl group at one end represented by the general formula (1).
  • the urethane (meth) acrylate compound (C1) obtained using “)” is described.
  • the urethane (meth) acrylate compound (C1) includes a polysiloxane compound (c1-1), an isocyanate compound (c2), a hydroxyl group-containing (meth) acrylate compound (c3), and a polyol as necessary. It is obtained by reacting a system compound (c4).
  • R 1 in the general formula (1) is an alkyl group, and the alkyl group preferably has a relatively short carbon number. Specifically, it usually has 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • R 2 in the general formula (1) is each independently an alkyl group, a cycloalkyl group, or a phenyl group.
  • the alkyl group preferably has a relatively short carbon number. Specifically, it usually has 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the carbon number of the cycloalkyl group is usually 3 to 10, preferably 5 to 8, and examples thereof include a cyclopentyl group, a cyclohexyl group, and a norbornyl group.
  • the alkyl group, cycloalkyl group, and phenyl group may have a substituent.
  • substituent usually include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a mercapto group, a sulfanyl group, a vinyl group, an acryloxy group, a methacryloxy group, an aryl group, and a heteroaryl group.
  • the substituent has a carbon atom, said carbon atom shall not included in the number of carbon atoms is specified in the description of the R 2.
  • R 3 in the general formula (1) is a hydrocarbon group or an organic group containing a hetero atom.
  • the hydrocarbon group usually has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, and examples thereof include divalent or trivalent hydrocarbon groups.
  • Examples of the divalent hydrocarbon group include an alkylene group.
  • the alkylene group preferably has 1 to 10 carbon atoms, particularly preferably 1 to 4 carbon atoms, and examples thereof include an ethylene group, a propylene group, and a tetramethylene group.
  • Examples of the organic group containing a hetero atom include an oxyalkylene group, a polyoxyalkylene group, a polycaprolactone group, and an amino group.
  • a in the general formula (1) is an integer of 1 or more, preferably 5 to 200, particularly preferably an integer of 5 to 120.
  • b is an integer of 1 to 3, and preferably an integer of 1 to 2.
  • the weight average molecular weight of the polysiloxane compound (c1-1) used in the present invention is usually preferably 100 to 50,000, particularly 500 to 10,000, and more preferably 1,000 to 10,000. It is preferable that If the weight average molecular weight is too low, the antifouling performance and chemical resistance tend to decrease, and if it is too high, the compatibility decreases, the coating agent tends to become cloudy, or the haze of the cured coating film tends to increase. .
  • polysiloxane compound (c1-1) having a hydroxyl group at one end are, for example, manufactured by Shin-Etsu Chemical Co., Ltd. (trade names: “X-22-170BX”, “X-22-170DX”, “X -22-176DX “,” X-22-176F “), manufactured by Chisso Corporation (trade names;” Silaplane FM-0411 “,” Silaplane FM-0421 “,” Silaplane FM-0425 “,” Silaplane FM -DA11 “,” Silaplane FM-DA21 “,” Silaplane FM-DA26 ”) and the like.
  • an isocyanate type compound (c2) the thing similar to what was illustrated as an isocyanate type compound (a1) in the description regarding the said urethane (meth) acrylate type compound (A) is mentioned, for example.
  • Examples of the hydroxyl group-containing (meth) acrylate compound (c3) are the same as those exemplified as the hydroxyl group-containing (meth) acrylate compound (a2) in the description of the urethane (meth) acrylate compound (A). Can be mentioned. Among these, pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate are preferred because they can be fixed to the cured coating film by having more crosslinking points and maintain antifouling performance.
  • a polyol compound (c4) may be used as long as the effects of the present invention are not impaired.
  • polyether polyol examples include, for example, polyether glycols containing an alkylene structure such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block copolymers of these polyalkylene glycols. Coalescence is mentioned.
  • polyester-based polyol examples include three types of components: a condensation polymer of a polyhydric alcohol and a polycarboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a polyhydric alcohol, a polycarboxylic acid, and a cyclic ester. And the like.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylene diol, 1,3-tetramethylene diol, 2-methyl-1,3-trimethyl.
  • Methylene diol 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, 3-methyl-1,5-pentamethylene diol, 2,4-diethyl-1,5-pentamethylene diol, glycerin , Trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), bisphenols (such as bisphenol A), and sugar alcohols (such as xylitol and sorbitol).
  • cyclohexanediols such as 1,4-cyclohexanediol
  • bisphenols such as bisphenol A
  • sugar alcohols such as xylitol and sorbitol
  • polyvalent carboxylic acid examples include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, and the like.
  • cyclic ester examples include propiolactone, ⁇ -methyl- ⁇ -valerolactone, and ⁇ -caprolactone.
  • the weight average molecular weight of the polyol compound (c4) is preferably 50 to 8,000, particularly preferably 70 to 5,000, and further preferably 90 to 3,000. If the weight average molecular weight of the polyol (c4) is too large, mechanical properties such as coating film hardness tend to be reduced during curing, and if it is too small, the viscosity tends to increase during production and stability tends to be lowered.
  • the urethane (meth) acrylate compound (C1) preferably has one or more ethylenically unsaturated groups, and has three or more ethylenically unsaturated groups in terms of the hardness of the cured coating film. It is particularly preferable that it has 6 or more ethylenically unsaturated groups. Moreover, the upper limit of the number of ethylenically unsaturated groups which a urethane (meth) acrylate type compound (C1) contains is 30 normally, Preferably it is 25 or less.
  • a manufacturing method of a urethane (meth) acrylate type compound (C1) it is not specifically limited, for example, (I): polysiloxane compound (c1-1), isocyanate compound (c2) (isocyanate compound (c2) previously reacted with polyol compound (c4) if necessary), hydroxyl group-containing (meta ) A method in which the acrylate compound (c3) is charged and reacted together, (Ii): after reacting a polysiloxane compound (c1-1) and an isocyanate compound (c2) (if necessary, an isocyanate compound (c2) previously reacted with a polyol compound (c4)) , A method of reacting a hydroxyl group-containing (meth) acrylate compound (c3), (Iii): Isocyanate compound (c2) (if necessary, the isocyanate compound (c2) previously reacted with the polyol compound (c4)) and the hydroxyl group-containing (meth)
  • the hydroxyl group of the polysiloxane compound (c1-1) and the isocyanate group of the isocyanate compound (c2) are reacted under the conditions that leave the isocyanate group, and then the isocyanate compound ( The residual isocyanate group in c2) is reacted with the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (c3).
  • the reaction molar ratio between the polysiloxane compound (c1-1) and the isocyanate compound (c2) is, for example, that the polysiloxane compound (c1) has one hydroxyl group and the isocyanate compound (c2) has 2 isocyanate groups.
  • polysiloxane compound (c1-1): isocyanate compound (c2) 1: 0.8 to 1:10, and one polysiloxane compound (c1-1) has one hydroxyl group.
  • the polysiloxane compound (c1): isocyanate compound (c2) may be about 1: 0.2 to 1: 5.
  • the weight of the structural portion derived from the polysiloxane compound (c1-1) contained in 100 parts by weight of the urethane (meth) acrylate compound (C1) is 0.1 to 80 within the above molar ratio range. It is preferable that it is a weight part.
  • a catalyst for the purpose of accelerating the reaction.
  • the same catalyst as that which can be used in the method for producing the urethane (meth) acrylate compound (A) is used. be able to.
  • an organic solvent having no functional group that reacts with an isocyanate group for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatics such as toluene and xylene
  • esters such as ethyl acetate and butyl acetate
  • ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • aromatics such as toluene and xylene
  • the reaction temperature of the above reaction is usually 30 to 100 ° C., preferably 40 to 90 ° C., and the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
  • the weight average molecular weight of the urethane (meth) acrylate compound (C1) thus obtained is usually preferably 500 to 50,000, and more preferably 500 to 30,000. If the weight average molecular weight is too small, the antifouling property and chemical resistance tend to decrease, and if too large, the coating property tends to decrease.
  • the viscosity at 20 ° C. of a 50 wt% butyl acetate solution of the urethane (meth) acrylate compound (C1) is preferably 1 to 5,000 mPa ⁇ s, particularly 2 to 2,500 mPa ⁇ s, and more preferably 3 It is preferably ⁇ 1,000 mPa ⁇ s.
  • the viscosity is measured using a B-type viscometer.
  • polysiloxane compound (c1-2) a polysiloxane compound having hydroxyl groups at both ends represented by the general formula (2) (hereinafter sometimes referred to as “polysiloxane compound (c1-2)”).
  • the (meth) acrylate compound (C2) will be described.
  • the urethane (meth) acrylate compound (C2) includes a polysiloxane compound (c1-2), an isocyanate compound (c2), a hydroxyl group-containing (meth) acrylate compound (c3), and a polyol as necessary. It is obtained by reacting a system compound (c4).
  • R 1 and R 3 in the general formula (2) are a hydrocarbon group or an organic group containing a hetero atom.
  • the hydrocarbon group usually has 1 to 100 carbon atoms, preferably 1 to 25 carbon atoms, particularly preferably 1 to 5 carbon atoms, and examples thereof include divalent or trivalent hydrocarbon groups.
  • Examples of the divalent hydrocarbon group include an alkylene group.
  • the alkylene group preferably has 1 to 10 carbon atoms, particularly preferably 1 to 4 carbon atoms, and examples thereof include an ethylene group, a propylene group, and a tetramethylene group.
  • Examples of the organic group containing a hetero atom include an oxyalkylene group, a polyoxyalkylene group, a polycaprolactone group, and an amino group.
  • R 2 in the general formula (2) is each independently an alkyl group, a cycloalkyl group, or a phenyl group.
  • the alkyl group preferably has a relatively short carbon number. Specifically, it usually has 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the carbon number of the cycloalkyl group is usually 3 to 10, preferably 5 to 8, and examples thereof include a cyclopentyl group, a cyclohexyl group, and a norbornyl group.
  • the alkyl group, cycloalkyl group, and phenyl group may have a substituent.
  • substituent usually include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a mercapto group, a sulfanyl group, a vinyl group, an acryloxy group, a methacryloxy group, an aryl group, and a heteroaryl group.
  • the substituent has a carbon atom, said carbon atom shall not included in the number of carbon atoms is specified in the description of the R 2.
  • a in the general formula (2) is an integer of 1 or more, preferably 5 to 200, particularly preferably an integer of 5 to 120.
  • b and c are an integer of 1 to 3, preferably an integer of 1 to 2.
  • the weight average molecular weight of the polysiloxane compound (c1-2) having hydroxyl groups at both ends is usually preferably 100 to 50,000, particularly 500 to 10,000, more preferably 1,000 to 10,000. 000 is preferred. If the weight average molecular weight is too low, the antifouling performance and chemical resistance tend to decrease, and if it is too high, the compatibility decreases, the coating agent tends to become cloudy, or the haze of the cured coating film tends to increase. .
  • polysiloxane compound (c1-2) having hydroxyl groups at both ends include those manufactured by Shin-Etsu Chemical Co., Ltd. (trade names: “KF-6001”, “KF-6002”, “KF-6003”), JNC Manufactured by Asahi Kasei Wacker Silicone Co., Ltd. (trade names; “IM15”, “IM22”, “CT5000M”, “CT6000M”), Momentive (trade names; “Silaplane FM-4421”, “Silaplane FM-4425”) -Performance Materials Japan (trade name; "XF42-B0970"), Toray Dow Corning (trade name; "BY16-004", "SF8427”), Toagosei Co., Ltd. (trade name; " Macromonomer HK-20 “, manufactured by GELEST (trade names;” DMS-C21 “,” DMS-C23 “,” DBL-C31 ”) ",” DMS-CA21 ”) and the like.
  • the urethane (meth) acrylate compound (C2) preferably has 2 or more ethylenically unsaturated groups, and has 4 or more ethylenically unsaturated groups in terms of the hardness of the cured coating film. It is particularly preferable that it has 6 or more ethylenically unsaturated groups. Moreover, the upper limit of the number of ethylenically unsaturated groups which a urethane (meth) acrylate type compound (C2) contains is 30 normally, Preferably it is 25 or less.
  • a manufacturing method of a urethane (meth) acrylate type compound (C2) For example, the method similar to the method described in the description regarding the said urethane (meth) acrylate (C1) is mentioned. However, among these, the method (ii) or (iv) is preferable, and the method (ii) is particularly preferable from the viewpoint of stability of reaction control and compatibility.
  • the hydroxyl group of the polysiloxane compound (c1-2) and the isocyanate group of the isocyanate compound (c2) are reacted under the conditions in which the isocyanate group remains, and then the isocyanate compound ( The residual isocyanate group of c2) is reacted with the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (c3).
  • the reaction molar ratio between the polysiloxane compound (c1-2) and the isocyanate compound (c2) is, for example, that the polysiloxane compound (c1-2) has two hydroxyl groups and the isocyanate group of the isocyanate compound (c2).
  • polysiloxane compound (c1-2): isocyanate compound (c2) 1: 1.1 to 1: 2.2
  • polysiloxane compound (c1-2) 1: 0.5 to 1: 2. It may be about 2.
  • the weight of the structural portion derived from the polysiloxane compound (c1-2) contained in 100 parts by weight of the urethane (meth) acrylate compound (C2) is 0.1 to 80 weights within the above molar ratio range. Part.
  • the reaction temperature of the above reaction is usually 30 to 100 ° C., preferably 40 to 90 ° C., and the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
  • the weight average molecular weight of the urethane (meth) acrylate compound (C2) thus obtained is usually preferably from 500 to 50,000, and more preferably from 2,000 to 30,000. If the weight average molecular weight is too small, the antifouling property and chemical resistance tend to decrease, and if too large, the coating property tends to decrease.
  • the viscosity at 20 ° C. of a 50% by weight butyl acetate solution of the urethane (meth) acrylate compound (C2) is preferably 1 to 5,000 mPa ⁇ s, particularly 2 to 2,500 mPa ⁇ s, and more preferably 3 It is preferably ⁇ 1,000 mPa ⁇ s. If the viscosity is outside the above range, the compatibility tends to decrease. The viscosity is measured using a B-type viscometer.
  • the urethane (meth) acrylate compound (C) of the present invention is obtained.
  • the said urethane (meth) acrylate type compound (C) may be used individually by 1 type, and may use 2 or more types together.
  • the urethane (meth) acrylate compound (C) preferably has a silicon atom content of from 0.1 to 80% by weight, particularly preferably from 0.3 to 60% by weight, more preferably 0, based on the whole (C). .5 to 30% by weight. If the silicon atom content is too high, the compatibility with other components tends to decrease. If the silicon atom content is too low, the blending amount required for improving the antifouling property increases, making it difficult to balance the physical properties of the coating film. Tend to be.
  • the content of the urethane (meth) acrylate compound (C) is preferably 0.001 to 1 part by weight, more preferably 0.01 to 100 parts by weight of the urethane (meth) acrylate compound (A). Is 0.5 to 0.5 parts by weight, particularly preferably 0.01 to 0.3 parts by weight. If the content is too large, the foam of the resin solution is stabilized, the bubbles at the time of mixing hardly disappear and tend to adversely affect the coating, and if it is too small, the antifouling property tends not to be sufficiently obtained.
  • Unsaturated monomer (D) hereinafter sometimes referred to as “ethylenically unsaturated monomer (D”)
  • photopolymerization initiator (E) acrylic resin, surface conditioner, leveling agent, polymerization inhibitor, etc.
  • oils, antioxidants, flame retardants, antistatic agents, fillers, stabilizers, reinforcing agents, matting agents, abrasives, organic fine particles, inorganic particles, etc. may be added. Is possible.
  • Ethylenically unsaturated monomer (D) As said ethylenically unsaturated monomer (D), a monofunctional monomer, a bifunctional monomer, a trifunctional or more monomer is mentioned.
  • Examples of such monofunctional monomers include styrene monomers such as styrene, vinyl toluene, chlorostyrene, and ⁇ -methylstyrene; methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2-hydroxy -3-phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, glycidyl (meth) acrylate, lauryl (meth) acrylate Lilate, cyclohexyl (meth)
  • bifunctional monomers examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and di Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A Type di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, ethoxylated cyclohexanedimethanol di ( Acrylate), dimethylol dicyclopentane di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 1,6-
  • tri- or higher functional monomer examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanuric acid ethylene oxide modified triacrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (Meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate, cap Lactone modified pentaerythritol
  • a Michael adduct of acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester can be used in combination.
  • examples of such a Michael adduct of acrylic acid include acrylic acid dimer, methacrylic acid dimer, acrylic acid trimer, methacrylic acid trimer, An acrylic acid tetramer, a methacrylic acid tetramer, etc. are mentioned.
  • the 2-acryloyloxyethyl dicarboxylic acid monoester is a carboxylic acid having a specific substituent, such as 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, 2-acryloyloxyethyl.
  • Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, other oligoester acrylates can also be mentioned.
  • trimethylolpropane tri (meth) acrylate trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol are excellent in reactivity and versatility.
  • Hexa (meth) acrylate is preferred.
  • ethylenically unsaturated monomers (D) may be used alone or in combination of two or more.
  • the ethylenically unsaturated monomer (D) may be separately added to the active energy ray-curable resin composition of the present invention, or manufactured as a raw material for producing the urethane (meth) acrylate compound (A). Sometimes a part of it may remain in the system.
  • the content of the ethylenically unsaturated monomer (D) is preferably 0 to 200 parts by weight, more preferably 3 to 100 parts by weight, based on 100 parts by weight of the urethane (meth) acrylate compound (A). Particularly preferred is 5 to 50 parts by weight. If the content of the ethylenically unsaturated monomer (D) is too large, the resulting cured coating tends to be sticky in the case of a monofunctional monomer, and the cured coating becomes hard in the case of a monomer having two or more functions. Too much, the smooth finger touch tends to be impaired.
  • Photopolymerizable initiator (E) examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2 -Hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-methyl -2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] acetophenones such as propanone oligomers; benzoin, benzoin methyl ether Benzoins such as benzoin, benzoin benzoins such as benzoin, benzoin
  • auxiliary agents for these photopolymerization initiators (E) include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid.
  • These auxiliaries can be used alone or in combination of two or more.
  • the content of the photopolymerization initiator (E) is the total amount of urethane (meth) acrylate compounds (A) and (B) (when the ethylenically unsaturated monomer (D) is included, (A) and (B) And (D) is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight, particularly preferably 1 to 10 parts by weight per 100 parts by weight. . If the content of the photopolymerization initiator (E) is too small, curing tends to be poor, and if it is too much, the solution stability tends to decrease, such as precipitation when used as a coating agent, and embrittlement or coloring may occur. Problems tend to occur.
  • the active energy ray-curable resin composition of the present invention preferably uses an organic solvent for dilution in order to adjust the viscosity during coating, if necessary.
  • organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol; ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone; cellosolves such as ethyl cellosolve; toluene, xylene And the like; glycol ethers such as propylene glycol monomethyl ether; acetates such as methyl acetate, ethyl acetate, and butyl acetate; and diacetone alcohol.
  • organic solvents may be used alone or in combination of two or more.
  • two or more types are used in combination, it is preferable from the viewpoint of the coating film appearance that two or more types are selected and combined from glycol ethers, ketones, acetate esters, and alcohols.
  • the active energy ray-curable resin composition of the present invention can also be diluted to 3 to 60% by weight with the above organic solvent and applied to a substrate.
  • the urethane (meth) acrylate compound (A) and organic fine particles (B) of the present invention preferably a polysiloxane structure-containing urethane (meth) acrylate compound (C), an ethylenically unsaturated monomer (D), light
  • An active energy ray-curable resin composition containing the polymerization initiator (E) is obtained.
  • the method for mixing the urethane (meth) acrylate compound (A) and the organic fine particles (B) and other components as required is particularly limited. Instead, various methods such as a method of mixing each component at once or a method of mixing arbitrary components and then mixing the remaining components at once or sequentially can be adopted.
  • the active energy ray-curable resin composition of the present invention has an ethylenically unsaturated group concentration of 1.0 to 6.3 mmol / g, preferably 1.5 to 6.0 mmol / g, more preferably 2.0. ⁇ 5.8 mmol / g. If the concentration of the ethylenically unsaturated group in the resin composition is too low, the hardness of the cured coating film tends to decrease and the wear resistance tends to decrease. If the concentration is too high, the adhesion between the coating film and the substrate decreases due to curing shrinkage. Or distortion of the resin part other than the particles in the paint tends to increase, and the appearance of the coating film tends to deteriorate.
  • the active energy ray-curable resin composition of the present invention is effectively used as a curable resin composition for coating film formation, such as a topcoat agent for various substrates.
  • the active energy ray-curable resin composition of the present invention is capable of obtaining a cured coating film having a tactile sensation and a moist sensation and having a smooth touch feeling, and is excellent in wear resistance and antifouling properties.
  • surface coating agents for interior parts such as home appliances and plastic panels in automobiles, woodworking products, decorative films, etc. that have good finger feel and wear resistance and antifouling properties are required It is particularly useful as a coating agent.
  • the coating agent containing the active energy ray-curable resin composition of the present invention will be described.
  • the coating agent of the present invention can be cured by irradiating with active energy rays after being applied to the substrate (after further drying if a composition diluted with an organic solvent is applied). .
  • Examples of the base material to which the coating agent of the present invention is applied include polyolefin resin, polyester resin, polycarbonate resin, acrylic resin acrylonitrile butadiene styrene copolymer (ABS), polystyrene resin and the like, and molding them.
  • Metal aluminum, copper, iron, SUS, zinc, etc.
  • plastic base materials such as products (films, sheets, cups, etc.), composite base materials thereof, or composite base materials of the above materials mixed with glass fibers or inorganic substances Magnesium, alloys thereof, and the like, including metal films such as metal vapor deposition films), and substrates having a primer layer on a substrate such as glass.
  • Examples of the coating method for the coating agent include wet coating methods such as spraying, showering, dipping, roll, spinning, screen printing, and ink jet printing. Usually, coating is performed on a substrate under normal temperature conditions. be able to.
  • the coating agent of the present invention is preferably applied by diluting with the above organic solvent so that the solid content concentration is usually 3 to 80% by weight, preferably 5 to 60% by weight.
  • the drying conditions for dilution with the organic solvent are as follows: the temperature is usually 40 to 120 ° C., preferably 50 to 100 ° C., and the drying time is usually 1 to 20 minutes, preferably 2 to 10 minutes. That's fine.
  • Active energy rays used when curing the coating agent applied on the substrate include rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as X-rays and ⁇ rays, electron beams, Proton beams, neutron beams, and the like can be used, but curing by ultraviolet irradiation is advantageous from the viewpoint of curing speed, availability of an irradiation device, price, and the like.
  • electron beam irradiation it can harden
  • ultraviolet irradiation When curing by ultraviolet irradiation, using a high-pressure mercury lamp, ultra-high pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, chemical lamp, electrodeless discharge lamp, LED, etc.
  • a high-pressure mercury lamp ultra-high pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, chemical lamp, electrodeless discharge lamp, LED, etc.
  • ultraviolet rays of 30 to 3000 mJ / cm 2 preferably 100 to 1500 mJ / cm 2
  • heating can be performed as necessary to complete the curing.
  • the coating film thickness (film thickness after curing) is usually 1 to 1000 ⁇ m in view of active energy ray transmission so that the photopolymerization initiator can react uniformly as an active energy ray-curable coating film, and preferably Is 2 to 500 ⁇ m, particularly preferably 5 to 100 ⁇ m.
  • the coating agent composition preferably contains 2 to 60% by weight of urethane (meth) acrylate compound (A), particularly preferably 3 to 40% by weight, and more preferably 5 to 30% by weight of the entire coating agent composition. % By weight.
  • the coating agent composition may or may not contain an organic solvent.
  • the concentration of ethylenically unsaturated groups in the urethane (meth) acrylate compound (A-1) alone is 2.33 mmol / g, and the ethylenically unsaturated groups in the polycaprolactone-modified hydroxyl group-containing acrylate compound (D-1) only.
  • the concentration is 4.34 mmol / g.
  • the concentration of ethylenically unsaturated groups in the urethane (meth) acrylate compound (A-2) alone is 7.33 mmol / g
  • the concentration of ethylenically unsaturated groups in the pentaerythritol triacrylate (D-2) alone is 10 0.06 mmol / g
  • the concentration of ethylenically unsaturated groups in dipentaerythritol tetraacrylate (D-3) alone is 11.35 mmol / g.
  • the content ratio of each component in the non-volatile content of the mixture [IV] is 6% polysiloxane structure-containing urethane (meth) acrylate compound (C-1), 34% urethane (meth) acrylate compound (A-4), It was 60% of pentaerythritol hexaacrylate (D-4).
  • the ethylenically unsaturated group concentration of only the urethane (meth) acrylate compound (A-4) is 6.91 mmol / g
  • the ethylenically unsaturated group concentration of only dipentaerythritol hexaacrylate (D-4) is 10.37 mmol / g.
  • E-1 1-hydroxy-cyclohexyl-phenyl-ketone (“IRGACURE 184” manufactured by BASF Japan Ltd.)
  • Example 1 47.8 parts of the mixture [I] containing the urethane (meth) acrylate compound (A-1) obtained above, 27.2 parts of the mixture [II] containing the urethane (meth) acrylate compound (A-2) Then, 25 parts of organic fine particles (B-1), 75 parts of butyl acetate as a diluent solvent and 75 parts of propylene glycol monomethyl ether were mixed, and stirred uniformly using a disper to give a photopolymerization initiator (E-1) 2 An active energy ray-curable resin composition having a solid content of 40% was obtained.
  • RCA value ⁇ Abrasion resistance (RCA value)> (Evaluation methods) Using the RCA abrasion tester (Model No. 7-IBB) manufactured by NORMAN TOOL, INC, the cured coating film of the film-forming film obtained above was worn under a contact condition of 2 seconds / time with a load of 175 gf. A test was conducted. The paper tape used for the test was RED SPOT PAINT & VARNISH CO. , INC. SM1680 (topcoat) / SM1585 (basecoat) test material, which averaged 113.25 times when the standard cycle wear test was performed, was used.
  • the active energy ray-curable resin composition containing the urethane (meth) acrylate compound (A) and the organic fine particles (B), the active energy ray-curable resin composition From the evaluation results in Table 1, the active energy ray-curable resin composition containing the urethane (meth) acrylate compound (A) and the organic fine particles (B), the active energy ray-curable resin composition.
  • the cured coating film obtained by curing the active energy ray-curable resin composition of Examples 1 and 2 in which the concentration of the ethylenically unsaturated group is in a specific range has a smooth and good finger feeling and wear resistance. It can be seen that an excellent cured coating film can be obtained.
  • Comparative Example 1 where the ethylenically unsaturated group concentration of the active energy ray-curable resin composition is less than the specific range, the wear resistance is inferior, and in Comparative Example 2 which is larger than the specific range, A good cured coating film itself could not be obtained.
  • the wear resistance and the touch feeling were evaluated in the same manner as in Examples 1 and 2 and Comparative Examples 1 and 2. Furthermore, the antifouling property was evaluated as follows.
  • ⁇ Anti-fouling property Magic wiping property> (Evaluation methods) The cured coating film of the film-forming film obtained above was drawn with an oil-based magic, sufficiently dried at room temperature (23 ° C.), wiped with a soft cloth, and evaluated according to the following criteria. The results are shown in Table 2. (Evaluation criteria) ⁇ : The oil-based magic was wiped off by wiping. ⁇ : The oil-based magic was not wiped off by wiping, but the cloth soaked in alcohol (methanol) was wiped off. ⁇ : The oil-based magic was not wiped by wiping or alcohol wiping.
  • the active energy ray-curable resin composition comprising the urethane (meth) acrylate compound (A) and the organic fine particles (B), and the active energy ray-curable resin composition
  • the active energy ray-curable resin composition of Examples 3 and 4 containing a polysiloxane structure-containing urethane (meth) acrylate-based compound (C) having a specific range of ethylenically unsaturated group concentration was cured. It can be seen that the cured coating film obtained has a smooth and good touch feeling, is excellent in wear resistance, and is further excellent in antifouling property.
  • Comparative Example 3 where the ethylenically unsaturated group concentration of the active energy ray-curable resin composition is less than a specific range, the polysiloxane structure-containing urethane (meth) acrylate compound (C) is contained. Even so, the antifouling property could not be obtained.
  • the active energy ray-curable resin composition of the present invention has an effect that there is no tackiness or moist feeling, a cured coating film having a smooth touch feeling is obtained, and excellent wear resistance. It is useful as various film forming materials. Particularly, it is suitable as a coating agent for a coating material composition for coating a plastic substrate, a coating agent composition for in-mold molding, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is an active-energy-ray-curable resin composition with which it is possible to obtain a cured coating film having excellent feel as well as exceptional wear resistance, wherein the active-energy-ray-curable resin composition is characterized by containing: a urethane (meth)acrylate compound (A), which is obtained by reacting an isocyanate compound (a1) and a hydroxyl-group-containing (meth)acrylate compound (a2); and organic fine particles (B), the ethylenic unsaturated group concentration of the active-energy-ray-curable resin composition being 1.0-6.3 mmol/g.

