WO2018181972A1 - Active energy ray-curable resin composition and coating agent - Google Patents

Active energy ray-curable resin composition and coating agent Download PDF

Info

Publication number
WO2018181972A1
WO2018181972A1 PCT/JP2018/013806 JP2018013806W WO2018181972A1 WO 2018181972 A1 WO2018181972 A1 WO 2018181972A1 JP 2018013806 W JP2018013806 W JP 2018013806W WO 2018181972 A1 WO2018181972 A1 WO 2018181972A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
mixture
pentaerythritol
acrylates
Prior art date
Application number
PCT/JP2018/013806
Other languages
French (fr)
Japanese (ja)
Inventor
祐太 石川
幸宗 神田
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to CN201880014095.9A priority Critical patent/CN110382575B/en
Priority to KR1020197025035A priority patent/KR102445218B1/en
Publication of WO2018181972A1 publication Critical patent/WO2018181972A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to an active energy ray-curable resin composition containing a urethane (meth) acrylate-based composition and a coating agent, and more particularly, since curling shrinkage is small when a cured coating film is formed.
  • the present invention relates to an active energy ray-curable resin composition that can form a coating film that is difficult to resist and has excellent hardness and flexibility, and a coating agent using the same.
  • the active energy ray-curable resin composition is completely cured by irradiation with an active energy ray such as radiation or ultraviolet rays for a very short time, so that it can be used as a coating agent or adhesive on various substrates, or an anchor coating agent, etc.
  • an active energy ray such as radiation or ultraviolet rays
  • urethane (meth) acrylate compounds and polyfunctional monomers are used as the curing component.
  • the active energy ray-curable resin composition is used as a coating agent, particularly as a coating agent for a hard coat, there is a problem that the shrinkage of the coating film occurs and the cured coating film tends to curl. Difficult things are needed.
  • the coating agent for hard coat is also used as a protective film in bent parts of molded products, displays, etc., it is required to be flexible so that cracks do not easily occur even when a plastic film with a cured coating film is bent. Yes.
  • a curable resin composition in which inorganic fine particles are added to a curable resin for example, refer to Patent Document 1
  • a high molecular weight urethane as a curing component in order to suppress curing shrinkage.
  • a curable resin composition containing (meth) acrylate (see, for example, Patent Document 2), a hydroxyl group in a (meth) acrylic acid adduct of pentaerythritol having a hydroxyl value of 130 mgKOH / g or more,
  • a curable resin composition containing urethane (meth) acrylate obtained by reacting an isocyanate group of a polyvalent isocyanate compound for example, see Patent Document 3 has been proposed.
  • a resin composition containing dipentaerythritol hexaacrylate and tripentaerythritol octaacrylate is used to obtain a triacetyl cellulose having a thickness of 80 ⁇ m.
  • a technique is known in which a film having a pencil hardness of about 5H can be obtained by applying a film having a thickness of 12 ⁇ m on a film and curing the film (see, for example, Patent Document 4).
  • Patent Document 1 has a problem that the organic solvent that can be used is limited in consideration of the compatibility between the inorganic fine particles and the curable resin, and the possibility that the surface abnormality of the coating film increases. Furthermore, since inorganic fine particles are generally expensive, resins and paints containing them are also expensive, and practically, the use of the curable resin is limited to special applications.
  • Patent Document 3 can provide a cured coating film having a small curing shrinkage and curling suppressed, but is insufficient in terms of hardness.
  • urethane that can form a coating film that is difficult to curl due to small curing shrinkage and that has excellent hardness and flexibility.
  • An active energy ray-curable resin composition containing a (meth) acrylate composition and a coating agent using the same are provided.
  • the reaction product of at least one of pentaerythritol and dipentaerythritol and (meth) acrylic acid exhibits a hydroxyl value in a specific range
  • a urethane (meth) acrylate-based composition obtained by reacting a hydroxyl group of (meth) acrylate in the reaction product with a polyvalent isocyanate By using a urethane (meth) acrylate-based composition obtained by reacting a hydroxyl group of (meth) acrylate in the reaction product with a polyvalent isocyanate, curling shrinkage is small and hardness and flexibility are low. It was also found that an excellent cured coating film can be obtained.
  • the first gist of the present invention is that (meth) acrylate (a1) in a mixture (A) of the following (meth) acrylates (a1) to (a4) which is a reaction product of pentaerythritol and (meth) acrylic acid. ) To (a3) and a urethane (meth) acrylate composition [I] obtained by reacting polyisocyanate (CA), and the mixture (A) has a hydroxyl value of 200 mgKOH / g or more.
  • the present invention relates to an energy ray curable resin composition.
  • the second gist of the present invention is the urethane (meth) acrylate-based composition [I] and the following (meth) acrylate (b1) to (reaction product of dipentaerythritol and (meth) acrylic acid).
  • a urethane (meth) acrylate-based composition [II] obtained by reacting (meth) acrylates (b1) to (b5) in the mixture (B) of (b6) with the polyvalent isocyanate (CB);
  • the present invention relates to an active energy ray-curable resin composition having a hydroxyl value of 40 mgKOH / g or more in the mixture (B).
  • B1 Dipentaerythritol mono (meth) acrylate (b2) Dipentaerythritol di (meth) acrylate (b3) Dipentaerythritol tri (meth) acrylate (b4) Dipentaerythritol tetra (meth) acrylate (b5) Dipentaerythritol Penta (meth) acrylate (b6) Dipentaerythritol hexa (meth) acrylate
  • the third gist of the present invention is the following [ ⁇ ] (meth) acrylates (a1) to (a3), the following [ ⁇ ] (meth) acrylates (b1) to (b5), and
  • the present invention relates to an active energy ray-curable resin composition comprising a urethane (meth) acrylate composition [III] reacted with polyisocyanate (CC).
  • the mixture (A) of the following (meth) acrylates (a1) to (a4), which is a reaction product of [ ⁇ ] pentaerythritol and (meth) acrylic acid, has a hydroxyl value of 200 mgKOH / g or more, and the mixture (A) (Meth) acrylates (a1) to (a3).
  • the present invention also provides a coating agent comprising the active energy ray-curable resin composition.
  • the active energy ray-curable resin composition according to the first aspect of the present invention is less likely to curl due to small curing shrinkage, and can form a cured coating film having excellent hardness and flexibility, and further, before curing. Even a coating film can form a tack-free coating surface and is particularly useful for various applications such as a hard coating agent.
  • the active energy ray-curable resin composition according to the second aspect of the present invention has a small cure shrinkage, and is difficult to curl and can form a cured coating film having excellent hardness and flexibility.
  • it is useful for various applications such as a coating agent for hard coating.
  • the active energy ray-curable resin composition according to the third aspect of the present invention forms a cured coating film that is difficult to curl due to small curing shrinkage and that is excellent in hardness, flexibility, and scratch resistance.
  • it is useful for various applications such as a coating agent for hard coating.
  • the weight average molecular weight of the urethane (meth) acrylate composition [I] is 1,000 to 20,000, the active energy ray-curable resin composition is easily handled.
  • the active energy ray-curable resin composition is excellent in handleability.
  • the weight average molecular weight of the urethane (meth) acrylate composition [III] is 1,000 to 20,000, the active energy ray-curable resin composition is more easily handled.
  • (meth) acryl means acryl or methacryl
  • (meth) acryloyl means acryloyl or methacryloyl
  • (meth) acrylate means acrylate or methacrylate.
  • the active energy ray-curable resin composition of the present invention includes the following urethane (meth) acrylate-based composition [I], urethane (meth) acrylate-based compositions [I] and [II], and urethane (meth) acrylate-based It is characterized in that it contains any one urethane (meth) acrylate composition selected from the group consisting of the composition [III], and there are three embodiments.
  • the urethane (meth) acrylate-based composition [I] is a (meth) acrylate in a mixture (A) of the following (meth) acrylates (a1) to (a4), which is a reaction product of pentaerythritol and (meth) acrylic acid. ) Acrylate (a1) to (a3) and polyvalent isocyanate (CA) are reacted, and the hydroxyl value of the mixture (A) is 200 mgKOH / g or more.
  • the urethane (meth) acrylate-based composition [II] is a mixture of the following (meth) acrylates (b1) to (b6) (B), which is a reaction product of dipentaerythritol and (meth) acrylic acid.
  • the (meth) acrylates (b1) to (b5) are reacted with the polyvalent isocyanate (CB), and the hydroxyl value of the mixture (B) is 40 mgKOH / g or more.
  • B1 Dipentaerythritol mono (meth) acrylate (b2) Dipentaerythritol di (meth) acrylate (b3) Dipentaerythritol tri (meth) acrylate (b4) Dipentaerythritol tetra (meth) acrylate (b5) Dipentaerythritol Penta (meth) acrylate (b6) Dipentaerythritol hexa (meth) acrylate
  • the urethane (meth) acrylate-based composition [III] refers to (meth) acrylates (a1) to (a3) which are the following [ ⁇ ], and (meth) acrylates (b1) to (b1) which are the following [ ⁇ ]: b5) and a polyisocyanate (CC) are reacted.
  • the urethane (meth) acrylate composition [I] will be described.
  • the hydroxyl value of the mixture (A) of the (meth) acrylates (a1) to (a4) obtained by reacting the pentaerythritol with (meth) acrylic acid is 200 mgKOH / g or more.
  • Necessary preferably 210 to 380 mg KOH / g, particularly preferably 230 to 320 mg KOH / g.
  • the weight average molecular weight of the urethane (meth) acrylate-based composition [III] decreases, so that the curing shrinkage at the time of curing increases, so that it tends to be easily curled.
  • the flexibility tends to decrease.
  • the viscosity increases with increasing molecular weight, which tends to be difficult to handle.
  • the hydroxyl value in the present invention can be determined by a method according to JIS K 0070 1992.
  • the content of pentaerythritol di (meth) acrylate (a2) in the mixture (A) of the (meth) acrylates (a1) to (a4) is 10 to 50% by weight. And is preferably in terms of both flexibility and flexibility, particularly preferably 15 to 45% by weight, more preferably 20 to 40% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
  • the content ratio of pentaerythritol di (meth) acrylate (a2) with respect to the total of the (meth) acrylates (a1) to (a3) is preferably 15 to 55% by weight in terms of both hardness and flexibility,
  • the amount is particularly preferably 20 to 50% by weight, more preferably 25 to 45% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
  • pentaerythritol and (meth) acrylic acid are reacted to prepare an (meth) acrylic acid adduct of pentaerythritol, but the reaction of pentaerythritol and (meth) acrylic acid is carried out by a known general method. be able to.
  • pentaerythritol mono (meth) acrylate (a1) in which one (meth) acrylic acid is added to pentaerythritol
  • a mixture (A) containing erythritol tri (meth) acrylate (a3) and four-added pentaerythritol tetra (meth) acrylate (a4) is obtained, and a mixture (A) having the above hydroxyl value as a whole is obtained. be able to.
  • the mixture (A) may contain a side reaction product such as a Michael adduct of acrylic acid.
  • the hydroxyl value can be adjusted, for example, by adjusting the content ratio of (meth) acrylates (a1) to (a4).
  • the polyvalent isocyanate (CA) reacts with the (meth) acrylates (a1) to (a3).
  • the (meth) acrylates (a1) to (a3) Specifically, for example, tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate.
  • Aromatic polyisocyanates such as modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, naphthalene diisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate Hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone dii Cycloaliphatic polyisocyanates such as cyanate and norbornene diisocyanate; or trimer compounds or multimeric compounds of these polyisocyanates, allophanate polyisocyanates, burette polyisocyanates, water-dispersed polyisocyanates (for example “ Aquanate 105 ",” Aquanate 120 ",” Aquanate 210 ",
  • alicyclic polyisocyanates and aromatic polyisocyanates are preferable from the viewpoint of strength, and isophorone diisocyanate, hydrogenated xylylene diisocyanate, xylylene diisocyanate, and tolylene diisocyanate are particularly preferable.
  • the urethane (meth) acrylate composition [I] includes the hydroxyl groups of (meth) acrylates (a1) to (a3) in the mixture (A) of the above (meth) acrylates (a1) to (a4) and It can be obtained by reacting with the isocyanate group of the polyvalent isocyanate (CA).
  • the urethane (meth) acrylate composition [I] is obtained by reacting (meth) acrylate (a1) and polyvalent isocyanate (CA), (meth) acrylate (a2) and polyvalent isocyanate (CA).
  • the (meth) acrylate (a3) and the polyvalent isocyanate (CA) are reacted.
  • the (meth) acrylates (a1) to (a3) are not contained in the system.
  • the reaction product and (meth) acrylate (a4) which does not participate in the reaction are also contained.
  • the reaction molar ratio of the charge of the polyvalent isocyanate (CA) and the mixture (A) of (meth) acrylates (a1) to (a4) is, when the polyisocyanate (CA) has two isocyanate groups,
  • the polyvalent isocyanate (CA) :( meth) acrylate mixture (A) is preferably from 1: 1 to 1: 5, particularly preferably from 1: 1 to 1: 3, more preferably from 1: 1 to 1: 2. It is.
  • the ratio of the mixture (A) is too large, the amount of low molecular weight monomers increases, and the shrinkage of curing increases, so that the curl tends to increase. If the ratio of the mixture (A) is too small, unreacted polyvalent isocyanate. (CA) remains, and the stability and safety of the cured coating film tend to decrease.
  • reaction between the (meth) acrylates (a1) to (a3) and the polyvalent isocyanate (CA) in the (meth) acrylate mixture (A) is usually performed by reacting the above mixture (A) and the polyvalent isocyanate (CA). What is necessary is just to make it react to the vessel collectively or separately.
  • a catalyst for the purpose of accelerating the reaction.
  • a catalyst include dibutyltin dilaurate, dibutyltin diacetate, trimethyltin hydroxide, tetra-n-butyltin, bisacetylacetonate.
  • Organometallic compounds such as zinc, zirconium tris (acetylacetonate) ethylacetoacetate, zirconium tetraacetylacetonate; tin octylate, tin octenoate, zinc hexanoate, zinc octenoate, zinc stearate, zirconium 2-ethylhexanoate
  • Metal salts such as cobalt naphthenate, stannous chloride, stannic chloride and potassium acetate; triethylamine, triethylenediamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [ 5, , 0]
  • Undecene, amine catalysts such as N, N, N ′, N′-tetramethyl-1,3-butanediamine, N-methylmorpholine, N-ethylmorpholine; bis
  • a polymerization inhibitor As the polymerization inhibitor, known general ones used as polymerization inhibitors can be used. For example, p-benzoquinone, naphthoquinone, tolquinone, 2,5-diphenyl-p-benzoquinone, hydroquinone, 2, Quinones such as 5-di-t-butylhydroquinone, methylhydroquinone and mono-t-butylhydroquinone, aromatics such as 4-methoxyphenol and 2,6-di-t-butylcresol, pt-butylcatechol Etc. Of these, aromatics are preferable, and 4-methoxyphenol and 2,6-di-t-butylcresol are particularly preferable. These may be used alone or in combination of two or more.
  • an organic solvent having no functional group that reacts with an isocyanate group for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatics such as toluene and xylene.
  • esters such as ethyl acetate and butyl acetate
  • ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • aromatics such as toluene and xylene.
  • An organic solvent such as a family can be used. These may be used alone or in combination of two or more.
  • the reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C.
  • the reaction time is usually 4 to 72 hours, preferably 8 to 48 hours.
  • the urethane (meth) acrylate composition [I] preferably has a weight average molecular weight of 1,000 to 20,000, particularly preferably 2,000 to 18,000, and more preferably 3,000 to 16 , 000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
  • the said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, a column: ACQUITY APC XT 450, ACQUITY APC XT 200, on a high-speed liquid chromatograph (Waters, "ACQUITY APC system”). 1 and ACQUITY APC XT 45, 2 in total, and 4 in total.
  • the urethane (meth) acrylate content in the urethane (meth) acrylate composition [I] is preferably 50% by weight or more, particularly preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably. 80% by weight or more.
  • the upper limit is usually 95% by weight.
  • the hydroxyl value of the mixture (B) of the (meth) acrylates (b1) to (b6) obtained by reacting the dipentaerythritol with (meth) acrylic acid is 40 mgKOH / g or more. Is preferably 43 to 130 mgKOH / g, particularly preferably 45 to 125 mgKOH / g, and still more preferably 70 to 120 mgKOH / g.
  • the hydroxyl value of the mixture (B) is too small, the content of dipentaerythritol hexa (meth) acrylate (b6) that has a low molecular weight and a large number of ethylenically unsaturated groups and does not react with isocyanate increases. Since cure shrinkage becomes large, it tends to curl easily, and further, flexibility tends to decrease. In general, when the hydroxyl value is too large, the viscosity increases with increasing molecular weight, which tends to be difficult to handle.
  • the hardness and the content ratio of dipentaerythritol penta (meth) acrylate (b5) in the mixture (B) of the (meth) acrylates (b1) to (b6) are 15 to 60% by weight. It is preferable from the viewpoint of coexistence of flexibility, particularly preferably 20 to 55% by weight, and further preferably 25 to 55% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
  • the content ratio of dipentaerythritol penta (meth) acrylate (b5) to the total of the above (meth) acrylates (b1) to (b5) is preferably 45 to 90% by weight, particularly in terms of both hardness and flexibility. Preferably it is 50 to 90% by weight, more preferably 55 to 90% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
  • the content ratio of dipentaerythritol tetra (meth) acrylate (b4) in the mixture (B) of the (meth) acrylates (b1) to (b6) is preferably 1 to 35% by weight from the viewpoint of flexibility, Particularly preferred is 2 to 30% by weight, and more preferred is 3 to 25% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
  • the content ratio of dipentaerythritol tetra (meth) acrylate (b4) to the total of the (meth) acrylates (b1) to (b5) is preferably 2 to 40% by weight, particularly preferably 3 to It is 35% by weight, more preferably 4 to 30% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
  • dipentaerythritol is reacted with (meth) acrylic acid to prepare a (meth) acrylic acid adduct of dipentaerythritol, but the reaction between dipentaerythritol and (meth) acrylic acid is generally known. It can be done by the method.
  • the mixture (B) may contain a side reaction product such as a Michael adduct of acrylic acid.
  • the hydroxyl value can be adjusted, for example, by adjusting the content ratio of (meth) acrylates (b1) to (b6).
  • the polyvalent isocyanate (CB) reacts with the (meth) acrylates (b1) to (b5), specifically, the same polyvalent isocyanate (CA) as described above. Can be illustrated.
  • the polyvalent isocyanate (CB) may be the same as or different from the polyvalent isocyanate (CA).
  • the polyisocyanate (CB) may be a reaction product of the polyisocyanate and a polyol.
  • polyols include low molecular weight polyols and high molecular weight polyols, specifically polyether polyols, polyester polyols, polycarbonate polyols, polybutadiene polyols, ethylene / isoprene / butadiene, etc.
  • CB polyisocyanates
  • alicyclic polyisocyanates and aromatic polyisocyanates are preferable in terms of weather resistance and strength, and particularly preferable are isophorone diisocyanate, hydrogenated xylylene diisocyanate, and xylylene. Range isocyanate and tolylene diisocyanate.
  • the urethane (meth) acrylate composition [II] comprises the hydroxyl groups of (meth) acrylates (b1) to (b5) in the mixture (B) of the above (meth) acrylates (b1) to (b6) and It can be obtained by reacting with the isocyanate group of the polyvalent isocyanate (CB).
  • the urethane (meth) acrylate-based composition [II] is obtained by reacting (meth) acrylate (b1) and polyvalent isocyanate (CB), (meth) acrylate (b2) and polyvalent isocyanate (CB).
  • the reaction molar ratio of the charge of the polyvalent isocyanate (CB) and the mixture (B) of (meth) acrylates (b1) to (b6) is, for example, when the polyisocyanate (CB) has two isocyanate groups.
  • the polyisocyanate (CB) :( meth) acrylate mixture (B) is preferably 1: 1 to 1: 5, particularly preferably 1: 1 to 1: 4, and more preferably 1: 1 to 1. : 3.
  • reaction between (meth) acrylates (b1) to (b5) and the polyvalent isocyanate (CB) in the (meth) acrylate mixture (B) is usually performed by reacting the above mixture (B) and the polyvalent isocyanate (CB). What is necessary is just to make it react to the vessel collectively or separately.
  • a catalyst for the purpose of accelerating the reaction, and examples of the catalyst include those described in the urethane (meth) acrylate composition [I].
  • the preparation of the urethane (meth) acrylate composition [II] can be carried out according to the preparation of the urethane (meth) acrylate composition [I].
  • the urethane (meth) acrylate composition [II] preferably has a weight average molecular weight of 1,000 to 20,000, more preferably 1,500 to 18,000, particularly preferably 2,000 to 16. , 000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle. In addition, the measuring method of said weight average molecular weight is the same as the said measuring method.
  • the viscosity of the urethane (meth) acrylate composition [II] at 60 ° C. is preferably 1,000 to 300,000 mPa ⁇ s, particularly preferably 1,500 to 200,000 mPa ⁇ s, and still more preferably. 2,000 to 100,000 mPa ⁇ s.
  • the measuring method of the viscosity in 60 degreeC uses an E-type viscosity meter.
  • the urethane (meth) acrylate content in the urethane (meth) acrylate composition [II] is preferably 35% by weight or more, particularly preferably 40% by weight or more, more preferably 45% by weight or more, and particularly preferably. It is 50% by weight or more, particularly preferably 60% by weight or more.
  • the upper limit is usually 95% by weight.
  • the mixture (A) is a mixture of the (meth) acrylates (a1) to (a4) obtained by reacting the pentaerythritol and (meth) acrylic acid, and has a hydroxyl value of 200 mgKOH / g or more. Preferably from 210 to 380 mg KOH / g, particularly preferably from 230 to 320 mg KOH / g.
  • Examples of the mixture (A) are the same as those described in the urethane (meth) acrylate composition [I].
  • the (meth) acrylates (a1) to (a3) having a hydroxyl group react with the later-described polyvalent isocyanate (CC).
  • the mixture (B) is a mixture of the above (meth) acrylates (b1) to (b6) obtained by reacting the dipentaerythritol and (meth) acrylic acid, and has a hydroxyl value of 40 mgKOH / g or more. It is necessary that it is preferably 43 to 130 mgKOH / g, particularly preferably 45 to 125 mgKOH / g, and further preferably 70 to 120 mgKOH / g.
  • Examples of the mixture (B) are the same as those described in the urethane (meth) acrylate composition [II].
  • the (meth) acrylates (b1) to (b5) having a hydroxyl group react with the following polyvalent isocyanate (CC).
  • CC Polyvalent isocyanate
  • the polyvalent isocyanate (CC) which is a constituent material of the urethane (meth) acrylate composition [III] will be described.
  • the polyvalent isocyanate (CC) reacts with a hydroxyl group-containing (meth) acrylate, that is, the (meth) acrylates (a1) to (a3) and the (meth) acrylates (b1) to (b5).
  • polyvalent isocyanate (CA) described in the urethane (meth) acrylate-based composition [I] and the polyvalent isocyanate described in the urethane (meth) acrylate-based composition [II] The same thing as (CB) can be illustrated.
  • the polyvalent isocyanate (CC) may be the same as or different from the polyvalent isocyanate (CA) or polyvalent isocyanate (CB).
  • the polyvalent isocyanate (CC), the polyvalent isocyanate (CA), and the polyvalent isocyanate (CB) may be collectively referred to as “polyvalent isocyanate (C)”.
  • the hydroxyl groups of (meth) acrylates (a1) to (a3) in the mixture (A) of the (meth) acrylates (a1) to (a4) and the (meth) acrylates (b1) to (b6) ) By reacting the hydroxyl groups of (meth) acrylates (b1) to (b5) in the mixture (B) with the isocyanate groups of the polyvalent isocyanate (CC), to obtain a urethane (meth) acrylate composition [III] Can be obtained.
  • the urethane (meth) acrylate composition [III] is a reaction of (meth) acrylate (a1) and polyvalent isocyanate (CC), (meth) acrylate (a2) and polyvalent isocyanate (CC).
  • the (meth) acrylate mixture (A) :( meth) acrylate mixture (B) is preferably 90:10 to 10:90 by weight, particularly preferably 70:30 to 15:85, Preferably it is 50:50 to 20:80.