Description

活性エネルギー線硬化性樹脂組成物、コーティング剤組成物、及び積層体Active energy ray-curable resin composition, coating agent composition, and laminate
 本発明は、活性エネルギー線硬化性樹脂組成物、コーティング剤組成物及び積層体に関し、更に詳しくは、硬化塗膜とした際にタック感やしっとり感がなく、さらさらとした指触感を備え、かつ、耐摩耗性にも優れた硬化塗膜を形成するための活性エネルギー線硬化性樹脂組成物、及びそれを用いてなるコーティング剤組成物、更には基材及び前記コーティング剤組成物からなるコーティング層を有する積層体に関するものである。 The present invention relates to an active energy ray-curable resin composition, a coating agent composition, and a laminate, and more specifically, when it is used as a cured coating film, it does not have a tacky or moist feeling, has a smooth finger touch, and , An active energy ray-curable resin composition for forming a cured coating film excellent in abrasion resistance, a coating agent composition using the same, and a substrate and a coating layer comprising the coating agent composition It is related with the laminated body which has.
 従来から、活性エネルギー線硬化樹脂組成物は各種基材へのコーティング剤として幅広く用いられている。中でも、家電製品や自動車内のプラスチックパネル等の内装部品等には、高級感や指触りのよい触感を与えるものが求められており、このような触感を付与することができるコーティング剤が求められていた。 Conventionally, active energy ray-curable resin compositions have been widely used as coating agents for various substrates. In particular, interior parts such as home appliances and plastic panels in automobiles are required to have a high-class feel and a touch-sensitive feel, and a coating agent that can provide such a feel is required. It was.
 軟質な触感を付与するコーティング剤として、例えば特許文献1には、紫外線硬化性オリゴマーまたはモノマー、前記紫外線硬化性オリゴマーまたはモノマーと共重合可能な官能基を少なくとも一個有するシリコン化合物、架橋樹脂粒子、反応開始剤および必要に応じて加えられる希釈剤からなることを特徴とする紫外線硬化型皮革調塗料組成物が提案されている。 As a coating agent that imparts a soft touch, for example, Patent Document 1 discloses an ultraviolet curable oligomer or monomer, a silicon compound having at least one functional group copolymerizable with the ultraviolet curable oligomer or monomer, a crosslinked resin particle, a reaction An ultraviolet curable leather-like paint composition comprising an initiator and a diluent added as necessary has been proposed.
特開2006-257366号公報JP 2006-257366 A
 しかしながら、軟らかい感触を有する硬化塗膜は、摩擦係数が高いため摩耗しやすく、耐久性が低いという問題があり、上記特許文献1に開示の技術においても、耐摩耗性の点では満足できるものではなかった。また、軟らかい感触を有する硬化塗膜は指紋等の汚れが付着しやすいという問題もあった。 However, a cured coating film having a soft feel has a problem that it is easily worn due to a high coefficient of friction and has low durability, and the technique disclosed in Patent Document 1 is not satisfactory in terms of wear resistance. There wasn't. In addition, the cured coating film having a soft feel has a problem that dirt such as fingerprints easily adheres.
 そこで、本発明は、このような背景下において、良好な指触感を有し、耐摩耗性にも優れた硬化塗膜を得ることができる活性エネルギー線硬化性樹脂組成物及びそれを用いたコーティング剤組成物、及び積層体を提供することを目的とするものである。 Therefore, the present invention provides an active energy ray-curable resin composition capable of obtaining a cured coating film having a good touch feeling and excellent wear resistance under such a background, and a coating using the same It aims at providing an agent composition and a laminated body.
 しかるに本発明者は、かかる事情に鑑み鋭意研究を重ねた結果、イソシアネート系化合物(a1)及び水酸基含有(メタ)アクリレート系化合物(a2)を反応させてなるウレタン(メタ)アクリレート系化合物(A)及び有機微粒子(B)を含有してなる活性エネルギー線硬化性樹脂組成物において、エチレン性不飽和基濃度が特定量範囲である活性エネルギー線硬化性樹脂組成物を用いることにより、良好な指触感を有し、かつ、耐摩耗性にも優れる硬化塗膜が得られることを見出し、本発明を完成した。 However, as a result of intensive studies in view of such circumstances, the present inventor has made a urethane (meth) acrylate compound (A) obtained by reacting an isocyanate compound (a1) and a hydroxyl group-containing (meth) acrylate compound (a2). And an active energy ray-curable resin composition containing the organic fine particles (B), the use of the active energy ray-curable resin composition having an ethylenically unsaturated group concentration in a specific amount range provides good finger touch In addition, the present inventors have found that a cured coating film having excellent wear resistance can be obtained.
 即ち、本発明の要旨は、イソシアネート系化合物(a1)及び水酸基含有(メタ)アクリレート系化合物(a2)を反応させてなるウレタン(メタ)アクリレート系化合物(A)及び有機微粒子(B)を含有してなる活性エネルギー線硬化性樹脂組成物であって、エチレン性不飽和基濃度が1.0~6.3mmol/gであることを特徴とする活性エネルギー線硬化性樹脂組成物である。 That is, the gist of the present invention includes a urethane (meth) acrylate compound (A) obtained by reacting an isocyanate compound (a1) and a hydroxyl group-containing (meth) acrylate compound (a2) and organic fine particles (B). An active energy ray-curable resin composition having an ethylenically unsaturated group concentration of 1.0 to 6.3 mmol / g.
 また、本発明においては、前記活性エネルギー線硬化性樹脂組成物を含有してなるコーティング剤組成物、更には基材及び、前記コーティング剤組成物からなるコーティング層を有する積層体も提供するものである。 The present invention also provides a coating composition comprising the active energy ray-curable resin composition, and further a laminate having a substrate and a coating layer comprising the coating composition. is there.
 本発明の活性エネルギー線硬化性樹脂組成物は、硬化塗膜が、良好な指触感を有し、かつ、耐摩耗性にも優れるといった効果を有するものであり、コーティング剤として特に有用である。 The active energy ray-curable resin composition of the present invention is particularly useful as a coating agent because the cured coating film has the effect of having a good touch feeling and excellent wear resistance.
 以下に本発明を詳細に説明する。
 なお、本発明において、(メタ)アクリルとはアクリルあるいはメタクリルを、(メタ)アクリロイルとはアクリロイルあるいはメタクリロイルを、(メタ)アクリレートとはアクリレートあるいはメタクリレートをそれぞれ意味するものである。
The present invention is described in detail below.
In the present invention, (meth) acryl means acryl or methacryl, (meth) acryloyl means acryloyl or methacryloyl, and (meth) acrylate means acrylate or methacrylate.
 本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系化合物(A)及び有機微粒子(B)を含有してなる。
 以下、各成分について説明する。
The active energy ray-curable resin composition of the present invention contains a urethane (meth) acrylate compound (A) and organic fine particles (B).
Hereinafter, each component will be described.
〔ウレタン(メタ)アクリレート系化合物(A)〕
 本発明におけるウレタン(メタ)アクリレート系化合物(A)は、イソシアネート系化合物(a1)、及び水酸基含有(メタ)アクリレート系化合物(a2)を反応させてなるものである。ウレタン(メタ)アクリレート系化合物(A)は単独でもしくは2種以上を併せて用いることができる。
[Urethane (meth) acrylate compound (A)]
The urethane (meth) acrylate compound (A) in the present invention is obtained by reacting an isocyanate compound (a1) and a hydroxyl group-containing (meth) acrylate compound (a2). The urethane (meth) acrylate compound (A) can be used alone or in combination of two or more.
 イソシアネート系化合物(a1)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート;水添化ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン等の脂環式系ポリイソシアネート;あるいはこれらポリイソシアネートの3量体化合物または多量体化合物、アロファネート型ポリイソシアネート、ビュレット型ポリイソシアネート等が挙げられる。イソシアネート系化合物(a1)は単独でもしくは2種以上を併せて用いることができる。 Examples of the isocyanate compound (a1) include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate. Aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate; hydrogenated diphenylmethane diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1, 4-bis (isocyana Methyl) alicyclic polyisocyanates such as cyclohexane; or trimer compounds of these polyisocyanates or multimeric compounds, allophanate type polyisocyanate, buret type polyisocyanate, and the like. An isocyanate type compound (a1) can be used individually or in combination of 2 or more types.
 これらの中でも、黄変が少ない点で、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族系ジイソシアネート、水添化ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン等の脂環式系ジイソシアネートが好ましく、特に好ましくはイソホロンジイソシアネート、水添化ジフェニルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、ヘキサメチレンジイソシアネートであり、更に好ましくは、反応性及び汎用性に優れる点でイソホロンジイソシアネート、ヘキサメチレンジイソシアネートである。 Among these, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) are less yellowed. ) Cycloaliphatic diisocyanates such as cyclohexane and 1,4-bis (isocyanatomethyl) cyclohexane are preferred, particularly preferably isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene. Diisocyanate, more preferably isophorone diisocyanate and hexamethylene diisocyanate in terms of excellent reactivity and versatility. It is a door.
 水酸基含有(メタ)アクリレート系化合物(a2)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、脂肪酸変性-グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、等のエチレン性不飽和基を1つ含有する水酸基含有(メタ)アクリレート系化合物;グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート等のエチレン性不飽和基を2つ含有する水酸基含有(メタ)アクリレート系化合物;ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート等のエチレン性不飽和基を3つ以上含有する水酸基含有(メタ)アクリレート系化合物が挙げられる。水酸基含有(メタ)アクリレート系化合物(a2)は単独でもしくは2種以上併せて用いることができる。 Examples of the hydroxyl group-containing (meth) acrylate compound (a2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth). Acrylates, hydroxyalkyl (meth) acrylates such as 6-hydroxyhexyl (meth) acrylate, 2-hydroxyethyl acryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth) ) Acrylate, dipropylene glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) ) Acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, and other hydroxyl-containing (meth) acrylate compounds containing one ethylenically unsaturated group; glycerin di (meth) acrylate, 2 Hydroxyl-containing (meth) acrylate compounds containing two ethylenically unsaturated groups such as hydroxy-3-acryloyl-oxypropyl methacrylate; pentaerythritol tri (meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate, ethylene Oxide modified pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, ethylene oxide modified dipenta Hydroxyl group-containing (meth) acrylate compound containing an ethylenically unsaturated group such Risuri penta (meth) acrylate three or more can be mentioned. The hydroxyl group-containing (meth) acrylate compound (a2) can be used alone or in combination of two or more.
 これらの中でも、反応性および汎用性に優れ、硬化塗膜の耐摩耗性に優れる点で、エチレン性不飽和基を3つ以上含有する水酸基含有(メタ)アクリレート系化合物が好ましく、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが特に好ましい。 Among these, a hydroxyl group-containing (meth) acrylate-based compound containing three or more ethylenically unsaturated groups is preferable in terms of excellent reactivity and versatility, and excellent abrasion resistance of the cured coating film, and pentaerythritol tri ( Particularly preferred are (meth) acrylate and dipentaerythritol penta (meth) acrylate.
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)の製造方法としては、上記のイソシアネート系化合物(a1)のイソシアネート基と水酸基含有(メタ)アクリレート系化合物(a2)の水酸基との官能基モル比を調整し、必要に応じてジブチル錫ジラウレートなどの触媒を用いて、イソシアネート系化合物(a1)と水酸基含有(メタ)アクリレート系化合物(a2)とを反応させて得ることができる。 The production method of the urethane (meth) acrylate compound (A) used in the present invention is a functional group of the isocyanate group of the isocyanate compound (a1) and the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (a2). It can be obtained by adjusting the molar ratio and reacting the isocyanate compound (a1) with the hydroxyl group-containing (meth) acrylate compound (a2) using a catalyst such as dibutyltin dilaurate as necessary.
 具体的には、イソシアネート系化合物(a1)と水酸基含有(メタ)アクリレート系化合物(a2)との反応モル比は、例えば、イソシアネート系化合物(a1)のイソシアネート基が2個で、水酸基含有(メタ)アクリレート系化合物(a2)の水酸基が1個である場合は、イソシアネート系化合物(a1):水酸基含有(メタ)アクリレート系化合物(a2)が1:2~1:5程度であり、イソシアネート系化合物(a1)のイソシアネート基が3個で、水酸基含有(メタ)アクリレート系化合物(a2)の水酸基が1個である場合は、イソシアネート系化合物(a1):水酸基含有(メタ)アクリレート系化合物(a2)が1:3~1:10程度である。 Specifically, the reaction molar ratio between the isocyanate compound (a1) and the hydroxyl group-containing (meth) acrylate compound (a2) is, for example, that the isocyanate compound (a1) has two isocyanate groups and the hydroxyl group-containing (meta When the acrylate compound (a2) has one hydroxyl group, the isocyanate compound (a1): hydroxy group-containing (meth) acrylate compound (a2) is about 1: 2 to 1: 5, and the isocyanate compound When (a1) has three isocyanate groups and hydroxyl group-containing (meth) acrylate compound (a2) has one hydroxyl group, isocyanate compound (a1): hydroxyl group-containing (meth) acrylate compound (a2) Is about 1: 3 to 1:10.
 このイソシアネート系化合物(a1)と水酸基含有(メタ)アクリレート系化合物(a2)との付加反応においては、反応系の残存イソシアネート基含有率が0.5重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(A)が得られる。 In the addition reaction between the isocyanate compound (a1) and the hydroxyl group-containing (meth) acrylate compound (a2), the reaction is terminated when the residual isocyanate group content in the reaction system is 0.5% by weight or less. Thus, a urethane (meth) acrylate compound (A) is obtained.
 かかるイソシアネート系化合物(a1)と水酸基含有(メタ)アクリレート系化合物(a2)との反応においては、反応を促進する目的で触媒を用いることも好ましく、かかる触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジオクチル錫ラウレート、トリメチル錫ヒドロキシド、テトラ-n-ブチル錫、ビスアセチルアセトナート亜鉛、ジルコニウムトリス(アセチルアセトネート)エチルアセトアセテート、ジルコニウムテトラアセチルアセトネート、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、テトラブトキシジルコニウム等の有機金属化合物;オクテン酸錫、ヘキサン酸亜鉛、オクテン酸亜鉛、ステアリン酸亜鉛、2-エチルヘキサン酸ジルコニウム、ナフテン酸コバルト、塩化第1錫、塩化第2錫、酢酸カリウム等の金属塩;トリエチルアミン、トリエチレンジアミン、ベンジルジエチルアミン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン、N,N,N′,N′-テトラメチル-1,3-ブタンジアミン、N-メチルモルホリン、N-エチルモルホリン、ジアザビシクロノネン等のアミン系触媒;硝酸ビスマス、臭化ビスマス、ヨウ化ビスマス、硫化ビスマス等の他、ジブチルビスマスジラウレート、ジオクチルビスマスジラウレート等の有機ビスマス化合物;2-エチルヘキサン酸ビスマス塩、ナフテン酸ビスマス塩、イソデカン酸ビスマス塩、ネオデカン酸ビスマス塩、ラウリル酸ビスマス塩、マレイン酸ビスマス塩、ステアリン酸ビスマス塩、オレイン酸ビスマス塩、リノール酸ビスマス塩、酢酸ビスマス塩、ビスマスリビスネオデカノエート、ジサリチル酸ビスマス塩、ジ没食子酸ビスマス塩等の有機酸ビスマス塩等のビスマス系触媒等が挙げられ、中でも、ジブチル錫ジラウレート、1,8-ジアザビシクロ[5,4,0]ウンデセンが好適である。これらは単独でもしくは2種以上併せて用いることができる。 In the reaction between the isocyanate compound (a1) and the hydroxyl group-containing (meth) acrylate compound (a2), it is also preferable to use a catalyst for the purpose of accelerating the reaction. Examples of the catalyst include dibutyltin dilaurate and dibutyl. Tin diacetate, dioctyltin laurate, trimethyltin hydroxide, tetra-n-butyltin, zinc bisacetylacetonate, zirconium tris (acetylacetonate) ethylacetoacetate, zirconium tetraacetylacetonate, tetramethoxytitanium, tetraethoxytitanium , Organometallic compounds such as tetraisopropoxy titanium, tetrabutoxy titanium, tetramethoxy zirconium, tetraethoxy zirconium, tetraisopropoxy zirconium, tetrabutoxy zirconium Metal salts such as tin octenoate, zinc hexanoate, zinc octenoate, zinc stearate, zirconium 2-ethylhexanoate, cobalt naphthenate, stannous chloride, stannic chloride, potassium acetate; triethylamine, triethylenediamine, benzyl Diethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0] undecene, N, N, N ′, N′-tetramethyl-1,3-butanediamine, Amine-based catalysts such as N-methylmorpholine, N-ethylmorpholine, diazabicyclononene; bismuth nitrate, bismuth bromide, bismuth iodide, bismuth sulfide, etc., and organic bismuth compounds such as dibutyl bismuth dilaurate, dioctyl bismuth dilaurate; 2-ethylhexanoic acid bismuth salt, naphthenic acid bismuth salt Bismuth isodecanoate, bismuth neodecanoate, bismuth laurate, bismuth maleate, bismuth stearate, bismuth oleate, bismuth linoleate, bismuth acetate, bismuth bisneodecanoate, bismuth disalicylate And bismuth catalysts such as organic acid bismuth salts such as bismuth digallate. Among them, dibutyltin dilaurate and 1,8-diazabicyclo [5,4,0] undecene are preferable. These may be used alone or in combination of two or more.
 またイソシアネート系化合物(a1)と水酸基含有(メタ)アクリレート系化合物(a2)との反応においては、イソシアネート基に対して反応する官能基を有しない有機溶剤、例えば、酢酸エチル、酢酸ブチル等のエステル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族類等の有機溶剤を用いることができる。 In the reaction between the isocyanate compound (a1) and the hydroxyl group-containing (meth) acrylate compound (a2), an organic solvent having no functional group that reacts with the isocyanate group, for example, an ester such as ethyl acetate or butyl acetate. , Organic solvents such as ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatics such as toluene and xylene can be used.
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)は、エチレン性不飽和基濃度(mmol/g)が、1.0mmol/g以上であることが好ましく、さらに好ましくは1.5~6.3mmol/g、特に好ましくは2.5~5.8mmol/gである。
 かかるウレタン(メタ)アクリレート系化合物(A)のエチレン性不飽和基濃度(mmol/g)が低すぎると硬化塗膜における架橋密度が低下し、耐摩耗性が低下する傾向があり、高すぎると硬化収縮により塗膜と基材の密着性が低下したり、塗膜中における樹脂部分の歪みが大きくなり、塗膜外観が悪くなる傾向がある。
The urethane (meth) acrylate compound (A) used in the present invention preferably has an ethylenically unsaturated group concentration (mmol / g) of 1.0 mmol / g or more, more preferably 1.5 to 6 0.3 mmol / g, particularly preferably 2.5 to 5.8 mmol / g.
When the ethylenically unsaturated group concentration (mmol / g) of the urethane (meth) acrylate compound (A) is too low, the crosslinking density in the cured coating film tends to be lowered, and the wear resistance tends to be lowered. There is a tendency that the adhesion between the coating film and the substrate is lowered by curing shrinkage, the distortion of the resin part in the coating film is increased, and the appearance of the coating film is deteriorated.
 なお、ウレタン(メタ)アクリレート系化合物(A)のエチレン性不飽和基濃度は、例えば、下記式(1)で計算することができる。
 〔式(1)〕ウレタン(メタ)アクリレート系化合物(A)のエチレン性不飽和基濃度(mmol/g)=水酸基含有(メタ)アクリレート系化合物(a2)のエチレン性不飽和基濃度(mmol/g)×(ウレタン(メタ)アクリレート系化合物(A)中の水酸基含有(メタ)アクリレート系化合物(a2)の重量/ウレタン(メタ)アクリレート系化合物の重量(A))
In addition, the ethylenically unsaturated group density | concentration of a urethane (meth) acrylate type compound (A) can be calculated by following formula (1), for example.
[Formula (1)] Ethylenically unsaturated group concentration (mmol / g) of urethane (meth) acrylate compound (A) = ethylenically unsaturated group concentration (mmol / g) of hydroxyl group-containing (meth) acrylate compound (a2) g) × (weight of hydroxyl group-containing (meth) acrylate compound (a2) in urethane (meth) acrylate compound (A) / weight of urethane (meth) acrylate compound (A))
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)は、硬化塗膜に耐摩耗性を付与する点から、エチレン性不飽和基の数が、2~15個であることが好ましく、特に好ましくは3~10個である。かかるエチレン性不飽和基数が多すぎると硬化後の架橋密度が大きくなりすぎることから、硬化収縮により塗膜と基材の密着性が悪化したり、塗膜中における樹脂部分の歪みが大きくなり、塗膜外観が悪化する傾向があり、少なすぎると充分な架橋密度が得られにくいため、硬化塗膜表面がべたついたり、耐摩耗性が低下する傾向がある。 The urethane (meth) acrylate compound (A) used in the present invention preferably has 2 to 15 ethylenically unsaturated groups from the viewpoint of imparting abrasion resistance to the cured coating film. The number is preferably 3 to 10. If the number of such ethylenically unsaturated groups is too large, the crosslinking density after curing becomes too large, the adhesion between the coating film and the substrate deteriorates due to curing shrinkage, or the distortion of the resin part in the coating film increases, The coating film appearance tends to deteriorate, and if it is too small, it is difficult to obtain a sufficient crosslinking density, so that the surface of the cured coating film tends to be sticky or wear resistance tends to decrease.
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)の重量平均分子量は、1,000~50,000であることが好ましく、特に好ましくは1,200~30,000、殊に好ましくは1,500~20,000である。
 かかる重量平均分子量が小さすぎると相対的に架橋密度が大きくなるため、硬化塗膜表面が硬くなりすぎ、硬化収縮により塗膜と基材の密着性が低下したり、塗膜中における樹脂部分の歪みが大きくなり、塗膜外観が悪くなる傾向があり、大きすぎると充分な架橋密度が得られず、硬化塗膜表面がべたついたり、耐摩耗性が低下しやすくなる傾向がある。
The weight average molecular weight of the urethane (meth) acrylate compound (A) used in the present invention is preferably 1,000 to 50,000, particularly preferably 1,200 to 30,000, particularly preferably 1. , 500 to 20,000.
If the weight average molecular weight is too small, the cross-linking density is relatively increased, so that the surface of the cured coating film becomes too hard, and the adhesion between the coating film and the substrate decreases due to curing shrinkage. The distortion tends to increase and the appearance of the coating film tends to be poor. If it is too large, a sufficient crosslinking density cannot be obtained, and the surface of the cured coating film tends to be sticky or wear resistance tends to decrease.
 なお、上記の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフィー(日本ウォーターズ社製、「Waters 2695(本体)」と「Waters 2414(検出器)」)に、カラム(Shodex GPD KF-806L(排除限界分子量:2×107、分離範囲:100~2×107、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm))の3本直列を用いることにより測定される。 In addition, said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, a column is put into a high performance liquid chromatography (Nippon Waters Co., Ltd., "Waters 2695 (main body)" and "Waters 2414 (detector)"). (Shodex GPD KF-806L (exclusion limit molecular weight: 2 × 10 7 , separation range: 100 to 2 × 10 7 , theoretical plate number: 10,000 plates / piece, filler material: styrene-divinylbenzene copolymer, filler) It is measured by using three series of particle diameters: 10 μm)).
 本発明で用いられるウレタン(メタ)アクリレート系化合物(A)の60℃における粘度は、500~100,000mPa・sであることが好ましく、特に好ましくは1,000~50,000mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 なお、粘度の測定法はE型粘度計による。
The viscosity at 60 ° C. of the urethane (meth) acrylate compound (A) used in the present invention is preferably 500 to 100,000 mPa · s, particularly preferably 1,000 to 50,000 mPa · s. When the viscosity is out of the above range, the coatability tends to be lowered.
In addition, the measuring method of a viscosity is based on an E-type viscometer.
 なお、本発明の活性エネルギー線硬化性樹脂組成物において、後述のポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)を含有する場合は、ウレタン(メタ)アクリレート系化合物(A)は、ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)を除くものである。 In addition, in the active energy ray-curable resin composition of the present invention, when the polysiloxane structure-containing urethane (meth) acrylate compound (C) described later is contained, the urethane (meth) acrylate compound (A) The siloxane structure-containing urethane (meth) acrylate compound (C) is excluded.
〔有機微粒子(B)〕
 本発明における有機微粒子(B)としては、例えば、ナイロンフィラー、ポリウレタンフィラー、ポリ尿素フィラー、ポリアミドイミドフィラー、ポリアクリルアミドフィラー等の窒素原子含有有機微粒子;ポリエチレンフィラー、ポリプロピレンフィラー等のポリオレフィン樹脂フィラー;ポリ(メタ)アクリルフィラー、ポリブチル(メタ)アクリルフィラー、ポリスチレンフィラーのような単一重合成分からなる(メタ)アクリル基含有有機微粒子、2種以上の重合成分からなる(メタ)アクリル基含有有機微粒子等の(メタ)アクリル合成樹脂フィラー;ポリフェニレンスルフィドフィラー、ポリエーテルスルホンフィラー等の硫黄原子含有合成樹脂フィラー;ポリテトラフルオロエチレンフィラー等のフッ素原子含有有機微粒子;エポキシ樹脂からなるエポキシ基含有有機微粒子;脂肪酸系ポリマーからなる有機微粒子;ポリカーボネート樹脂フィラー;上記フィラーの複合型有機微粒子、コアシェル状多層フィラー等があげられる。これら有機微粒子は、1種を単独で、または2種以上を併せて用いることができる。
[Organic fine particles (B)]
Examples of the organic fine particles (B) in the present invention include nitrogen atom-containing organic fine particles such as nylon filler, polyurethane filler, polyurea filler, polyamideimide filler, and polyacrylamide filler; polyolefin resin filler such as polyethylene filler and polypropylene filler; (Meth) acrylic filler, polybutyl (meth) acrylic filler, (meth) acrylic group-containing organic fine particles composed of a single polymerization component such as polystyrene filler, (meth) acrylic group-containing organic fine particles composed of two or more polymerization components, etc. (Meth) acrylic synthetic resin filler; sulfur atom-containing synthetic resin filler such as polyphenylene sulfide filler and polyethersulfone filler; fluorine atom-containing organic fine particles such as polytetrafluoroethylene filler; Epoxy group-containing organic fine particles made of epoxy resin; organic fine particles composed of a fatty acid-based polymers; polycarbonate resin filler; hybrid organic fine particles of the filler, the core-shell-shaped multilayer filler and the like. These organic fine particles can be used individually by 1 type or in combination of 2 or more types.
 これらの中でも、ポリオレフィン樹脂フィラー、ポリウレタンフィラー、脂肪酸系ポリマーからなる有機微粒子が樹脂溶液に対し、易分散性を持つことから好ましく、
 更には、硬化塗膜に一定の弾性を付与でき、さらさらとした指触感を付与できる点で、脂肪酸系ポリマーからなる有機微粒子が好ましい。
Among these, polyolefin resin filler, polyurethane filler, organic fine particles composed of a fatty acid polymer are preferable because they have easy dispersibility in the resin solution,
Furthermore, organic fine particles made of a fatty acid polymer are preferable in that a certain elasticity can be imparted to the cured coating film and a smooth touch feeling can be imparted.
 上記ナイロンフィラーとしては、例えば、東レ社製(商品名;「SP-10」、「SP-500」、「TR-1」、「TR-2」、「842-P48」、「842-P70」、「842-P80」)、アルケマ社製(商品名;「Orgasol 4000EXD NAT COS」、「Orgasol 2022EXD NAT COS」)等が挙げられる。 Examples of the nylon filler include those manufactured by Toray Industries, Inc. (trade names: “SP-10”, “SP-500”, “TR-1”, “TR-2”, “842-P48”, “842-P70”). , “842-P80”), manufactured by Arkema (trade names: “Orgasol 4000EXD NAT COS”, “Orgasol 2022EXD NAT COS”), and the like.
 上記ポリウレタンフィラーとしては、例えば、根上工業社製の架橋ウレタンビーズ(商品名;「アートパールDシリーズ」、「アートパールPシリーズ」、「アートパールJCシリーズ」、「アートパールUシリーズ」、「アートパールDEシリーズ」、「アートパールAKシリーズ」、「アートパールHIシリーズ」、「アートパールMMシリーズ」、「アートパールFFシリーズ」、「アートパールTKシリーズ」、「アートパールD-THシリーズ」、「アートパールRW~Zシリーズ」、「アートパールRU~Vシリーズ」、「アートパールCPシリーズ」)等が挙げられる。 Examples of the polyurethane filler include crosslinked urethane beads manufactured by Negami Kogyo Co., Ltd. (trade names; “Art Pearl D Series”, “Art Pearl P Series”, “Art Pearl JC Series”, “Art Pearl U Series”, “Art”. “Pearl DE Series”, “Art Pearl AK Series”, “Art Pearl HI Series”, “Art Pearl MM Series”, “Art Pearl FF Series”, “Art Pearl TK Series”, “Art Pearl D-TH Series”, “ Art Pearl RW-Z series "," Art Pearl RU-V series "," Art Pearl CP series ").
 上記ポリアミドイミド樹脂フィラーとしては、例えば、東レ社製(商品名;「トレパールPAI」)が挙げられる。 Examples of the polyamideimide resin filler include those manufactured by Toray Industries, Inc. (trade name: “Trepearl PAI”).
 上記ポリエチレンフィラーとしては、溶剤分散系のポリエチレンフィラーが好ましく、例えば、興洋化学社製のポリエチレンワックス及び変性ポリエチレンワックス(商品名;「ミクロ・フラット UN-8」、「ミクロ・フラットPEX-101」、「ミクロ・フラットC-501」)、ビックケミー・ジャパン社製のポリエチレンワックス、及び変性ポリエチレンワックス(商品名;「DERAFLOUR928」、「DERAFLOUR950」、「DERAFLOUR988」、「DERAFLOUR990」、「DERAFLOUR991」、「DERAFLOUR995」、「DERADOL39」、「DERAFAK111」、「DERAMAT250」、「DERAMAT258」、「MINERPOL221」、「CERAMAT258」)等が挙げられる。 The polyethylene filler is preferably a solvent-dispersed polyethylene filler. For example, polyethylene wax and modified polyethylene wax (trade names; “Micro Flat UN-8”, “Micro Flat PEX-101” manufactured by Koyo Chemical Co., Ltd.) , "Micro Flat C-501"), polyethylene wax manufactured by Big Chemie Japan, and modified polyethylene wax (trade names: "DERAFLOUR928", "DERAFLOUR950", "DERAFLOUR988", "DERAFLOUR990", "DERAFLOUR991", "DERAFLOUR9999") ”,“ DERADOL39 ”,“ DERAFAK111 ”,“ DELAMAT250 ”,“ DELAMAT258 ”,“ MINERPOL221 ”,“ CE ” AMAT258 "), and the like.
 上記ポリプロピレンフィラーとしては、溶剤分散系のものが好ましく、例えば、ビックケミー・ジャパン社製のポリプロピレンワックス、及び変性ポリプロピレンワックス(商品名;「DERAFLOUR970」)等が挙げられる。 The above-mentioned polypropylene filler is preferably a solvent dispersion type, and examples thereof include a polypropylene wax manufactured by Big Chemie Japan, a modified polypropylene wax (trade name: “DERAFLOUR970”), and the like.
 上記(メタ)アクリル基含有有機微粒子としては、例えば、根上工業社製のアクリルビーズ(商品名;「アートパールGRシリーズ」、「アートパールSEシリーズ」、「アートパールGシリーズ」、「アートパールGSシリーズ」、「アートパールJシリーズ」、「アートパールMFシリーズ」、「アートパールCEシリーズ」)等が挙げられる。これらの中でも、光硬化性を阻害せず、硬化塗膜として透明~白色の塗膜を得られるものとして透明微粒子が好ましく、微粒子外観としては白色であるものが好ましい。 Examples of the (meth) acrylic group-containing organic fine particles include acrylic beads manufactured by Negami Kogyo Co., Ltd. (trade names: “Art Pearl GR Series”, “Art Pearl SE Series”, “Art Pearl G Series”, “Art Pearl GS”. Series ”,“ Art Pearl J Series ”,“ Art Pearl MF Series ”,“ Art Pearl CE Series ”) and the like. Among these, transparent fine particles are preferable as those capable of obtaining a transparent to white coating film as a cured coating film without impairing photocurability, and those having a white appearance as a fine particle appearance are preferable.
 上記硫黄原子含有合成樹脂フィラーとしては、例えば、東レ社製ポリフェニレンスルフィド樹脂微粒子(商品名;「トレパールPPS」)、ポリエーテルスルホン樹脂(商品名;「トレパールPES」)等が挙げられる。 Examples of the sulfur atom-containing synthetic resin filler include polyphenylene sulfide resin fine particles (trade name: “Trepearl PPS”), polyethersulfone resin (trade name: “Trepearl PES”) manufactured by Toray Industries, Inc., and the like.
 上記フッ素原子含有有機微粒子としては、例えば、興洋化学社製のポリエチレン、ポリテトラフルオロエチレン混合ワックスである(商品名;「ミクロ・フラット PF-8」)、ビックケミー・ジャパン社製のポリテトラフルオロエチレンワックス(商品名;「DERAFLOUR980」、「DERAFLOUR981」)、ポリエチレン-ポリテトラフルオロエチレン混合ワックスである(商品名;「DERAFLOUR997」)、ポリテトラフルオロエチレン変性ポリエチレンワックス(商品名;「DERAFLOUR998」、「DERADOL607」)、喜多村社製ポリテトラフルオロエチレン微粒子(商品名;「KTL-8N」、「KTL-8F」、「KTL-9S」、「KTL-10N」、「KTL-20N」)等が挙げられる。 As the fluorine atom-containing organic fine particles, for example, polyethylene and polytetrafluoroethylene mixed wax manufactured by Koyo Chemical Co., Ltd. (trade name: “Micro Flat PF-8”), polytetrafluoro manufactured by Big Chemie Japan Co., Ltd. Ethylene wax (trade names: “DERAFLOUR 980”, “DERAFLOUR 981”), polyethylene-polytetrafluoroethylene mixed wax (trade name: “DERAFLOUR 997”), polytetrafluoroethylene-modified polyethylene wax (trade name: “DERAFLOUR 998”, “ DERADOL607 ”), polytetrafluoroethylene fine particles (trade names:“ KTL-8N ”,“ KTL-8F ”,“ KTL-9S ”,“ KTL-10N ”,“ KTL-20N ”) manufactured by Kitamura Co., Ltd. It is below.
 上記脂肪酸系ポリマーからなる有機微粒子としては、例えば、ポリヒドロキシアルカノエート誘導体からなるポリマー微粒子が挙げられ、具体的には、3-ヒドロキシブチレート、3-ヒドロキシブチレートと3-ヒドロキシバレレートの共重合化合物、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートの共重合化合物、3-ヒドロキシブチレートと4-ヒドロキシブチレートの共重合化合物などが挙げられる。 Examples of the organic fine particles composed of the fatty acid polymer include polymer fine particles composed of a polyhydroxyalkanoate derivative, and specifically include 3-hydroxybutyrate, a co-polymer of 3-hydroxybutyrate and 3-hydroxyvalerate. Examples thereof include a polymerization compound, a copolymer compound of 3-hydroxybutyrate and 3-hydroxyhexanoate, and a copolymer compound of 3-hydroxybutyrate and 4-hydroxybutyrate.
 上記エポキシ基含有有機微粒子としては、例えば、東レ社製(商品名;「トレパールEP」)が挙げられる。 Examples of the epoxy group-containing organic fine particles include those manufactured by Toray Industries, Inc. (trade name: “Trepearl EP”).
 上記ポリカーボネート樹脂フィラーとしては、例えば、興洋化学社製の(商品名;「ミクロ・フラットMA-07N」)等が挙げられる。 Examples of the polycarbonate resin filler include (trade name: “Micro Flat MA-07N”) manufactured by Koyo Chemical Co., Ltd.
 本発明における有機微粒子(B)の粒子径としては、レーザー回折による粒度分布測定(ISO13320)における50%粒子径(D50)が0.1~25μmであるものが好ましく、特に好ましくは0.5~20μmであり、更に好ましくは1~10μmである。
 かかる50%粒子径が小さすぎると硬化塗膜の光沢が高くなり、外観として高級感が感じられにくい傾向があり、大きすぎると摩耗接点が大きくなることから耐摩耗性が低下し、また硬化表面の凹凸が大きくなりざらつくため、さらさらとした指触感が得られにくい傾向がある。
The particle size of the organic fine particles (B) in the present invention is preferably such that the 50% particle size (D50) in particle size distribution measurement by laser diffraction (ISO 13320) is 0.1 to 25 μm, particularly preferably 0.5 to It is 20 μm, more preferably 1 to 10 μm.
If the 50% particle size is too small, the gloss of the cured coating film tends to be high, and there is a tendency that it is difficult to feel a high-grade appearance. If the particle size is too large, the wear contact becomes large and the wear resistance is reduced. Since the unevenness of the surface becomes large and rough, it tends to be difficult to obtain a smooth touch feeling.
 上記の有機微粒子(B)の真比重としては、好ましくは0.8~2.3、特に好ましくは0.9~2、更に好ましくは1~1.5である。
 かかる真比重が大きすぎるとコーティング後の乾燥工程において微粒子が沈降し、表面凹凸として顕在化しない傾向があり、小さすぎるとウレタン(メタ)アクリレート系化合物(A)の混合が困難となる傾向がある。
The true specific gravity of the organic fine particles (B) is preferably 0.8 to 2.3, particularly preferably 0.9 to 2, and more preferably 1 to 1.5.
If the true specific gravity is too large, fine particles settle in the drying step after coating, and there is a tendency that the surface unevenness does not appear, and if it is too small, mixing of the urethane (meth) acrylate compound (A) tends to be difficult. .
 本発明における有機微粒子(B)の含有量としては、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して、5~100重量部であることが好ましく、特に好ましくは10~75重量部、更に好ましくは15~50重量部である。有機微粒子(B)の含有量が多すぎると硬化塗膜から微粒子が脱落し、塗膜表面がざらつきやすくなる傾向があり、少なすぎるとさらさらとした指触感が得られにくい傾向がある。 The content of the organic fine particles (B) in the present invention is preferably 5 to 100 parts by weight, particularly preferably 10 to 75 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). More preferably, it is 15 to 50 parts by weight. If the content of the organic fine particles (B) is too large, the fine particles fall off from the cured coating film, and the coating film surface tends to be rough. If the content is too small, a smooth touch feeling tends to be difficult to obtain.
 なお、上記含有量の規定において、有機微粒子(B)が溶剤等の分散体である場合は、固形分換算での重量として特定したものである。 In addition, when the organic fine particles (B) are a dispersion such as a solvent in the above-mentioned content definition, the weight is specified as a weight in terms of solid content.
〔活性エネルギー線硬化性樹脂組成物〕
 本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系化合物(A)及び有機微粒子(B)を含有する。
[Active energy ray-curable resin composition]
The active energy ray-curable resin composition of the present invention contains a urethane (meth) acrylate compound (A) and organic fine particles (B).
〔ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)〕
 本発明の活性エネルギー線硬化性樹脂組成物においては、相溶性の点から、ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)(以下、「ウレタン(メタ)アクリレート系化合物(C)」と記載することがある。)を含有することが好ましい。
[Polysiloxane structure-containing urethane (meth) acrylate compound (C)]
In the active energy ray-curable resin composition of the present invention, from the viewpoint of compatibility, the polysiloxane structure-containing urethane (meth) acrylate compound (C) (hereinafter referred to as “urethane (meth) acrylate compound (C)”) May be described)).
 本発明で用いるウレタン(メタ)アクリレート系化合物(C)は、その構造中にポリシロキサン構造を含有するものであればよく、例えば、水酸基を有するポリシロキサン系化合物(c1)と、イソシアネート系化合物(c2)と、水酸基含有(メタ)アクリレート系化合物(c3)、必要に応じて更にポリオール系化合物(c4)を反応させてなる化合物を挙げることができる。 The urethane (meth) acrylate compound (C) used in the present invention only needs to contain a polysiloxane structure in its structure. For example, a polysiloxane compound (c1) having a hydroxyl group and an isocyanate compound ( Examples thereof include compounds obtained by reacting c2) with a hydroxyl group-containing (meth) acrylate compound (c3) and, if necessary, a polyol compound (c4).
 水酸基を有するポリシロキサン系化合物(c1)としては、公知一般のポリシロキサン系化合物を用いることができるが、例えば、下記一般式(1)で示される片末端に水酸基を有するポリシロキサン系化合物や下記一般式(2)で示される両末端に水酸基を有するポリシロキサン系化合物等が挙げられ、なかでも多価イソシアネート系化合物(c2)との反応制御に優れる点で、下記一般式(2)で示される両末端に水酸基を有するポリシロキサン系化合物であることが好ましい。
 なお、上記ウレタン(メタ)アクリレート系化合物(C)は、一般式(1)および(2)両方由来の構造部位を有するものであってもよい。
As the polysiloxane compound (c1) having a hydroxyl group, a known general polysiloxane compound can be used. For example, a polysiloxane compound having a hydroxyl group at one end represented by the following general formula (1) or the following Examples thereof include polysiloxane compounds having hydroxyl groups at both ends represented by the general formula (2). Among them, the compound represented by the following general formula (2) is excellent in reaction control with the polyvalent isocyanate compound (c2). A polysiloxane compound having hydroxyl groups at both ends is preferred.
In addition, the said urethane (meth) acrylate type compound (C) may have a structure site | part derived from both general formula (1) and (2).
Figure JPOXMLDOC01-appb-C000001
〔式中、Rはアルキル基を示し、Rはそれぞれ独立にアルキル基、シクロアルキル基又はフェニル基を示し、Rは炭化水素基又はヘテロ原子を含む有機基を示す。aは1以上の整数であり、bは1~3の整数である。〕
Figure JPOXMLDOC01-appb-C000001
[Wherein, R 1 represents an alkyl group, R 2 independently represents an alkyl group, a cycloalkyl group or a phenyl group, and R 3 represents a hydrocarbon group or an organic group containing a hetero atom. a is an integer of 1 or more, and b is an integer of 1 to 3. ]
Figure JPOXMLDOC01-appb-C000002
〔式中、R、Rは炭化水素基又はヘテロ原子を含む有機基を示し、Rはそれぞれ独立にアルキル基、シクロアルキル基又はフェニル基を示し、aは1以上の整数であり、b、cは1~3の整数である。〕
Figure JPOXMLDOC01-appb-C000002
[Wherein R 1 and R 3 represent a hydrocarbon group or an organic group containing a hetero atom, R 2 independently represents an alkyl group, a cycloalkyl group or a phenyl group, and a is an integer of 1 or more, b and c are integers of 1 to 3. ]
 本発明のウレタン(メタ)アクリレート系化合物(C)の例として、まず、上記一般式(1)で示される片末端に水酸基を有するポリシロキサン系化合物(以下、「ポリシロキサン系化合物(c1-1)」と記載することがある。)を用いて得られるウレタン(メタ)アクリレート系化合物(C1)について説明する。 As an example of the urethane (meth) acrylate compound (C) of the present invention, first, a polysiloxane compound having a hydroxyl group at one end represented by the general formula (1) (hereinafter referred to as “polysiloxane compound (c1-1)”. The urethane (meth) acrylate compound (C1) obtained using “)” is described.
 かかるウレタン(メタ)アクリレート系化合物(C1)は、ポリシロキサン系化合物(c1-1)と、イソシアネート系化合物(c2)と、水酸基含有(メタ)アクリレート系化合物(c3)、更に必要に応じてポリオール系化合物(c4)を反応させてなるものである。 The urethane (meth) acrylate compound (C1) includes a polysiloxane compound (c1-1), an isocyanate compound (c2), a hydroxyl group-containing (meth) acrylate compound (c3), and a polyol as necessary. It is obtained by reacting a system compound (c4).
 かかるポリシロキサン系化合物(c1-1)について、一般式(1)中のRはアルキル基であり、アルキル基の炭素数は比較的短いものが好ましい。具体的には、通常炭素数1~15、好ましくは1~10、特に好ましくは1~5であり、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。 For such a polysiloxane compound (c1-1), R 1 in the general formula (1) is an alkyl group, and the alkyl group preferably has a relatively short carbon number. Specifically, it usually has 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
 一般式(1)中のRはそれぞれ独立に、アルキル基、シクロアルキル基、又はフェニル基である。
 アルキル基の炭素数は比較的短いものが好ましい。具体的には、通常炭素数1~15、好ましくは1~10、特に好ましくは1~5であり、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。
 シクロアルキル基の炭素数としては、通常炭素数3~10、好ましくは5~8であり、例えば、シクロペンチル基、シクロヘキシル基、ノルボニル基等が挙げられる。
R 2 in the general formula (1) is each independently an alkyl group, a cycloalkyl group, or a phenyl group.
The alkyl group preferably has a relatively short carbon number. Specifically, it usually has 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
The carbon number of the cycloalkyl group is usually 3 to 10, preferably 5 to 8, and examples thereof include a cyclopentyl group, a cyclohexyl group, and a norbornyl group.
 また、上記アルキル基、シクロアルキル基、フェニル基は置換基を有するものであってもよい。置換基としては、通常、ハロゲン原子、水酸基、アルコキシ基、アミノ基、メルカプト基、スルファニル基、ビニル基、アクリロキシ基、メタクリロキシ基、アリール基、ヘテロアリール基等が挙げられる。なお、かかる置換基が炭素原子を有する場合には、該炭素原子は上記Rの説明中で規定している炭素数には含めないものとする。 The alkyl group, cycloalkyl group, and phenyl group may have a substituent. Examples of the substituent usually include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a mercapto group, a sulfanyl group, a vinyl group, an acryloxy group, a methacryloxy group, an aryl group, and a heteroaryl group. In the case where the substituent has a carbon atom, said carbon atom shall not included in the number of carbon atoms is specified in the description of the R 2.
 一般式(1)中のRは、炭化水素基又はヘテロ原子を含む有機基である。
 炭化水素基としては、通常炭素数1~30、好ましくは炭素数1~20であり、二価または三価の炭化水素基が挙げられる。
 二価の炭化水素基としては、例えば、アルキレン基が挙げられる。アルキレン基の炭素数は1~10が好ましく、特に好ましくは炭素数1~4であり、例えば、エチレン基、プロピレン基、テトラメチレン基等が挙げられる。
 ヘテロ原子を含む有機基としては、例えば、オキシアルキレン基、ポリオキシアルキレン基、ポリカプロラクトン基、アミノ基等が挙げられる。
R 3 in the general formula (1) is a hydrocarbon group or an organic group containing a hetero atom.
The hydrocarbon group usually has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, and examples thereof include divalent or trivalent hydrocarbon groups.
Examples of the divalent hydrocarbon group include an alkylene group. The alkylene group preferably has 1 to 10 carbon atoms, particularly preferably 1 to 4 carbon atoms, and examples thereof include an ethylene group, a propylene group, and a tetramethylene group.
Examples of the organic group containing a hetero atom include an oxyalkylene group, a polyoxyalkylene group, a polycaprolactone group, and an amino group.
 一般式(1)中のaは1以上の整数であり、好ましくは5~200、特に好ましくは5~120の整数である。bは1~3の整数であり、好ましくは1~2の整数である。 A in the general formula (1) is an integer of 1 or more, preferably 5 to 200, particularly preferably an integer of 5 to 120. b is an integer of 1 to 3, and preferably an integer of 1 to 2.
 本発明で用いられるポリシロキサン系化合物(c1-1)の重量平均分子量としては、通常100~50,000であることが好ましく、特には500~10,000、更には1,000~10,000であることが好ましい。かかる重量平均分子量が低すぎると防汚性能と耐薬品性が低下する傾向があり、高すぎると相溶性が低下して、コーティング剤が白濁したり、硬化塗膜のヘイズが高くなる傾向がある。 The weight average molecular weight of the polysiloxane compound (c1-1) used in the present invention is usually preferably 100 to 50,000, particularly 500 to 10,000, and more preferably 1,000 to 10,000. It is preferable that If the weight average molecular weight is too low, the antifouling performance and chemical resistance tend to decrease, and if it is too high, the compatibility decreases, the coating agent tends to become cloudy, or the haze of the cured coating film tends to increase. .
 片末端に水酸基を有するポリシロキサン系化合物(c1-1)の具体例としては、例えば、信越化学工業社製(商品名;「X-22-170BX」、「X-22-170DX」、「X-22-176DX」、「X-22-176F」)、チッソ社製(商品名;「サイラプレーンFM-0411」、「サイラプレーンFM-0421」、「サイラプレーンFM-0425」、「サイラプレーンFM-DA11」、「サイラプレーンFM-DA21」、「サイラプレーンFM-DA26」)等の商品が挙げられる。 Specific examples of the polysiloxane compound (c1-1) having a hydroxyl group at one end are, for example, manufactured by Shin-Etsu Chemical Co., Ltd. (trade names: “X-22-170BX”, “X-22-170DX”, “X -22-176DX "," X-22-176F "), manufactured by Chisso Corporation (trade names;" Silaplane FM-0411 "," Silaplane FM-0421 "," Silaplane FM-0425 "," Silaplane FM -DA11 "," Silaplane FM-DA21 "," Silaplane FM-DA26 ") and the like.
 イソシアネート系化合物(c2)としては、例えば、上記ウレタン(メタ)アクリレート系化合物(A)に関する説明の中で、イソシアネート系化合物(a1)として例示したものと同様のものが挙げられる。
 これらの中でも、1分子中にイソシアネート基を3個以上有するイソシアネート系化合物、特にはポリイソシアネートの3量体又は多量体化合物であることが、未反応の低分子量成分を少なくできる点でより好ましい。
As an isocyanate type compound (c2), the thing similar to what was illustrated as an isocyanate type compound (a1) in the description regarding the said urethane (meth) acrylate type compound (A) is mentioned, for example.
Among these, an isocyanate compound having 3 or more isocyanate groups in one molecule, particularly a polyisocyanate trimer or multimer compound, is more preferable in terms of reducing the amount of unreacted low molecular weight components.
 水酸基含有(メタ)アクリレート系化合物(c3)としては、例えば、上記ウレタン(メタ)アクリレート系化合物(A)に関する説明の中で、水酸基含有(メタ)アクリレート系化合物(a2)として例示したものと同様のものが挙げられる。
 これらの中でも、より多くの架橋点を持つことで硬化塗膜に固定され、防汚性能を維持できるため、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが好ましい。
Examples of the hydroxyl group-containing (meth) acrylate compound (c3) are the same as those exemplified as the hydroxyl group-containing (meth) acrylate compound (a2) in the description of the urethane (meth) acrylate compound (A). Can be mentioned.
Among these, pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate are preferred because they can be fixed to the cured coating film by having more crosslinking points and maintain antifouling performance.