  • the ratio of the mixture (B) to the mixture (A) is too large, the amount of low molecular weight monomers increases, and curling tends to increase due to an increase in curing shrinkage. If the ratio of the mixture (B) is too small, hardness and There is a tendency for the scratch resistance to decrease.
  • reaction may be performed by charging the above mixture (A), mixture (B), and polyvalent isocyanate (CC) into a reactor all at once or separately.
  • a catalyst for the purpose of accelerating the reaction, and examples of the catalyst include those described in the urethane (meth) acrylate composition [I].
  • the preparation of the urethane (meth) acrylate composition [III] can be carried out according to the preparation of the urethane (meth) acrylate composition [I].
  • urethane obtained by reacting the above [ ⁇ ] (meth) acrylates (a1) to (a3), the above [ ⁇ ] (meth) acrylates (b1) to (b5), and the polyvalent isocyanate (CC).
  • a (meth) acrylate composition [III] is obtained.
  • a polyol is also contained and reacted with a polyvalent isocyanate (CC) to produce ( ⁇ ) (meth) acrylates (a1) to (a3), [ ⁇ ] (meth) acrylate (b1). It is also possible to obtain a urethane (meth) acrylate composition [III] composed of (b5), a polyvalent isocyanate (CC) and a polyol.
  • CC polyvalent isocyanate
  • polyol examples include low molecular weight polyols and high molecular weight polyols, specifically, polyols obtained by reacting polyether polyols, polyester polyols, polycarbonate polyols, ethylene / isoprene / butadiene, and the like. Or the hydrogenated thing, polyolefin polyols other than the above, polyols, such as (meth) acrylic-type polyol, etc. are mentioned.
  • the urethane (meth) acrylate composition [III] preferably has a weight average molecular weight of 1,000 to 20,000, more preferably 2,000 to 15,000, particularly preferably 3,000 to 12. 1,000, particularly preferably 4,000 to 10,000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
  • the said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, a column: ACQUITY APC XT 450, ACQUITY APC XT 200, on a high-speed liquid chromatograph (Waters, "ACQUITY APC system”). 1 and ACQUITY APC XT 45, 2 in total, and 4 in total.
  • the urethane (meth) acrylate content in the urethane (meth) acrylate composition [III] is preferably 50% by weight or more, particularly preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably. 80% by weight or more.
  • the upper limit is usually 95% by weight.
  • the active energy ray-curable resin composition of the present invention includes a first aspect (invention according to the first aspect) containing the urethane (meth) acrylate composition [I] and the urethane (meth) acrylate system.
  • 2nd aspect invention which concerns on 2nd summary
  • composition [I] and urethane (meth) acrylate type composition [II] containing composition [I] and urethane (meth) acrylate type composition [II]
  • the said urethane (meth) acrylate type composition [III] are contained. It has a 3rd aspect (invention based on a 3rd summary).
  • the active energy ray-curable resin composition according to the second aspect includes the urethane (meth) acrylate composition [I] and the urethane (meth) acrylate composition [II] as described above.
  • the content ratio ([I] / [II]) of the urethane (meth) acrylate composition [I] and the urethane (meth) acrylate composition [II] is 90/10 to 10/90 by weight ratio. It is preferably, particularly preferably 87/13 to 20/80, more preferably 85/15 to 30/70, particularly preferably 80/20 to 55/45, and even more preferably 80/20 to 65/35. It is. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to be insufficient.
  • the active energy ray-curable resin composition of the present invention of the first to third aspects preferably further contains a photopolymerization initiator (D).
  • a photopolymerization initiator D
  • other urethane (meth) acrylates, ethylenically unsaturated monomers other than urethane (meth) acrylate, acrylic resins, surface conditioners, leveling agents, polymerization inhibitors, etc. are added within a range not impairing the effects of the present invention.
  • fillers dyes, pigments, oils, plasticizers, waxes, desiccants, dispersants, wetting agents, gelling agents, stabilizers, antifoaming agents, surfactants, leveling agents, thixotropic properties
  • Additives, antioxidants, flame retardants, antistatic agents, fillers, reinforcing agents, matting agents, crosslinking agents, silica, water-dispersed or solvent-dispersed silica, zirconium compounds, preservatives, etc. is there.
  • Examples of the photopolymerization initiator (D) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2 -Hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy -1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propane, 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1 -One, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy- Acetophenones such as methyl-1- [4- (1-methylvinyl) phenyl] propanone
  • benzyl dimethyl ketal 1-hydroxycyclohexyl phenyl ketone, benzoyl isopropyl ether, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1- It is preferable to use phenylpropan-1-one.
  • auxiliaries include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, 4-dimethylamino.
  • the content of the photopolymerization initiator (D) is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the curing component contained in the resin composition. Part by weight, more preferably 1 to 10 parts by weight. If the content of the photopolymerization initiator (D) is too small, curing tends to be poor and film formation tends to be difficult, and if too large, yellowing of the cured coating film tends to occur, and coloring problems tend to occur.
  • ethylenically unsaturated monomers other than urethane (meth) acrylates include monofunctional monomers, bifunctional monomers, and trifunctional or higher polyfunctional monomers. These may be used alone or in combination of two or more.
  • Examples of such monofunctional monomers include styrene monomers such as styrene, vinyl toluene, chlorostyrene, ⁇ -methylstyrene, methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2-hydroxy -3-phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, glycidyl (meth) acrylate, lauryl (meth) acrylate Lilate, cyclohexyl (meth)
  • bifunctional monomers examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and di Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A Type di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, ethoxylated cyclohexanedimethanol di ( Acrylate), dimethylol dicyclopentane di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 1,6-
  • tri- or higher functional monomer examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanuric acid ethylene oxide modified triacrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (Meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate, cap Lactone modified pentaerythritol
  • a Michael adduct of acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester can be used in combination.
  • examples of the Michael adduct of acrylic acid include (meth) acrylic acid dimer, (meth) acrylic acid trimer, ) Acrylic acid tetramer and the like.
  • the above-mentioned 2-acryloyloxyethyl dicarboxylic acid monoester is a carboxylic acid having a specific substituent, such as 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, 2-acryloyloxy Examples include ethyl phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, 2-methacryloyloxyethyl hexahydrophthalic acid monoester, and the like. Furthermore, other oligoester acrylates can be mentioned.
  • the hardening components contained in an active energy ray-curable resin composition is preferably 60% by weight or less, particularly preferably 55% by weight or less, and still more preferably 50% by weight or less.
  • the lower limit is usually 5% by weight.
  • the content of the ethylenically unsaturated monomer other than urethane (meth) acrylate is 50% in all the curing components contained in the active energy ray-curable resin composition.
  • the content is preferably not more than wt%, particularly preferably not more than 40 wt%, further preferably not more than 30 wt%, particularly preferably not more than 20 wt%.
  • the lower limit is usually 5% by weight.
  • Examples of the surface conditioner include cellulose resin and alkyd resin.
  • cellulose resin has an action of improving the surface smoothness of the coating film
  • alkyd resin has an action of imparting a film-forming property at the time of coating.
  • leveling agent a known general leveling agent can be used as long as it has an effect of imparting wettability to the base material of the coating liquid and a function of reducing the surface tension.
  • An alkyl-modified resin or the like can be used. These may be used alone or in combination of two or more.
  • the same ones used during the reaction can be used.
  • These may be used alone or in combination of two or more.
  • the active energy ray-curable resin composition of the present invention preferably uses an organic solvent for dilution, if necessary, in order to make the viscosity at the time of coating appropriate.
  • organic solvents include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol, ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone, cellosolves such as ethyl cellosolve, toluene, xylene And the like, glycol ethers such as propylene glycol monomethyl ether, acetates such as methyl acetate, ethyl acetate and butyl acetate, and diacetone alcohol. These organic solvents may be used alone or in combination of two or more.
  • glycol ethers such as propylene glycol monomethyl ether and ketones such as methyl ethyl ketone and alcohols such as methanol, or ketones such as methyl ethyl ketone and alcohols such as methanol It is preferable from the viewpoint of the coating film appearance that a combination and two or more kinds selected from alcohols such as methanol are used in combination.
  • the active energy ray-curable resin composition of the present invention is effectively used as a curable composition for forming a coating film, such as a top coat agent and an anchor coat agent for various substrates. Then, after applying the active energy ray-curable resin composition to the base material (when the resin composition diluted with an organic solvent is applied, after further drying), the active energy ray is irradiated. Cured.
  • Examples of the base material to which the active energy ray-curable resin composition of the present invention is applied include, for example, polyolefin resins, polyester resins, polycarbonate resins, acrylonitrile butadiene styrene copolymers (ABS), and polystyrene resins.
  • Plastic substrates such as resins and their molded products (films, sheets, cups, etc.), optical films such as polyethylene terephthalate films, triacetyl cellulose films, cycloolefin films, composite substrates thereof, glass fibers, Composite base materials of the above materials mixed with inorganic materials, metals (aluminum, copper, iron, SUS, zinc, magnesium, alloys thereof, etc.) and glass, or base materials provided with a primer layer on these base materials, etc. Is mentioned.
  • Examples of the coating method of the active energy ray-curable resin composition of the present invention include wet coating methods such as spray, shower, gravure, dipping, roll, spin, and screen printing. What is necessary is just to apply to a base material.
  • the active energy ray-curable resin composition of the present invention may be applied as it is, or may be applied after diluting with an organic solvent.
  • the organic solvent is used so that the solid content is usually 3 to 70% by weight, preferably 5 to 60% by weight.
  • the drying conditions for the dilution with the organic solvent include a temperature of usually 40 to 120 ° C., preferably 50 to 100 ° C., and a drying time of usually 1 to 20 minutes, preferably 2 to 10 minutes. That's fine.
  • the viscosity of the resin composition at 20 ° C. is preferably 5 to 50,000 mPa ⁇ s, particularly preferably 10 to 10,000 mPa ⁇ s. s, more preferably 50 to 5,000 mPa ⁇ s.
  • the method for measuring the viscosity at 20 ° C. is based on a B-type viscometer. However, if the B-type viscometer at 20 ° C. cannot be measured due to high viscosity without solvent dilution, the measurement is performed using an E-type viscometer at 60 ° C.
  • Examples of the active energy ray used when the active energy ray-curable resin composition coated on the substrate is cured include, for example, deep ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, X-rays, ⁇ rays, etc.
  • ultraviolet irradiation is advantageous from the viewpoint of curing speed, availability of an irradiation device, price, and the like.
  • it can harden
  • ultraviolet irradiation When curing by ultraviolet irradiation, using a high-pressure mercury lamp, ultra-high pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, chemical lamp, electrodeless discharge lamp, LED lamp, etc.
  • a high-pressure mercury lamp ultra-high pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, chemical lamp, electrodeless discharge lamp, LED lamp, etc.
  • ultraviolet rays 30 to 3,000 mJ / cm 2 , preferably 100 to 1,500 mJ / cm 2 may be irradiated. After the ultraviolet irradiation, heating can be performed as necessary to complete the curing.
  • the coating film thickness (film thickness after curing) is usually 1 to 1,000 ⁇ m in view of light transmission so that the photopolymerization initiator (D) can react uniformly as an active energy ray-curable coating film.
  • the thickness is preferably 2 to 500 ⁇ m, particularly preferably 3 to 200 ⁇ m.
  • the active energy ray-curable resin composition of the present invention is preferably used as a coating agent, and particularly preferably used as a hard coat coating agent or an optical film coating agent.
  • the active energy ray-curable resin composition is applied to a polyethylene terephthalate (PET) film having a size of 15 cm ⁇ 15 cm and a thickness of 100 ⁇ m so that the cured coating film has a thickness of 10 ⁇ m.
  • PET polyethylene terephthalate
  • an 80 W high-pressure mercury lamp is prepared at a height of 18 cm from the surface of the PET film so that the integrated irradiation amount becomes 500 mJ / cm 2 at a speed of 5.1 m / min.
  • a cured coating film is obtained by irradiating with ultraviolet rays.
  • the cured coating film is cut out to be 10 cm ⁇ 10 cm, and the average value of the height of the four corners of the cut-out cured coating film is 40 mm or less, particularly 30 mm or less, and further, a coating that becomes a cured coating film of 25 mm or less. It is preferable to use an agent.
  • the active energy ray-curable resin composition is applied to an easy-adhesion PET film having a size of 15 cm ⁇ 15 cm and a thickness of 125 ⁇ m so that the cured coating film has a thickness of 10 ⁇ m, and a temperature of 60
  • an 80 W high-pressure mercury lamp is prepared at a height of 18 cm from the surface of the easy-adhesive PET film so that the integrated irradiation amount becomes 500 mJ / cm 2 at a speed of 5.1 m / min.
  • a cured coating film is obtained by irradiating with ultraviolet rays.
  • the cured coating film is evaluated for flexibility using a cylindrical mandrel bending tester in accordance with JIS K 5600-5-1.
  • a coating agent having a maximum diameter (integer value, mm) of 20 mm or less, particularly 15 mm or less, more preferably 10 mm or less, and particularly 8 mm or less.
  • the active energy ray-curable resin composition is applied to an easy-adhesion PET film having a size of 15 cm ⁇ 15 cm and a thickness of 125 ⁇ m so that the cured coating film has a thickness of 10 ⁇ m.
  • an 80 W high-pressure mercury lamp is prepared at a height of 18 cm from the surface of the easy-adhesive PET film so that the integrated irradiation amount becomes 500 mJ / cm 2 at a speed of 5.1 m / min.
  • a cured coating film is obtained by irradiating with ultraviolet rays.
  • the surface of the cured coating film was reciprocated 10 times while applying a load of 500 g. Also, the surface of the coating film having no scratch is preferable.
  • the invention according to the first aspect of the present invention is a (meth) acrylate (A) in a mixture (A) of the above (meth) acrylates (a1) to (a4), which is a reaction product of pentaerythritol and (meth) acrylic acid ( a urethane (meth) acrylate composition [I] obtained by reacting a1) to (a3) with a polyvalent isocyanate (CA), and the mixture (A) has a hydroxyl value of 200 mgKOH / g or more. It is an active energy ray-curable resin composition.
  • this active energy ray-curable resin composition has a small curing shrinkage, it is difficult to curl, and can form a cured coating film having excellent hardness and flexibility, and further, an uncured coating film before curing.
  • the coating surface is not sticky and has the effect of being able to form a tack-free coating surface, especially as a coating agent (and hard coating agent and optical film coating agent). It is also useful as a paint or ink.
  • the invention according to the second aspect of the present invention is the (meth) acrylate (A) in the mixture (A) of the above (meth) acrylates (a1) to (a4) which is a reaction product of pentaerythritol and (meth) acrylic acid ( a urethane (meth) acrylate composition [I] obtained by reacting a1) to (a3) with a polyvalent isocyanate (CA), and a reaction product of dipentaerythritol and (meth) acrylic acid shown below (meta ) Urethane (meth) acrylate composition [II] obtained by reacting (meth) acrylates (b1) to (b5) in the mixture (B) of acrylates (b1) to (b6) with the polyvalent isocyanate (CB) And the mixture (A) has a hydroxyl value of 200 mgKOH / g or more, and the mixture (B) has a hydroxyl value of 40 mgKOH / g or more.
  • This active energy ray-curable resin composition has an effect that it is difficult to curl because of its small curing shrinkage and can form a cured coating film having excellent hardness and flexibility.
  • the invention according to the third aspect of the present invention includes the (meth) acrylates (a1) to (a3) of [ ⁇ ], the (meth) acrylates (b1) to (b5) of [ ⁇ ], and a polyvalent
  • This is an active energy ray-curable resin composition comprising a urethane (meth) acrylate-based composition [III] reacted with isocyanate (CC).
  • This active energy ray-curable resin composition has an effect that it is difficult to curl due to small curing shrinkage and can form a cured coating film having excellent hardness, flexibility and scratch resistance. It is useful as a coating agent (further, a hard coat coating agent or an optical film coating agent). It is also useful as a paint or ink.
  • Example using urethane (meth) acrylate-based composition [I] >> The urethane acrylate composition [I] ([I-1] to [I-4]) and the urethane acrylate composition [I ′] ([I′-1] to [I′-1] I′-4]) was prepared.
  • the reaction was terminated to obtain a urethane acrylate composition [I-1] (resin concentration 50%).
  • the obtained urethane acrylate composition [I-1] had a weight average molecular weight of 4,700 and a viscosity at 20 ° C. of 80 mPa ⁇ s.
  • the viscosity at 20 ° C. was measured using a B-type viscometer. The viscosity measurement at 20 ° C. is the same in the following.
  • the content ratio of each component to the total of the following components (a1) to (a4) in the acrylate mixture (A-1) is as follows.
  • the content ratio of each component in the mixture is measured by using a column (Imtakt, Cadenza CD-C18 100 ⁇ 3 mm, 3 ⁇ m) in a liquid chromatograph (Agilent, “Technology HP 1100”).
  • urethane acrylate composition [I′-1] (resin concentration 100%).
  • the resulting urethane acrylate composition [I′-1] had a weight average molecular weight of 1,400 and a viscosity at 60 ° C. of 3,000 mPa ⁇ s. However, since it was high viscosity, it measured using the E-type viscosity meter.
  • the content ratio of each component with respect to the total of the following components (a1) to (a4) in the acrylate mixture (A′-1) is as follows.
  • the content ratio of the components (a2) to (a4) is shown.
  • Adduct 14 g, polyester polyol consisting of adipic acid and neopentyl glycol (DIC, “ODX-2044”, number average molecular weight: about 2,000) 114 g, 4-methoxyphenol 0.08 g as a polymerization inhibitor, reaction As a catalyst, 0.05 g of dibutyltin dilaurate was added and reacted at 60 ° C. When the residual isocyanate group reached 3.9%, an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (addition of acrylic acid of pentaerythritol) ) Add 35g, anti-react at 60 °C It was.
  • A-1 having a hydroxyl value of 288 mgKOH / g (addition of acrylic acid of pentaerythritol)
  • the reaction was terminated to obtain a urethane acrylate composition [I′-2] (resin content concentration 100%).
  • the urethane acrylate composition [I′-2] to be obtained does not have a reaction product of only (A-1) and (C-1).
  • the obtained urethane acrylate composition [I′-2] had a weight average molecular weight of 18,000 and a viscosity at 60 ° C. of 700,000 mPa ⁇ s. However, since it was high viscosity, it measured using the E-type viscosity meter.
  • the reaction was terminated when the group reached 0.1%, and a urethane acrylate composition [I′-3] was obtained (resin concentration 50%).
  • the obtained urethane acrylate composition [I′-3] had a weight average molecular weight of 2,100 and a viscosity at 20 ° C. of 73 mPa ⁇ s.
  • the content ratio of each component with respect to the total of the following components (a1) to (a4) in the acrylate mixture (A′-2) is as follows.
  • the reaction was terminated when the residual isocyanate group reached 0.1%, and a urethane acrylate composition [I′-4] was obtained (resin concentration 50%).
  • the obtained urethane acrylate composition [I′-4] had a weight average molecular weight of 2,200 and a viscosity at 20 ° C. of 85 mPa ⁇ s.
  • Examples 1 to 4 and Comparative Examples 1 to 4 [Production of active energy ray-curable resin composition]
  • the urethane acrylate composition obtained above ([I], [I ′]) is cured with 1-hydroxycyclohexyl phenyl ketone (“Omnirad 184” manufactured by IGM) as a photopolymerization initiator (D).
  • An active energy ray-curable resin composition was obtained by adding 4 parts to 100 parts.
  • the obtained urethane acrylate compositions ([I], [I ′]) were diluted with ethyl acetate so as to have a resin content of 50%. In the same manner as above, an active energy ray-curable resin composition was obtained.
  • the coating film before hardening (dry coating film) was formed as follows, and the stickiness of the coating film was evaluated. Furthermore, a cured coating film was formed as described below, and the hardness and flexibility of the cured coating film were evaluated. The evaluation results are as shown in Table 1 below.
  • the active energy ray-curable resin composition obtained above is coated with an adhesive PET film (Toyobo Co., Ltd., “A4300”, size 15 cm ⁇ 15 cm, thickness 125 ⁇ m) using a bar coater.
  • An adhesive PET film Toyobo Co., Ltd., “A4300”, size 15 cm ⁇ 15 cm, thickness 125 ⁇ m
  • the obtained uncured coating film was pushed in using a tacking tester (“TAC-II”, manufactured by Reska Co., Ltd.) at 120 mm / min, lifting speed 600 mm / min, pressure 20.4 gf, and pressurizing time 1.0.
  • the probe tack test was conducted under the condition of seconds.
  • the active energy ray-curable resin composition obtained above is coated with an adhesive PET film (Toyobo Co., Ltd., “A4300”, size 15 cm ⁇ 15 cm, thickness 125 ⁇ m) using a bar coater. Is applied to a thickness of 10 ⁇ m, dried at 60 ° C. for 3 minutes, and then irradiated with two passes of UV light at a conveyor speed of 5.1 m / min from a height of 18 cm using a high pressure mercury lamp 80 W and one lamp. (Integrated irradiation amount 500 mJ / cm 2 ) was performed to form a cured coating film. The above cured coating film coated on the easy-adhesion PET film was tested according to JIS K-5600, and the pencil hardness was measured.
  • a cured coating film was formed in the same manner as the above hardness evaluation, and the cured coating film coated on the easy-adhesion PET film was bent using a cylindrical mandrel bending tester according to JIS K 5600-5-1. Sexuality was evaluated. The maximum diameter (integer value, mm) at which cracking or peeling occurred was measured when the evaluation cured coating film was wound around a test bar such that the coating film surface was on the outside. It means that it is a coating film with high flexibility, so that a value is small.
  • the cured coating films obtained from the active energy ray-curable resin compositions containing the urethane acrylate compositions [I] of Examples 1 to 4 are excellent in hardness and flexibility, and before being cured. It can be seen that even an uncured coating film is not sticky.
  • Comparative Example 1 is inferior in the flexibility of the cured coating film. The film was sticky.
  • the comparative example 2 was inferior to the hardness of a cured coating film, and also the coating film before hardening had a stickiness.
  • the cured coating film was inferior in flexibility. From these, the active energy ray-curable resin compositions of Examples 1 to 4 are tack-free, have good hardness and flexibility, and are used as coating agents, particularly hard coat coating agents and optical film coating agents. Is useful.
  • urethane (meth) acrylate-based compositions [I] and [II] Examples using urethane (meth) acrylate-based compositions [I] and [II] >> As described below, urethane acrylate composition [I] ([I-5] to [I-7]), [II] ([II-1] to [II-2]), and urethane for comparison An acrylate composition [I ′] ([I′-5] to [I′-7]) was prepared.
  • the reaction was terminated to obtain a urethane acrylate composition [I-5] (resin concentration 50%).
  • the obtained urethane acrylate composition [I-5] had a weight average molecular weight of 4,700 and a viscosity at 20 ° C. of 80 mPa ⁇ s.
  • the viscosity at 20 ° C. was measured using a B-type viscometer. The viscosity measurement at 20 ° C. is the same in the following.
  • the content ratio of each component to the total of the following components (a1) to (a4) in the acrylate mixture (A-1) is as follows.
  • urethane acrylate composition [II-1] (resin concentration 100%).
  • the obtained urethane acrylate composition [II-1] had a weight average molecular weight of 5,500 and a viscosity at 60 ° C. of 39,400 mPa ⁇ s.
  • the viscosity at 60 ° C. was measured using an E-type viscometer. The viscosity measurement at 60 ° C. is the same in the following.
  • the content ratio of each component with respect to the total of the following components (b1) to (b6) in the acrylate mixture (B-1) is as follows.
  • (B4) Dipentaerythritol tetraacrylate 18%
  • (B5) Dipentaerythritol pentaacrylate 51%
  • (B6) Dipentaerythritol hexaacrylate 31%
  • the inclusion of components (b4) to (b6) was below the measurement limit value, the inclusion of components (b4) to (b6) The percentage is shown.
  • the urethane acrylate composition [II-2] was obtained (resin concentration 100%).
  • the resulting urethane acrylate composition [II-2] had a weight average molecular weight of 67,000 and a viscosity at 60 ° C. of 65,000 mPa ⁇ s.
  • the urethane acrylate composition [II-3] was obtained (resin concentration 100%).