 更に、本発明の効果を損なわない範囲で、ポリオール系化合物(c4)を用いてもよく、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2,2-ジメチロールヘプタン、水添ビスフェノールA、ヒドロキシアルキル化ビスフェノールA、1,4-シクロヘキサンジメタノール、2,2,4-トリメチル-1,3-ペンタンジオール、N,N-ビス-(2-ヒドロキシエチル)ジメチルヒダントイン、グリセリン、ソルビトール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール、トリス-(ヒドロキシエチル)イソシアヌレート等の低分子量ポリオール;ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、(メタ)アクリル系ポリオール、ポリカプロラクトン系ポリオール、ポリウレタン系ポリオール等が挙げられる。 Furthermore, a polyol compound (c4) may be used as long as the effects of the present invention are not impaired. For example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 1,2-butanediol, 1 , 3-butanediol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octane Diol, 1,9-nonanediol, 2,2-dimethylolheptane, hydrogenated bisphenol A, hydroxyalkylated bisphenol A, 1,4-cyclohexanedimethanol, 2,2,4-trimethyl-1,3-pentanediol N, N-bis- (2-hydroxyethyl) dimethylhydan Low molecular weight polyols such as in, glycerin, sorbitol, trimethylolethane, trimethylolpropane, trimethylolbutane, hexanetriol, pentaerythritol, dipentaerythritol, tris- (hydroxyethyl) isocyanurate; polyether polyols, polyester polyols , Polycarbonate polyol, polyolefin polyol, polybutadiene polyol, (meth) acrylic polyol, polycaprolactone polyol, polyurethane polyol and the like.
 上記ポリエーテル系ポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール、ポリヘキサメチレングリコール等のアルキレン構造含有ポリエーテル系ポリオールや、これらポリアルキレングリコールのランダム或いはブロック共重合体が挙げられる。 Examples of the polyether polyol include, for example, polyether glycols containing an alkylene structure such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block copolymers of these polyalkylene glycols. Coalescence is mentioned.
 上記ポリエステル系ポリオールとしては、例えば、多価アルコールと多価カルボン酸との縮合重合物;環状エステル(ラクトン)の開環重合物;多価アルコール、多価カルボン酸及び環状エステルの3種類の成分による反応物などが挙げられる。 Examples of the polyester-based polyol include three types of components: a condensation polymer of a polyhydric alcohol and a polycarboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a polyhydric alcohol, a polycarboxylic acid, and a cyclic ester. And the like.
 前記多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、3-メチル-1,5-ペンタメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、グリセリン、トリメチロールプロパン、トリメチロールエタン、シクロヘキサンジオール類(1,4-シクロヘキサンジオールなど)、ビスフェノール類(ビスフェノールAなど)、糖アルコール類(キシリトールやソルビトールなど)などが挙げられる。
 前記多価カルボン酸としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸などが挙げられる。
 前記環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなどが挙げられる。
Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-tetramethylene diol, 1,3-tetramethylene diol, 2-methyl-1,3-trimethyl. Methylene diol, 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, 3-methyl-1,5-pentamethylene diol, 2,4-diethyl-1,5-pentamethylene diol, glycerin , Trimethylolpropane, trimethylolethane, cyclohexanediols (such as 1,4-cyclohexanediol), bisphenols (such as bisphenol A), and sugar alcohols (such as xylitol and sorbitol).
Examples of the polyvalent carboxylic acid include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; -Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid, trimellitic acid, and the like.
Examples of the cyclic ester include propiolactone, β-methyl-δ-valerolactone, and ε-caprolactone.
 ポリオール系化合物(c4)の重量平均分子量としては、50~8,000が好ましく、特に好ましくは70~5,000、更に好ましくは90~3,000である。ポリオール(c4)の重量平均分子量が大きすぎると、硬化時に塗膜硬度等の機械的物性が低下する傾向があり、小さすぎると製造時に増粘して安定性が低下する傾向がある。 The weight average molecular weight of the polyol compound (c4) is preferably 50 to 8,000, particularly preferably 70 to 5,000, and further preferably 90 to 3,000. If the weight average molecular weight of the polyol (c4) is too large, mechanical properties such as coating film hardness tend to be reduced during curing, and if it is too small, the viscosity tends to increase during production and stability tends to be lowered.
 ウレタン(メタ)アクリレート系化合物(C1)は、1個以上のエチレン性不飽和基を有するものであることが好ましく、硬化塗膜の硬度の点で3個以上のエチレン性不飽和基を有するものであることが特に好ましく、更には6個以上のエチレン性不飽和基を有するものであることが好ましい。
 また、ウレタン(メタ)アクリレート系化合物(C1)が含有するエチレン性不飽和基数の上限は通常30個であり、好ましくは25個以下である。
The urethane (meth) acrylate compound (C1) preferably has one or more ethylenically unsaturated groups, and has three or more ethylenically unsaturated groups in terms of the hardness of the cured coating film. It is particularly preferable that it has 6 or more ethylenically unsaturated groups.
Moreover, the upper limit of the number of ethylenically unsaturated groups which a urethane (meth) acrylate type compound (C1) contains is 30 normally, Preferably it is 25 or less.
 ウレタン(メタ)アクリレート系化合物(C1)の製造方法としては、特に限定されるものではなく、例えば、
(i):ポリシロキサン系化合物(c1-1)、イソシアネート系化合物(c2)(必要に応じて、予め、ポリオール系化合物(c4)と反応させたイソシアネート系化合物(c2))、水酸基含有(メタ)アクリレート系化合物(c3)を一括に仕込み反応させる方法、
(ii):ポリシロキサン系化合物(c1-1)とイソシアネート系化合物(c2)(必要に応じて、予め、ポリオール系化合物(c4)と反応させたイソシアネート系化合物(c2))を反応させた後、水酸基含有(メタ)アクリレート系化合物(c3)を反応させる方法、
(iii):イソシアネート系化合物(c2)(必要に応じて、予め、ポリオール系化合物(c4)と反応させたイソシアネート系化合物(c2))と水酸基含有(メタ)アクリレート系化合物(c3)を反応させた後、ポリシロキサン系化合物(c1-1)を反応させる方法、
(iv):イソシアネート系化合物(c2)(必要に応じて、予め、ポリオール系化合物(c4)と反応させたイソシアネート系化合物(c2))と水酸基含有(メタ)アクリレート系化合物(c3)の一部を反応させた後、ポリシロキサン系化合物(c1-1)を反応させ、さらに残りの水酸基含有(メタ)アクリレート系化合物(c3)を反応させる方法、
等が挙げられるが、これらの中でも、(ii)または(iv)の方法が好ましく、反応制御の安定性や相溶性の点で、特に好ましくは(ii)の方法である。
As a manufacturing method of a urethane (meth) acrylate type compound (C1), it is not specifically limited, for example,
(I): polysiloxane compound (c1-1), isocyanate compound (c2) (isocyanate compound (c2) previously reacted with polyol compound (c4) if necessary), hydroxyl group-containing (meta ) A method in which the acrylate compound (c3) is charged and reacted together,
(Ii): after reacting a polysiloxane compound (c1-1) and an isocyanate compound (c2) (if necessary, an isocyanate compound (c2) previously reacted with a polyol compound (c4)) , A method of reacting a hydroxyl group-containing (meth) acrylate compound (c3),
(Iii): Isocyanate compound (c2) (if necessary, the isocyanate compound (c2) previously reacted with the polyol compound (c4)) and the hydroxyl group-containing (meth) acrylate compound (c3) are reacted. And then reacting the polysiloxane compound (c1-1),
(Iv): Isocyanate compound (c2) (if necessary, isocyanate compound (c2) previously reacted with polyol compound (c4)) and a part of hydroxyl group-containing (meth) acrylate compound (c3) After reacting the polysiloxane compound (c1-1), and further reacting the remaining hydroxyl group-containing (meth) acrylate compound (c3),
Among these, among these, the method (ii) or (iv) is preferred, and the method (ii) is particularly preferred from the viewpoint of stability of reaction control and compatibility.
 なお、予めポリオール系化合物(c4)とイソシアネート系化合物(c2)を反応させる場合には、例えば、公知一般のウレタン系ポリオールの製造例に従えばよい。 In addition, what is necessary is just to follow the manufacture example of a well-known general urethane type polyol, for example, when making a polyol type compound (c4) and an isocyanate type compound (c2) react previously.
 かかる(ii)の方法にあたっては、ポリシロキサン系化合物(c1-1)の水酸基とイソシアネート系化合物(c2)のイソシアネート基を、イソシアネート基を残存させる条件下で反応させた後、次いでイソシアネート系化合物(c2)の該残存イソシアネート基と上記水酸基含有(メタ)アクリレート系化合物(c3)の水酸基を反応させるのである。 In the method (ii), the hydroxyl group of the polysiloxane compound (c1-1) and the isocyanate group of the isocyanate compound (c2) are reacted under the conditions that leave the isocyanate group, and then the isocyanate compound ( The residual isocyanate group in c2) is reacted with the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (c3).
 ポリシロキサン系化合物(c1-1)とイソシアネート系化合物(c2)との反応モル比は、例えば、ポリシロキサン系化合物(c1)の水酸基が1個で、イソシアネート系化合物(c2)のイソシアネート基が2個である場合は、ポリシロキサン系化合物(c1-1):イソシアネート系化合物(c2)=1:0.8~1:10程度であり、ポリシロキサン系化合物(c1-1)の水酸基が1個で、イソシアネート系化合物(c2)のイソシアネート基が3個である場合は、ポリシロキサン系化合物(c1):イソシアネート系化合物(c2)=1:0.2~1:5程度であればよい。 The reaction molar ratio between the polysiloxane compound (c1-1) and the isocyanate compound (c2) is, for example, that the polysiloxane compound (c1) has one hydroxyl group and the isocyanate compound (c2) has 2 isocyanate groups. In the case of polysiloxane compound (c1-1): isocyanate compound (c2) = 1: 0.8 to 1:10, and one polysiloxane compound (c1-1) has one hydroxyl group. In the case where the isocyanate compound (c2) has three isocyanate groups, the polysiloxane compound (c1): isocyanate compound (c2) may be about 1: 0.2 to 1: 5.
 この反応生成物と水酸基含有(メタ)アクリレート系化合物(c3)との付加反応においては、反応系の残存イソシアネート基が0.5重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(C1)が得られる。 In the addition reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (c3), the reaction is terminated when the residual isocyanate group in the reaction system is 0.5% by weight or less. ) An acrylate compound (C1) is obtained.
 また、ウレタン(メタ)アクリレート系化合物(C1)100重量部中に含まれるポリシロキサン系化合物(c1-1)に由来する構造部分の重量としては、上記モル比の範囲内で0.1~80重量部であることが好ましい。 The weight of the structural portion derived from the polysiloxane compound (c1-1) contained in 100 parts by weight of the urethane (meth) acrylate compound (C1) is 0.1 to 80 within the above molar ratio range. It is preferable that it is a weight part.
 上記反応においては、反応を促進する目的で触媒を用いることも好ましく、かかる触媒としては、上記のウレタン(メタ)アクリレート系化合物(A)の製造方法において用いることができる触媒と同様のものを用いることができる。 In the above reaction, it is also preferable to use a catalyst for the purpose of accelerating the reaction. As such a catalyst, the same catalyst as that which can be used in the method for producing the urethane (meth) acrylate compound (A) is used. be able to.
 上記反応においては、イソシアネート基に対して反応する官能基を有しない有機溶剤、例えば、酢酸エチル、酢酸ブチル等のエステル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族類等の有機溶剤を用いることができる。これら有機溶剤は、1種を単独で、または2種以上を併せて用いることができる。 In the above reaction, an organic solvent having no functional group that reacts with an isocyanate group, for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatics such as toluene and xylene An organic solvent such as can be used. These organic solvents can be used individually by 1 type or in combination of 2 or more types.
 上記反応の反応温度は、通常30~100℃、好ましくは40~90℃であり、反応時間は、通常2~10時間、好ましくは3~8時間である。 The reaction temperature of the above reaction is usually 30 to 100 ° C., preferably 40 to 90 ° C., and the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
 かくして得られるウレタン(メタ)アクリレート系化合物(C1)の重量平均分子量としては、通常500~50,000であることが好ましく、更には500~30,000であることが好ましい。かかる重量平均分子量が小さすぎると防汚性や耐薬品性が低下しやすい傾向があり、大きすぎると塗工性が低下しやすい傾向がある。 The weight average molecular weight of the urethane (meth) acrylate compound (C1) thus obtained is usually preferably 500 to 50,000, and more preferably 500 to 30,000. If the weight average molecular weight is too small, the antifouling property and chemical resistance tend to decrease, and if too large, the coating property tends to decrease.
 ウレタン(メタ)アクリレート系化合物(C1)の50重量%酢酸ブチル溶液の20℃における粘度は、1~5,000mPa・sであることが好ましく、特には2~2,500mPa・s、更には3~1,000mPa・sであることが好ましい。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 尚、粘度の測定法はB型粘度計による。
The viscosity at 20 ° C. of a 50 wt% butyl acetate solution of the urethane (meth) acrylate compound (C1) is preferably 1 to 5,000 mPa · s, particularly 2 to 2,500 mPa · s, and more preferably 3 It is preferably ˜1,000 mPa · s. When the viscosity is out of the above range, the coatability tends to be lowered.
The viscosity is measured using a B-type viscometer.
 次に、上記一般式(2)で示される両末端に水酸基を有するポリシロキサン系化合物(以下、「ポリシロキサン系化合物(c1-2)」と記載することがある。)を用いて得られるウレタン(メタ)アクリレート系化合物(C2)について説明する。 Next, a urethane obtained by using a polysiloxane compound having hydroxyl groups at both ends represented by the general formula (2) (hereinafter sometimes referred to as “polysiloxane compound (c1-2)”). The (meth) acrylate compound (C2) will be described.
 かかるウレタン(メタ)アクリレート系化合物(C2)は、ポリシロキサン系化合物(c1-2)と、イソシアネート系化合物(c2)と、水酸基含有(メタ)アクリレート系化合物(c3)、更に必要に応じてポリオール系化合物(c4)を反応させてなるものである。 The urethane (meth) acrylate compound (C2) includes a polysiloxane compound (c1-2), an isocyanate compound (c2), a hydroxyl group-containing (meth) acrylate compound (c3), and a polyol as necessary. It is obtained by reacting a system compound (c4).
 かかるポリシロキサン系化合物(c1-2)について、一般式(2)中のR、Rは、炭化水素基又はヘテロ原子を含む有機基である。
 炭化水素基としては、通常炭素数1~100、好ましくは炭素数1~25、特に好ましくは1~5であり、二価または三価の炭化水素基が挙げられる。
 二価の炭化水素基としては、アルキレン基が挙げられる。アルキレン基の炭素数は1~10が好ましく、特に好ましくは炭素数1~4であり、例えば、エチレン基、プロピレン基、テトラメチレン基等が挙げられる。
 ヘテロ原子を含む有機基としては、例えば、オキシアルキレン基、ポリオキシアルキレン基、ポリカプロラクトン基、アミノ基等が挙げられる。
In the polysiloxane compound (c1-2), R 1 and R 3 in the general formula (2) are a hydrocarbon group or an organic group containing a hetero atom.
The hydrocarbon group usually has 1 to 100 carbon atoms, preferably 1 to 25 carbon atoms, particularly preferably 1 to 5 carbon atoms, and examples thereof include divalent or trivalent hydrocarbon groups.
Examples of the divalent hydrocarbon group include an alkylene group. The alkylene group preferably has 1 to 10 carbon atoms, particularly preferably 1 to 4 carbon atoms, and examples thereof include an ethylene group, a propylene group, and a tetramethylene group.
Examples of the organic group containing a hetero atom include an oxyalkylene group, a polyoxyalkylene group, a polycaprolactone group, and an amino group.
 一般式(2)中のRはそれぞれ独立に、アルキル基、シクロアルキル基、又はフェニル基である。
 アルキル基の炭素数は比較的短いものが好ましい。具体的には、通常炭素数1~15、好ましくは1~10、特に好ましくは1~5であり、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。
 シクロアルキル基の炭素数としては、通常炭素数3~10、好ましくは5~8であり、例えば、シクロペンチル基、シクロヘキシル基、ノルボニル基等が挙げられる。
R 2 in the general formula (2) is each independently an alkyl group, a cycloalkyl group, or a phenyl group.
The alkyl group preferably has a relatively short carbon number. Specifically, it usually has 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
The carbon number of the cycloalkyl group is usually 3 to 10, preferably 5 to 8, and examples thereof include a cyclopentyl group, a cyclohexyl group, and a norbornyl group.
 また、上記アルキル基、シクロアルキル基、フェニル基は置換基を有するものであってもよい。置換基としては、通常、ハロゲン原子、水酸基、アルコキシ基、アミノ基、メルカプト基、スルファニル基、ビニル基、アクリロキシ基、メタクリロキシ基、アリール基、ヘテロアリール基等が挙げられる。なお、かかる置換基が炭素原子を有する場合には、該炭素原子は上記Rの説明中で規定している炭素数には含めないものとする。 The alkyl group, cycloalkyl group, and phenyl group may have a substituent. Examples of the substituent usually include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a mercapto group, a sulfanyl group, a vinyl group, an acryloxy group, a methacryloxy group, an aryl group, and a heteroaryl group. In the case where the substituent has a carbon atom, said carbon atom shall not included in the number of carbon atoms is specified in the description of the R 2.
 一般式(2)中のaは1以上の整数であり、好ましくは5~200、特に好ましくは5~120の整数である。bおよびcは1~3の整数であり、好ましくは1~2の整数である。 A in the general formula (2) is an integer of 1 or more, preferably 5 to 200, particularly preferably an integer of 5 to 120. b and c are an integer of 1 to 3, preferably an integer of 1 to 2.
 両末端に水酸基を有するポリシロキサン系化合物(c1-2)の重量平均分子量としては、通常100~50,000であることが好ましく、特には500~10,000、更には1,000~10,000であることが好ましい。かかる重量平均分子量が低すぎると防汚性能と耐薬品性が低下する傾向があり、高すぎると相溶性が低下して、コーティング剤が白濁したり、硬化塗膜のヘイズが高くなる傾向がある。 The weight average molecular weight of the polysiloxane compound (c1-2) having hydroxyl groups at both ends is usually preferably 100 to 50,000, particularly 500 to 10,000, more preferably 1,000 to 10,000. 000 is preferred. If the weight average molecular weight is too low, the antifouling performance and chemical resistance tend to decrease, and if it is too high, the compatibility decreases, the coating agent tends to become cloudy, or the haze of the cured coating film tends to increase. .
 両末端に水酸基を有するポリシロキサン系化合物(c1-2)の具体例としては、信越化学工業社製(商品名;「KF-6001」、「KF-6002」、「KF-6003」)、JNC社製(商品名;「サイラプレーンFM-4421」、「サイラプレーンFM-4425」)、旭化成ワッカーシリコーン社製(商品名;「IM15」、「IM22」、「CT5000M」、「CT6000M」)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製(商品名;「XF42-B0970」)、東レ・ダウコーニング社製(商品名;「BY16-004」、「SF8427」)、東亞合成社製(商品名;「マクロモノマーHK-20」)、GELEST社製(商品名;「DMS-C21」、「DMS-C23」、「DBL-C31」、「DMS-CA21」)等の商品が挙げられる。 Specific examples of the polysiloxane compound (c1-2) having hydroxyl groups at both ends include those manufactured by Shin-Etsu Chemical Co., Ltd. (trade names: “KF-6001”, “KF-6002”, “KF-6003”), JNC Manufactured by Asahi Kasei Wacker Silicone Co., Ltd. (trade names; “IM15”, “IM22”, “CT5000M”, “CT6000M”), Momentive (trade names; “Silaplane FM-4421”, “Silaplane FM-4425”) -Performance Materials Japan (trade name; "XF42-B0970"), Toray Dow Corning (trade name; "BY16-004", "SF8427"), Toagosei Co., Ltd. (trade name; " Macromonomer HK-20 ", manufactured by GELEST (trade names;" DMS-C21 "," DMS-C23 "," DBL-C31 ") "," DMS-CA21 ") and the like.
 ウレタン(メタ)アクリレート系化合物(C2)は、2個以上のエチレン性不飽和基を有するものであることが好ましく、硬化塗膜の硬度の点で4個以上のエチレン性不飽和基を有するものであることが特に好ましく、更には6個以上のエチレン性不飽和基を有するものであることが好ましい。
 また、ウレタン(メタ)アクリレート系化合物(C2)が含有するエチレン性不飽和基数の上限は通常30個であり、好ましくは25個以下である。
The urethane (meth) acrylate compound (C2) preferably has 2 or more ethylenically unsaturated groups, and has 4 or more ethylenically unsaturated groups in terms of the hardness of the cured coating film. It is particularly preferable that it has 6 or more ethylenically unsaturated groups.
Moreover, the upper limit of the number of ethylenically unsaturated groups which a urethane (meth) acrylate type compound (C2) contains is 30 normally, Preferably it is 25 or less.
 ウレタン(メタ)アクリレート系化合物(C2)の製造方法としては、特に限定されるものではなく、例えば、上記ウレタン(メタ)アクリレート(C1)に関する説明の中で記載した方法と同様の方法が挙げられるが、なかでも(ii)又は(iv)の方法が好ましく、反応制御の安定性や相溶性の点で、特に好ましくは(ii)の方法である。 It does not specifically limit as a manufacturing method of a urethane (meth) acrylate type compound (C2), For example, the method similar to the method described in the description regarding the said urethane (meth) acrylate (C1) is mentioned. However, among these, the method (ii) or (iv) is preferable, and the method (ii) is particularly preferable from the viewpoint of stability of reaction control and compatibility.
 かかる(ii)の方法にあたっては、ポリシロキサン系化合物(c1-2)の水酸基とイソシアネート系化合物(c2)のイソシアネート基を、イソシアネート基を残存させる条件下で反応させた後、次いでイソシアネート系化合物(c2)の該残存イソシアネート基と上記水酸基含有(メタ)アクリレート系化合物(c3)の水酸基を反応させる。 In the method (ii), the hydroxyl group of the polysiloxane compound (c1-2) and the isocyanate group of the isocyanate compound (c2) are reacted under the conditions in which the isocyanate group remains, and then the isocyanate compound ( The residual isocyanate group of c2) is reacted with the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (c3).
 ポリシロキサン系化合物(c1-2)とイソシアネート系化合物(c2)との反応モル比は、例えば、ポリシロキサン系化合物(c1-2)の水酸基が2個で、イソシアネート系化合物(c2)のイソシアネート基が2個である場合は、ポリシロキサン系化合物(c1-2):イソシアネート系化合物(c2)=1:1.1~1:2.2程度であり、ポリシロキサン系化合物(c1-2)の水酸基が2個で、イソシアネート系化合物(c2)のイソシアネート基が3個である場合は、ポリシロキサン系化合物(c1-2):イソシアネート系化合物(c2)=1:0.5~1:2.2程度であればよい。 The reaction molar ratio between the polysiloxane compound (c1-2) and the isocyanate compound (c2) is, for example, that the polysiloxane compound (c1-2) has two hydroxyl groups and the isocyanate group of the isocyanate compound (c2). Is about 2, polysiloxane compound (c1-2): isocyanate compound (c2) = 1: 1.1 to 1: 2.2, and polysiloxane compound (c1-2) When the number of hydroxyl groups is 2 and the number of isocyanate groups of the isocyanate compound (c2) is 3, the polysiloxane compound (c1-2): isocyanate compound (c2) = 1: 0.5 to 1: 2. It may be about 2.
 この反応生成物と水酸基含有(メタ)アクリレート系化合物(c3)との付加反応においては、反応系の残存イソシアネート基が0.5重量%以下になる時点で反応を終了させることにより、ウレタン(メタ)アクリレート系化合物(C2)が得られる。 In the addition reaction between the reaction product and the hydroxyl group-containing (meth) acrylate compound (c3), the reaction is terminated when the residual isocyanate group in the reaction system is 0.5% by weight or less. ) An acrylate compound (C2) is obtained.
 また、ウレタン(メタ)アクリレート系化合物(C2)100重量部中に含まれるポリシロキサン系化合物(c1-2)に由来する構造部分の重量は、上記モル比の範囲内で0.1~80重量部であることが好ましい。 The weight of the structural portion derived from the polysiloxane compound (c1-2) contained in 100 parts by weight of the urethane (meth) acrylate compound (C2) is 0.1 to 80 weights within the above molar ratio range. Part.
 上記反応においては、上記ウレタン(メタ)アクリレート(C1)の場合と同様に、反応を促進する目的で触媒を用いることも好ましく、また、イソシアネート基に対して反応する官能基を有しない有機溶剤を用いることができる。 In the above reaction, as in the case of the urethane (meth) acrylate (C1), it is also preferable to use a catalyst for the purpose of promoting the reaction, and an organic solvent having no functional group that reacts with an isocyanate group is used. Can be used.
 上記反応の反応温度は、通常30~100℃、好ましくは40~90℃であり、反応時間は、通常2~10時間、好ましくは3~8時間である。 The reaction temperature of the above reaction is usually 30 to 100 ° C., preferably 40 to 90 ° C., and the reaction time is usually 2 to 10 hours, preferably 3 to 8 hours.
 かくして得られるウレタン(メタ)アクリレート系化合物(C2)の重量平均分子量としては、通常500~50,000であることが好ましく、更には2,000~30,000であることが好ましい。かかる重量平均分子量が小さすぎると防汚性や耐薬品性が低下しやすい傾向があり、大きすぎると塗工性が低下しやすい傾向がある。 The weight average molecular weight of the urethane (meth) acrylate compound (C2) thus obtained is usually preferably from 500 to 50,000, and more preferably from 2,000 to 30,000. If the weight average molecular weight is too small, the antifouling property and chemical resistance tend to decrease, and if too large, the coating property tends to decrease.