  • the obtained urethane acrylate composition [II-3] had a weight average molecular weight of 2,000 and a viscosity at 60 ° C. of 1,700 mPa ⁇ s.
  • the content ratio of each component with respect to the total of the following components (b1) to (b6) in the acrylate mixture (B-2) is as follows.
  • (B4) Dipentaerythritol tetraacrylate 6%
  • (B5) Dipentaerythritol pentaacrylate 54%
  • (B6) Dipentaerythritol hexaacrylate 40%
  • the content of (b1) dipentaerythritol monoacrylate, (b2) dipentaerythritol diacrylate, and (b3) dipentaerythritol triacrylate was below the measurement limit value, the inclusion of components (b4) to (b6) The percentage is shown.
  • the residual isocyanate group was 0.3% or less.
  • the reaction was terminated to obtain a urethane acrylate composition [I′-5] (resin content concentration 100%).
  • the obtained urethane acrylate composition [I′-5] had a weight average molecular weight of 1,400 and a viscosity at 60 ° C. of 3,000 mPa ⁇ s.
  • the content ratio of each component with respect to the total of the following components (a1) to (a4) in the acrylate mixture (A′-1) is as follows.
  • the content ratio of the components (a2) to (a4) was shown.
  • the reaction was terminated when the residual isocyanate group reached 0.1%, and a urethane acrylate composition [I′-6] was obtained (resin content concentration 50%).
  • the obtained urethane acrylate composition [I′-6] had a weight average molecular weight of 2,200 and a viscosity at 20 ° C. of 85 mPa ⁇ s.
  • the content ratio of each component with respect to the total of the following components (a1) to (a4) in the acrylate mixture (A′-2) is as follows.
  • the reaction was terminated to obtain a urethane acrylate composition [I′-7] (resin concentration 50%).
  • the obtained urethane acrylate composition [I′-7] had a weight average molecular weight of 2,100 and a viscosity at 20 ° C. of 73 mPa ⁇ s.
  • a cured coating film was formed as follows, and the hardness and flexibility of the cured coating film were evaluated. The evaluation results are as shown in Table 2 below.
  • the active energy ray-curable resin composition obtained above is coated with an adhesive PET film (Toyobo Co., Ltd., “A4300”, size 15 cm ⁇ 15 cm, thickness 125 ⁇ m) using a bar coater. Is applied to a thickness of 10 ⁇ m, dried at 60 ° C. for 3 minutes, and then irradiated with two passes of UV light at a conveyor speed of 5.1 m / min from a height of 18 cm using a high pressure mercury lamp 80 W and one lamp. (Integrated irradiation amount 500 mJ / cm 2 ) was performed to form a cured coating film. The above cured coating film coated on the easy-adhesion PET film was tested according to JIS K-5600, and the pencil hardness was measured.
  • a cured coating film was formed in the same manner as the above hardness evaluation, and the cured coating film coated on the easy-adhesion PET film was bent using a cylindrical mandrel bending tester according to JIS K 5600-5-1. Sexuality was evaluated. The maximum diameter (integer value, mm) at which cracking or peeling occurred was measured when the evaluation cured coating film was wound around a test bar such that the coating film surface was on the outside. It means that it is a coating film with high flexibility, so that a value is small.
  • the cured coating films obtained from the active energy ray-curable resin compositions containing the urethane acrylate compositions [I] and [II] of Examples 5 to 12 are excellent in both hardness and flexibility. I understand that. On the other hand, in Comparative Example 5 which did not contain the urethane acrylate composition [I] and used only the urethane acrylate composition [II], the flexibility of the cured coating film was inferior. Furthermore, in Comparative Examples 6 and 7 containing a urethane acrylate composition prepared using an acrylate mixture having a low hydroxyl value, the flexibility of the cured coating film was inferior.
  • A-1 Acrylic acid adduct of pentaerythritol having a hydroxyl value of 288 mgKOH / g, and the content ratio of each component to the total of the following components (a1) to (a4) is as follows.
  • A′-1 Acrylic acid adduct of pentaerythritol having a hydroxyl value of 118 mgKOH / g, and the content ratio of each component to the total of the following components (a1) to (a4) is as follows.
  • the content ratio of the components (a2) to (a4) was shown.
  • A′-2 Acrylic acid adduct of pentaerythritol having a hydroxyl value of 184.2 mgKOH / g, and the content ratio of each component to the total of the following components (a1) to (a4) is as follows.
  • A4 Pentaerythritol tetraacrylate 34.2%
  • B4 Dipentaerythritol tetraacrylate 18%
  • B5 Dipentaerythritol pentaacrylate 51%
  • B6 Dipentaerythritol hexaacrylate 31%
  • the content of (b1) dipentaerythritol monoacrylate, (b2) dipentaerythritol diacrylate, and (b3) dipentaerythritol triacrylate was below the measurement limit value, the inclusion of components (b4) to (b6) The percentage is shown.
  • B-2 An acrylic acid adduct of dipentaerythritol having a hydroxyl value of 54 mgKOH / g, and the content ratio of each component to the total of the following components (b1) to (b6) is as follows.
  • B4 Dipentaerythritol tetraacrylate 6%
  • B5 Dipentaerythritol pentaacrylate 54%
  • B6 Dipentaerythritol hexaacrylate 40%
  • the content of (b1) dipentaerythritol monoacrylate, (b2) dipentaerythritol diacrylate, and (b3) dipentaerythritol triacrylate was below the measurement limit value, the inclusion of components (b4) to (b6) The percentage is shown.
  • D-1 1-hydroxycyclohexyl phenyl ketone (manufactured by IGM, “Omnilad 184”)
  • urethane acrylate composition (III-1) had a weight average molecular weight of 4,900 and a viscosity at 20 ° C. of 40 mPa ⁇ s.
  • the viscosity at 20 ° C. was measured using a B-type viscometer. The viscosity measurement at 20 ° C. is the same in the following.
  • the reaction was terminated to obtain a urethane acrylate composition (III-3).
  • (Resin concentration 70%) The resulting urethane acrylate composition (III-3) had a weight average molecular weight of 3,300 and a viscosity at 20 ° C. of 460 mPa ⁇ s.
  • Adduct 49 g, hydroxyl group value 54 mg KOH / g acrylate mixture (B-2) (dipentaerythritol acrylic acid adduct) 112 g, polymerization inhibitor 0.08 g 4-methoxyphenol, dibutyltin dilaurate 0. 05 g was charged and reacted at 60 ° C. When the residual isocyanate group reached 0.1%, the reaction was terminated to obtain a urethane acrylate composition (III-3) (resin concentration 100%). The weight average molecular weight of the obtained urethane acrylate composition (III-4) was 3,800. Since the viscosity was very high, the viscosity could not be measured.
  • the urethane acrylate composition (III′-1) (Resin concentration 70%) was obtained.
  • the resulting urethane acrylate composition (III′-1) had a weight average molecular weight of 1,700 and a viscosity at 20 ° C. of 140 mPa ⁇ s.
  • composition (III′-2) was obtained (resin concentration: 50%).
  • the resulting urethane acrylate composition (III′-2) had a weight average molecular weight of 2,300 and a viscosity at 20 ° C. of 65 mPa ⁇ s.
  • the urethane acrylate composition (III′-4) was obtained (resin content concentration 100%).
  • the resulting urethane acrylate composition (III′-4) had a weight average molecular weight of 5,500 and a viscosity at 60 ° C. of 39,400 mPa ⁇ s.
  • the viscosity at 60 ° C. was measured using an E-type viscometer.
  • the active energy ray-curable resin composition obtained above is coated with an adhesive PET film (Toyobo Co., Ltd., “A4300”, size 15 cm ⁇ 15 cm, thickness 125 ⁇ m) using a bar coater. Is applied to a thickness of 10 ⁇ m, dried at 60 ° C. for 3 minutes, and then irradiated with two passes of UV light at a conveyor speed of 5.1 m / min from a height of 18 cm using a high pressure mercury lamp 80 W and one lamp. (Integrated irradiation amount 500 mJ / cm 2 ) was performed to form a cured coating film. The above cured coating film coated on the easy-adhesion PET film was tested according to JIS K-5600, and the pencil hardness was measured.
  • a cured coating film was formed in the same manner as the above hardness evaluation, and the cured coating film coated on the easy-adhesion PET film was bent using a cylindrical mandrel bending tester according to JIS K 5600-5-1. Sexuality was evaluated. The maximum diameter (integer value, mm) at which cracking or peeling occurred was measured when the evaluation cured coating film was wound around a test bar such that the coating film surface was on the outside. It means that it is a coating film with high flexibility so that a value is small.
  • a cured coating film was formed in the same manner as in the above hardness evaluation, and a 500 g load was applied to the cured coating film coated on the easy-adhesive PET film using steel wool (Nihon Steel Wool Co., Ltd., Bonster # 0000). Then, after the surface of the cured coating was reciprocated 10 times, the degree of scratching on the surface was visually observed. (Evaluation) ⁇ ⁇ ⁇ ⁇ Scratches can not be confirmed ⁇ ⁇ ⁇ ⁇ Scratches can be confirmed
  • the cured coating film obtained from the active energy ray-curable resin composition containing the urethane acrylate composition [III] of Examples 13 to 16 has not only hardness and flexibility but also scratch resistance. Can also be seen as excellent.
  • Comparative Example 10 using a low hydroxyl value pentaerythritol acrylic acid adduct (A′-1) having a hydroxyl value of less than 200 mgKOH / g, among the mixtures (A) and (B) dipentaerythritol
  • Comparative Example 13 using only the acrylic acid adduct (B-1) the flexibility of the cured coating film was inferior.
  • Comparative Example 11 using the pentaerythritol acrylic acid adduct (A′-2) having a slightly lower hydroxyl value, the hardness was slightly inferior and the scratch resistance was inferior. Furthermore, in the case of Comparative Example 12 using only the acrylic acid adduct (A-1) of pentaerythritol having a high hydroxyl value among the mixtures (A) and (B), the cured coating film was inferior in scratch resistance. there were. From these, the active energy ray-curable resin compositions of Examples 13 to 16 are excellent in hardness and flexibility, as well as scratch resistance, and coating agents such as hard coat coating agents and optical film coating agents. It turns out to be useful in the application.
  • the active energy ray-curable resin composition of the present invention is capable of forming a coating film that is hard to curl and has excellent hardness and flexibility due to small curing shrinkage when a cured coating film is formed. It is useful as a coating agent, especially as a coating agent for hard coats and a coating agent for optical films. It is also useful as a paint or ink. Furthermore, after affixing the resin composition side of the uncured laminated film in which the active energy ray-curable resin composition layer is formed on the film to the molded product, various active energy ray curings are performed. A cured film can be easily formed on the molded product.

Abstract

Provided is an active energy ray-curable resin composition containing a urethane (meth)acrylate-based composition, which has small curing shrinkage and is thus capable of forming a cured coating film, wherein the cured coating film is not easily curled and has excellent hardness and flexibility. The active energy ray-curable resin composition contains a urethane (meth)acrylate-based composition [I] obtained by reacting an isocyanate group of polyvalent isocyanate (CA) with a hydroxyl group of (meth)acrylate contained in a (meth)acrylate mixture (A) which is a reaction product of pentaerythritol and (meth)acrylic acid, wherein the hydroxyl value of the mixture (A) is at least 200 mgKOH/g.

Description

活性エネルギー線硬化性樹脂組成物及びコーティング剤Active energy ray-curable resin composition and coating agent
 本発明は、ウレタン(メタ)アクリレート系組成物を含有してなる活性エネルギー線硬化性樹脂組成物及びコーティング剤に関し、更に詳しくは、硬化塗膜を形成した際に、硬化収縮が小さいことからカールしにくく、更に硬度及び屈曲性に優れた塗膜を形成することができる活性エネルギー線硬化性樹脂組成物、及びこれを用いたコーティング剤に関するものである。 The present invention relates to an active energy ray-curable resin composition containing a urethane (meth) acrylate-based composition and a coating agent, and more particularly, since curling shrinkage is small when a cured coating film is formed. The present invention relates to an active energy ray-curable resin composition that can form a coating film that is difficult to resist and has excellent hardness and flexibility, and a coating agent using the same.
 従来、活性エネルギー線硬化性樹脂組成物は、ごく短時間の放射線や紫外線等の活性エネルギー線の照射により硬化が完了するため、各種基材へのコーティング剤や接着剤、又はアンカーコート剤等として幅広く用いられており、その中の硬化成分としては、ウレタン(メタ)アクリレート系化合物や多官能モノマーが使用されている。ところが、活性エネルギー線硬化性樹脂組成物を、特にコーティング剤、とりわけハードコート用コーティング剤として用いる際に、塗膜の硬化収縮が起こり、硬化塗膜がカールし易いという問題点があり、カールしにくいものが求められている。 Conventionally, the active energy ray-curable resin composition is completely cured by irradiation with an active energy ray such as radiation or ultraviolet rays for a very short time, so that it can be used as a coating agent or adhesive on various substrates, or an anchor coating agent, etc. Widely used, urethane (meth) acrylate compounds and polyfunctional monomers are used as the curing component. However, when the active energy ray-curable resin composition is used as a coating agent, particularly as a coating agent for a hard coat, there is a problem that the shrinkage of the coating film occurs and the cured coating film tends to curl. Difficult things are needed.
 また、ハードコート用コーティング剤は保護フィルムとして成型品やディスプレイ等の屈曲部にも使用されるため、硬化塗膜を形成したプラスチックフィルムを曲げてもクラック等が生じ難いという屈曲性が求められている。 In addition, since the coating agent for hard coat is also used as a protective film in bent parts of molded products, displays, etc., it is required to be flexible so that cracks do not easily occur even when a plastic film with a cured coating film is bent. Yes.
 上記のカールしにくいことについては、硬化収縮を抑えるために、硬化性樹脂に無機微粒子を添加した硬化性樹脂組成物(例えば、特許文献1参照。)や、硬化成分として高分子量化されたウレタン(メタ)アクリレートを含有させた硬化性樹脂組成物(例えば、特許文献2参照。)、更には、水酸基価が130mgKOH/g以上であるペンタエリスリトールの(メタ)アクリル酸付加物中の水酸基と、多価イソシアネート系化合物のイソシアネート基とを反応させてなるウレタン(メタ)アクリレートを含有してなる硬化性樹脂組成物(例えば、特許文献3参照。)が提案されている。 Regarding the above-mentioned difficulty in curling, a curable resin composition in which inorganic fine particles are added to a curable resin (for example, refer to Patent Document 1) or a high molecular weight urethane as a curing component in order to suppress curing shrinkage. A curable resin composition containing (meth) acrylate (see, for example, Patent Document 2), a hydroxyl group in a (meth) acrylic acid adduct of pentaerythritol having a hydroxyl value of 130 mgKOH / g or more, A curable resin composition containing urethane (meth) acrylate obtained by reacting an isocyanate group of a polyvalent isocyanate compound (for example, see Patent Document 3) has been proposed.
 また、耐擦傷性を向上させるためにハードコート層をより高硬度化する手法として、例えばジペンタエリスリトールヘキサアクリレート及びトリペンタエリスリトールオクタアクリレートを含有してなる樹脂組成物を、厚み80μmのトリアセチルセルロースフィルム上に膜厚12μmで塗布して硬化させることにより、鉛筆硬度5H程度の硬度を有するフィルムが得られるという技術が知られている(例えば、特許文献4参照。)。 Further, as a method for increasing the hardness of the hard coat layer in order to improve the scratch resistance, for example, a resin composition containing dipentaerythritol hexaacrylate and tripentaerythritol octaacrylate is used to obtain a triacetyl cellulose having a thickness of 80 μm. A technique is known in which a film having a pencil hardness of about 5H can be obtained by applying a film having a thickness of 12 μm on a film and curing the film (see, for example, Patent Document 4).
特開2010-77292号公報JP 2010-77292 A 特開2010-180319号公報JP 2010-180319 A 特開2012-229412号公報JP 2012-229412 A 特開2009-286924号公報JP 2009-286924 A
 しかしながら、上記特許文献1の開示技術では、無機微粒子と硬化性樹脂との相溶性を考慮すると使用できる有機溶剤が限られたり、塗膜の表面異常が起こる可能性が高くなるという問題があったり、更に一般的に無機微粒子は高価なため、それを配合した樹脂や塗料も高価となり、現実的には硬化性樹脂の使用用途が特殊な用途に限られてしまうものであった。 However, the disclosed technique of Patent Document 1 has a problem that the organic solvent that can be used is limited in consideration of the compatibility between the inorganic fine particles and the curable resin, and the possibility that the surface abnormality of the coating film increases. Furthermore, since inorganic fine particles are generally expensive, resins and paints containing them are also expensive, and practically, the use of the curable resin is limited to special applications.
 また、上記特許文献2の開示技術では、硬化成分として使用するウレタン(メタ)アクリレートを高分子量化させるための製造法が多段反応となるため、操作が煩雑となったり、塗膜の耐擦傷性が低下してしまうものであった。 In addition, in the disclosed technique of Patent Document 2, the production method for increasing the molecular weight of urethane (meth) acrylate used as a curing component is a multistage reaction, so that the operation becomes complicated and the scratch resistance of the coating film. Would be reduced.
 一方、特許文献3の開示技術では、硬化収縮が小さくカールが抑制された硬化塗膜を得ることができるが、硬度の点で不充分であった。 On the other hand, the disclosed technique of Patent Document 3 can provide a cured coating film having a small curing shrinkage and curling suppressed, but is insufficient in terms of hardness.
 更に、特許文献4の開示技術では、硬化塗膜の表面硬度は高いものの、硬化時に生じるカールが大きく、また硬く脆いものであるために、塗膜を屈曲させた際に割れが生じてしまうものであった。 Furthermore, in the disclosed technique of Patent Document 4, although the surface hardness of the cured coating film is high, the curl generated at the time of curing is large, and because the coating film is hard and brittle, cracking occurs when the coating film is bent. Met.
 そこで、本発明では、このような背景下において、硬化塗膜を形成した際に、硬化収縮が小さいことからカールしにくく、かつ硬度及び屈曲性にも優れた塗膜を形成することができるウレタン(メタ)アクリレート系組成物を含有する活性エネルギー線硬化性樹脂組成物、及びそれを用いたコーティング剤を提供する。 Therefore, in the present invention, under such a background, when a cured coating film is formed, urethane that can form a coating film that is difficult to curl due to small curing shrinkage and that has excellent hardness and flexibility. An active energy ray-curable resin composition containing a (meth) acrylate composition and a coating agent using the same are provided.
 しかるに本発明者等は、かかる事情に鑑み鋭意研究を重ねた結果、硬化成分として、ペンタエリスリトール及びジペンタエリスリトールの少なくとも一方と(メタ)アクリル酸との反応物が特定範囲の水酸基価を示し、その反応物中の(メタ)アクリレートの水酸基と、多価イソシアネートとを反応させてなるウレタン(メタ)アクリレート系組成物を用いることにより、硬化収縮が小さいことからカールしにくく、かつ硬度及び屈曲性にも優れた硬化塗膜が得られることを見出した。 However, as a result of intensive studies in view of such circumstances, the present inventors, as a curing component, the reaction product of at least one of pentaerythritol and dipentaerythritol and (meth) acrylic acid exhibits a hydroxyl value in a specific range, By using a urethane (meth) acrylate-based composition obtained by reacting a hydroxyl group of (meth) acrylate in the reaction product with a polyvalent isocyanate, curling shrinkage is small and hardness and flexibility are low. It was also found that an excellent cured coating film can be obtained.
 即ち、本発明の第1の要旨は、ペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(a1)~(a4)の混合物(A)中の(メタ)アクリレート(a1)~(a3)と、多価イソシアネート(CA)とが反応したウレタン(メタ)アクリレート系組成物[I]を含有してなり、上記混合物(A)の水酸基価が200mgKOH/g以上である活性エネルギー線硬化性樹脂組成物に関するものである。
 混合物(A)
 (a1)ペンタエリスリトールモノ(メタ)アクリレート
 (a2)ペンタエリスリトールジ(メタ)アクリレート
 (a3)ペンタエリスリトールトリ(メタ)アクリレート
 (a4)ペンタエリスリトールテトラ(メタ)アクリレート
That is, the first gist of the present invention is that (meth) acrylate (a1) in a mixture (A) of the following (meth) acrylates (a1) to (a4) which is a reaction product of pentaerythritol and (meth) acrylic acid. ) To (a3) and a urethane (meth) acrylate composition [I] obtained by reacting polyisocyanate (CA), and the mixture (A) has a hydroxyl value of 200 mgKOH / g or more. The present invention relates to an energy ray curable resin composition.
Mixture (A)
(A1) Pentaerythritol mono (meth) acrylate (a2) Pentaerythritol di (meth) acrylate (a3) Pentaerythritol tri (meth) acrylate (a4) Pentaerythritol tetra (meth) acrylate
 また、本発明の第2の要旨は、上記ウレタン(メタ)アクリレート系組成物[I]、及び、ジペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(b1)~(b6)の混合物(B)中の(メタ)アクリレート(b1)~(b5)と、多価イソシアネート(CB)とが反応したウレタン(メタ)アクリレート系組成物[II]を含有してなり、上記混合物(B)の水酸基価が40mgKOH/g以上である活性エネルギー線硬化性樹脂組成物に関するものである。
 混合物(B)
  (b1)ジペンタエリスリトールモノ(メタ)アクリレート
  (b2)ジペンタエリスリトールジ(メタ)アクリレート
  (b3)ジペンタエリスリトールトリ(メタ)アクリレート
  (b4)ジペンタエリスリトールテトラ(メタ)アクリレート
  (b5)ジペンタエリスリトールペンタ(メタ)アクリレート
  (b6)ジペンタエリスリトールヘキサ(メタ)アクリレート
The second gist of the present invention is the urethane (meth) acrylate-based composition [I] and the following (meth) acrylate (b1) to (reaction product of dipentaerythritol and (meth) acrylic acid). A urethane (meth) acrylate-based composition [II] obtained by reacting (meth) acrylates (b1) to (b5) in the mixture (B) of (b6) with the polyvalent isocyanate (CB); The present invention relates to an active energy ray-curable resin composition having a hydroxyl value of 40 mgKOH / g or more in the mixture (B).
Mixture (B)
(B1) Dipentaerythritol mono (meth) acrylate (b2) Dipentaerythritol di (meth) acrylate (b3) Dipentaerythritol tri (meth) acrylate (b4) Dipentaerythritol tetra (meth) acrylate (b5) Dipentaerythritol Penta (meth) acrylate (b6) Dipentaerythritol hexa (meth) acrylate
 さらに、本発明の第3の要旨は、下記の[α]である(メタ)アクリレート(a1)~(a3)、下記の[β]である(メタ)アクリレート(b1)~(b5)、及び、多価イソシアネート(CC)が反応したウレタン(メタ)アクリレート系組成物[III]を含有してなる活性エネルギー線硬化性樹脂組成物に関するものである。
 [α]ペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(a1)~(a4)の混合物(A)の水酸基価が200mgKOH/g以上であり、上記混合物(A)中の(メタ)アクリレート(a1)~(a3)。
  (a1)ペンタエリスリトールモノ(メタ)アクリレート
  (a2)ペンタエリスリトールジ(メタ)アクリレート
  (a3)ペンタエリスリトールトリ(メタ)アクリレート
  (a4)ペンタエリスリトールテトラ(メタ)アクリレート
 [β]ジペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(b1)~(b6)の混合物(B)の水酸基価が40mgKOH/g以上であり、上記混合物(B)中の(メタ)アクリレート(b1)~(b5)。
  (b1)ジペンタエリスリトールモノ(メタ)アクリレート
  (b2)ジペンタエリスリトールジ(メタ)アクリレート
  (b3)ジペンタエリスリトールトリ(メタ)アクリレート
  (b4)ジペンタエリスリトールテトラ(メタ)アクリレート
  (b5)ジペンタエリスリトールペンタ(メタ)アクリレート
  (b6)ジペンタエリスリトールヘキサ(メタ)アクリレート
Furthermore, the third gist of the present invention is the following [α] (meth) acrylates (a1) to (a3), the following [β] (meth) acrylates (b1) to (b5), and The present invention relates to an active energy ray-curable resin composition comprising a urethane (meth) acrylate composition [III] reacted with polyisocyanate (CC).
The mixture (A) of the following (meth) acrylates (a1) to (a4), which is a reaction product of [α] pentaerythritol and (meth) acrylic acid, has a hydroxyl value of 200 mgKOH / g or more, and the mixture (A) (Meth) acrylates (a1) to (a3).
(A1) pentaerythritol mono (meth) acrylate (a2) pentaerythritol di (meth) acrylate (a3) pentaerythritol tri (meth) acrylate (a4) pentaerythritol tetra (meth) acrylate [β] dipentaerythritol and (meth) The hydroxyl value of the mixture (B) of the following (meth) acrylates (b1) to (b6), which is a reaction product with acrylic acid, is 40 mgKOH / g or more, and the (meth) acrylate (b1) in the mixture (B) To (b5).
(B1) Dipentaerythritol mono (meth) acrylate (b2) Dipentaerythritol di (meth) acrylate (b3) Dipentaerythritol tri (meth) acrylate (b4) Dipentaerythritol tetra (meth) acrylate (b5) Dipentaerythritol Penta (meth) acrylate (b6) Dipentaerythritol hexa (meth) acrylate
 また、本発明においては、上記活性エネルギー線硬化性樹脂組成物を含有してなるコーティング剤も提供するものである。 The present invention also provides a coating agent comprising the active energy ray-curable resin composition.
 本発明の第1の要旨にかかる活性エネルギー線硬化性樹脂組成物は、硬化収縮が小さいことからカールしにくく、硬度及び屈曲性に優れた硬化塗膜を形成することができ、更に硬化前の塗膜でもタックフリーな塗膜表面を形成することのできるものであり、とりわけハードコート用のコーティング剤等、種々の用途に有用である。 The active energy ray-curable resin composition according to the first aspect of the present invention is less likely to curl due to small curing shrinkage, and can form a cured coating film having excellent hardness and flexibility, and further, before curing. Even a coating film can form a tack-free coating surface and is particularly useful for various applications such as a hard coating agent.
 また、本発明の第2の要旨にかかる活性エネルギー線硬化性樹脂組成物は、硬化収縮が小さいことからカールしにくく、更に硬度及び屈曲性に優れた硬化塗膜を形成することができるものであり、とりわけハードコート用のコーティング剤等、種々の用途に有用である。 In addition, the active energy ray-curable resin composition according to the second aspect of the present invention has a small cure shrinkage, and is difficult to curl and can form a cured coating film having excellent hardness and flexibility. In particular, it is useful for various applications such as a coating agent for hard coating.
 さらに、本発明の第3の要旨にかかる活性エネルギー線硬化性樹脂組成物は、硬化収縮が小さいことからカールしにくく、かつ硬度、屈曲性及び耐擦傷性に優れた硬化塗膜を形成することができるものであり、とりわけハードコート用のコーティング剤等、種々の用途に有用である。 Furthermore, the active energy ray-curable resin composition according to the third aspect of the present invention forms a cured coating film that is difficult to curl due to small curing shrinkage and that is excellent in hardness, flexibility, and scratch resistance. In particular, it is useful for various applications such as a coating agent for hard coating.
 上記(メタ)アクリレート(a1)~(a4)の混合物(A)中のペンタエリスリトールジ(メタ)アクリレート(a2)の含有割合が10~50重量%であると、硬度と屈曲性の両立の点に優れるようになる。 When the content ratio of pentaerythritol di (meth) acrylate (a2) in the mixture (A) of the (meth) acrylates (a1) to (a4) is 10 to 50% by weight, both hardness and flexibility can be achieved. To become better.
 上記(メタ)アクリレート(a1)~(a3)合計に対するペンタエリスリトールジ(メタ)アクリレート(a2)の含有割合が15~55重量%であると、硬度と屈曲性の両立の点により優れるようになる。 When the content ratio of pentaerythritol di (meth) acrylate (a2) to the total of (meth) acrylates (a1) to (a3) is 15 to 55% by weight, it becomes more excellent in terms of both hardness and flexibility. .
 上記ウレタン(メタ)アクリレート系組成物[I]の重量平均分子量が、1,000~20,000であると、活性エネルギー線硬化性樹脂組成物の取り扱いやすさに優れるようになる。 When the weight average molecular weight of the urethane (meth) acrylate composition [I] is 1,000 to 20,000, the active energy ray-curable resin composition is easily handled.
 上記(メタ)アクリレート(b1)~(b6)の混合物(B)中のジペンタエリスリトールペンタ(メタ)アクリレート(b5)の含有割合が15~60重量%であると、より一層硬度と屈曲性の両立に優れるようになる。 When the content ratio of dipentaerythritol penta (meth) acrylate (b5) in the mixture (B) of the (meth) acrylates (b1) to (b6) is 15 to 60% by weight, the hardness and flexibility are further improved. It becomes excellent in coexistence.
 上記(メタ)アクリレート(b1)~(b5)合計に対するジペンタエリスリトールペンタ(メタ)アクリレート(b5)の含有割合が45~90重量%であると、硬度と屈曲性の両立に一層優れるようになる。 When the content ratio of dipentaerythritol penta (meth) acrylate (b5) with respect to the total of the (meth) acrylates (b1) to (b5) is 45 to 90% by weight, both the hardness and the flexibility are further improved. .
 上記(メタ)アクリレート(b1)~(b6)の混合物(B)中のジペンタエリスリトールテトラ(メタ)アクリレート(b4)の含有割合が1~35重量%であると、屈曲性に優れるようになる。 When the content ratio of dipentaerythritol tetra (meth) acrylate (b4) in the mixture (B) of (meth) acrylates (b1) to (b6) is 1 to 35% by weight, the flexibility becomes excellent. .
 上記(メタ)アクリレート(b1)~(b5)合計に対するジペンタエリスリトールテトラ(メタ)アクリレート(b4)の含有割合が2~40重量%であると、屈曲性により優れるようになる。 When the content ratio of dipentaerythritol tetra (meth) acrylate (b4) to the total of (meth) acrylates (b1) to (b5) is 2 to 40% by weight, the flexibility is improved.
 上記ウレタン(メタ)アクリレート系組成物[II]の重量平均分子量が、1,000~20,000であると、活性エネルギー線硬化性樹脂組成物の取り扱いやすさに優れるようになる。 When the weight average molecular weight of the urethane (meth) acrylate composition [II] is 1,000 to 20,000, the active energy ray-curable resin composition is excellent in handleability.
 上記ウレタン(メタ)アクリレート系組成物[III]の重量平均分子量が、1,000~20,000であると、活性エネルギー線硬化性樹脂組成物の取り扱いやすさにより優れるようになる。 When the weight average molecular weight of the urethane (meth) acrylate composition [III] is 1,000 to 20,000, the active energy ray-curable resin composition is more easily handled.
 以下に本発明を詳細に説明する。
 なお、本発明において、(メタ)アクリルとはアクリルあるいはメタクリルを、(メタ)アクリロイルとはアクリロイルあるいはメタクリロイルを、(メタ)アクリレートとはアクリレートあるいはメタクリレートをそれぞれ意味するものである。
The present invention is described in detail below.
In the present invention, (meth) acryl means acryl or methacryl, (meth) acryloyl means acryloyl or methacryloyl, and (meth) acrylate means acrylate or methacrylate.
 本発明の活性エネルギー線硬化性樹脂組成物は、下記ウレタン(メタ)アクリレート系組成物[I]と、ウレタン(メタ)アクリレート系組成物[I]及び[II]と、ウレタン(メタ)アクリレート系組成物[III]とからなる群から選ばれるいずれか一つのウレタン(メタ)アクリレート系組成物を含有する点に特徴があり、3つの態様がある。 The active energy ray-curable resin composition of the present invention includes the following urethane (meth) acrylate-based composition [I], urethane (meth) acrylate-based compositions [I] and [II], and urethane (meth) acrylate-based It is characterized in that it contains any one urethane (meth) acrylate composition selected from the group consisting of the composition [III], and there are three embodiments.
 上記ウレタン(メタ)アクリレート系組成物[I]とは、ペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(a1)~(a4)の混合物(A)中の(メタ)アクリレート(a1)~(a3)と、多価イソシアネート(CA)とが反応してなるものであり、上記混合物(A)の水酸基価が200mgKOH/g以上である。
 混合物(A)
 (a1)ペンタエリスリトールモノ(メタ)アクリレート
 (a2)ペンタエリスリトールジ(メタ)アクリレート
 (a3)ペンタエリスリトールトリ(メタ)アクリレート
 (a4)ペンタエリスリトールテトラ(メタ)アクリレート
The urethane (meth) acrylate-based composition [I] is a (meth) acrylate in a mixture (A) of the following (meth) acrylates (a1) to (a4), which is a reaction product of pentaerythritol and (meth) acrylic acid. ) Acrylate (a1) to (a3) and polyvalent isocyanate (CA) are reacted, and the hydroxyl value of the mixture (A) is 200 mgKOH / g or more.
Mixture (A)
(A1) Pentaerythritol mono (meth) acrylate (a2) Pentaerythritol di (meth) acrylate (a3) Pentaerythritol tri (meth) acrylate (a4) Pentaerythritol tetra (meth) acrylate
 上記ウレタン(メタ)アクリレート系組成物[II]とは、ジペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(b1)~(b6)の混合物(B)中の(メタ)アクリレート(b1)~(b5)と、多価イソシアネート(CB)とが反応してなるものであり、上記混合物(B)の水酸基価が40mgKOH/g以上である。
 混合物(B)
  (b1)ジペンタエリスリトールモノ(メタ)アクリレート
  (b2)ジペンタエリスリトールジ(メタ)アクリレート
  (b3)ジペンタエリスリトールトリ(メタ)アクリレート
  (b4)ジペンタエリスリトールテトラ(メタ)アクリレート
  (b5)ジペンタエリスリトールペンタ(メタ)アクリレート
  (b6)ジペンタエリスリトールヘキサ(メタ)アクリレート
The urethane (meth) acrylate-based composition [II] is a mixture of the following (meth) acrylates (b1) to (b6) (B), which is a reaction product of dipentaerythritol and (meth) acrylic acid. The (meth) acrylates (b1) to (b5) are reacted with the polyvalent isocyanate (CB), and the hydroxyl value of the mixture (B) is 40 mgKOH / g or more.
Mixture (B)
(B1) Dipentaerythritol mono (meth) acrylate (b2) Dipentaerythritol di (meth) acrylate (b3) Dipentaerythritol tri (meth) acrylate (b4) Dipentaerythritol tetra (meth) acrylate (b5) Dipentaerythritol Penta (meth) acrylate (b6) Dipentaerythritol hexa (meth) acrylate
  上記ウレタン(メタ)アクリレート系組成物[III]とは、下記の[α]である(メタ)アクリレート(a1)~(a3)、下記の[β]である(メタ)アクリレート(b1)~(b5)、及び、多価イソシアネート(CC)が反応してなるものである。
 [α]ペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(a1)~(a4)の混合物(A)の水酸基価が200mgKOH/g以上であり、上記混合物(A)中の(メタ)アクリレート(a1)~(a3)。
  (a1)ペンタエリスリトールモノ(メタ)アクリレート
  (a2)ペンタエリスリトールジ(メタ)アクリレート
  (a3)ペンタエリスリトールトリ(メタ)アクリレート
  (a4)ペンタエリスリトールテトラ(メタ)アクリレート
 [β]ジペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(b1)~(b6)の混合物(B)の水酸基価が40mgKOH/g以上であり、上記混合物(B)中の(メタ)アクリレート(b1)~(b5)。
  (b1)ジペンタエリスリトールモノ(メタ)アクリレート
  (b2)ジペンタエリスリトールジ(メタ)アクリレート
  (b3)ジペンタエリスリトールトリ(メタ)アクリレート
  (b4)ジペンタエリスリトールテトラ(メタ)アクリレート
  (b5)ジペンタエリスリトールペンタ(メタ)アクリレート
  (b6)ジペンタエリスリトールヘキサ(メタ)アクリレート
The urethane (meth) acrylate-based composition [III] refers to (meth) acrylates (a1) to (a3) which are the following [α], and (meth) acrylates (b1) to (b1) which are the following [β]: b5) and a polyisocyanate (CC) are reacted.
The mixture (A) of the following (meth) acrylates (a1) to (a4), which is a reaction product of [α] pentaerythritol and (meth) acrylic acid, has a hydroxyl value of 200 mgKOH / g or more, and the mixture (A) (Meth) acrylates (a1) to (a3).
(A1) pentaerythritol mono (meth) acrylate (a2) pentaerythritol di (meth) acrylate (a3) pentaerythritol tri (meth) acrylate (a4) pentaerythritol tetra (meth) acrylate [β] dipentaerythritol and (meth) The hydroxyl value of the mixture (B) of the following (meth) acrylates (b1) to (b6), which is a reaction product with acrylic acid, is 40 mgKOH / g or more, and the (meth) acrylate (b1) in the mixture (B) To (b5).
(B1) Dipentaerythritol mono (meth) acrylate (b2) Dipentaerythritol di (meth) acrylate (b3) Dipentaerythritol tri (meth) acrylate (b4) Dipentaerythritol tetra (meth) acrylate (b5) Dipentaerythritol Penta (meth) acrylate (b6) Dipentaerythritol hexa (meth) acrylate
<ウレタン(メタ)アクリレート系組成物[I]>
 まず、上記ウレタン(メタ)アクリレート系組成物[I]について説明する。
 本発明において、上記ペンタエリスリトールと(メタ)アクリル酸が反応して得られる上記(メタ)アクリレート(a1)~(a4)の混合物(A)の水酸基価としては、200mgKOH/g以上であることが必要であり、好ましくは210~380mgKOH/g、特に好ましくは230~320mgKOH/gである。
<Urethane (meth) acrylate composition [I]>
First, the urethane (meth) acrylate composition [I] will be described.
In the present invention, the hydroxyl value of the mixture (A) of the (meth) acrylates (a1) to (a4) obtained by reacting the pentaerythritol with (meth) acrylic acid is 200 mgKOH / g or more. Necessary, preferably 210 to 380 mg KOH / g, particularly preferably 230 to 320 mg KOH / g.
 かかる混合物(A)の水酸基価が小さすぎると、ウレタン(メタ)アクリレート系組成物[III]の重量平均分子量が低下するため、硬化時の硬化収縮が大きくなることから、カールしやすくなる傾向があり、更には屈曲性が低下する傾向がある。なお、通常、上記水酸基価が大きくなりすぎると分子量の増加に伴い、粘度が向上するため、取り扱いにくくなる傾向がある。 If the hydroxyl value of the mixture (A) is too small, the weight average molecular weight of the urethane (meth) acrylate-based composition [III] decreases, so that the curing shrinkage at the time of curing increases, so that it tends to be easily curled. In addition, the flexibility tends to decrease. In general, when the hydroxyl value is too large, the viscosity increases with increasing molecular weight, which tends to be difficult to handle.
 本発明における水酸基価は、JIS K 0070 1992に準じた方法により求めることができる。 The hydroxyl value in the present invention can be determined by a method according to JIS K 0070 1992.
 また、本発明においては、上記(メタ)アクリレート(a1)~(a4)の混合物(A)中のペンタエリスリトールジ(メタ)アクリレート(a2)の含有割合が10~50重量%であることが硬度と屈曲性の両立の点で好ましく、特に好ましくは15~45重量%、更に好ましくは20~40重量%である。かかる含有割合が小さすぎると屈曲性が低下する傾向があり、大きすぎると硬度が低下したり粘度が増大したりする傾向がある。 In the present invention, it is preferable that the content of pentaerythritol di (meth) acrylate (a2) in the mixture (A) of the (meth) acrylates (a1) to (a4) is 10 to 50% by weight. And is preferably in terms of both flexibility and flexibility, particularly preferably 15 to 45% by weight, more preferably 20 to 40% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
 更に、上記(メタ)アクリレート(a1)~(a3)合計に対するペンタエリスリトールジ(メタ)アクリレート(a2)の含有割合が15~55重量%であることが硬度と屈曲性の両立の点で好ましく、特に好ましくは20~50重量%、更に好ましくは25~45重量%である。かかる含有割合が小さすぎると屈曲性が低下する傾向があり、大きすぎると硬度が低下したり粘度が増大したりする傾向がある。 Further, the content ratio of pentaerythritol di (meth) acrylate (a2) with respect to the total of the (meth) acrylates (a1) to (a3) is preferably 15 to 55% by weight in terms of both hardness and flexibility, The amount is particularly preferably 20 to 50% by weight, more preferably 25 to 45% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
 本発明では、ペンタエリスリトールと(メタ)アクリル酸を反応させてペンタエリスリトールの(メタ)アクリル酸付加物を調製するが、ペンタエリスリトールと(メタ)アクリル酸の反応については、公知一般の方法で行うことができる。かかる反応において、ペンタエリスリトールに対して(メタ)アクリル酸が一つ付加したペンタエリスリトールモノ(メタ)アクリレート(a1)、二つ付加したペンタエリスリトールジ(メタ)アクリレート(a2)、三つ付加したペンタエリスリトールトリ(メタ)アクリレート(a3)、四つ付加したペンタエリスリトールテトラ(メタ)アクリレート(a4)が含有された混合物(A)が得られ、全体として上記の水酸基価を有する混合物(A)を得ることができる。 In the present invention, pentaerythritol and (meth) acrylic acid are reacted to prepare an (meth) acrylic acid adduct of pentaerythritol, but the reaction of pentaerythritol and (meth) acrylic acid is carried out by a known general method. be able to. In this reaction, pentaerythritol mono (meth) acrylate (a1) in which one (meth) acrylic acid is added to pentaerythritol, pentaerythritol di (meth) acrylate (a2) in which two are added, and pentad in which three are added. A mixture (A) containing erythritol tri (meth) acrylate (a3) and four-added pentaerythritol tetra (meth) acrylate (a4) is obtained, and a mixture (A) having the above hydroxyl value as a whole is obtained. be able to.
 なお、上記混合物(A)中には、アクリル酸のミカエル付加物などの副反応生成物が含まれる場合がある。 The mixture (A) may contain a side reaction product such as a Michael adduct of acrylic acid.
 水酸基価の調整に際しては、例えば、(メタ)アクリレート(a1)~(a4)の含有割合を調整することにより行うことができる。 The hydroxyl value can be adjusted, for example, by adjusting the content ratio of (meth) acrylates (a1) to (a4).
 本発明において、上記多価イソシアネート(CA)は上記(メタ)アクリレート(a1)~(a3)と反応するものであり、具体的には、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート;水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂環式系ポリイソシアネート;或いはこれらポリイソシアネートの3量体化合物または多量体化合物、アロファネート型ポリイソシアネート、ビュレット型ポリイソシアネート、水分散型ポリイソシアネート(例えば、東ソー社製の「アクアネート105」、「アクアネート120」、「アクアネート210」等)、等が挙げられる。これらは単独でもしくは2種以上併せて用いることができる。 In the present invention, the polyvalent isocyanate (CA) reacts with the (meth) acrylates (a1) to (a3). Specifically, for example, tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate. , Aromatic polyisocyanates such as modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, naphthalene diisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate Hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone dii Cycloaliphatic polyisocyanates such as cyanate and norbornene diisocyanate; or trimer compounds or multimeric compounds of these polyisocyanates, allophanate polyisocyanates, burette polyisocyanates, water-dispersed polyisocyanates (for example “ Aquanate 105 "," Aquanate 120 "," Aquanate 210 ", etc.). These may be used alone or in combination of two or more.
 これらの中でも、脂環式系ポリイソシアネート、芳香族系ポリイソシアネートであることが強度の点で好ましく、特に好ましくは、イソホロンジイソシアネート、水添化キシリレンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネートである。 Among these, alicyclic polyisocyanates and aromatic polyisocyanates are preferable from the viewpoint of strength, and isophorone diisocyanate, hydrogenated xylylene diisocyanate, xylylene diisocyanate, and tolylene diisocyanate are particularly preferable.
 本発明において、ウレタン(メタ)アクリレート系組成物[I]は、上記(メタ)アクリレート(a1)~(a4)の混合物(A)中の(メタ)アクリレート(a1)~(a3)の水酸基と、上記多価イソシアネート(CA)のイソシアネート基とを反応させて得ることができる。この場合、ウレタン(メタ)アクリレート系組成物[I]には、(メタ)アクリレート(a1)と多価イソシアネート(CA)が反応したもの、(メタ)アクリレート(a2)と多価イソシアネート(CA)が反応したもの、(メタ)アクリレート(a3)と多価イソシアネート(CA)が反応したものが含有されることとなり、更には、系中には(メタ)アクリレート(a1)~(a3)の未反応物や反応に関与しない(メタ)アクリレート(a4)等も含有されることとなる。 In the present invention, the urethane (meth) acrylate composition [I] includes the hydroxyl groups of (meth) acrylates (a1) to (a3) in the mixture (A) of the above (meth) acrylates (a1) to (a4) and It can be obtained by reacting with the isocyanate group of the polyvalent isocyanate (CA). In this case, the urethane (meth) acrylate composition [I] is obtained by reacting (meth) acrylate (a1) and polyvalent isocyanate (CA), (meth) acrylate (a2) and polyvalent isocyanate (CA). In which the (meth) acrylate (a3) and the polyvalent isocyanate (CA) are reacted. Furthermore, the (meth) acrylates (a1) to (a3) are not contained in the system. The reaction product and (meth) acrylate (a4) which does not participate in the reaction are also contained.
 (メタ)アクリレート(a1)~(a3)と多価イソシアネート(CA)との反応においては、水酸基とイソシアネート基の官能基モル比を調整し、必要に応じて後述の反応触媒を用いて行うことができる。 In the reaction of (meth) acrylates (a1) to (a3) with polyvalent isocyanate (CA), the functional group molar ratio of the hydroxyl group to the isocyanate group is adjusted, and the reaction catalyst described later is used as necessary. Can do.
 かかる多価イソシアネート(CA)と(メタ)アクリレート(a1)~(a4)の混合物(A)との仕込みの反応モル比は、多価イソシアネート(CA)のイソシアネート基が2個である場合は、多価イソシアネート(CA):(メタ)アクリレート混合物(A)が1:1~1:5であることが好ましく、特に好ましくは1:1~1:3、更に好ましくは1:1~1:2である。 The reaction molar ratio of the charge of the polyvalent isocyanate (CA) and the mixture (A) of (meth) acrylates (a1) to (a4) is, when the polyisocyanate (CA) has two isocyanate groups, The polyvalent isocyanate (CA) :( meth) acrylate mixture (A) is preferably from 1: 1 to 1: 5, particularly preferably from 1: 1 to 1: 3, more preferably from 1: 1 to 1: 2. It is.
 かかる混合物(A)の割合が多すぎると、低分子量モノマーが多くなり、硬化収縮が大きくなるためカールが大きくなる傾向があり、混合物(A)の割合が少なすぎると、未反応の多価イソシアネート(CA)が残存し、硬化塗膜の安定性や安全性が低下する傾向がある。 If the ratio of the mixture (A) is too large, the amount of low molecular weight monomers increases, and the shrinkage of curing increases, so that the curl tends to increase. If the ratio of the mixture (A) is too small, unreacted polyvalent isocyanate. (CA) remains, and the stability and safety of the cured coating film tend to decrease.
 (メタ)アクリレート混合物(A)中の(メタ)アクリレート(a1)~(a3)と多価イソシアネート(CA)との反応は、通常、上記混合物(A)及び多価イソシアネート(CA)を、反応器に一括又は別々に仕込み反応させればよい。 The reaction between the (meth) acrylates (a1) to (a3) and the polyvalent isocyanate (CA) in the (meth) acrylate mixture (A) is usually performed by reacting the above mixture (A) and the polyvalent isocyanate (CA). What is necessary is just to make it react to the vessel collectively or separately.