 ウレタン(メタ)アクリレート系化合物(C2)の50重量%酢酸ブチル溶液の20℃における粘度は、1~5,000mPa・sであることが好ましく、特には2~2,500mPa・s、更には3~1,000mPa・sであることが好ましい。かかる粘度が上記範囲外では相溶性が低下する傾向がある。
 尚、粘度の測定法はB型粘度計による。
The viscosity at 20 ° C. of a 50% by weight butyl acetate solution of the urethane (meth) acrylate compound (C2) is preferably 1 to 5,000 mPa · s, particularly 2 to 2,500 mPa · s, and more preferably 3 It is preferably ˜1,000 mPa · s. If the viscosity is outside the above range, the compatibility tends to decrease.
The viscosity is measured using a B-type viscometer.
 かくして本発明のウレタン(メタ)アクリレート系化合物(C)が得られる。上記ウレタン(メタ)アクリレート系化合物(C)は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。 Thus, the urethane (meth) acrylate compound (C) of the present invention is obtained. The said urethane (meth) acrylate type compound (C) may be used individually by 1 type, and may use 2 or more types together.
 ウレタン(メタ)アクリレート系化合物(C)は、(C)全体に対するケイ素原子含有量が0.1~80重量%であることが好ましく、特に好ましくは0.3~60重量%、更に好ましくは0.5~30重量%である。
 かかるケイ素原子含有量が多すぎると他の成分との相溶性が低下する傾向があり、少なすぎると防汚性改善のために必要とする配合量が多くなり、塗膜の物性バランスを取り難くなる傾向がある。
The urethane (meth) acrylate compound (C) preferably has a silicon atom content of from 0.1 to 80% by weight, particularly preferably from 0.3 to 60% by weight, more preferably 0, based on the whole (C). .5 to 30% by weight.
If the silicon atom content is too high, the compatibility with other components tends to decrease. If the silicon atom content is too low, the blending amount required for improving the antifouling property increases, making it difficult to balance the physical properties of the coating film. Tend to be.
 ウレタン(メタ)アクリレート系化合物(C)の含有量は、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して0.001~1重量部であることが好ましく、更に好ましくは0.01~0.5重量部、特に好ましくは0.01~0.3重量部である。かかる含有量が多すぎると樹脂溶液の泡が安定化され、混合時の気泡が消失し難く、塗装に悪影響を与える傾向があり、少なすぎると防汚性が充分に得られない傾向がある。 The content of the urethane (meth) acrylate compound (C) is preferably 0.001 to 1 part by weight, more preferably 0.01 to 100 parts by weight of the urethane (meth) acrylate compound (A). Is 0.5 to 0.5 parts by weight, particularly preferably 0.01 to 0.3 parts by weight. If the content is too large, the foam of the resin solution is stabilized, the bubbles at the time of mixing hardly disappear and tend to adversely affect the coating, and if it is too small, the antifouling property tends not to be sufficiently obtained.
 さらに、本発明の活性エネルギー線硬化性樹脂組成物には、必要に応じて、ウレタン(メタ)アクリレート系化合物(A)及びポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)以外のエチレン性不飽和モノマー(D)(以下、「エチレン性不飽和モノマー(D」)と記載することがある。)、光重合開始剤(E)、アクリル樹脂、表面調整剤、レベリング剤、重合禁止剤等を添加することができ、更には、油、酸化防止剤、難燃剤、帯電防止剤、充填剤、安定剤、補強剤、艶消し剤、研削剤、有機微粒子、無機粒子等を含有させることも可能である。 Furthermore, in the active energy ray-curable resin composition of the present invention, if necessary, ethylenic compounds other than the urethane (meth) acrylate compound (A) and the polysiloxane structure-containing urethane (meth) acrylate compound (C). Unsaturated monomer (D) (hereinafter sometimes referred to as “ethylenically unsaturated monomer (D”)), photopolymerization initiator (E), acrylic resin, surface conditioner, leveling agent, polymerization inhibitor, etc. Furthermore, oils, antioxidants, flame retardants, antistatic agents, fillers, stabilizers, reinforcing agents, matting agents, abrasives, organic fine particles, inorganic particles, etc. may be added. Is possible.
〔エチレン性不飽和モノマー(D)〕
 上記エチレン性不飽和モノマー(D)としては、単官能モノマー、2官能モノマー、3官能以上のモノマーが挙げられる。
[Ethylenically unsaturated monomer (D)]
As said ethylenically unsaturated monomer (D), a monofunctional monomer, a bifunctional monomer, a trifunctional or more monomer is mentioned.
 かかる単官能モノマーとしては、例えば、スチレン、ビニルトルエン、クロロスチレン、α-メチルスチレン等のスチレン系モノマー;メチル(メタ)アクリレート、エチル(メタ)アクリレート、アクリロニトリル、2-メトキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、ラウリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリルレート、ジシクロペンタニル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)-メチル(メタ)アクリレート、シクロヘキサンスピロ-2-(1,3-ジオキソラン-4-イル)-メチル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート、γ-ブチロラクトン(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノールエチレンオキサイド変性(n=2)(メタ)アクリレート、ノニルフェノールプロピレンオキサイド変性(n=2.5)(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート等のフタル酸誘導体のハーフ(メタ)アクリレート;フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カルビトール(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルモルフォリン、ポリオキシエチレン第2級アルキルエーテルアクリレート等の(メタ)アクリレート系モノマー;2-ヒドロキシエチルアクリルアミド、N-メチロール(メタ)アクリルアミド、N-ビニルピロリドン、2-ビニルピリジン、酢酸ビニル等が挙げられる。 Examples of such monofunctional monomers include styrene monomers such as styrene, vinyl toluene, chlorostyrene, and α-methylstyrene; methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2-hydroxy -3-phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, glycidyl (meth) acrylate, lauryl (meth) acrylate Lilate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate (2-methyl-2-ethyl-1,3-dioxolan-4-yl) -methyl (meth) acrylate, cyclohexanespiro-2- (1,3-dioxolan-4-yl) -methyl (meth) acrylate, 3-ethyl-3-oxetanylmethyl (meth) acrylate, γ-butyrolactone (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) A) Relate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate, phenol ethylene oxide modified (n = 2) (meth) acrylate, nonylphenol propylene Half (meth) acrylates of phthalic acid derivatives such as oxide-modified (n = 2.5) (meth) acrylate, 2- (meth) acryloyloxyethyl acid phosphate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate; Furfuryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, carbitol (meth) acrylate, benzyl (meth) acrylate, butoxyethyl (meth) acrylate, allyl (meth) (Meth) acrylate monomers such as acrylate, (meth) acryloylmorpholine, polyoxyethylene secondary alkyl ether acrylate; 2-hydroxyethylacrylamide, N-methylol (meth) acrylamide, N-vinylpyrrolidone, 2-vinylpyridine And vinyl acetate.
 かかる2官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート等が挙げられる。 Examples of such bifunctional monomers include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and di Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A Type di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, ethoxylated cyclohexanedimethanol di ( Acrylate), dimethylol dicyclopentane di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) ) Acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (meth) acrylate, isocyanuric acid Examples include ethylene oxide-modified diacrylate.
 かかる3官能以上のモノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリアクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化グリセリントリアクリレート等が挙げられる。 Examples of the tri- or higher functional monomer include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanuric acid ethylene oxide modified triacrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (Meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate, cap Lactone modified pentaerythritol tetra (meth) acrylate, ethylene oxide modified dipentaerythritol penta (meth) acrylate, ethylene oxide modified dipentaerythritol hexa (meth) acrylate, ethylene oxide modified pentaerythritol tri (meth) acrylate, ethylene oxide modified pentaerythritol Examples include tetra (meth) acrylate and ethoxylated glycerin triacrylate.
 また、アクリル酸のミカエル付加物あるいは2-アクリロイルオキシエチルジカルボン酸モノエステルも併用可能であり、かかるアクリル酸のミカエル付加物としては、アクリル酸ダイマー、メタクリル酸ダイマー、アクリル酸トリマー、メタクリル酸トリマー、アクリル酸テトラマー、メタクリル酸テトラマー等が挙げられる。
 上記2-アクリロイルオキシエチルジカルボン酸モノエステルとしては、特定の置換基をもつカルボン酸であり、例えば2-アクリロイルオキシエチルコハク酸モノエステル、2-メタクリロイルオキシエチルコハク酸モノエステル、2-アクリロイルオキシエチルフタル酸モノエステル、2-メタクリロイルオキシエチルフタル酸モノエステル、2-アクリロイルオキシエチルヘキサヒドロフタル酸モノエステル、2-メタクリロイルオキシエチルヘキサヒドロフタル酸モノエステル等が挙げられる。更に、その他オリゴエステルアクリレートも挙げられる。
Also, a Michael adduct of acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester can be used in combination. Examples of such a Michael adduct of acrylic acid include acrylic acid dimer, methacrylic acid dimer, acrylic acid trimer, methacrylic acid trimer, An acrylic acid tetramer, a methacrylic acid tetramer, etc. are mentioned.
The 2-acryloyloxyethyl dicarboxylic acid monoester is a carboxylic acid having a specific substituent, such as 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, 2-acryloyloxyethyl. Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, other oligoester acrylates can also be mentioned.
 これらの中でも反応性及び汎用性に優れる点で、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが好ましい。 Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol are excellent in reactivity and versatility. Hexa (meth) acrylate is preferred.
 これらエチレン性不飽和モノマー(D)は単独で用いてもよいし、2種以上を併用してもよい。また、エチレン性不飽和モノマー(D)は、本発明の活性エネルギー線硬化性樹脂組成物に別途配合するものであってもよいし、ウレタン(メタ)アクリレート系化合物(A)の製造原料として製造時に一部を系中に残存させたものであってもよい。 These ethylenically unsaturated monomers (D) may be used alone or in combination of two or more. In addition, the ethylenically unsaturated monomer (D) may be separately added to the active energy ray-curable resin composition of the present invention, or manufactured as a raw material for producing the urethane (meth) acrylate compound (A). Sometimes a part of it may remain in the system.
 かかるエチレン性不飽和モノマー(D)の含有量は、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して0~200重量部であることが好ましく、更に好ましくは3~100重量部、特に好ましくは5~50重量部である。
 かかるエチレン性不飽和モノマー(D)の含有量が多すぎると、単官能モノマーの場合は得られる硬化塗膜にべとつきが生じる傾向があり、2官能以上のモノマーの場合は硬化塗膜が固くなりすぎて、さらさらとした指触感が損なわれる傾向がある。
The content of the ethylenically unsaturated monomer (D) is preferably 0 to 200 parts by weight, more preferably 3 to 100 parts by weight, based on 100 parts by weight of the urethane (meth) acrylate compound (A). Particularly preferred is 5 to 50 parts by weight.
If the content of the ethylenically unsaturated monomer (D) is too large, the resulting cured coating tends to be sticky in the case of a monofunctional monomer, and the cured coating becomes hard in the case of a monomer having two or more functions. Too much, the smooth finger touch tends to be impaired.
〔光重合性開始剤(E)〕
 上記光重合開始剤(E)としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフォンオキサイド類;等が挙げられる。なお、これら光重合開始剤は、単独で用いるか、または2種以上を併用することができる。
[Photopolymerizable initiator (E)]
Examples of the photopolymerization initiator (E) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2 -Hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-methyl -2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] acetophenones such as propanone oligomers; benzoin, benzoin methyl ether Benzoins such as benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4 , 4'-Tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl Benzophenones such as benzenemethananium bromide and (4-benzoylbenzyl) trimethylammonium chloride; 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothio Thioxanthones such as Sandton, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4-dimethyl-9H-thioxanthone-9-one mesochloride; 2,4,6- Acyl such as trimethylbenzoyl-diphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide Phosphine oxides; and the like. In addition, these photoinitiators can be used individually or can use 2 or more types together.
 また、これら光重合開始剤(E)の助剤として、トリエタノールアミン、トリイソプロパノールアミン、4,4′-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4′-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。これらの助剤も単独でもしくは2種以上併せて用いることができる。 Further, auxiliary agents for these photopolymerization initiators (E) include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid. Ethyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2 , 4-Diisopropylthioxanthone can also be used in combination. These auxiliaries can be used alone or in combination of two or more.
 光重合開始剤(E)の含有量としては、ウレタン(メタ)アクリレート系化合物(A)と(B)の合計量(エチレン性不飽和モノマー(D)を含むときは(A)と(B)と(D)の合計量)100重量部に対して、0.1~20重量部であることが好ましく、特に好ましくは0.5~15重量部、殊に好ましくは1~10重量部である。
 光重合開始剤(E)の含有量が少なすぎると硬化不良となる傾向があり、多すぎるとコーティング剤とした際に析出するなど溶液安定性が低下する傾向があったり、脆化や着色の問題が起こりやすい傾向がある。
The content of the photopolymerization initiator (E) is the total amount of urethane (meth) acrylate compounds (A) and (B) (when the ethylenically unsaturated monomer (D) is included, (A) and (B) And (D) is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight, particularly preferably 1 to 10 parts by weight per 100 parts by weight. .
If the content of the photopolymerization initiator (E) is too small, curing tends to be poor, and if it is too much, the solution stability tends to decrease, such as precipitation when used as a coating agent, and embrittlement or coloring may occur. Problems tend to occur.
 また、本発明の活性エネルギー線硬化性樹脂組成物は、必要に応じて、塗工時の粘度を調整するために、希釈のための有機溶剤を使用することも好ましい。かかる有機溶剤としては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類;アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類;エチルセロソルブ等のセロソルブ類;トルエン、キシレン等の芳香族類;プロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類;ジアセトンアルコール等が挙げられる。これら上記の有機溶剤は、単独で用いてもよいし、2種以上を併用してもよい。2種以上を併用する場合は、グリコールエーテル類、ケトン類、酢酸エステル類、アルコール類の中から2種以上を選択して組み合わせることが塗膜外観の点で好ましい。 In addition, the active energy ray-curable resin composition of the present invention preferably uses an organic solvent for dilution in order to adjust the viscosity during coating, if necessary. Examples of the organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol; ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone; cellosolves such as ethyl cellosolve; toluene, xylene And the like; glycol ethers such as propylene glycol monomethyl ether; acetates such as methyl acetate, ethyl acetate, and butyl acetate; and diacetone alcohol. These organic solvents may be used alone or in combination of two or more. When two or more types are used in combination, it is preferable from the viewpoint of the coating film appearance that two or more types are selected and combined from glycol ethers, ketones, acetate esters, and alcohols.
 本発明の活性エネルギー線硬化性樹脂組成物は、上記有機溶剤を用いて、通常3~60重量%に希釈し、基材に塗布することもできる。 The active energy ray-curable resin composition of the present invention can also be diluted to 3 to 60% by weight with the above organic solvent and applied to a substrate.
 かくして本発明のウレタン(メタ)アクリレート系化合物(A)及び有機微粒子(B)、好ましくは更に、ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)、エチレン性不飽和モノマー(D)、光重合開始剤(E)を含有する活性エネルギー線硬化性樹脂組成物が得られる。 Thus, the urethane (meth) acrylate compound (A) and organic fine particles (B) of the present invention, preferably a polysiloxane structure-containing urethane (meth) acrylate compound (C), an ethylenically unsaturated monomer (D), light An active energy ray-curable resin composition containing the polymerization initiator (E) is obtained.
 なお、本発明の活性エネルギー線硬化性樹脂組成物を製造するにあたり、ウレタン(メタ)アクリレート系化合物(A)及び有機微粒子(B)、必要に応じてその他成分の混合方法については、特に限定されるものではなく、各成分を一括で混合する方法や、任意の成分を混合した後、残りの成分を一括または順次混合する方法等、種々の方法を採用することができる。 In the production of the active energy ray-curable resin composition of the present invention, the method for mixing the urethane (meth) acrylate compound (A) and the organic fine particles (B) and other components as required is particularly limited. Instead, various methods such as a method of mixing each component at once or a method of mixing arbitrary components and then mixing the remaining components at once or sequentially can be adopted.
 本発明の活性エネルギー線硬化性樹脂組成物は、エチレン性不飽和基濃度が1.0~6.3mmol/gであり、好ましくは1.5~6.0mmol/g、更に好ましくは2.0~5.8mmol/gである。
 かかる樹脂組成物のエチレン性不飽和基濃度が低すぎると硬化塗膜の硬度が低下し、耐摩耗性が低下する傾向があり、高すぎると硬化収縮により塗膜と基材の密着性が低下したり、塗料中における粒子以外の樹脂部分の歪みが大きくなり、塗膜外観が悪くなる傾向がある。
The active energy ray-curable resin composition of the present invention has an ethylenically unsaturated group concentration of 1.0 to 6.3 mmol / g, preferably 1.5 to 6.0 mmol / g, more preferably 2.0. ~ 5.8 mmol / g.
If the concentration of the ethylenically unsaturated group in the resin composition is too low, the hardness of the cured coating film tends to decrease and the wear resistance tends to decrease. If the concentration is too high, the adhesion between the coating film and the substrate decreases due to curing shrinkage. Or distortion of the resin part other than the particles in the paint tends to increase, and the appearance of the coating film tends to deteriorate.
 本発明の活性エネルギー線硬化性樹脂組成物は、各種基材へのトップコート剤など、塗膜形成用の硬化性樹脂組成物として有効に用いられるものである。本発明の活性エネルギー線硬化性樹脂組成物は、タック感やしっとり感がなくさらさらとした指触感を有する硬化塗膜が得られるものであり、かつ、耐摩耗性、防汚性にも優れるため、例えば、良好な指触感を有すること、かつ耐摩耗性、防汚性が要求される、家電製品や自動車内のプラスチックパネル等の内装部品等の表面コーティング剤や、木工製品、加飾フィルム用等のコーティング剤として、特に有用である。
 以下、本発明の活性エネルギー線硬化性樹脂組成物を含有するコーティング剤について説明する。
The active energy ray-curable resin composition of the present invention is effectively used as a curable resin composition for coating film formation, such as a topcoat agent for various substrates. The active energy ray-curable resin composition of the present invention is capable of obtaining a cured coating film having a tactile sensation and a moist sensation and having a smooth touch feeling, and is excellent in wear resistance and antifouling properties. For example, surface coating agents for interior parts such as home appliances and plastic panels in automobiles, woodworking products, decorative films, etc. that have good finger feel and wear resistance and antifouling properties are required It is particularly useful as a coating agent.
Hereinafter, the coating agent containing the active energy ray-curable resin composition of the present invention will be described.
〔コーティング剤〕
 本発明のコーティング剤は、基材に塗工した後(有機溶剤で希釈した組成物を塗工した場合には、さらに乾燥させた後)、活性エネルギー線を照射することにより硬化させることができる。
〔Coating agent〕
The coating agent of the present invention can be cured by irradiating with active energy rays after being applied to the substrate (after further drying if a composition diluted with an organic solvent is applied). .
 本発明のコーティング剤を塗工する対象である基材としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリスチレン系樹脂等やそれらの成型品(フィルム、シート、カップ、等)等のプラスチック基材、それらの複合基材、またはガラス繊維や無機物を混合した前記材料の複合基材等、金属(アルミニウム、銅、鉄、SUS、亜鉛、マグネシウム、これらの合金等であり、金属蒸着膜等の金属膜を含む。)や、ガラス等の基材上にプライマー層を設けた基材等が挙げられる。 Examples of the base material to which the coating agent of the present invention is applied include polyolefin resin, polyester resin, polycarbonate resin, acrylic resin acrylonitrile butadiene styrene copolymer (ABS), polystyrene resin and the like, and molding them. Metal (aluminum, copper, iron, SUS, zinc, etc.) such as plastic base materials such as products (films, sheets, cups, etc.), composite base materials thereof, or composite base materials of the above materials mixed with glass fibers or inorganic substances Magnesium, alloys thereof, and the like, including metal films such as metal vapor deposition films), and substrates having a primer layer on a substrate such as glass.
 コーティング剤の塗工方法としては、例えば、スプレー、シャワー、ディッピング、ロール、スピン、スクリーン印刷、インクジェット印刷等のようなウェットコーティング法が挙げられ、通常は常温の条件下で基材に塗工することができる。 Examples of the coating method for the coating agent include wet coating methods such as spraying, showering, dipping, roll, spinning, screen printing, and ink jet printing. Usually, coating is performed on a substrate under normal temperature conditions. be able to.
 また、本発明のコーティング剤は、上記有機溶剤を用いて、固形分濃度が、通常3~80重量%、好ましくは5~60重量%になるように希釈して、塗工することが好ましい。 The coating agent of the present invention is preferably applied by diluting with the above organic solvent so that the solid content concentration is usually 3 to 80% by weight, preferably 5 to 60% by weight.
 上記有機溶剤による希釈を行なった際の乾燥条件としては、温度が、通常40~120℃、好ましくは50~100℃で、乾燥時間が、通常1~20分、好ましくは2~10分であればよい。 The drying conditions for dilution with the organic solvent are as follows: the temperature is usually 40 to 120 ° C., preferably 50 to 100 ° C., and the drying time is usually 1 to 20 minutes, preferably 2 to 10 minutes. That's fine.
 基材上に塗工されたコーティング剤を硬化させる際に使用する活性エネルギー線としては、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のし易さ、価格等から紫外線照射による硬化が有利である。なお、電子線照射を行う場合は、光重合開始剤を用いなくても硬化し得る。 Active energy rays used when curing the coating agent applied on the substrate include rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as X-rays and γ rays, electron beams, Proton beams, neutron beams, and the like can be used, but curing by ultraviolet irradiation is advantageous from the viewpoint of curing speed, availability of an irradiation device, price, and the like. In addition, when performing electron beam irradiation, it can harden | cure even if it does not use a photoinitiator.
 紫外線照射により硬化させる際には、150~450nm波長域の光を発する高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、LED等を用いて、通常30~3000mJ/cm2(好ましくは100~1500mJ/cm2)の紫外線を照射することができる。
 紫外線照射後は、必要に応じて加熱を行って硬化の完全を図ることもできる。
When curing by ultraviolet irradiation, using a high-pressure mercury lamp, ultra-high pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, chemical lamp, electrodeless discharge lamp, LED, etc. Usually, ultraviolet rays of 30 to 3000 mJ / cm 2 (preferably 100 to 1500 mJ / cm 2 ) can be irradiated.
After the ultraviolet irradiation, heating can be performed as necessary to complete the curing.