 上記反応においては、反応を促進する目的で触媒を用いることも好ましく、かかる触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、トリメチル錫ヒドロキシド、テトラ-n-ブチル錫、ビスアセチルアセトナート亜鉛、ジルコニウムトリス(アセチルアセトネート)エチルアセトアセテート、ジルコニウムテトラアセチルアセトネート等の有機金属化合物;オクチル酸錫、オクテン酸錫、ヘキサン酸亜鉛、オクテン酸亜鉛、ステアリン酸亜鉛、2-エチルヘキサン酸ジルコニウム、ナフテン酸コバルト、塩化第1錫、塩化第2錫、酢酸カリウム等の金属塩;トリエチルアミン、トリエチレンジアミン、ベンジルジエチルアミン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン、N,N,N′,N′-テトラメチル-1,3-ブタンジアミン、N-メチルモルホリン、N-エチルモルホリン等のアミン系触媒;硝酸ビスマス、臭化ビスマス、ヨウ化ビスマス、硫化ビスマス等の他、ジブチルビスマスジラウレート、ジオクチルビスマスジラウレート等の有機ビスマス化合物や、2-エチルヘキサン酸ビスマス塩、ナフテン酸ビスマス塩、イソデカン酸ビスマス塩、ネオデカン酸ビスマス塩、ラウリル酸ビスマス塩、マレイン酸ビスマス塩、ステアリン酸ビスマス塩、オレイン酸ビスマス塩、リノール酸ビスマス塩、酢酸ビスマス塩、ビスマスリビスネオデカノエート、ジサリチル酸ビスマス塩、ジ没食子酸ビスマス塩等の有機酸ビスマス塩等のビスマス系触媒、等が挙げられ、中でも、ジブチル錫ジラウレート、1,8-ジアザビシクロ[5,4,0]ウンデセンが好適である。これらは単独でまたは2種以上併せて用いることができる。 In the above reaction, it is also preferable to use a catalyst for the purpose of accelerating the reaction. Examples of such a catalyst include dibutyltin dilaurate, dibutyltin diacetate, trimethyltin hydroxide, tetra-n-butyltin, bisacetylacetonate. Organometallic compounds such as zinc, zirconium tris (acetylacetonate) ethylacetoacetate, zirconium tetraacetylacetonate; tin octylate, tin octenoate, zinc hexanoate, zinc octenoate, zinc stearate, zirconium 2-ethylhexanoate Metal salts such as cobalt naphthenate, stannous chloride, stannic chloride and potassium acetate; triethylamine, triethylenediamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [ 5, , 0] Undecene, amine catalysts such as N, N, N ′, N′-tetramethyl-1,3-butanediamine, N-methylmorpholine, N-ethylmorpholine; bismuth nitrate, bismuth bromide, bismuth iodide In addition to bismuth sulfide, organic bismuth compounds such as dibutyl bismuth dilaurate and dioctyl bismuth dilaurate, bismuth 2-ethylhexanoate, bismuth naphthenate, bismuth isodecanoate, bismuth neodecanoate, bismuth laurate, malein Bismuth salts such as organic acid bismuth salts such as bismuth acid salt, bismuth stearate, bismuth oleate, bismuth linoleate, bismuth acetate, bismuth bisneodecanoate, bismuth disalicylate, bismuth digallate Catalyst, etc., among them dibutyltin Laurate, 1,8-diazabicyclo [5,4,0] undecene is preferred. These can be used alone or in combination of two or more.
 また、上記反応においては、更に重合禁止剤を用いることが好ましい。上記重合禁止剤としては、重合禁止剤として用いられている公知一般のものを使用することができ、例えば、p-ベンゾキノン、ナフトキノン、トルキノン、2,5-ジフェニル-p-ベンゾキノン、ハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、メチルハイドロキノン、モノ-t-ブチルハイドロキノン等のキノン類、4-メトキシフェノール、2,6-ジ-t-ブチルクレゾール等の芳香族類、p-t-ブチルカテコール等を挙げることができる。中でも、芳香族類が好ましく、4-メトキシフェノール、2,6-ジ-t-ブチルクレゾールが特に好ましい。これらは単独でもしくは2種以上併せて用いることができる。 In the above reaction, it is preferable to further use a polymerization inhibitor. As the polymerization inhibitor, known general ones used as polymerization inhibitors can be used. For example, p-benzoquinone, naphthoquinone, tolquinone, 2,5-diphenyl-p-benzoquinone, hydroquinone, 2, Quinones such as 5-di-t-butylhydroquinone, methylhydroquinone and mono-t-butylhydroquinone, aromatics such as 4-methoxyphenol and 2,6-di-t-butylcresol, pt-butylcatechol Etc. Of these, aromatics are preferable, and 4-methoxyphenol and 2,6-di-t-butylcresol are particularly preferable. These may be used alone or in combination of two or more.
 また、上記反応においては、イソシアネート基に対して反応する官能基を有しない有機溶剤、例えば、酢酸エチル、酢酸ブチル等のエステル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族類等の有機溶剤を用いることができる。これらは単独でもしくは2種以上併せて用いることができる。 In the above reaction, an organic solvent having no functional group that reacts with an isocyanate group, for example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatics such as toluene and xylene. An organic solvent such as a family can be used. These may be used alone or in combination of two or more.
 反応温度は、通常30~90℃、好ましくは40~80℃であり、反応時間は、通常4~72時間、好ましくは8~48時間である。 The reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is usually 4 to 72 hours, preferably 8 to 48 hours.
 かくして、本発明で用いられるウレタン(メタ)アクリレート系組成物[I]が得られる。 Thus, the urethane (meth) acrylate composition [I] used in the present invention is obtained.
 かかるウレタン(メタ)アクリレート系組成物[I]の重量平均分子量としては1,000~20,000であることが好ましく、特に好ましくは2,000~18,000、更に好ましくは3,000~16,000である。かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。 The urethane (meth) acrylate composition [I] preferably has a weight average molecular weight of 1,000 to 20,000, particularly preferably 2,000 to 18,000, and more preferably 3,000 to 16 , 000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
 なお、上記重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフ(Waters社製、「ACQUITY APCシステム」)に、カラム:ACQUITY APC XT 450を1本、ACQUITY APC XT 200を1本、ACQUITY APC XT 45を2本の計4本を直列にして用いることにより測定される。 In addition, the said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, a column: ACQUITY APC XT 450, ACQUITY APC XT 200, on a high-speed liquid chromatograph (Waters, "ACQUITY APC system"). 1 and ACQUITY APC XT 45, 2 in total, and 4 in total.
 上記ウレタン(メタ)アクリレート系組成物[I]におけるウレタン(メタ)アクリレートの含有量は、好ましくは50重量%以上、特に好ましくは60重量%以上、更に好ましくは70重量%以上、殊に好ましくは80重量%以上である。なお、上限は通常95重量%である。 The urethane (meth) acrylate content in the urethane (meth) acrylate composition [I] is preferably 50% by weight or more, particularly preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably. 80% by weight or more. The upper limit is usually 95% by weight.
<ウレタン(メタ)アクリレート系組成物[II]>
 次に、ウレタン(メタ)アクリレート系組成物[II]について説明する。
 本発明において、上記ジペンタエリスリトールと(メタ)アクリル酸が反応して得られる上記(メタ)アクリレート(b1)~(b6)の混合物(B)の水酸基価としては、40mgKOH/g以上であることが必要であり、好ましくは43~130mgKOH/g、特に好ましくは45~125mgKOH/g、更に好ましくは70~120mgKOH/gである。
<Urethane (meth) acrylate composition [II]>
Next, the urethane (meth) acrylate composition [II] will be described.
In the present invention, the hydroxyl value of the mixture (B) of the (meth) acrylates (b1) to (b6) obtained by reacting the dipentaerythritol with (meth) acrylic acid is 40 mgKOH / g or more. Is preferably 43 to 130 mgKOH / g, particularly preferably 45 to 125 mgKOH / g, and still more preferably 70 to 120 mgKOH / g.
 かかる混合物(B)の水酸基価が小さすぎると、低分子量でエチレン性不飽和基数が多く、イソシアネートと反応しないジペンタエリスリトールヘキサ(メタ)アクリレート(b6)の含有量が多くなるため、硬化時の硬化収縮が大きくなることから、カールしやすくなる傾向があり、更には屈曲性が低下する傾向がある。なお、通常、上記水酸基価が大きくなりすぎると分子量の増加に伴い、粘度が向上するため、取り扱いにくくなる傾向がある。 If the hydroxyl value of the mixture (B) is too small, the content of dipentaerythritol hexa (meth) acrylate (b6) that has a low molecular weight and a large number of ethylenically unsaturated groups and does not react with isocyanate increases. Since cure shrinkage becomes large, it tends to curl easily, and further, flexibility tends to decrease. In general, when the hydroxyl value is too large, the viscosity increases with increasing molecular weight, which tends to be difficult to handle.
 本発明においては、上記(メタ)アクリレート(b1)~(b6)の混合物(B)中のジペンタエリスリトールペンタ(メタ)アクリレート(b5)の含有割合が15~60重量%であることが硬度と屈曲性の両立の点で好ましく、特に好ましくは20~55重量%、更に好ましくは25~55重量%である。かかる含有割合が小さすぎると屈曲性が低下する傾向があり、大きすぎると硬度が低下したり粘度が増大したりする傾向がある。 In the present invention, the hardness and the content ratio of dipentaerythritol penta (meth) acrylate (b5) in the mixture (B) of the (meth) acrylates (b1) to (b6) are 15 to 60% by weight. It is preferable from the viewpoint of coexistence of flexibility, particularly preferably 20 to 55% by weight, and further preferably 25 to 55% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
 上記(メタ)アクリレート(b1)~(b5)合計に対するジペンタエリスリトールペンタ(メタ)アクリレート(b5)の含有割合が45~90重量%であることが硬度と屈曲性の両立の点で好ましく、特に好ましくは50~90重量%、更に好ましくは55~90重量%である。かかる含有割合が小さすぎると屈曲性が低下する傾向があり、大きすぎると硬度が低下したり粘度が増大したりする傾向がある。 The content ratio of dipentaerythritol penta (meth) acrylate (b5) to the total of the above (meth) acrylates (b1) to (b5) is preferably 45 to 90% by weight, particularly in terms of both hardness and flexibility. Preferably it is 50 to 90% by weight, more preferably 55 to 90% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
 上記(メタ)アクリレート(b1)~(b6)の混合物(B)中のジペンタエリスリトールテトラ(メタ)アクリレート(b4)の含有割合が1~35重量%であることが屈曲性の点で好ましく、特に好ましくは2~30重量%、更に好ましくは3~25重量%である。かかる含有割合が小さすぎると屈曲性が低下する傾向があり、大きすぎると硬度が低下したり粘度が増大したりする傾向がある。 The content ratio of dipentaerythritol tetra (meth) acrylate (b4) in the mixture (B) of the (meth) acrylates (b1) to (b6) is preferably 1 to 35% by weight from the viewpoint of flexibility, Particularly preferred is 2 to 30% by weight, and more preferred is 3 to 25% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
 上記(メタ)アクリレート(b1)~(b5)合計に対するジペンタエリスリトールテトラ(メタ)アクリレート(b4)の含有割合が2~40重量%であることが屈曲性の点で好ましく、特に好ましくは3~35重量%、更に好ましくは4~30重量%である。かかる含有割合が小さすぎると屈曲性が低下する傾向があり、大きすぎると硬度が低下したり粘度が増大したりする傾向がある。 The content ratio of dipentaerythritol tetra (meth) acrylate (b4) to the total of the (meth) acrylates (b1) to (b5) is preferably 2 to 40% by weight, particularly preferably 3 to It is 35% by weight, more preferably 4 to 30% by weight. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to decrease or the viscosity increases.
 本発明では、ジペンタエリスリトールと(メタ)アクリル酸を反応させてジペンタエリスリトールの(メタ)アクリル酸付加物を調製するが、ジペンタエリスリトールと(メタ)アクリル酸との反応については、公知一般の方法で行うことができる。かかる反応において、ジペンタエリスリトールに対して(メタ)アクリル酸が一つ付加したジペンタエリスリトールモノ(メタ)アクリレート(b1)、二つ付加したジペンタエリスリトールジ(メタ)アクリレート(b2)、三つ付加したジペンタエリスリトールトリ(メタ)アクリレート(b3)、四つ付加したジペンタエリスリトールテトラ(メタ)アクリレート(b4)、五つ付加したジペンタエリスリトールペンタ(メタ)アクリレート(b5)、六つ付加したジペンタエリスリトールヘキサ(メタ)アクリレート(b6)が含有された混合物(B)が得られ、全体として上記の水酸基価を満足する混合物(B)を得ることができる。 In the present invention, dipentaerythritol is reacted with (meth) acrylic acid to prepare a (meth) acrylic acid adduct of dipentaerythritol, but the reaction between dipentaerythritol and (meth) acrylic acid is generally known. It can be done by the method. In this reaction, dipentaerythritol mono (meth) acrylate (b1) in which one (meth) acrylic acid is added to dipentaerythritol, dipentaerythritol di (meth) acrylate (b2) in which two are added, three Added dipentaerythritol tri (meth) acrylate (b3), four added dipentaerythritol tetra (meth) acrylate (b4), five added dipentaerythritol penta (meth) acrylate (b5), six added A mixture (B) containing dipentaerythritol hexa (meth) acrylate (b6) is obtained, and a mixture (B) that satisfies the hydroxyl value as a whole can be obtained.
 なお、上記混合物(B)中には、アクリル酸のミカエル付加物などの副反応生成物が含まれる場合がある。 The mixture (B) may contain a side reaction product such as a Michael adduct of acrylic acid.
 水酸基価の調整に際しては、例えば、(メタ)アクリレート(b1)~(b6)の含有割合を調整することにより行うことができる。 The hydroxyl value can be adjusted, for example, by adjusting the content ratio of (meth) acrylates (b1) to (b6).
 本発明において、前記多価イソシアネート(CB)は上記(メタ)アクリレート(b1)~(b5)と反応するものであり、具体的には、前記で説明した多価イソシアネート(CA)と同様のものが例示できる。上記多価イソシアネート(CB)は、上記多価イソシアネート(CA)と同じであっても、異なっていてもよい。 In the present invention, the polyvalent isocyanate (CB) reacts with the (meth) acrylates (b1) to (b5), specifically, the same polyvalent isocyanate (CA) as described above. Can be illustrated. The polyvalent isocyanate (CB) may be the same as or different from the polyvalent isocyanate (CA).
 また、多価イソシアネート(CB)として、上記ポリイソシアネートと、ポリオールとの反応物であってもよい。このようなポリオールとしては、例えば、低分子量のポリオールや高分子量のポリオール、具体的には、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリブタジエン系ポリオール、エチレン・イソプレン・ブタジエン等を反応して得られるポリオレフィン系ポリオール又はその水添化物、上記以外のポリオレフィン系ポリオール、(メタ)アクリル系ポリオール等が挙げられる。 Further, the polyisocyanate (CB) may be a reaction product of the polyisocyanate and a polyol. Examples of such polyols include low molecular weight polyols and high molecular weight polyols, specifically polyether polyols, polyester polyols, polycarbonate polyols, polybutadiene polyols, ethylene / isoprene / butadiene, etc. Polyolefin polyol or hydrogenated product thereof, polyolefin polyols other than those mentioned above, (meth) acrylic polyol, and the like.
 これら多価イソシアネート(CB)の中でも、脂環式系ポリイソシアネート、芳香族系ポリイソシアネートであることが耐候性と強度の点で好ましく、特に好ましくは、イソホロンジイソシアネート、水添化キシリレンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネートである。 Among these polyisocyanates (CB), alicyclic polyisocyanates and aromatic polyisocyanates are preferable in terms of weather resistance and strength, and particularly preferable are isophorone diisocyanate, hydrogenated xylylene diisocyanate, and xylylene. Range isocyanate and tolylene diisocyanate.
 本発明において、ウレタン(メタ)アクリレート系組成物[II]は、上記(メタ)アクリレート(b1)~(b6)の混合物(B)中の(メタ)アクリレート(b1)~(b5)の水酸基と、上記多価イソシアネート(CB)のイソシアネート基とを反応させて得ることができる。この場合、ウレタン(メタ)アクリレート系組成物[II]には、(メタ)アクリレート(b1)と多価イソシアネート(CB)が反応したもの、(メタ)アクリレート(b2)と多価イソシアネート(CB)が反応したもの、(メタ)アクリレート(b3)と多価イソシアネート(CB)が反応したもの、(メタ)アクリレート(b4)と多価イソシアネート(CB)が反応したもの、(メタ)アクリレート(b5)と多価イソシアネート(CB)が反応したものが含有されることとなり、更には、系中には(メタ)アクリレート(b1)~(b5)の未反応物や反応に関与しない(メタ)アクリレート(b6)等も含有されることとなる。 In the present invention, the urethane (meth) acrylate composition [II] comprises the hydroxyl groups of (meth) acrylates (b1) to (b5) in the mixture (B) of the above (meth) acrylates (b1) to (b6) and It can be obtained by reacting with the isocyanate group of the polyvalent isocyanate (CB). In this case, the urethane (meth) acrylate-based composition [II] is obtained by reacting (meth) acrylate (b1) and polyvalent isocyanate (CB), (meth) acrylate (b2) and polyvalent isocyanate (CB). , (Meth) acrylate (b3) and polyisocyanate (CB) reacted, (meth) acrylate (b4) and polyisocyanate (CB) reacted, (meth) acrylate (b5) And polyisocyanate (CB) are contained in the reaction system. Furthermore, the system contains unreacted (meth) acrylates (b1) to (b5) and (meth) acrylates not involved in the reaction ( b6) etc. will also be contained.
 かかる多価イソシアネート(CB)と(メタ)アクリレート(b1)~(b6)の混合物(B)との仕込みの反応モル比は、例えば、多価イソシアネート(CB)のイソシアネート基が2個である場合は、多価イソシアネート(CB):(メタ)アクリレート混合物(B)が1:1~1:5であることが好ましく、特に好ましくは1:1~1:4、更に好ましくは1:1~1:3である。 The reaction molar ratio of the charge of the polyvalent isocyanate (CB) and the mixture (B) of (meth) acrylates (b1) to (b6) is, for example, when the polyisocyanate (CB) has two isocyanate groups. The polyisocyanate (CB) :( meth) acrylate mixture (B) is preferably 1: 1 to 1: 5, particularly preferably 1: 1 to 1: 4, and more preferably 1: 1 to 1. : 3.
 かかる混合物(B)の割合が多すぎると、低分子量モノマーが多くなり、硬化収縮が大きくなるためカールが大きくなる傾向があり、混合物(B)の割合が少なすぎると、未反応の多価イソシアネート(CB)が残存し、硬化塗膜の安定性や安全性が低下する傾向がある。 When the ratio of the mixture (B) is too large, the amount of low molecular weight monomers increases, and the curling tends to increase due to an increase in curing shrinkage. When the ratio of the mixture (B) is too small, unreacted polyvalent isocyanate. (CB) remains and the stability and safety of the cured coating film tend to decrease.
 (メタ)アクリレート混合物(B)中の(メタ)アクリレート(b1)~(b5)と多価イソシアネート(CB)との反応は、通常、上記混合物(B)及び多価イソシアネート(CB)を、反応器に一括又は別々に仕込み反応させればよい。 The reaction between (meth) acrylates (b1) to (b5) and the polyvalent isocyanate (CB) in the (meth) acrylate mixture (B) is usually performed by reacting the above mixture (B) and the polyvalent isocyanate (CB). What is necessary is just to make it react to the vessel collectively or separately.
 上記反応においては、反応を促進する目的で触媒を用いることも好ましく、かかる触媒としては、上記ウレタン(メタ)アクリレート系組成物[I]で説明したものと同様のものが例示できる。 In the above reaction, it is also preferable to use a catalyst for the purpose of accelerating the reaction, and examples of the catalyst include those described in the urethane (meth) acrylate composition [I].
 また、上記反応においては、重合禁止剤、イソシアネート基に対して反応する官能基を有しない有機溶剤を用いる場合についても、上記ウレタン(メタ)アクリレート系組成物[I]で説明したものと同様のものが例示できる。 Further, in the above reaction, the case of using a polymerization inhibitor and an organic solvent having no functional group that reacts with an isocyanate group is the same as that described in the urethane (meth) acrylate composition [I]. The thing can be illustrated.
 また、ウレタン(メタ)アクリレート系組成物[II]の調製においては、上記ウレタン(メタ)アクリレート系組成物[I]の調製に準じて行うことができる。 In addition, the preparation of the urethane (meth) acrylate composition [II] can be carried out according to the preparation of the urethane (meth) acrylate composition [I].
 かくして、本発明で用いられるウレタン(メタ)アクリレート系組成物[II]が得られる。 Thus, the urethane (meth) acrylate composition [II] used in the present invention is obtained.
 かかるウレタン(メタ)アクリレート系組成物[II]の重量平均分子量としては1,000~20,000であることが好ましく、更に好ましくは1,500~18,000、特に好ましくは2,000~16,000である。かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。
 なお、上記の重量平均分子量の測定法とは、前記測定法と同様である。
The urethane (meth) acrylate composition [II] preferably has a weight average molecular weight of 1,000 to 20,000, more preferably 1,500 to 18,000, particularly preferably 2,000 to 16. , 000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
In addition, the measuring method of said weight average molecular weight is the same as the said measuring method.
 かかるウレタン(メタ)アクリレート系組成物[II]の60℃における粘度は、1,000~300,000mPa・sであることが好ましく、特に好ましくは1,500~200,000mPa・s、更に好ましくは2,000~100,000mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 なお、60℃における粘度の測定法はE型粘度計による。
The viscosity of the urethane (meth) acrylate composition [II] at 60 ° C. is preferably 1,000 to 300,000 mPa · s, particularly preferably 1,500 to 200,000 mPa · s, and still more preferably. 2,000 to 100,000 mPa · s. When the viscosity is out of the above range, the coatability tends to be lowered.
In addition, the measuring method of the viscosity in 60 degreeC uses an E-type viscosity meter.
 上記ウレタン(メタ)アクリレート系組成物[II]におけるウレタン(メタ)アクリレートの含有量は、好ましくは35重量%以上、特に好ましくは40重量%以上、更に好ましくは45重量%以上、殊に好ましくは50重量%以上、殊更好ましくは60重量%以上である。なお、上限は通常95重量%である。 The urethane (meth) acrylate content in the urethane (meth) acrylate composition [II] is preferably 35% by weight or more, particularly preferably 40% by weight or more, more preferably 45% by weight or more, and particularly preferably. It is 50% by weight or more, particularly preferably 60% by weight or more. The upper limit is usually 95% by weight.
<ウレタン(メタ)アクリレート系組成物[III]>
 さらに、ウレタン(メタ)アクリレート系組成物[III]について説明する。
<Urethane (meth) acrylate composition [III]>
Further, the urethane (meth) acrylate composition [III] will be described.
〈混合物(A)〉
 まず、ウレタン(メタ)アクリレート系組成物[III]の構成材料である(メタ)アクリレート(a1)~(a3)を含む、混合物(A)について説明する。
 混合物(A)は、上記ペンタエリスリトールと(メタ)アクリル酸が反応して得られる上記(メタ)アクリレート(a1)~(a4)の混合物であり、その水酸基価としては、200mgKOH/g以上であることが必要であり、好ましくは210~380mgKOH/g、特に好ましくは230~320mgKOH/gである。
<Mixture (A)>
First, the mixture (A) containing (meth) acrylates (a1) to (a3) which are constituent materials of the urethane (meth) acrylate composition [III] will be described.
The mixture (A) is a mixture of the (meth) acrylates (a1) to (a4) obtained by reacting the pentaerythritol and (meth) acrylic acid, and has a hydroxyl value of 200 mgKOH / g or more. Preferably from 210 to 380 mg KOH / g, particularly preferably from 230 to 320 mg KOH / g.
 上記混合物(A)については、前記ウレタン(メタ)アクリレート系組成物[I]で説明したものと同様のものが例示できる。 Examples of the mixture (A) are the same as those described in the urethane (meth) acrylate composition [I].
 上記混合物(A)の中で、水酸基を有する(メタ)アクリレート(a1)~(a3)が後述の多価イソシアネート(CC)と反応することになる。 In the mixture (A), the (meth) acrylates (a1) to (a3) having a hydroxyl group react with the later-described polyvalent isocyanate (CC).
〈混合物(B)〉
 次に、ウレタン(メタ)アクリレート系組成物[III]の構成材料である(メタ)アクリレート(b1)~(b5)を含む、混合物(B)について説明する。
 混合物(B)は、上記ジペンタエリスリトールと(メタ)アクリル酸が反応して得られる上記(メタ)アクリレート(b1)~(b6)の混合物であり、その水酸基価としては、40mgKOH/g以上であることが必要であり、好ましくは43~130mgKOH/g、特に好ましくは45~125mgKOH/g、更に好ましくは70~120mgKOH/gである。
<Mixture (B)>
Next, the mixture (B) containing (meth) acrylates (b1) to (b5) which are constituent materials of the urethane (meth) acrylate composition [III] will be described.