 塗工膜厚(硬化後の膜厚)としては、通常、活性エネルギー線硬化性の塗膜として光重合開始剤が均一に反応するべく活性エネルギー線透過を鑑みると、1~1000μmであり、好ましくは2~500μmであり、特に好ましくは5~100μmである。 The coating film thickness (film thickness after curing) is usually 1 to 1000 μm in view of active energy ray transmission so that the photopolymerization initiator can react uniformly as an active energy ray-curable coating film, and preferably Is 2 to 500 μm, particularly preferably 5 to 100 μm.
 上記コーティング剤組成物は、ウレタン(メタ)アクリレート系化合物(A)をコーティング剤組成物全体の2~60重量%含有することが好ましく、特に好ましくは3~40重量%、更に好ましくは5~30重量%である。なお、上記コーティング剤組成物には有機溶剤を含んでも含まなくてもよい。
 かかるウレタン(メタ)アクリレート系化合物(A)の含有量が少なすぎると、硬化塗膜に柔軟性がなくなり、クラックが入りやすくなる傾向があり、多すぎると粘度が高くなりすぎ、塗工性が低下する傾向がある。
The coating agent composition preferably contains 2 to 60% by weight of urethane (meth) acrylate compound (A), particularly preferably 3 to 40% by weight, and more preferably 5 to 30% by weight of the entire coating agent composition. % By weight. In addition, the coating agent composition may or may not contain an organic solvent.
When there is too little content of this urethane (meth) acrylate type compound (A), there exists a tendency for a cured coating film to lose a softness | flexibility and to become easy to enter a crack, and when too large, a viscosity will become high too much and coating property will be. There is a tendency to decrease.
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、例中、「部」、「%」は、重量基準を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the examples, “parts” and “%” mean weight standards.
 実施例及び比較例に先立ち、ウレタン(メタ)アクリレート系化合物(A)として、以下のものを製造した。 Prior to Examples and Comparative Examples, the following were produced as urethane (meth) acrylate compounds (A).
<製造例1:ウレタン(メタ)アクリレート系化合物(A-1)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソシアネート化合物(日本ポリウレタン工業社製「コロネート HX」ヘキサメチレンジイソシアネートの3量体からなるイソシアネート化合物)を42.2g充填し、ポリカプロラクトン変性水酸基含有アクリレート化合物(MIWON社製「SC1010A」)を48.5g、重合禁止剤としてハイドロキノンメチルエーテルを0.08g、反応触媒として、ジブチルスズラウレートを0.02gを加え、内温を70℃にした後、3時間反応させ、更に追加でSC1010Aを9.3g添加し、70℃で1時間保持し、残存イソシアネート濃度が0.3%となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A-1)88.6g(重量平均分子量(Mw):3,500)、ポリカプロラクトン変性水酸基含有アクリレート化合物11.4gの混合物[I]を得た。混合物[I]の不揮発分における各成分の含有割合は、ウレタン(メタ)アクリレート系化合物(A-1)88.6%、ポリカプロラクトン変性水酸基含有アクリレート化合物11.4%であった。
 なお、ウレタン(メタ)アクリレート系化合物(A-1)のみのエチレン性不飽和基濃度は2.33mmol/gであり、ポリカプロラクトン変性水酸基含有アクリレート化合物(D-1)のみのエチレン性不飽和基濃度は4.34mmol/gである。
<Production Example 1: Urethane (meth) acrylate compound (A-1)>
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, 42.2 g of an isocyanate compound (an isocyanate compound composed of a trimer of “Coronate HX” hexamethylene diisocyanate manufactured by Nippon Polyurethane Industry Co., Ltd.) 48.5 g of polycaprolactone-modified hydroxyl group-containing acrylate compound ("SC1010A" manufactured by MIWON), 0.08 g of hydroquinone methyl ether as a polymerization inhibitor, 0.02 g of dibutyltin laurate as a reaction catalyst, After the temperature was raised to 70 ° C., the reaction was allowed to proceed for 3 hours. Further, 9.3 g of SC1010A was added and held at 70 ° C. for 1 hour. When the residual isocyanate concentration reached 0.3%, the reaction was terminated. 88.6 g of urethane (meth) acrylate compound (A-1) ( Weight average molecular weight (Mw): 3,500), 11.4 g of a polycaprolactone-modified hydroxyl group-containing acrylate compound 11.4 g was obtained. The content of each component in the nonvolatile content of the mixture [I] was 88.6% of the urethane (meth) acrylate compound (A-1) and 11.4% of the polycaprolactone-modified hydroxyl group-containing acrylate compound.
The concentration of ethylenically unsaturated groups in the urethane (meth) acrylate compound (A-1) alone is 2.33 mmol / g, and the ethylenically unsaturated groups in the polycaprolactone-modified hydroxyl group-containing acrylate compound (D-1) only. The concentration is 4.34 mmol / g.
<製造例2:ウレタン(メタ)アクリレート系化合物(A-2)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えたフラスコに、イソホロンジイソシアネート19.2gと、ペンタエリスリトールトリアクリレート〔ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物(水酸基価120mgKOH/g)〕80.8gを仕込み、重合禁止剤としてハイドロキノンメチルエーテル0.08g、反応触媒としてジブチルスズジラウレート0.01gを仕込み、60℃で8時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A-2)61.5g(重量平均分子量(Mw):1,500)、ペンタエリスリトールトリアクリレート6.7g、ジペンタエリスリトールテトラアクリレート31.8gの混合物[II]を得た。混合物[II]の不揮発分における各成分の含有割合は、ウレタン(メタ)アクリレート系化合物(A-2)61.5%、ペンタエリスリトールトリアクリレート(D-2)6.7%、ジペンタエリスリトールテトラアクリレート(D-3)31.8%であった。
 なお、ウレタン(メタ)アクリレート系化合物(A-2)のみのエチレン性不飽和基濃度は7.33mmol/gであり、ペンタエリスリトールトリアクリレート(D-2)のみのエチレン性不飽和基濃度は10.06mmol/gであり、ジペンタエリスリトールテトラアクリレート(D-3)のみのエチレン性不飽和基濃度は11.35mmol/gである。
<Production Example 2: Urethane (meth) acrylate compound (A-2)>
In a flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas inlet, 19.2 g of isophorone diisocyanate and pentaerythritol triacrylate [mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (hydroxyl value 120 mgKOH / g)] 80.8 g was charged, 0.08 g of hydroquinone methyl ether as a polymerization inhibitor and 0.01 g of dibutyltin dilaurate as a reaction catalyst were allowed to react at 60 ° C. for 8 hours. When the residual isocyanate group became 0.3% or less After completion of the reaction, 61.5 g of urethane (meth) acrylate compound (A-2) (weight average molecular weight (Mw): 1,500), 6.7 g of pentaerythritol triacrylate, dipentaerythritol tetraacrylate Mixtures of bets 31.8g was obtained [II]. The content of each component in the nonvolatile content of the mixture [II] is 61.5% of urethane (meth) acrylate compound (A-2), 6.7% of pentaerythritol triacrylate (D-2), dipentaerythritol tetra The acrylate (D-3) was 31.8%.
The concentration of ethylenically unsaturated groups in the urethane (meth) acrylate compound (A-2) alone is 7.33 mmol / g, and the concentration of ethylenically unsaturated groups in the pentaerythritol triacrylate (D-2) alone is 10 0.06 mmol / g, and the concentration of ethylenically unsaturated groups in dipentaerythritol tetraacrylate (D-3) alone is 11.35 mmol / g.
<製造例3:ウレタン(メタ)アクリレート系化合物(A-3)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、酢酸エチル42.9g、水添キシリレンジイソシアネート32.3g、ネオペンチルグリコール(重量平均分子量(Mw)104)11.6g、2官能のポリエステルポリオール(水酸基価63mgKOH/g、重量平均分子量(Mw)5,000)49.6g、重合禁止剤としてハイドロキノンメチルエーテル0.02g、反応触媒としてジブチルスズジアウレート0.02gを仕込み、60℃で2時間反応させ、2-ヒドロキシエチルアクリレート6.50gを仕込み、60℃で3時間反応させ、残存イソシアネート基が0.3%となった時点で反応を終了し、ウレタン(メタ)アクリレート系化合物(A-3)(重量平均分子量(Mw);14,000)と酢酸エチル溶液の混合物[III](粘度(20℃)11,000mPa・s)を得た。
 なおウレタン(メタ)アクリレート系化合物(A-3)のみのエチレン性不飽和基濃度は0.57mmol/gである。
<Production Example 3: Urethane (meth) acrylate compound (A-3)>
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, 42.9 g of ethyl acetate, 32.3 g of hydrogenated xylylene diisocyanate, neopentyl glycol (weight average molecular weight (Mw) 104) 11 .6 g, bifunctional polyester polyol (hydroxyl value 63 mg KOH / g, weight average molecular weight (Mw) 5,000) 49.6 g, hydroquinone methyl ether 0.02 g as a polymerization inhibitor, dibutyltin diaurate 0.02 g as a reaction catalyst Was added and reacted at 60 ° C. for 2 hours, charged with 6.50 g of 2-hydroxyethyl acrylate and reacted at 60 ° C. for 3 hours. When the residual isocyanate group reached 0.3%, the reaction was terminated. (Meth) acrylate compound (A-3) (weight average molecular weight (Mw); 14.0 0) to give a mixture of ethyl acetate solution [III] (viscosity (20 ℃) 11,000mPa · s).
The concentration of ethylenically unsaturated groups in the urethane (meth) acrylate compound (A-3) alone is 0.57 mmol / g.
 ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)として、以下のものを製造した。 The following were produced as the polysiloxane structure-containing urethane (meth) acrylate compound (C).
<製造例4:ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C-1)>
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、ヘキサメチレンジイソシアネートの3量体(イソシアネート基含有量23.4%)52.7g、ヘキサメチレンジイソシアネート3.5g、1,3-ブタンジオール1.9g、ジブチルスズジラウレート0.1gを仕込み、60℃で5時間反応させ、残存イソシアネート基が21.3%となった時点で、一般式(2)で示されるポリシロキサン系化合物(R=-OC-、R=メチル基、R=-CO-、a=平均65、b=1、c=1、重量平均分子量5,000)17.9g、ジブチルスズジラウレート0.1g、酢酸ブチル500gを仕込み、60℃で3時間反応させ、残存イソシアネート基が2.0%となった時点で、更に、ジペンタエリスリトールペンタアクリレート〔ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(水酸基価50mgKOH/g)〕424.1g、2,6-ジ-tert-ブチルクレゾール1gを約1時間かけて滴下し、そのまま反応を継続し、イソシアネート基が消失した時点で反応を終了し、ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C-1)、ウレタン(メタ)アクリレート系化合物(A-4)(重量平均分子量(Mw):19,000)、およびジペンタエリスリトールヘキサアクリレート(D-4)と酢酸ブチル溶液の混合物[IV]を得た(固形分濃度50%)。混合物[IV]の不揮発分における各成分の含有割合は、ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C-1)6%、ウレタン(メタ)アクリレート系化合物(A-4)34%、ジペンタエリスリトールヘキサアクリレート(D-4)60%であった。
 なお、ウレタン(メタ)アクリレート系化合物(A-4)のみのエチレン性不飽和基濃度は6.91mmol/gであり、ジペンタエリスリトールヘキサアクリレート(D-4)のみのエチレン性不飽和基濃度は10.37mmol/gである。
<Production Example 4: Polysiloxane structure-containing urethane (meth) acrylate compound (C-1)>
In a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas inlet, hexamethylene diisocyanate trimer (isocyanate group content 23.4%) 52.7 g, hexamethylene diisocyanate 3.5 g, 1.9 g of 1,3-butanediol and 0.1 g of dibutyltin dilaurate were added and reacted at 60 ° C. for 5 hours. When the residual isocyanate group reached 21.3%, the polysiloxane represented by the general formula (2) Compounds (R 1 = —OC 3 H 6 —, R 2 = methyl group, R 3 = —C 3 H 6 O—, a = average 65, b = 1, c = 1, weight average molecular weight 5,000) When 17.9 g, dibutyltin dilaurate 0.1 g, and butyl acetate 500 g were charged and reacted at 60 ° C. for 3 hours, when the residual isocyanate group became 2.0%, In addition, 424.1 g of dipentaerythritol pentaacrylate [mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (hydroxyl value 50 mg KOH / g)] and 1 g of 2,6-di-tert-butylcresol were added over about 1 hour. The reaction was continued as it was, and the reaction was terminated when the isocyanate group disappeared. Polyurethane structure-containing urethane (meth) acrylate compound (C-1), urethane (meth) acrylate compound (A-4) (Weight average molecular weight (Mw): 19,000), and a mixture [IV] of dipentaerythritol hexaacrylate (D-4) and a butyl acetate solution was obtained (solid content concentration 50%). The content ratio of each component in the non-volatile content of the mixture [IV] is 6% polysiloxane structure-containing urethane (meth) acrylate compound (C-1), 34% urethane (meth) acrylate compound (A-4), It was 60% of pentaerythritol hexaacrylate (D-4).
The ethylenically unsaturated group concentration of only the urethane (meth) acrylate compound (A-4) is 6.91 mmol / g, and the ethylenically unsaturated group concentration of only dipentaerythritol hexaacrylate (D-4) is 10.37 mmol / g.
 有機微粒子(B)として以下のものを用意した。
(B-1):脂肪酸系ポリマー微粒子(D50=3.2μm;ISO 13320に準じたレーザー回折粒度分布測定値)
The following were prepared as organic fine particles (B).
(B-1): Fatty acid polymer fine particles (D50 = 3.2 μm; measured value of laser diffraction particle size distribution according to ISO 13320)
 光重合開始剤(E)として、以下のものを用意した。
(E-1):1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASFジャパン社製「イルガキュア184」)
The following were prepared as the photopolymerization initiator (E).
(E-1): 1-hydroxy-cyclohexyl-phenyl-ketone (“IRGACURE 184” manufactured by BASF Japan Ltd.)
<実施例1>
 上記で得られたウレタン(メタ)アクリレート系化合物(A-1)を含む混合物[I]47.8部、ウレタン(メタ)アクリレート系化合物(A-2)を含む混合物[II]27.2部、有機微粒子(B-1)25部、希釈溶剤として酢酸ブチルを75部、プロピレングリコールモノメチルエーテルを75部混合した後、ディスパーを用いて均一に撹拌し、光重合開始剤(E-1)2部を添加し固形分40%の活性エネルギー線硬化性樹脂組成物を得た。
<Example 1>
47.8 parts of the mixture [I] containing the urethane (meth) acrylate compound (A-1) obtained above, 27.2 parts of the mixture [II] containing the urethane (meth) acrylate compound (A-2) Then, 25 parts of organic fine particles (B-1), 75 parts of butyl acetate as a diluent solvent and 75 parts of propylene glycol monomethyl ether were mixed, and stirred uniformly using a disper to give a photopolymerization initiator (E-1) 2 An active energy ray-curable resin composition having a solid content of 40% was obtained.
 <実施例2及び比較例1、2>
 上記のように製造、準備した各配合成分を、下記の表1に示す割合で配合した以外は実施例1と同様にして、活性エネルギー線硬化性樹脂組成物を調製した。
<Example 2 and Comparative Examples 1 and 2>
An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that the blended components prepared and prepared as described above were blended in the proportions shown in Table 1 below.
<評価用塗膜の作成>
 上記実施例1、2及び比較例1、2で得られた活性エネルギー線硬化性樹脂組成物を、バーコーターにて硬化塗膜が25μm厚となるように易接着PET(東洋紡績社製;商品名「コスモサンシャインA4300」、膜厚125μm)上に塗工し、80℃で4分間乾燥した後、高圧水銀灯ランプ80W、1灯を用いて、18cmの高さから3.4m/minのコンベア速度で2パスの紫外線照射(積算照射量800mJ/cm)を行い、評価用の塗膜形成フィルムを得た。
<Creation of coating film for evaluation>
The active energy ray-curable resin compositions obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were easily adhered PET (manufactured by Toyobo Co., Ltd .; product) with a bar coater so that the cured coating film had a thickness of 25 μm. After coating on the name “Cosmo Sunshine A4300” (film thickness 125 μm) and drying at 80 ° C. for 4 minutes, using a high pressure mercury lamp lamp 80W and one lamp, a conveyor speed of 3.4 m / min from a height of 18 cm Were subjected to two-pass ultraviolet irradiation (accumulated dose 800 mJ / cm 2 ) to obtain a coating film for evaluation.
<耐摩耗性(RCA値)>
(評価方法)
 上記で得られた塗膜形成フィルムの硬化塗膜に対して、RCA摩耗試験機(Model No.7-IBB)NORMAN TOOL,INC製を用い、175gfの荷重で2秒/回の接触条件で摩耗試験を行った。試験に使用した紙テープは、RED SPOT PAINT & VARNISH CO.,INC製のSM1680(トップコート)/SM1685(ベースコート)の被試験材で標準サイクル摩耗試験を行った際に平均113.25回となるものを使用した。
 200サイクルでの試験においての塗膜の摩耗膜厚を表面粗さ計SURFCOM 480A 東京精密社製を用い、摩耗試験後の摩耗部深さをフィルター種別:ガウシアン、λsフィルタ:カットオフ比300、算出規格:JIS B0601-1994の条件において測定し、初期膜厚から摩耗した厚みを計測し、下記の基準で評価した。結果を表1に示す。
(評価基準)
 ○:RCA200サイクル後の摩耗により減少した膜厚が10μm以下
 ×:RCA200サイクル後の摩耗により減少した膜厚が10μmより大きい
<Abrasion resistance (RCA value)>
(Evaluation methods)
Using the RCA abrasion tester (Model No. 7-IBB) manufactured by NORMAN TOOL, INC, the cured coating film of the film-forming film obtained above was worn under a contact condition of 2 seconds / time with a load of 175 gf. A test was conducted. The paper tape used for the test was RED SPOT PAINT & VARNISH CO. , INC. SM1680 (topcoat) / SM1585 (basecoat) test material, which averaged 113.25 times when the standard cycle wear test was performed, was used.
Using a surface roughness meter SURFCOM 480A manufactured by Tokyo Seimitsu Co., Ltd., the wear thickness of the coating film in the 200 cycle test, and calculating the wear depth after the wear test by filter type: Gaussian, λs filter: cutoff ratio 300, calculation Standard: Measured under the conditions of JIS B0601-1994, measured the thickness of the worn film from the initial film thickness, and evaluated according to the following criteria. The results are shown in Table 1.
(Evaluation criteria)
○: The film thickness decreased by wear after RCA 200 cycles is 10 μm or less. X: The film thickness decreased by wear after RCA 200 cycles is larger than 10 μm.
<指触感>
(評価方法)
 上記硬化塗膜表面を手で触った感触を下記の基準で評価した。結果を表1に示す。
(評価基準)
 ○:さらさらした触感
 ×:ザラザラした触感、または塗膜表面がべたつく
<Finger feeling>
(Evaluation methods)
The feeling of touching the surface of the cured coating film with a hand was evaluated according to the following criteria. The results are shown in Table 1.
(Evaluation criteria)
○: Tactile feel that is smooth ×: Rough feel or the coating surface is sticky
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表1の評価結果より、ウレタン(メタ)アクリレート系化合物(A)、及び有機微粒子(B)を含有してなる活性エネルギー線硬化性樹脂組成物であって、活性エネルギー線硬化性樹脂組成物のエチレン性不飽和基濃度が特定範囲である実施例1及び2の活性エネルギー線硬化性樹脂組成物を硬化してなる硬化塗膜は、さらさらとした良好な指触感を備え、耐摩耗性にも優れる硬化塗膜が得られることがわかる。
 これに対して、活性エネルギー線硬化性樹脂組成物のエチレン性不飽和基濃度が特定範囲より少ない比較例1においては、耐摩耗性に劣るものであり、特定範囲より大きい比較例2においては、良好な硬化塗膜自体が得られないものであった。
From the evaluation results in Table 1, the active energy ray-curable resin composition containing the urethane (meth) acrylate compound (A) and the organic fine particles (B), the active energy ray-curable resin composition. The cured coating film obtained by curing the active energy ray-curable resin composition of Examples 1 and 2 in which the concentration of the ethylenically unsaturated group is in a specific range has a smooth and good finger feeling and wear resistance. It can be seen that an excellent cured coating film can be obtained.
On the other hand, in Comparative Example 1 where the ethylenically unsaturated group concentration of the active energy ray-curable resin composition is less than the specific range, the wear resistance is inferior, and in Comparative Example 2 which is larger than the specific range, A good cured coating film itself could not be obtained.
 <実施例3、4及び比較例3>
 上記のように製造、準備した各配合成分を、下記の表2に示す割合で配合した以外は実施例1と同様にして、活性エネルギー線硬化性樹脂組成物を調整した。
<Examples 3 and 4 and Comparative Example 3>
An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that the blended components prepared and prepared as described above were blended in the proportions shown in Table 2 below.
<評価用塗膜の作成>
 上記実施例3、4及び比較例3で得られた活性エネルギー線硬化性樹脂組成物を、バーコーターにて硬化塗膜が25μm厚となるように易接着PET(東洋紡績社製;商品名「コスモサンシャインA4300」、膜厚125μm)上に塗工し、80℃で4分間乾燥した後、高圧水銀灯ランプ80W、1灯を用いて、18cmの高さから3.4m/minのコンベア速度で2パスの紫外線照射(積算照射量800mJ/cm)を行い、評価用の塗膜形成フィルムを得た。
<Creation of coating film for evaluation>
The active energy ray-curable resin compositions obtained in Examples 3 and 4 and Comparative Example 3 were coated with easy-adhesion PET (manufactured by Toyobo Co., Ltd .; trade name “ Cosmo Sunshine A4300 ”(film thickness 125 μm), dried at 80 ° C. for 4 minutes, and then using a high pressure mercury lamp lamp 80W and one lamp at a conveyor speed of 3.4 m / min from a height of 18 cm. Pass UV irradiation (accumulated dose 800 mJ / cm 2 ) was performed to obtain a coating film for evaluation.
 得られた塗膜形成フィルムの硬化塗膜について、上記実施例1、2及び比較例1、2と同様に、耐摩耗性及び指触感を評価した。さらに、下記の通り、防汚性を評価した。 About the cured coating film of the obtained coating film-forming film, the wear resistance and the touch feeling were evaluated in the same manner as in Examples 1 and 2 and Comparative Examples 1 and 2. Furthermore, the antifouling property was evaluated as follows.
<防汚性:マジック拭取り性>
(評価方法)
 上記で得られた塗膜形成フィルムの硬化塗膜に対して、油性マジックで線を引き室温(23℃)で充分乾燥した後に軟らかい布で拭取り、下記の基準で評価した。結果を表2に示す。
(評価基準)
 ○:油性マジックが、から拭きで拭き取れた
 △:油性マジックが、から拭きでは拭き取れないが、アルコール(メタノール)を浸した布では拭き取れた
 ×:油性マジックが、から拭きでもアルコール拭きでも拭き取れなかった
<Anti-fouling property: Magic wiping property>
(Evaluation methods)
The cured coating film of the film-forming film obtained above was drawn with an oil-based magic, sufficiently dried at room temperature (23 ° C.), wiped with a soft cloth, and evaluated according to the following criteria. The results are shown in Table 2.
(Evaluation criteria)
○: The oil-based magic was wiped off by wiping. △: The oil-based magic was not wiped off by wiping, but the cloth soaked in alcohol (methanol) was wiped off. ×: The oil-based magic was not wiped by wiping or alcohol wiping.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表2の評価結果より、ウレタン(メタ)アクリレート系化合物(A)、及び有機微粒子(B)を含有してなる活性エネルギー線硬化性樹脂組成物であって、活性エネルギー線硬化性樹脂組成物のエチレン性不飽和基濃度が特定範囲であり、さらにポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)を含有してなる実施例3及び4の活性エネルギー線硬化性樹脂組成物を硬化してなる硬化塗膜は、さらさらとした良好な指触感を備え、かつ、耐摩耗性にも優れ、更には、防汚性にも優れる硬化塗膜が得られることがわかる。
 これに対して、活性エネルギー線硬化性樹脂組成物のエチレン性不飽和基濃度が特定範囲より少ない比較例3においては、ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)を含有させた場合であっても、防汚性が得られないものであった。
From the evaluation results of Table 2 above, the active energy ray-curable resin composition comprising the urethane (meth) acrylate compound (A) and the organic fine particles (B), and the active energy ray-curable resin composition The active energy ray-curable resin composition of Examples 3 and 4 containing a polysiloxane structure-containing urethane (meth) acrylate-based compound (C) having a specific range of ethylenically unsaturated group concentration was cured. It can be seen that the cured coating film obtained has a smooth and good touch feeling, is excellent in wear resistance, and is further excellent in antifouling property.
On the other hand, in Comparative Example 3 where the ethylenically unsaturated group concentration of the active energy ray-curable resin composition is less than a specific range, the polysiloxane structure-containing urethane (meth) acrylate compound (C) is contained. Even so, the antifouling property could not be obtained.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の活性エネルギー線硬化性樹脂組成物は、タック感やしっとり感がなく、さらさらとした指触感を有する硬化塗膜が得られるものであり、かつ、耐摩耗性にも優れるといった効果を有するものであり、各種の被膜形成材料として有用である。特に、プラスチック基材被覆用コーティング剤組成物、インモールド成型用コーティング剤組成物などのコーティング剤として好適である。 The active energy ray-curable resin composition of the present invention has an effect that there is no tackiness or moist feeling, a cured coating film having a smooth touch feeling is obtained, and excellent wear resistance. It is useful as various film forming materials. Particularly, it is suitable as a coating agent for a coating material composition for coating a plastic substrate, a coating agent composition for in-mold molding, and the like.