The mixture (B) is a mixture of the above (meth) acrylates (b1) to (b6) obtained by reacting the dipentaerythritol and (meth) acrylic acid, and has a hydroxyl value of 40 mgKOH / g or more. It is necessary that it is preferably 43 to 130 mgKOH / g, particularly preferably 45 to 125 mgKOH / g, and further preferably 70 to 120 mgKOH / g.
 上記混合物(B)については、前記ウレタン(メタ)アクリレート系組成物[II]で説明したものと同様のものが例示できる。 Examples of the mixture (B) are the same as those described in the urethane (meth) acrylate composition [II].
 上記混合物(B)の中で、水酸基を有する(メタ)アクリレート(b1)~(b5)が下記の多価イソシアネート(CC)と反応することになる。 In the mixture (B), the (meth) acrylates (b1) to (b5) having a hydroxyl group react with the following polyvalent isocyanate (CC).
〈多価イソシアネート(CC)〉
 次に、ウレタン(メタ)アクリレート系組成物[III]の構成材料である多価イソシアネート(CC)について説明する。
 本発明において、上記多価イソシアネート(CC)は、水酸基含有の(メタ)アクリレート、即ち、上記(メタ)アクリレート(a1)~(a3)及び(メタ)アクリレート(b1)~(b5)と反応するものであり、具体的には、前記ウレタン(メタ)アクリレート系組成物[I]で説明した多価イソシアネート(CA)、及び前記ウレタン(メタ)アクリレート系組成物[II]で説明した多価イソシアネート(CB)と同様のものが例示できる。上記多価イソシアネート(CC)は、上記多価イソシアネート(CA)または多価イソシアネート(CB)と同じであっても、異なっていてもよい。
 なお、上記多価イソシアネート(CC),前記多価イソシアネート(CA)及び多価イソシアネート(CB)を、まとめて、「多価イソシアネート(C)」と言うことがある。
<Polyvalent isocyanate (CC)>
Next, the polyvalent isocyanate (CC) which is a constituent material of the urethane (meth) acrylate composition [III] will be described.
In the present invention, the polyvalent isocyanate (CC) reacts with a hydroxyl group-containing (meth) acrylate, that is, the (meth) acrylates (a1) to (a3) and the (meth) acrylates (b1) to (b5). Specifically, the polyvalent isocyanate (CA) described in the urethane (meth) acrylate-based composition [I] and the polyvalent isocyanate described in the urethane (meth) acrylate-based composition [II] The same thing as (CB) can be illustrated. The polyvalent isocyanate (CC) may be the same as or different from the polyvalent isocyanate (CA) or polyvalent isocyanate (CB).
The polyvalent isocyanate (CC), the polyvalent isocyanate (CA), and the polyvalent isocyanate (CB) may be collectively referred to as “polyvalent isocyanate (C)”.
 本発明においては、上記(メタ)アクリレート(a1)~(a4)の混合物(A)中の(メタ)アクリレート(a1)~(a3)の水酸基と、上記(メタ)アクリレート(b1)~(b6)の混合物(B)中の(メタ)アクリレート(b1)~(b5)の水酸基と、上記多価イソシアネート(CC)のイソシアネート基とを反応させて、ウレタン(メタ)アクリレート系組成物[III]を得ることができる。この場合、ウレタン(メタ)アクリレート系組成物[III]には、(メタ)アクリレート(a1)と多価イソシアネート(CC)が反応したもの、(メタ)アクリレート(a2)と多価イソシアネート(CC)が反応したもの、(メタ)アクリレート(a3)と多価イソシアネート(CC)が反応したもの、更には、(メタ)アクリレート(b1)と多価イソシアネート(CC)が反応したもの、(メタ)アクリレート(b2)と多価イソシアネート(CC)が反応したもの、(メタ)アクリレート(b3)と多価イソシアネート(CC)が反応したもの、(メタ)アクリレート(b4)と多価イソシアネート(CC)が反応したもの、(メタ)アクリレート(b5)と多価イソシアネート(CC)が反応したもの、(a1)~(a3)及び(メタ)アクリレート(b1)~(b5)が混在して多価イソシアネート(CC)と反応したもの、等が含有されることとなり、更には、系中には(メタ)アクリレート(a1)~(a3)及び(b1)~(b5)の未反応物や反応に関与しない(メタ)アクリレート(a4)及び(b6)等も含有されることとなる。 In the present invention, the hydroxyl groups of (meth) acrylates (a1) to (a3) in the mixture (A) of the (meth) acrylates (a1) to (a4) and the (meth) acrylates (b1) to (b6) ) By reacting the hydroxyl groups of (meth) acrylates (b1) to (b5) in the mixture (B) with the isocyanate groups of the polyvalent isocyanate (CC), to obtain a urethane (meth) acrylate composition [III] Can be obtained. In this case, the urethane (meth) acrylate composition [III] is a reaction of (meth) acrylate (a1) and polyvalent isocyanate (CC), (meth) acrylate (a2) and polyvalent isocyanate (CC). , (Meth) acrylate (a3) and polyisocyanate (CC) reacted, and (meth) acrylate (b1) and polyisocyanate (CC) reacted, (meth) acrylate (B2) and polyvalent isocyanate (CC) reacted, (meth) acrylate (b3) and polyvalent isocyanate (CC) reacted, (meth) acrylate (b4) and polyvalent isocyanate (CC) reacted , (Meth) acrylate (b5) and polyisocyanate (CC) reacted, (a1) to (a3) and The (meth) acrylates (b1) to (b5) are mixed and reacted with the polyisocyanate (CC), and the like, and the (meth) acrylates (a1) to ( The unreacted products of (a3) and (b1) to (b5), (meth) acrylates (a4) and (b6) which are not involved in the reaction are also contained.
 (メタ)アクリレート(a1)~(a3)及び(メタ)アクリレート(b1)~(b5)と多価イソシアネート(CC)との反応においては、水酸基とイソシアネート基の官能基モル比を調整し、必要に応じて後述の反応触媒を用いて行うことができる。 In the reaction of (meth) acrylates (a1) to (a3) and (meth) acrylates (b1) to (b5) with polyvalent isocyanate (CC), it is necessary to adjust the functional group molar ratio of hydroxyl group to isocyanate group. Depending on the reaction, it can be carried out using a reaction catalyst described later.
 かかる(メタ)アクリレート(a1)~(a4)の混合物(A)と、(メタ)アクリレート(b1)~(b6)の混合物(B)と、多価イソシアネート(CC)との仕込みの反応モル比は、多価イソシアネート(CC)のイソシアネート基が2個である場合は、多価イソシアネート(CC):(メタ)アクリレート混合物(A)と(メタ)アクリレート混合物(B)の合計が、1:1~1:5であることが好ましく、特に好ましくは1:1~1:3、更に好ましくは1:1~1:2である。また、(メタ)アクリレート混合物(A):(メタ)アクリレート混合物(B)が、重量比で、90:10~10:90であることが好ましく、特に好ましくは70:30~15:85、更に好ましくは50:50~20:80である。 Reaction molar ratio of the charge of the mixture (A) of (meth) acrylates (a1) to (a4), the mixture (B) of (meth) acrylates (b1) to (b6) and the polyvalent isocyanate (CC) When the isocyanate group of the polyvalent isocyanate (CC) is two, the total of the polyvalent isocyanate (CC) :( meth) acrylate mixture (A) and (meth) acrylate mixture (B) is 1: 1. It is preferably ˜1: 5, particularly preferably 1: 1 to 1: 3, and more preferably 1: 1 to 1: 2. The (meth) acrylate mixture (A) :( meth) acrylate mixture (B) is preferably 90:10 to 10:90 by weight, particularly preferably 70:30 to 15:85, Preferably it is 50:50 to 20:80.
 多価イソシアネート(CC)に対する、混合物(A)と混合物(B)の合計の割合が多すぎると、低分子量モノマーが多くなり、硬化収縮が大きくなるためカールが大きくなる傾向があり、混合物(A)と混合物(B)の合計の割合が少なすぎると、未反応の多価イソシアネート(CC)が残存し、硬化塗膜の安定性や安全性が低下する傾向がある。 When the ratio of the total of the mixture (A) and the mixture (B) to the polyvalent isocyanate (CC) is too large, the amount of low molecular weight monomers increases, and the curling tends to increase due to increased cure shrinkage. ) And the mixture (B) is too small, the unreacted polyvalent isocyanate (CC) remains, and the stability and safety of the cured coating film tend to decrease.
 混合物(A)に対する混合物(B)の割合が多すぎると、低分子量モノマーが多くなり、硬化収縮が大きくなるためカールが大きくなる傾向があり、混合物(B)の割合が少なすぎると、硬度及び擦傷性が低下する傾向がある。 If the ratio of the mixture (B) to the mixture (A) is too large, the amount of low molecular weight monomers increases, and curling tends to increase due to an increase in curing shrinkage. If the ratio of the mixture (B) is too small, hardness and There is a tendency for the scratch resistance to decrease.
 (メタ)アクリレート混合物(A)中の(メタ)アクリレート(a1)~(a3)と(メタ)アクリレート混合物(B)中の(メタ)アクリレート(b1)~(b5)と多価イソシアネート(CC)との反応は、通常、上記混合物(A)、混合物(B)及び多価イソシアネート(CC)を、反応器に一括又は別々に仕込み反応させればよい。 (Meth) acrylates (a1) to (a3) in the (meth) acrylate mixture (A), (meth) acrylates (b1) to (b5) in the (meth) acrylate mixture (B), and polyvalent isocyanate (CC) In general, the reaction may be performed by charging the above mixture (A), mixture (B), and polyvalent isocyanate (CC) into a reactor all at once or separately.
 上記反応においては、反応を促進する目的で触媒を用いることも好ましく、かかる触媒としては、前記ウレタン(メタ)アクリレート系組成物[I]で説明したものと同様のものが例示できる。 In the above reaction, it is also preferable to use a catalyst for the purpose of accelerating the reaction, and examples of the catalyst include those described in the urethane (meth) acrylate composition [I].
 また、上記反応においては、重合禁止剤、イソシアネート基に対して反応する官能基を有しない有機溶剤を用いる場合についても、前記ウレタン(メタ)アクリレート系組成物[I]で説明したものと同様のものが例示できる。 Further, in the above reaction, the case of using a polymerization inhibitor and an organic solvent having no functional group that reacts with an isocyanate group is the same as that described in the urethane (meth) acrylate composition [I]. The thing can be illustrated.
 また、ウレタン(メタ)アクリレート系組成物[III]の調製においては、前記ウレタン(メタ)アクリレート系組成物[I]の調製に準じて行うことができる。 Also, the preparation of the urethane (meth) acrylate composition [III] can be carried out according to the preparation of the urethane (meth) acrylate composition [I].
 かくして、上記[α]の(メタ)アクリレート(a1)~(a3)、上記[β]の(メタ)アクリレート(b1)~(b5)、及び、多価イソシアネート(CC)を反応させてなるウレタン(メタ)アクリレート系組成物[III]が得られる。 Thus, urethane obtained by reacting the above [α] (meth) acrylates (a1) to (a3), the above [β] (meth) acrylates (b1) to (b5), and the polyvalent isocyanate (CC). A (meth) acrylate composition [III] is obtained.
 本発明においては、更に、ポリオールも含有させ、多価イソシアネート(CC)と反応させて、[α]の(メタ)アクリレート(a1)~(a3)、[β]の(メタ)アクリレート(b1)~(b5)、多価イソシアネート(CC)及びポリオールからなるウレタン(メタ)アクリレート系組成物[III]を得ることもできる。 In the present invention, a polyol is also contained and reacted with a polyvalent isocyanate (CC) to produce (α) (meth) acrylates (a1) to (a3), [β] (meth) acrylate (b1). It is also possible to obtain a urethane (meth) acrylate composition [III] composed of (b5), a polyvalent isocyanate (CC) and a polyol.
 上記ポリオールとしては、例えば、低分子量のポリオールや高分子量のポリオール、具体的には、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、エチレン・イソプレン・ブタジエン等を反応して得られるポリオレフィン系ポリオール又はその水添化物、上記以外のポリオレフィン系ポリオール、(メタ)アクリル系ポリオール等のポリオール等が挙げられる。 Examples of the polyol include low molecular weight polyols and high molecular weight polyols, specifically, polyols obtained by reacting polyether polyols, polyester polyols, polycarbonate polyols, ethylene / isoprene / butadiene, and the like. Or the hydrogenated thing, polyolefin polyols other than the above, polyols, such as (meth) acrylic-type polyol, etc. are mentioned.
 かかるウレタン(メタ)アクリレート系組成物[III]の重量平均分子量としては1,000~20,000であることが好ましく、更に好ましくは2,000~15,000、特に好ましくは3,000~12,000、殊に好ましくは4,000~10,000である。かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。 The urethane (meth) acrylate composition [III] preferably has a weight average molecular weight of 1,000 to 20,000, more preferably 2,000 to 15,000, particularly preferably 3,000 to 12. 1,000, particularly preferably 4,000 to 10,000. If the weight average molecular weight is too small, the cured coating film tends to be brittle, and if it is too large, the viscosity tends to be high and difficult to handle.
 なお、上記重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフ(Waters社製、「ACQUITY APCシステム」)に、カラム:ACQUITY APC XT 450を1本、ACQUITY APC XT 200を1本、ACQUITY APC XT 45を2本の計4本を直列にして用いることにより測定される。 In addition, the said weight average molecular weight is a weight average molecular weight by standard polystyrene molecular weight conversion, a column: ACQUITY APC XT 450, ACQUITY APC XT 200, on a high-speed liquid chromatograph (Waters, "ACQUITY APC system"). 1 and ACQUITY APC XT 45, 2 in total, and 4 in total.
 上記ウレタン(メタ)アクリレート系組成物[III]におけるウレタン(メタ)アクリレートの含有量は、好ましくは50重量%以上、特に好ましくは60重量%以上、更に好ましくは70重量%以上、殊に好ましくは80重量%以上である。なお、上限は通常95重量%である。 The urethane (meth) acrylate content in the urethane (meth) acrylate composition [III] is preferably 50% by weight or more, particularly preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably. 80% by weight or more. The upper limit is usually 95% by weight.
<活性エネルギー線硬化性樹脂組成物>
 本発明の活性エネルギー線硬化性樹脂組成物は、上記ウレタン(メタ)アクリレート系組成物[I]を含有する第1の態様〈第1の要旨に係る発明〉と、上記ウレタン(メタ)アクリレート系組成物[I]及びウレタン(メタ)アクリレート系組成物[II]を含有する第2の態様(第2の要旨に係る発明)と、上記ウレタン(メタ)アクリレート系組成物[III]を含有する第3の態様(第3の要旨に係る発明)を有する。
<Active energy ray-curable resin composition>
The active energy ray-curable resin composition of the present invention includes a first aspect (invention according to the first aspect) containing the urethane (meth) acrylate composition [I] and the urethane (meth) acrylate system. 2nd aspect (invention which concerns on 2nd summary) containing composition [I] and urethane (meth) acrylate type composition [II], and the said urethane (meth) acrylate type composition [III] are contained. It has a 3rd aspect (invention based on a 3rd summary).
 上記第2の態様である活性エネルギー線硬化性樹脂組成物は、上記のように、ウレタン(メタ)アクリレート系組成物[I]及びウレタン(メタ)アクリレート系組成物[II]を含有してなるものである。かかるウレタン(メタ)アクリレート系組成物[I]とウレタン(メタ)アクリレート系組成物[II]の含有割合([I]/[II])については、重量比で90/10~10/90であることが好ましく、特に好ましくは87/13~20/80、更に好ましくは85/15~30/70、殊に好ましくは80/20~55/45、殊更に好ましくは80/20~65/35である。かかる含有割合が小さすぎると屈曲性が低下する傾向があり、大きすぎると硬度が不充分となる傾向がある。 The active energy ray-curable resin composition according to the second aspect includes the urethane (meth) acrylate composition [I] and the urethane (meth) acrylate composition [II] as described above. Is. The content ratio ([I] / [II]) of the urethane (meth) acrylate composition [I] and the urethane (meth) acrylate composition [II] is 90/10 to 10/90 by weight ratio. It is preferably, particularly preferably 87/13 to 20/80, more preferably 85/15 to 30/70, particularly preferably 80/20 to 55/45, and even more preferably 80/20 to 65/35. It is. If the content is too small, the flexibility tends to decrease, and if it is too large, the hardness tends to be insufficient.
 上記第1~3の態様の本発明の活性エネルギー線硬化性樹脂組成物(以下「樹脂組成物」と略すことがある)には、更に光重合開始剤(D)を含有することが好ましい。また、本発明の効果を損なわない範囲で、その他のウレタン(メタ)アクリレート、ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマー、アクリル樹脂、表面調整剤、レベリング剤、重合禁止剤等を添加することができ、更にはフィラー、染料、顔料、油、可塑剤、ワックス類、乾燥剤、分散剤、湿潤剤、ゲル化剤、安定剤、消泡剤、界面活性剤、レベリング剤、チクソトロピー性付与剤、酸化防止剤、難燃剤、帯電防止剤、充填剤、補強剤、艶消し剤、架橋剤、シリカ、水分散または溶剤分散されたシリカ、ジルコニウム化合物、防腐剤等を配合することも可能である。 The active energy ray-curable resin composition of the present invention of the first to third aspects (hereinafter sometimes abbreviated as “resin composition”) preferably further contains a photopolymerization initiator (D). In addition, other urethane (meth) acrylates, ethylenically unsaturated monomers other than urethane (meth) acrylate, acrylic resins, surface conditioners, leveling agents, polymerization inhibitors, etc. are added within a range not impairing the effects of the present invention. Furthermore, fillers, dyes, pigments, oils, plasticizers, waxes, desiccants, dispersants, wetting agents, gelling agents, stabilizers, antifoaming agents, surfactants, leveling agents, thixotropic properties Additives, antioxidants, flame retardants, antistatic agents, fillers, reinforcing agents, matting agents, crosslinking agents, silica, water-dispersed or solvent-dispersed silica, zirconium compounds, preservatives, etc. is there.
 上記光重合開始剤(D)としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド類;1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]等のオキシムエステル類等が挙げられる。なお、これら光重合開始剤(D)の1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the photopolymerization initiator (D) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2 -Hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy -1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propane, 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1 -One, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy- Acetophenones such as methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomers; benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; benzophenone, o- Methyl benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethyl Benzophenone such as benzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride, etc. Nons: 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3 Thioxanthones such as 2,4-dimethyl-9H-thioxanthone-9-one mesochloride; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl -Acylphosphine oxides such as pentylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; 1.2-octanedione, 1- [4- (phenylthio)-, 2- ( o-benzoyloxime)] Examples include oxime esters. In addition, only 1 type of these photoinitiators (D) may be used independently, and 2 or more types may be used together.
 これらの中でも、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾイルイソプロピルエーテル、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンを用いることが好ましい。 Among these, benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, benzoyl isopropyl ether, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1- It is preferable to use phenylpropan-1-one.
 また、これらの助剤として、例えば、トリエタノールアミン、トリイソプロパノールアミン、4,4′-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4′-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。これらは単独でもしくは2種以上併せて用いることができる。 Examples of these auxiliaries include triethanolamine, triisopropanolamine, 4,4′-dimethylaminobenzophenone (Michler ketone), 4,4′-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, 4-dimethylamino. Ethyl benzoate, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2,4-diisopropylthio It is also possible to use xanthone or the like together. These may be used alone or in combination of two or more.
 光重合開始剤(D)の含有量としては、樹脂組成物中に含まれる硬化成分100重量部に対して、0.1~20重量部であることが好ましく、特に好ましくは0.5~10重量部、更に好ましくは1~10重量部である。光重合開始剤(D)の含有量が少なすぎると、硬化不良となり膜形成がなされにくい傾向があり、多すぎると硬化塗膜の黄変の原因となり、着色の問題が起こりやすい傾向がある。 The content of the photopolymerization initiator (D) is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the curing component contained in the resin composition. Part by weight, more preferably 1 to 10 parts by weight. If the content of the photopolymerization initiator (D) is too small, curing tends to be poor and film formation tends to be difficult, and if too large, yellowing of the cured coating film tends to occur, and coloring problems tend to occur.
 ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマーとしては、例えば、単官能モノマー、2官能モノマー、3官能以上の多官能モノマーが挙げられる。これらは単独でもしくは2種以上併せて用いることができる。 Examples of ethylenically unsaturated monomers other than urethane (meth) acrylates include monofunctional monomers, bifunctional monomers, and trifunctional or higher polyfunctional monomers. These may be used alone or in combination of two or more.
 かかる単官能モノマーとしては、例えば、スチレン、ビニルトルエン、クロロスチレン、α-メチルスチレン等のスチレン系モノマー、メチル(メタ)アクリレート、エチル(メタ)アクリレート、アクリロニトリル、2-メトキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、ラウリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリルレート、ジシクロペンタニル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)-メチル(メタ)アクリレート、シクロヘキサンスピロ-2-(1,3-ジオキソラン-4-イル)-メチル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート、γ-ブチロラクトン(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノールエチレンオキサイド変性(n=2)(メタ)アクリレート、ノニルフェノールプロピレンオキサイド変性(n=2.5)(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート等のフタル酸誘導体のハーフ(メタ)アクリレート、フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カルビトール(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルモルフォリン、ポリオキシエチレン第2級アルキルエーテルアクリレート等の(メタ)アクリレート系モノマー、2-ヒドロキシエチルアクリルアミド、N-メチロール(メタ)アクリルアミド、N-ビニルピロリドン、2-ビニルピリジン、酢酸ビニル等が挙げられる。 Examples of such monofunctional monomers include styrene monomers such as styrene, vinyl toluene, chlorostyrene, α-methylstyrene, methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2-hydroxy -3-phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, glycidyl (meth) acrylate, lauryl (meth) acrylate Lilate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate (2-methyl-2-ethyl-1,3-dioxolan-4-yl) -methyl (meth) acrylate, cyclohexanespiro-2- (1,3-dioxolan-4-yl) -methyl (meth) acrylate, 3-ethyl-3-oxetanylmethyl (meth) acrylate, γ-butyrolactone (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) A) Relate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate, phenol ethylene oxide modified (n = 2) (meth) acrylate, nonylphenol propylene Half (meth) acrylates of phthalic acid derivatives such as oxide-modified (n = 2.5) (meth) acrylate, 2- (meth) acryloyloxyethyl acid phosphate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, Furfuryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, carbitol (meth) acrylate, benzyl (meth) acrylate, butoxyethyl (meth) acrylate, allyl (meth) (Meth) acrylate monomers such as acrylate, (meth) acryloylmorpholine, polyoxyethylene secondary alkyl ether acrylate, 2-hydroxyethylacrylamide, N-methylol (meth) acrylamide, N-vinylpyrrolidone, 2-vinylpyridine And vinyl acetate.
 かかる2官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート等が挙げられる。 Examples of such bifunctional monomers include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and di Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A Type di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, ethoxylated cyclohexanedimethanol di ( Acrylate), dimethylol dicyclopentane di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) ) Acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (meth) acrylate, isocyanuric acid Examples include ethylene oxide-modified diacrylate.
 かかる3官能以上のモノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリアクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化15グリセリントリアクリレート等が挙げられる。 Examples of the tri- or higher functional monomer include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanuric acid ethylene oxide modified triacrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (Meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate, cap Lactone modified pentaerythritol tetra (meth) acrylate, ethylene oxide modified dipentaerythritol penta (meth) acrylate, ethylene oxide modified dipentaerythritol hexa (meth) acrylate, ethylene oxide modified pentaerythritol tri (meth) acrylate, ethylene oxide modified pentaerythritol Examples include tetra (meth) acrylate and ethoxylated 15 glycerin triacrylate.
 また、アクリル酸のミカエル付加物あるいは2-アクリロイルオキシエチルジカルボン酸モノエステルも併用可能であり、かかるアクリル酸のミカエル付加物としては、(メタ)アクリル酸ダイマー、(メタ)アクリル酸トリマー、(メタ)アクリル酸テトラマー等が挙げられる。上記2-アクリロイルオキシエチルジカルボン酸モノエステルとしては、特定の置換基をもつカルボン酸であり、例えば、2-アクリロイルオキシエチルコハク酸モノエステル、2-メタクリロイルオキシエチルコハク酸モノエステル、2-アクリロイルオキシエチルフタル酸モノエステル、2-メタクリロイルオキシエチルフタル酸モノエステル、2-アクリロイルオキシエチルヘキサヒドロフタル酸モノエステル、2-メタクリロイルオキシエチルヘキサヒドロフタル酸モノエステル等が挙げられる。更に、その他オリゴエステルアクリレート等を挙げることができる。 In addition, a Michael adduct of acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester can be used in combination. Examples of the Michael adduct of acrylic acid include (meth) acrylic acid dimer, (meth) acrylic acid trimer, ) Acrylic acid tetramer and the like. The above-mentioned 2-acryloyloxyethyl dicarboxylic acid monoester is a carboxylic acid having a specific substituent, such as 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, 2-acryloyloxy Examples include ethyl phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, 2-methacryloyloxyethyl hexahydrophthalic acid monoester, and the like. Furthermore, other oligoester acrylates can be mentioned.
 本発明の第1の要旨及び第2の要旨に係る発明における、ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマーの含有量としては、活性エネルギー線硬化性樹脂組成物中に含まれる全硬化成分中、60重量%以下であることが好ましく、特に好ましくは55重量%以下、更に好ましくは50重量%以下である。なお、下限値としては通常5重量%である。 As content of ethylenically unsaturated monomers other than urethane (meth) acrylate in the invention which concerns on the 1st summary and 2nd summary of this invention, all the hardening components contained in an active energy ray-curable resin composition The content is preferably 60% by weight or less, particularly preferably 55% by weight or less, and still more preferably 50% by weight or less. The lower limit is usually 5% by weight.
 一方、本発明の第3の要旨に係る発明における、ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマーの含有量としては、活性エネルギー線硬化性樹脂組成物中に含まれる全硬化成分中、50重量%以下であることが好ましく、特に好ましくは40重量%以下、更に好ましくは30重量%以下、殊に好ましくは20重量%以下である。なお、下限値としては通常5重量%である。 On the other hand, in the invention according to the third aspect of the present invention, the content of the ethylenically unsaturated monomer other than urethane (meth) acrylate is 50% in all the curing components contained in the active energy ray-curable resin composition. The content is preferably not more than wt%, particularly preferably not more than 40 wt%, further preferably not more than 30 wt%, particularly preferably not more than 20 wt%. The lower limit is usually 5% by weight.
 前記表面調整剤としては、例えば、セルロース樹脂やアルキッド樹脂等を挙げることができる。かかるセルロース樹脂は、塗膜の表面平滑性を向上させる作用が有り、アルキッド樹脂は、塗布時の造膜性を付与する作用を有するものである。これらは単独でもしくは2種以上併せて用いることができる。 Examples of the surface conditioner include cellulose resin and alkyd resin. Such a cellulose resin has an action of improving the surface smoothness of the coating film, and an alkyd resin has an action of imparting a film-forming property at the time of coating. These may be used alone or in combination of two or more.
 前記レベリング剤としては、塗液の基材への濡れ性付与作用、表面張力の低下作用を有するものであれば、公知一般のレベリング剤を用いることができ、例えば、シリコーン変性樹脂、フッ素変性樹脂、アルキル変性の樹脂等を用いることができる。これらは単独でもしくは2種以上併せて用いることができる。 As the leveling agent, a known general leveling agent can be used as long as it has an effect of imparting wettability to the base material of the coating liquid and a function of reducing the surface tension. For example, a silicone-modified resin, a fluorine-modified resin An alkyl-modified resin or the like can be used. These may be used alone or in combination of two or more.
 前記重合禁止剤としては、反応時に使用したものと同様のものを用いることができ、例えば、p-ベンゾキノン、ナフトキノン、トルキノン、2,5-ジフェニル-p-ベンゾキノン、ハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、モノ-t-ブチルハイドロキノン等のキノン類、4-メトキシフェノール、2,6-ジ-t-ブチルクレゾール等の芳香族類、p-t-ブチルカテコール等を挙げることができる。これらは単独でもしくは2種以上併せて用いることができる。 As the polymerization inhibitor, the same ones used during the reaction can be used. For example, p-benzoquinone, naphthoquinone, tolquinone, 2,5-diphenyl-p-benzoquinone, hydroquinone, 2,5-di- Quinones such as t-butylhydroquinone, methylhydroquinone, hydroquinone monomethyl ether, mono-t-butylhydroquinone, aromatics such as 4-methoxyphenol and 2,6-di-t-butylcresol, pt-butylcatechol Etc. These may be used alone or in combination of two or more.
 また、本発明の活性エネルギー線硬化性樹脂組成物は、必要に応じて、塗工時の粘度を適正なものにするために、希釈のための有機溶剤を使用することも好ましい。かかる有機溶剤としては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類、アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類、エチルセロソルブ等のセロソルブ類、トルエン、キシレン等の芳香族類、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類、ジアセトンアルコール等が挙げられる。これら上記の有機溶剤は、単独で用いてもよいし、2種以上を併用してもよい。 In addition, the active energy ray-curable resin composition of the present invention preferably uses an organic solvent for dilution, if necessary, in order to make the viscosity at the time of coating appropriate. Examples of such organic solvents include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol, ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone, cellosolves such as ethyl cellosolve, toluene, xylene And the like, glycol ethers such as propylene glycol monomethyl ether, acetates such as methyl acetate, ethyl acetate and butyl acetate, and diacetone alcohol. These organic solvents may be used alone or in combination of two or more.
 2種以上を併用する場合は、プロピレングリコールモノメチルエーテル等のグリコールエーテル類と、メチルエチルケトン等のケトン類やメタノール等のアルコール類との組み合わせや、メチルエチルケトン等のケトン類と、メタノール等のアルコール類との組み合わせ、メタノール等のアルコール類の中から2種以上を選び併用することが、塗膜外観の点で好ましい。 When two or more types are used in combination, a combination of glycol ethers such as propylene glycol monomethyl ether and ketones such as methyl ethyl ketone and alcohols such as methanol, or ketones such as methyl ethyl ketone and alcohols such as methanol It is preferable from the viewpoint of the coating film appearance that a combination and two or more kinds selected from alcohols such as methanol are used in combination.
 本発明の活性エネルギー線硬化性樹脂組成物は、各種基材へのトップコート剤やアンカーコート剤等、塗膜形成用の硬化性組成物として有効に用いられるものである。そして、活性エネルギー線硬化性樹脂組成物を基材に塗工した後(有機溶剤で希釈した樹脂組成物を塗工した場合には、更に乾燥させた後)、活性エネルギー線を照射することにより硬化される。 The active energy ray-curable resin composition of the present invention is effectively used as a curable composition for forming a coating film, such as a top coat agent and an anchor coat agent for various substrates. Then, after applying the active energy ray-curable resin composition to the base material (when the resin composition diluted with an organic solvent is applied, after further drying), the active energy ray is irradiated. Cured.
 上記本発明の活性エネルギー線硬化性樹脂組成物を塗工する対象である基材としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリスチレン系樹脂等やそれらの成型品(フィルム、シート、カップ、等)等のプラスチック基材、またポリエチレンテレフタレートフィルム、トリアセチルセルロースフィルム、シクロオレフィンフィルム等の光学フィルム、それらの複合基材、またはガラス繊維や無機物を混合した前記材料の複合基材等、金属(アルミニウム、銅、鉄、SUS、亜鉛、マグネシウム、これらの合金等)やガラス、または、これらの基材上にプライマー層を設けた基材等が挙げられる。 Examples of the base material to which the active energy ray-curable resin composition of the present invention is applied include, for example, polyolefin resins, polyester resins, polycarbonate resins, acrylonitrile butadiene styrene copolymers (ABS), and polystyrene resins. Plastic substrates such as resins and their molded products (films, sheets, cups, etc.), optical films such as polyethylene terephthalate films, triacetyl cellulose films, cycloolefin films, composite substrates thereof, glass fibers, Composite base materials of the above materials mixed with inorganic materials, metals (aluminum, copper, iron, SUS, zinc, magnesium, alloys thereof, etc.) and glass, or base materials provided with a primer layer on these base materials, etc. Is mentioned.
 本発明の活性エネルギー線硬化性樹脂組成物の塗工方法としては、例えば、スプレー、シャワー、グラビア、ディッピング、ロール、スピン、スクリーン印刷等のようなウェットコーティング法が挙げられ、通常は常温下で、基材に塗工すればよい。 Examples of the coating method of the active energy ray-curable resin composition of the present invention include wet coating methods such as spray, shower, gravure, dipping, roll, spin, and screen printing. What is necessary is just to apply to a base material.
 また、本発明の活性エネルギー線硬化性樹脂組成物は、そのまま塗工してもよいし、有機溶剤で希釈して塗工してもよい。希釈する場合には、上記有機溶剤を用いて、固形分濃度が、通常3~70重量%であり、好ましくは5~60重量%となるように希釈する。 Also, the active energy ray-curable resin composition of the present invention may be applied as it is, or may be applied after diluting with an organic solvent. In the case of dilution, the organic solvent is used so that the solid content is usually 3 to 70% by weight, preferably 5 to 60% by weight.
 上記有機溶剤による希釈を行なった際の乾燥条件としては、温度が、通常40~120℃、好ましくは50~100℃で、乾燥時間が、通常1~20分間、好ましくは2~10分間であればよい。 The drying conditions for the dilution with the organic solvent include a temperature of usually 40 to 120 ° C., preferably 50 to 100 ° C., and a drying time of usually 1 to 20 minutes, preferably 2 to 10 minutes. That's fine.
 本発明の活性エネルギー線硬化性樹脂組成物を塗工するに際して、樹脂組成物の20℃での粘度は、5~50,000mPa・sであることが好ましく、特に好ましくは10~10,000mPa・s、更に好ましくは50~5,000mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
 なお、上記20℃での粘度の測定法はB型粘度計によるものである。ただし、溶剤希釈しない状態で高粘度のため20℃でのB型粘度計による測定ができない場合は、60℃にてE型粘度計を用い測定を行う。
When the active energy ray-curable resin composition of the present invention is applied, the viscosity of the resin composition at 20 ° C. is preferably 5 to 50,000 mPa · s, particularly preferably 10 to 10,000 mPa · s. s, more preferably 50 to 5,000 mPa · s. When the viscosity is out of the above range, the coatability tends to be lowered.
The method for measuring the viscosity at 20 ° C. is based on a B-type viscometer. However, if the B-type viscometer at 20 ° C. cannot be measured due to high viscosity without solvent dilution, the measurement is performed using an E-type viscometer at 60 ° C.
 基材上に塗工された活性エネルギー線硬化性樹脂組成物を硬化させる際に使用する活性エネルギー線としては、例えば、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のし易さ、価格等から紫外線照射による硬化が有利である。なお、電子線照射を行う場合は、光重合開始剤(D)を用いなくても硬化し得る。 Examples of the active energy ray used when the active energy ray-curable resin composition coated on the substrate is cured include, for example, deep ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, X-rays, γ rays, etc. In addition to electromagnetic waves, electron beams, proton beams, neutron beams, and the like can be used, but curing by ultraviolet irradiation is advantageous from the viewpoint of curing speed, availability of an irradiation device, price, and the like. In addition, when performing electron beam irradiation, it can harden | cure even without using a photoinitiator (D).
 紫外線照射により硬化させる際には、150~450nm波長域の光を発する高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、LEDランプ等を用いて、通常30~3,000mJ/cm2、好ましくは100~1,500mJ/cm2の紫外線を照射すればよい。
 紫外線照射後は、必要に応じて加熱を行って硬化の完全を図ることもできる。
When curing by ultraviolet irradiation, using a high-pressure mercury lamp, ultra-high pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, chemical lamp, electrodeless discharge lamp, LED lamp, etc. Usually, ultraviolet rays of 30 to 3,000 mJ / cm 2 , preferably 100 to 1,500 mJ / cm 2 may be irradiated.
After the ultraviolet irradiation, heating can be performed as necessary to complete the curing.
 塗工膜厚(硬化後の膜厚)としては、通常、活性エネルギー線硬化性の塗膜として光重合開始剤(D)が均一に反応するべく光線透過を鑑みると1~1,000μmであり、好ましくは2~500μmであり、特に好ましくは3~200μmである。 The coating film thickness (film thickness after curing) is usually 1 to 1,000 μm in view of light transmission so that the photopolymerization initiator (D) can react uniformly as an active energy ray-curable coating film. The thickness is preferably 2 to 500 μm, particularly preferably 3 to 200 μm.
 本発明の活性エネルギー線硬化性樹脂組成物は、コーティング剤として用いることが好ましく、特にはハードコート用コーティング剤や光学フィルム用コーティング剤として用いることが好ましい。 The active energy ray-curable resin composition of the present invention is preferably used as a coating agent, and particularly preferably used as a hard coat coating agent or an optical film coating agent.
 また、本発明においては、活性エネルギー線硬化性樹脂組成物を、サイズ15cm×15cmで厚み100μmのポリエチレンテレフタレート(PET)フィルムに、硬化後の塗膜が10μmの厚みとなるように塗工し、温度60℃で3分間乾燥させた後、PETフィルム面からの高さ18cmの位置に80Wの高圧水銀灯を準備し、5.1m/minの速度で積算照射量が500mJ/cm2となるように紫外線を照射することにより、硬化塗膜が得られる。その硬化塗膜を10cm×10cmになるように切り出し、その切り出した硬化塗膜の四隅の跳ね上がり高さの平均値が40mm以下、特には30mm以下、更には25mm以下である硬化塗膜となるコーティング剤とすることが好ましい。 In the present invention, the active energy ray-curable resin composition is applied to a polyethylene terephthalate (PET) film having a size of 15 cm × 15 cm and a thickness of 100 μm so that the cured coating film has a thickness of 10 μm. After drying at a temperature of 60 ° C. for 3 minutes, an 80 W high-pressure mercury lamp is prepared at a height of 18 cm from the surface of the PET film so that the integrated irradiation amount becomes 500 mJ / cm 2 at a speed of 5.1 m / min. A cured coating film is obtained by irradiating with ultraviolet rays. The cured coating film is cut out to be 10 cm × 10 cm, and the average value of the height of the four corners of the cut-out cured coating film is 40 mm or less, particularly 30 mm or less, and further, a coating that becomes a cured coating film of 25 mm or less. It is preferable to use an agent.
 さらに、本発明においては、活性エネルギー線硬化性樹脂組成物を、サイズ15cm×15cmで厚み125μmの易接着PETフィルムに、硬化後の塗膜が10μmの厚みとなるように塗工し、温度60℃で3分間乾燥させた後、易接着PETフィルム面からの高さ18cmの位置に80Wの高圧水銀灯を準備し、5.1m/minの速度で積算照射量が500mJ/cm2となるように紫外線を照射することにより、硬化塗膜が得られる。その硬化塗膜において、JIS K 5600-5-1に準じて、円筒形マンドレル屈曲試験機を用いて屈曲性の評価を行い、評価用硬化塗膜を試験棒に巻き付けた際に、割れ又は剥がれが生じる最大の径(整数値、mm)が20mm以下、特には15mm以下、更には10mm以下、殊には8mm以下であるコーティング剤とすることが好ましい。 Furthermore, in the present invention, the active energy ray-curable resin composition is applied to an easy-adhesion PET film having a size of 15 cm × 15 cm and a thickness of 125 μm so that the cured coating film has a thickness of 10 μm, and a temperature of 60 After drying at 0 ° C. for 3 minutes, an 80 W high-pressure mercury lamp is prepared at a height of 18 cm from the surface of the easy-adhesive PET film so that the integrated irradiation amount becomes 500 mJ / cm 2 at a speed of 5.1 m / min. A cured coating film is obtained by irradiating with ultraviolet rays. The cured coating film is evaluated for flexibility using a cylindrical mandrel bending tester in accordance with JIS K 5600-5-1. When the cured coating film for evaluation is wound around a test bar, it is cracked or peeled off. It is preferable to use a coating agent having a maximum diameter (integer value, mm) of 20 mm or less, particularly 15 mm or less, more preferably 10 mm or less, and particularly 8 mm or less.
 そして、本発明においては、活性エネルギー線硬化性樹脂組成物を、サイズ15cm×15cmで厚み125μmの易接着PETフィルムに、硬化後の塗膜が10μmの厚みとなるように塗工し、温度60℃で3分間乾燥させた後、易接着PETフィルム面からの高さ18cmの位置に80Wの高圧水銀灯を準備し、5.1m/minの速度で積算照射量が500mJ/cm2となるように紫外線を照射することにより、硬化塗膜が得られる。その硬化塗膜において、スチールウール(日本スチールウール社製、ボンスター#0000)を用い、500gの荷重をかけながら硬化塗膜表面を10往復させた後、表面の傷付き度合いを目視により観察した場合においても、塗膜表面に傷のないものが好ましい。 In the present invention, the active energy ray-curable resin composition is applied to an easy-adhesion PET film having a size of 15 cm × 15 cm and a thickness of 125 μm so that the cured coating film has a thickness of 10 μm. After drying at 0 ° C. for 3 minutes, an 80 W high-pressure mercury lamp is prepared at a height of 18 cm from the surface of the easy-adhesive PET film so that the integrated irradiation amount becomes 500 mJ / cm 2 at a speed of 5.1 m / min. A cured coating film is obtained by irradiating with ultraviolet rays. In the cured coating film, steel wool (Bonstar # 0000, manufactured by Nippon Steel Wool Co., Ltd.) was used, and the surface of the cured coating film was reciprocated 10 times while applying a load of 500 g. Also, the surface of the coating film having no scratch is preferable.
 本発明の第1の要旨に係る発明は、ペンタエリスリトールと(メタ)アクリル酸との反応物である上記(メタ)アクリレート(a1)~(a4)の混合物(A)中の(メタ)アクリレート(a1)~(a3)と、多価イソシアネート(CA)とが反応したウレタン(メタ)アクリレート系組成物[I]を含有してなり、上記混合物(A)の水酸基価が200mgKOH/g以上である活性エネルギー線硬化性樹脂組成物である。この活性エネルギー線硬化性樹脂組成物は、硬化収縮が小さいことからカールしにくく、硬度及び屈曲性に優れた硬化塗膜を形成することができ、更には、硬化前の未硬化状態の塗膜であっても塗膜表面がべたつかず、タックフリーな塗膜表面を形成することができるという効果を有するものであり、特にコーティング剤(更にはハードコート用コーティング剤や光学フィルム用コーティング剤)として有用であり、また、塗料、インク等としても有用である。 The invention according to the first aspect of the present invention is a (meth) acrylate (A) in a mixture (A) of the above (meth) acrylates (a1) to (a4), which is a reaction product of pentaerythritol and (meth) acrylic acid ( a urethane (meth) acrylate composition [I] obtained by reacting a1) to (a3) with a polyvalent isocyanate (CA), and the mixture (A) has a hydroxyl value of 200 mgKOH / g or more. It is an active energy ray-curable resin composition. Since this active energy ray-curable resin composition has a small curing shrinkage, it is difficult to curl, and can form a cured coating film having excellent hardness and flexibility, and further, an uncured coating film before curing. However, the coating surface is not sticky and has the effect of being able to form a tack-free coating surface, especially as a coating agent (and hard coating agent and optical film coating agent). It is also useful as a paint or ink.
 本発明の第2の要旨に係る発明は、ペンタエリスリトールと(メタ)アクリル酸との反応物である上記(メタ)アクリレート(a1)~(a4)の混合物(A)中の(メタ)アクリレート(a1)~(a3)と、多価イソシアネート(CA)とが反応したウレタン(メタ)アクリレート系組成物[I]、及び、ジペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(b1)~(b6)の混合物(B)中の(メタ)アクリレート(b1)~(b5)と、多価イソシアネート(CB)とが反応したウレタン(メタ)アクリレート系組成物[II]を含有してなり、上記混合物(A)の水酸基価が200mgKOH/g以上であるとともに、上記混合物(B)の水酸基価が40mgKOH/g以上である活性エネルギー線硬化性樹脂組成物である。この活性エネルギー線硬化性樹脂組成物は、硬化収縮が小さいことからカールしにくく、硬度及び屈曲性に優れた硬化塗膜を形成することができるという効果を有するものであり、特にコーティング剤(更にはハードコート用コーティング剤や光学フィルム用コーティング剤)として有用であり、また、塗料、インク等としても有用である。 The invention according to the second aspect of the present invention is the (meth) acrylate (A) in the mixture (A) of the above (meth) acrylates (a1) to (a4) which is a reaction product of pentaerythritol and (meth) acrylic acid ( a urethane (meth) acrylate composition [I] obtained by reacting a1) to (a3) with a polyvalent isocyanate (CA), and a reaction product of dipentaerythritol and (meth) acrylic acid shown below (meta ) Urethane (meth) acrylate composition [II] obtained by reacting (meth) acrylates (b1) to (b5) in the mixture (B) of acrylates (b1) to (b6) with the polyvalent isocyanate (CB) And the mixture (A) has a hydroxyl value of 200 mgKOH / g or more, and the mixture (B) has a hydroxyl value of 40 mgKOH / g or more. It is energy ray curable resin composition. This active energy ray-curable resin composition has an effect that it is difficult to curl because of its small curing shrinkage and can form a cured coating film having excellent hardness and flexibility. Is useful as a coating agent for hard coats and a coating agent for optical films), and is also useful as a paint, ink and the like.
 本発明の第3の要旨に係る発明は、前記[α]の(メタ)アクリレート(a1)~(a3)、前記[β]の(メタ)アクリレート(b1)~(b5)、及び、多価イソシアネート(CC)が反応したウレタン(メタ)アクリレート系組成物[III]を含有してなる活性エネルギー線硬化性樹脂組成物である。この活性エネルギー線硬化性樹脂組成物は、硬化収縮が小さいことからカールしにくく、硬度、屈曲性及び耐擦傷性に優れた硬化塗膜を形成することができるという効果を有するものであり、特にコーティング剤(更にはハードコート用コーティング剤や光学フィルム用コーティング剤)として有用である。また、塗料、インク等としても有用である。 The invention according to the third aspect of the present invention includes the (meth) acrylates (a1) to (a3) of [α], the (meth) acrylates (b1) to (b5) of [β], and a polyvalent This is an active energy ray-curable resin composition comprising a urethane (meth) acrylate-based composition [III] reacted with isocyanate (CC). This active energy ray-curable resin composition has an effect that it is difficult to curl due to small curing shrinkage and can form a cured coating film having excellent hardness, flexibility and scratch resistance. It is useful as a coating agent (further, a hard coat coating agent or an optical film coating agent). It is also useful as a paint or ink.
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、例中、「部」、「%」とあるのは、重量基準を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the examples, “parts” and “%” mean weight basis.
<<ウレタン(メタ)アクリレート系組成物[I]を用いた実施例>>
 以下の通り、ウレタンアクリレート系組成物[I]([I-1]~[I-4])、更に、比較のためのウレタンアクリレート系組成物[I’]([I’-1]~[I’-4])を用意した。
<< Example using urethane (meth) acrylate-based composition [I] >>
The urethane acrylate composition [I] ([I-1] to [I-4]) and the urethane acrylate composition [I ′] ([I′-1] to [I′-1] I′-4]) was prepared.
〔ウレタンアクリレート系組成物[I-1]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(C-1)36g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)64g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-1]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I-1]の重量平均分子量は4,700、20℃での粘度は80mPa・sであった。なお、20℃での粘度の測定はB型粘度計を用いて行った。20℃での粘度測定は以下同様である。
[Production of Urethane Acrylate Composition [I-1]]
Into a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser and nitrogen gas inlet, an acrylate mixture (A-1) (pentaerythritol acrylic acid with 36 g of isophorone diisocyanate (C-1) and a hydroxyl value of 288 mgKOH / g Adduct) 64 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.05 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C. and the residual isocyanate group was 0.1%. At this point, the reaction was terminated to obtain a urethane acrylate composition [I-1] (resin concentration 50%).
The obtained urethane acrylate composition [I-1] had a weight average molecular weight of 4,700 and a viscosity at 20 ° C. of 80 mPa · s. The viscosity at 20 ° C. was measured using a B-type viscometer. The viscosity measurement at 20 ° C. is the same in the following.