Claims (9)

  1.  イソシアネート系化合物(a1)及び水酸基含有(メタ)アクリレート系化合物(a2)を反応させてなるウレタン(メタ)アクリレート系化合物(A)及び有機微粒子(B)を含有してなる活性エネルギー線硬化性樹脂組成物であって、エチレン性不飽和基濃度が1.0~6.3mmol/gであることを特徴とする活性エネルギー線硬化性樹脂組成物。 Active energy ray-curable resin containing urethane (meth) acrylate compound (A) and organic fine particles (B) obtained by reacting isocyanate compound (a1) and hydroxyl group-containing (meth) acrylate compound (a2) An active energy ray-curable resin composition comprising a composition having an ethylenically unsaturated group concentration of 1.0 to 6.3 mmol / g.
  2.  ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)をさらに含有することを特徴とする請求項1記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to claim 1, further comprising a polysiloxane structure-containing urethane (meth) acrylate-based compound (C).
  3.  エチレン性不飽和モノマー(D)(但し、ウレタン(メタ)アクリレート系化合物(A)、ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)を除く。)をさらに含有することを特徴とする請求項1または2記載の活性エネルギー線硬化性樹脂組成物。 It further contains an ethylenically unsaturated monomer (D) (excluding the urethane (meth) acrylate compound (A) and the polysiloxane structure-containing urethane (meth) acrylate compound (C)). Item 3. The active energy ray-curable resin composition according to Item 1 or 2.
  4.  ウレタン(メタ)アクリレート系化合物(A)の重量平均分子量が、1,000~50,000であることを特徴とする請求項1~3のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of Claims 1 to 3, wherein the urethane (meth) acrylate compound (A) has a weight average molecular weight of 1,000 to 50,000. object.
  5.  有機微粒子(B)の含有量(固形分)が、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して5~100重量部であることを特徴とする請求項1~4のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The content (solid content) of the organic fine particles (B) is 5 to 100 parts by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). The active energy ray-curable resin composition according to one item.
  6.  ポリシロキサン構造含有ウレタン(メタ)アクリレート系化合物(C)の含有量が、ウレタン(メタ)アクリレート系化合物(A)100重量部に対して0.001~1重量部であることを特徴とする請求項2~5のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The content of the polysiloxane structure-containing urethane (meth) acrylate compound (C) is 0.001 to 1 part by weight with respect to 100 parts by weight of the urethane (meth) acrylate compound (A). Item 6. The active energy ray-curable resin composition according to any one of Items 2 to 5.
  7.  請求項1~6のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物を含有してなることを特徴とするコーティング剤組成物。 A coating agent composition comprising the active energy ray-curable resin composition according to any one of claims 1 to 6.
  8.  ウレタン(メタ)アクリレート系化合物(A)の含有割合が2~60重量%であることを特徴とする請求項7記載のコーティング剤組成物。 The coating agent composition according to claim 7, wherein the content of the urethane (meth) acrylate compound (A) is 2 to 60% by weight.
  9.  基材及び、請求項7または8記載のコーティング剤組成物からなるコーティング層を有することを特徴とする積層体。 A laminate comprising a substrate and a coating layer comprising the coating agent composition according to claim 7 or 8.
PCT/JP2016/060786 2015-03-31 2016-03-31 Active-energy-ray-curable resin composition, coating composition, and laminate WO2016159294A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016519400A JPWO2016159294A1 (en) 2015-03-31 2016-03-31 Active energy ray-curable resin composition, coating agent composition, and laminate
KR1020177024519A KR20170132729A (en) 2015-03-31 2016-03-31 Active energy ray-curable resin composition, coating composition and laminate
CN201680013077.XA CN107428894B (en) 2015-03-31 2016-03-31 Active energy ray-curable resin composition, coating agent composition, and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071829 2015-03-31
JP2015-071829 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159294A1 true WO2016159294A1 (en) 2016-10-06

Family

ID=57006210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060786 WO2016159294A1 (en) 2015-03-31 2016-03-31 Active-energy-ray-curable resin composition, coating composition, and laminate

Country Status (4)

Country Link
JP (1) JPWO2016159294A1 (en)
KR (1) KR20170132729A (en)
CN (1) CN107428894B (en)
WO (1) WO2016159294A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151583A (en) * 2015-02-16 2016-08-22 ナガセケムテックス株式会社 Positive type photosensitive resin composition
WO2020235345A1 (en) * 2019-05-23 2020-11-26 大日精化工業株式会社 Coating composition, decorative film and decorative molded article
JPWO2021153446A1 (en) * 2020-01-28 2021-08-05
WO2021201104A1 (en) * 2020-03-31 2021-10-07 東レ株式会社 Coating agent for printing films, laminate, and method for manufacturing printed article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116374A (en) * 2020-01-28 2021-08-10 荒川化学工業株式会社 Undercoat agent, cured product, and laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136931A (en) * 1995-09-14 1997-05-27 Nippon Shokubai Co Ltd Polymer fine particle dispersion type radical-polymerizable resin composition
JP2007270069A (en) * 2006-03-31 2007-10-18 Aica Kogyo Co Ltd Resin composition, hard coat agent and hard coat film for insert molding
JP2011021058A (en) * 2009-07-13 2011-02-03 Dh Material Kk Method for producing molded product
JP2014091786A (en) * 2012-11-05 2014-05-19 San Nopco Ltd Radiation-curable composition
WO2014081004A1 (en) * 2012-11-22 2014-05-30 日本合成化学工業株式会社 Active energy ray-curable resin composition, coating agent composition, and laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984936A (en) * 2004-07-08 2007-06-20 日本合成化学工业株式会社 Active energy ray curable resin composition, method for producing the same, and coating agent composition using the same
JP6358789B2 (en) * 2012-09-07 2018-07-18 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136931A (en) * 1995-09-14 1997-05-27 Nippon Shokubai Co Ltd Polymer fine particle dispersion type radical-polymerizable resin composition
JP2007270069A (en) * 2006-03-31 2007-10-18 Aica Kogyo Co Ltd Resin composition, hard coat agent and hard coat film for insert molding
JP2011021058A (en) * 2009-07-13 2011-02-03 Dh Material Kk Method for producing molded product
JP2014091786A (en) * 2012-11-05 2014-05-19 San Nopco Ltd Radiation-curable composition
WO2014081004A1 (en) * 2012-11-22 2014-05-30 日本合成化学工業株式会社 Active energy ray-curable resin composition, coating agent composition, and laminate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151583A (en) * 2015-02-16 2016-08-22 ナガセケムテックス株式会社 Positive type photosensitive resin composition
WO2020235345A1 (en) * 2019-05-23 2020-11-26 大日精化工業株式会社 Coating composition, decorative film and decorative molded article
JP2020189937A (en) * 2019-05-23 2020-11-26 大日精化工業株式会社 Coating composition, decorative film and decorative molding
CN113874446A (en) * 2019-05-23 2021-12-31 大日精化工业株式会社 Coating composition, decorative film and decorative molded article
US11655392B2 (en) 2019-05-23 2023-05-23 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating composition, decorative film and decorative molded article
JPWO2021153446A1 (en) * 2020-01-28 2021-08-05
JP7371958B2 (en) 2020-01-28 2023-10-31 株式会社トクヤマデンタル Method for producing polyurethane composite materials, polyurethane composite materials, and dental cutting materials.
WO2021201104A1 (en) * 2020-03-31 2021-10-07 東レ株式会社 Coating agent for printing films, laminate, and method for manufacturing printed article
JP7416060B2 (en) 2020-03-31 2024-01-17 東レ株式会社 Coating agent for printing film, laminate, and method for producing printed matter

Also Published As

Publication number Publication date
CN107428894B (en) 2020-12-04
JPWO2016159294A1 (en) 2018-01-25
KR20170132729A (en) 2017-12-04
CN107428894A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
JP5886090B2 (en) Active energy ray-curable resin composition and coating agent
CN106164121B (en) Urethane (meth) acrylate compound, active energy ray-curable resin composition, and coating agent
JP5566216B2 (en) Active energy ray-curable resin composition, coating agent composition using the same, and cured coating film
WO2016159294A1 (en) Active-energy-ray-curable resin composition, coating composition, and laminate
JP6057741B2 (en) Polysiloxane structure-containing urethane (meth) acrylate-based compound, active energy ray-curable resin composition, and coating agent using the same
WO2014081004A1 (en) Active energy ray-curable resin composition, coating agent composition, and laminate
JP6359265B2 (en) Active energy ray-curable resin composition, coating agent composition, and laminate
WO2015152110A1 (en) Urethane (meth)acrylate compound, active-energy-ray-curable resin composition, and coating agent
JP2016104859A (en) Active energy ray-curable resin composition and coating agent
JP2015199908A (en) Urethane (meth)acrylate-based compound, active energy ray-curable resin composition, and coating agent
JP2014122338A (en) Active energy ray curable resin composition, coating agent composition, and laminated body
WO2016080439A1 (en) Active-energy-ray-curable composition, active-energy-ray-curable adhesive composition, adhesive, adhesive sheet, and novel urethane (meth)acrylate
JP6261247B2 (en) Active energy ray-curable resin composition, coating agent composition using the same, and cured coating film
JP2016121346A (en) Method of producing urethane (meth)acrylate
JP6358789B2 (en) Active energy ray-curable resin composition and coating agent
JP2019085558A (en) Active energy ray curable resin composition and coating agent
JP2016179966A (en) Photo-curing composition for nail makeup and nail cosmetics
JP2018178094A (en) Active energy ray-curable resin composition and coating agent
JP2015124265A (en) Urethane (meth)acrylate compound, active energy ray curable resin composition and coating agent using the same
JP6596898B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP6578692B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP2014065902A (en) Active energy ray curing resin composition and coating agent
JP2017082204A (en) Active energy ray-curable resin composition and coating agent
JP2016124893A (en) Active energy ray-curable composition and coating-agent composition as well as novel cyclic urethane (meth)acrylate
JP2019112627A (en) Active energy ray-curable resin composition, coating agent, and coating agent for precoat metal

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016519400

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177024519

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773174

Country of ref document: EP

Kind code of ref document: A1