 なお、アクリレート混合物(A-1)中における下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
 (a1)ペンタエリスリトールモノアクリレート   4%
 (a2)ペンタエリスリトールジアクリレート   29%
 (a3)ペンタエリスリトールトリアクリレート  49%
 (a4)ペンタエリスリトールテトラアクリレート 18%
The content ratio of each component to the total of the following components (a1) to (a4) in the acrylate mixture (A-1) is as follows.
(A1) Pentaerythritol monoacrylate 4%
(A2) Pentaerythritol diacrylate 29%
(A3) Pentaerythritol triacrylate 49%
(A4) Pentaerythritol tetraacrylate 18%
 なお、混合物中の各成分の含有割合は、液体クロマトグラフ(Agilent社製、「Technology HP 1100」)にカラム(Imtakt社製、Cadenza CD-C18 100×3mm 3μm)を用いることにより測定される。 In addition, the content ratio of each component in the mixture is measured by using a column (Imtakt, Cadenza CD-C18 100 × 3 mm, 3 μm) in a liquid chromatograph (Agilent, “Technology HP 1100”).
〔ウレタンアクリレート系組成物[I-2]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)33g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)67g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-2]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I-2]の重量平均分子量は6,200、20℃での粘度は65mPa・sであった。
[Production of urethane acrylate composition [I-2]]
In a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas blowing port, 33 g of hydrogenated xylylene diisocyanate (C-2) and acrylate mixture (A-1) (penta) having a hydroxyl value of 288 mgKOH / g Acrylic acid adduct of erythritol) 67 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, 0.05 g of dibutyltin dilaurate as a reaction catalyst, reacted at 60 ° C., and the remaining isocyanate group was 0 When the content reached 1%, the reaction was terminated to obtain a urethane acrylate composition [I-2] (resin content concentration 50%).
The obtained urethane acrylate composition [I-2] had a weight average molecular weight of 6,200 and a viscosity at 20 ° C. of 65 mPa · s.
〔ウレタンアクリレート系組成物[I-3]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、トリレンジイソシアネート(C-3)43g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)97g、溶剤として酢酸エチル60g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-3]を得た(樹脂分濃度70%)。
 得られたウレタンアクリレート系組成物[I-3]の重量平均分子量は7,300、20℃での粘度は161,000mPa・sであった。
[Production of Urethane Acrylate Composition [I-3]]
A four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port was charged with 43 g of tolylene diisocyanate (C-3) and an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (acrylic of pentaerythritol 97 g of acid adduct, 60 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.05 g of dibutyltin dilaurate as a reaction catalyst, reacted at 60 ° C., and 0.1% of the remaining isocyanate groups At this point, the reaction was terminated to obtain a urethane acrylate composition [I-3] (resin concentration 70%).
The obtained urethane acrylate composition [I-3] had a weight average molecular weight of 7,300 and a viscosity at 20 ° C. of 161,000 mPa · s.
〔ウレタンアクリレート系組成物[I-4]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、キシリレンジイソシアネート(C-4)48g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)90g、溶剤として酢酸エチル60g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-4]を得た(樹脂分濃度70%)。
 得られたウレタンアクリレート系組成物[I-4]の重量平均分子量は12,000、20℃での粘度は高粘度のため測定を行わなかった。
[Production of urethane acrylate composition [I-4]]
A four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port is charged with 48 g of xylylene diisocyanate (C-4) and an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (acrylic of pentaerythritol). 90 g of acid adduct), 60 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.05 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C., and the residual isocyanate group was 0.1%. At this point, the reaction was terminated to obtain a urethane acrylate composition [I-4] (resin concentration 70%).
The obtained urethane acrylate composition [I-4] was not measured because its weight average molecular weight was 12,000 and its viscosity at 20 ° C. was high.
〔ウレタンアクリレート系組成物[I’-1]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えたフラスコに、イソホロンジイソシアネート(C-1)38.4g、水酸基価120mgKOH/gのアクリレート混合物(A’-1)(ペンタエリスリトールのアクリル酸付加物)161.6gを仕込み、重合禁止剤としてハイドロキノンメチルエーテル0.01g、反応触媒としてジブチル錫ジラウレート0.01gを仕込み、60℃で8時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタンアクリレート系組成物[I’-1]を得た(樹脂分濃度100%)。
 得られたウレタンアクリレート系組成物[I’-1]の重量平均分子量は1,400、60℃での粘度は3,000mPa・sであった。ただし、高粘度であったためE型粘度計を用いて測定を行った。
[Production of Urethane Acrylate Composition [I'-1]]
Into a flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, an acrylate mixture (A′-1) (pentaerythritol acrylic acid having 38.4 g of isophorone diisocyanate (C-1) and a hydroxyl value of 120 mg KOH / g Addition product) 161.6 g was charged, 0.01 g of hydroquinone methyl ether as a polymerization inhibitor and 0.01 g of dibutyltin dilaurate as a reaction catalyst were allowed to react at 60 ° C. for 8 hours. The residual isocyanate group was 0.3% or less. At this point, the reaction was terminated to obtain urethane acrylate composition [I′-1] (resin concentration 100%).
The resulting urethane acrylate composition [I′-1] had a weight average molecular weight of 1,400 and a viscosity at 60 ° C. of 3,000 mPa · s. However, since it was high viscosity, it measured using the E-type viscosity meter.
 なお、アクリレート混合物(A’-1)中における下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
 (a2)ペンタエリスリトールジアクリレート    5%
 (a3)ペンタエリスリトールトリアクリレート  50%
 (a4)ペンタエリスリトールテトラアクリレート 45%
 ただし(a1)ペンタエリスリトールモノアクリレートに関しては含有量が測定限界以下であったため、(a2)~(a4)成分の含有割合を示した。
The content ratio of each component with respect to the total of the following components (a1) to (a4) in the acrylate mixture (A′-1) is as follows.
(A2) Pentaerythritol diacrylate 5%
(A3) Pentaerythritol triacrylate 50%
(A4) Pentaerythritol tetraacrylate 45%
However, since the content of (a1) pentaerythritol monoacrylate was below the measurement limit, the content ratio of the components (a2) to (a4) is shown.
〔ウレタンアクリレート系組成物[I’-2]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(C-1)37g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)14g、アジピン酸とネオペンチルグリコールからなるポリエステルポリオール(DIC社製、「ODX-2044」、数平均分子量:約2,000)114g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が3.9%となった時点で水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)35gを加え、さらに60℃で反応させた。残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I’-2]を得た(樹脂分濃度100%)。
 なお、上記手順によると、得られるウレタンアクリレート系組成物[I’-2]には(A-1)及び(C-1)のみの反応物はないこととなる。
 得られたウレタンアクリレート系組成物[I’-2]の重量平均分子量は18,000、60℃での粘度は700,000mPa・sであった。ただし、高粘度であったためE型粘度計を用いて測定を行った。
[Production of Urethane Acrylate Composition [I'-2]]
A four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port was charged with 37 g of isophorone diisocyanate (C-1) and an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (acrylic acid of pentaerythritol). Adduct) 14 g, polyester polyol consisting of adipic acid and neopentyl glycol (DIC, “ODX-2044”, number average molecular weight: about 2,000) 114 g, 4-methoxyphenol 0.08 g as a polymerization inhibitor, reaction As a catalyst, 0.05 g of dibutyltin dilaurate was added and reacted at 60 ° C. When the residual isocyanate group reached 3.9%, an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (addition of acrylic acid of pentaerythritol) ) Add 35g, anti-react at 60 ℃ It was. When the residual isocyanate group reached 0.1%, the reaction was terminated to obtain a urethane acrylate composition [I′-2] (resin content concentration 100%).
According to the above procedure, the urethane acrylate composition [I′-2] to be obtained does not have a reaction product of only (A-1) and (C-1).
The obtained urethane acrylate composition [I′-2] had a weight average molecular weight of 18,000 and a viscosity at 60 ° C. of 700,000 mPa · s. However, since it was high viscosity, it measured using the E-type viscosity meter.
〔ウレタンアクリレート系組成物[I’-3]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(C-1)25.8g、水酸基価184.2mgKOH/gのアクリレート混合物(A’-2)(ペンタエリスリトールのアクリル酸付加物)74.2g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I’-3]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I’-3]の重量平均分子量は2,100、20℃での粘度は73mPa・sであった。
[Production of Urethane Acrylate Composition [I'-3]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, an acrylate mixture (A′-2) (25.8 g of isophorone diisocyanate (C-1) and 184.2 mg KOH / g of hydroxyl value) ( Acrylic acid adduct of pentaerythritol) 74.2 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, 0.05 g of dibutyltin dilaurate as a reaction catalyst, and reacted at 60 ° C. The reaction was terminated when the group reached 0.1%, and a urethane acrylate composition [I′-3] was obtained (resin concentration 50%).
The obtained urethane acrylate composition [I′-3] had a weight average molecular weight of 2,100 and a viscosity at 20 ° C. of 73 mPa · s.
 なお、アクリレート混合物(A’-2)中における下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
 (a1)ペンタエリスリトールモノアクリレート   1.6%
 (a2)ペンタエリスリトールジアクリレート   14.6%
 (a3)ペンタエリスリトールトリアクリレート  49.6%
 (a4)ペンタエリスリトールテトラアクリレート 34.2%
The content ratio of each component with respect to the total of the following components (a1) to (a4) in the acrylate mixture (A′-2) is as follows.
(A1) Pentaerythritol monoacrylate 1.6%
(A2) Pentaerythritol diacrylate 14.6%
(A3) Pentaerythritol triacrylate 49.6%
(A4) Pentaerythritol tetraacrylate 34.2%
〔ウレタンアクリレート系組成物[I’-4]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)23.3g、水酸基価184.2mgKOH/gのアクリレート混合物(A’-2)(ペンタエリスリトールのアクリル酸付加物)76.7g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I’-4]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I’-4]の重量平均分子量は2,200、20℃での粘度は85mPa・sであった。
[Production of Urethane Acrylate Composition [I'-4]]
Into a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, 23.3 g of hydrogenated xylylene diisocyanate (C-2) and an acrylate mixture having a hydroxyl value of 184.2 mgKOH / g (A ′ -2) (Acrylic acid adduct of pentaerythritol) 76.7 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.05 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C. The reaction was terminated when the residual isocyanate group reached 0.1%, and a urethane acrylate composition [I′-4] was obtained (resin concentration 50%).
The obtained urethane acrylate composition [I′-4] had a weight average molecular weight of 2,200 and a viscosity at 20 ° C. of 85 mPa · s.
<実施例1~4、比較例1~4>
〔活性エネルギー線硬化性樹脂組成物の製造〕
 上記で得られたウレタンアクリレート系組成物([I]、[I’])に、光重合開始剤(D)として、1-ヒドロキシシクロヘキシルフェニルケトン(IGM社製、「オムニラッド184」)を硬化成分100部に対して4部配合し、活性エネルギー線硬化性樹脂組成物を得た。
 なお、実施例3,4、比較例1,2においては、得られたウレタンアクリレート系組成物([I]、[I’])を樹脂分50%となるように酢酸エチルによって希釈した以外は、上記と同様にして活性エネルギー線硬化性樹脂組成物を得た。
<Examples 1 to 4 and Comparative Examples 1 to 4>
[Production of active energy ray-curable resin composition]
The urethane acrylate composition obtained above ([I], [I ′]) is cured with 1-hydroxycyclohexyl phenyl ketone (“Omnirad 184” manufactured by IGM) as a photopolymerization initiator (D). An active energy ray-curable resin composition was obtained by adding 4 parts to 100 parts.
In Examples 3 and 4 and Comparative Examples 1 and 2, the obtained urethane acrylate compositions ([I], [I ′]) were diluted with ethyl acetate so as to have a resin content of 50%. In the same manner as above, an active energy ray-curable resin composition was obtained.
 得られた活性エネルギー線硬化性樹脂組成物について、下記の通り硬化前の塗膜(乾燥塗膜)を形成し塗膜のべたつきを評価した。更に、下記の通り硬化塗膜を形成し、硬化塗膜の硬度、屈曲性を評価した。評価結果は後記の表1の通りである。 About the obtained active energy ray curable resin composition, the coating film before hardening (dry coating film) was formed as follows, and the stickiness of the coating film was evaluated. Furthermore, a cured coating film was formed as described below, and the hardness and flexibility of the cured coating film were evaluated. The evaluation results are as shown in Table 1 below.
〔乾燥塗膜のべたつき〕
 上記で得られた活性エネルギー線硬化性樹脂組成物を、易接着PETフィルム(東洋紡社製、「A4300」、サイズ15cm×15cm、厚み125μm)基板上にバーコーターを用いて、硬化後の塗膜が10μmの厚みとなるように塗工し、60℃で3分間乾燥した。得られた硬化前の塗膜を、タッキング試験機(レスカ社製、「TAC-II」)を用いて押し込み速度120mm/min、引き揚げ速度600mm/min、圧力20.4gf、加圧時間1.0秒間の条件でプローブタック試験を行った。
[Dry film stickiness]
The active energy ray-curable resin composition obtained above is coated with an adhesive PET film (Toyobo Co., Ltd., “A4300”, size 15 cm × 15 cm, thickness 125 μm) using a bar coater. Was coated to a thickness of 10 μm and dried at 60 ° C. for 3 minutes. The obtained uncured coating film was pushed in using a tacking tester (“TAC-II”, manufactured by Reska Co., Ltd.) at 120 mm / min, lifting speed 600 mm / min, pressure 20.4 gf, and pressurizing time 1.0. The probe tack test was conducted under the condition of seconds.
〔硬化塗膜の硬度〕
 上記で得られた活性エネルギー線硬化性樹脂組成物を、易接着PETフィルム(東洋紡社製、「A4300」、サイズ15cm×15cm、厚み125μm)基板上にバーコーターを用いて、硬化後の塗膜が10μmの厚みとなるように塗工し、60℃で3分間乾燥した後、高圧水銀灯80W、1灯を用いて、18cmの高さから5.1m/minのコンベア速度で2パスの紫外線照射(積算照射量500mJ/cm2)を行い、硬化塗膜を形成した。
 易接着PETフィルム上に塗工した上記硬化塗膜について、JIS K-5600に準じて試験を行い、鉛筆硬度を測定した。
[Hardness of cured coating film]
The active energy ray-curable resin composition obtained above is coated with an adhesive PET film (Toyobo Co., Ltd., “A4300”, size 15 cm × 15 cm, thickness 125 μm) using a bar coater. Is applied to a thickness of 10 μm, dried at 60 ° C. for 3 minutes, and then irradiated with two passes of UV light at a conveyor speed of 5.1 m / min from a height of 18 cm using a high pressure mercury lamp 80 W and one lamp. (Integrated irradiation amount 500 mJ / cm 2 ) was performed to form a cured coating film.
The above cured coating film coated on the easy-adhesion PET film was tested according to JIS K-5600, and the pencil hardness was measured.
〔硬化塗膜の屈曲性〕
 上記の硬度評価と同様にして硬化塗膜を形成し、易接着PETフィルム上に塗工した硬化塗膜について、JIS K 5600-5-1に準じて、円筒形マンドレル屈曲試験機を用いて屈曲性の評価を行った。評価用硬化塗膜を、塗膜面が外側になるように試験棒に巻き付けた際に、割れ又は剥がれが生じる最大の径(整数値、mm)を測定した。値が小さいほど屈曲性の高い塗膜であることを意味する。
[Flexibility of cured coating film]
A cured coating film was formed in the same manner as the above hardness evaluation, and the cured coating film coated on the easy-adhesion PET film was bent using a cylindrical mandrel bending tester according to JIS K 5600-5-1. Sexuality was evaluated. The maximum diameter (integer value, mm) at which cracking or peeling occurred was measured when the evaluation cured coating film was wound around a test bar such that the coating film surface was on the outside. It means that it is a coating film with high flexibility, so that a value is small.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記評価結果より、実施例1~4のウレタンアクリレート系組成物[I]を含有する活性エネルギー線硬化性樹脂組成物から得られる硬化塗膜は、硬度及び屈曲性に優れる上に、硬化前の未硬化状態の塗膜であってもべたつきもないものであることがわかる。
 一方、特定のウレタンアクリレート系組成物[I]以外のウレタンアクリレート系組成物を用いた各比較例において、比較例1は、硬化塗膜の屈曲性に劣るものであり、更に、硬化前の塗膜はべたつきを有するものであった。また、比較例2は、硬化塗膜の硬度に劣るものであり、更に、硬化前の塗膜はべたつきを有するものであった。比較例3及び4では、硬化塗膜の屈曲性に劣るものであった。
 これらから、上記実施例1~4の活性エネルギー線硬化性樹脂組成物がタックフリーであり、硬度及び屈曲性に良好で、コーティング剤等、とりわけハードコート用コーティング剤や光学フィルム用コーティング剤の用途において有用であることがわかる。
From the above evaluation results, the cured coating films obtained from the active energy ray-curable resin compositions containing the urethane acrylate compositions [I] of Examples 1 to 4 are excellent in hardness and flexibility, and before being cured. It can be seen that even an uncured coating film is not sticky.
On the other hand, in each comparative example using a urethane acrylate composition other than the specific urethane acrylate composition [I], Comparative Example 1 is inferior in the flexibility of the cured coating film. The film was sticky. Moreover, the comparative example 2 was inferior to the hardness of a cured coating film, and also the coating film before hardening had a stickiness. In Comparative Examples 3 and 4, the cured coating film was inferior in flexibility.
From these, the active energy ray-curable resin compositions of Examples 1 to 4 are tack-free, have good hardness and flexibility, and are used as coating agents, particularly hard coat coating agents and optical film coating agents. Is useful.
<<ウレタン(メタ)アクリレート系組成物[I]及び[II]を用いた実施例>>
 以下の通り、ウレタンアクリレート系組成物[I]([I-5]~[I-7])、[II]([II-1]~[II-2])、更に、比較のためのウレタンアクリレート系組成物[I’]([I’-5]~[I’-7])を用意した。
<< Examples using urethane (meth) acrylate-based compositions [I] and [II] >>
As described below, urethane acrylate composition [I] ([I-5] to [I-7]), [II] ([II-1] to [II-2]), and urethane for comparison An acrylate composition [I ′] ([I′-5] to [I′-7]) was prepared.
〔ウレタンアクリレート系組成物[I-5]〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(C-1)36g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)64g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-5]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I-5]の重量平均分子量は4,700、20℃での粘度は80mPa・sであった。なお、20℃での粘度の測定はB型粘度計を用いて行った。20℃での粘度測定は以下同様である。
[Urethane acrylate composition [I-5]]
Into a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser and nitrogen gas inlet, an acrylate mixture (A-1) (pentaerythritol acrylic acid with 36 g of isophorone diisocyanate (C-1) and a hydroxyl value of 288 mgKOH / g Adduct) 64 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.05 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C. and the residual isocyanate group was 0.1%. At that time, the reaction was terminated to obtain a urethane acrylate composition [I-5] (resin concentration 50%).
The obtained urethane acrylate composition [I-5] had a weight average molecular weight of 4,700 and a viscosity at 20 ° C. of 80 mPa · s. The viscosity at 20 ° C. was measured using a B-type viscometer. The viscosity measurement at 20 ° C. is the same in the following.
 なお、アクリレート混合物(A-1)中における下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
(a1)ペンタエリスリトールモノアクリレート   4%
(a2)ペンタエリスリトールジアクリレート   29%
(a3)ペンタエリスリトールトリアクリレート  49%
(a4)ペンタエリスリトールテトラアクリレート 18%
The content ratio of each component to the total of the following components (a1) to (a4) in the acrylate mixture (A-1) is as follows.
(A1) Pentaerythritol monoacrylate 4%
(A2) Pentaerythritol diacrylate 29%
(A3) Pentaerythritol triacrylate 49%
(A4) Pentaerythritol tetraacrylate 18%
〔ウレタンアクリレート系組成物[I-6]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)33g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)67g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-6]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I-6]の重量平均分子量は6,200、20℃での粘度は65mPa・sであった。
[Production of Urethane Acrylate Composition [I-6]]
In a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas blowing port, 33 g of hydrogenated xylylene diisocyanate (C-2) and acrylate mixture (A-1) (penta) having a hydroxyl value of 288 mgKOH / g Acrylic acid adduct of erythritol) 67 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, 0.05 g of dibutyltin dilaurate as a reaction catalyst, reacted at 60 ° C., and the remaining isocyanate group was 0 The reaction was terminated when the content reached 1%, and a urethane acrylate composition [I-6] was obtained (resin concentration 50%).
The obtained urethane acrylate composition [I-6] had a weight average molecular weight of 6,200 and a viscosity at 20 ° C. of 65 mPa · s.
〔ウレタンアクリレート系組成物[I-7]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、キシリレンジイソシアネート(C-4)32g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)68g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-7]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I-7]の重量平均分子量は5,900、20℃での粘度は50mPa・sであった。
[Production of Urethane Acrylate Composition [I-7]]
Into a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas inlet, an acrylate mixture (A-1) (pentaerythritol acrylic acid) having 32 g of xylylene diisocyanate (C-4) and a hydroxyl value of 288 mgKOH / g Acid adduct) 68 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, 0.05 g of dibutyltin dilaurate as a reaction catalyst, reacted at 60 ° C., and 0.1% of the remaining isocyanate groups At this point, the reaction was terminated to obtain a urethane acrylate composition [I-7] (resin concentration 50%).
The obtained urethane acrylate composition [I-7] had a weight average molecular weight of 5,900 and a viscosity at 20 ° C. of 50 mPa · s.
〔ウレタンアクリレート系組成物[II-1]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)27.9g、水酸基価96mgKOH/gのアクリレート混合物(B-1)(ジペンタエリスリトールのアクリル酸付加物)172.1g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.1gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[II-1]を得た(樹脂分濃度100%)。
 得られたウレタンアクリレート系組成物[II-1]の重量平均分子量は5,500、60℃での粘度は39,400mPa・sであった。なお、60℃での粘度の測定はE型粘度計を用いて行った。60℃での粘度測定は以下同様である。
[Production of Urethane Acrylate Composition [II-1]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser and a nitrogen gas inlet, 27.9 g of hydrogenated xylylene diisocyanate (C-2) and an acrylate mixture (B-1) having a hydroxyl value of 96 mgKOH / g (Acrylic acid adduct of dipentaerythritol) 172.1 g, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.1 g of dibutyltin dilaurate as a reaction catalyst were allowed to react at 60 ° C. When 1% was reached, the reaction was terminated to obtain urethane acrylate composition [II-1] (resin concentration 100%).
The obtained urethane acrylate composition [II-1] had a weight average molecular weight of 5,500 and a viscosity at 60 ° C. of 39,400 mPa · s. The viscosity at 60 ° C. was measured using an E-type viscometer. The viscosity measurement at 60 ° C. is the same in the following.
 なお、アクリレート混合物(B-1)中における下記成分(b1)~(b6)の合計に対する各成分の含有割合は以下の通りである。
(b4)ジペンタエリスリトールテトラアクリレート  18%
(b5)ジペンタエリスリトールペンタアクリレート  51%
(b6)ジペンタエリスリトールヘキサアクリレート  31%
 ただし(b1)ジペンタエリスリトールモノアクリレート、(b2)ジペンタエリスリトールジアクリレート、(b3)ジペンタエリスリトールトリアクリレートに関しては含有量が測定限界値以下であったため、(b4)~(b6)成分の含有割合を示した。
The content ratio of each component with respect to the total of the following components (b1) to (b6) in the acrylate mixture (B-1) is as follows.
(B4) Dipentaerythritol tetraacrylate 18%
(B5) Dipentaerythritol pentaacrylate 51%
(B6) Dipentaerythritol hexaacrylate 31%
However, since the content of (b1) dipentaerythritol monoacrylate, (b2) dipentaerythritol diacrylate, and (b3) dipentaerythritol triacrylate was below the measurement limit value, the inclusion of components (b4) to (b6) The percentage is shown.
〔ウレタンアクリレート系組成物[II-2]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(C-1)31.3g、水酸基価96mgKOH/gのアクリレート混合物(B-1)(ジペンタエリスリトールのアクリル酸付加物)168.7g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.1gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[II-2]を得た(樹脂分濃度100%)。
 得られたウレタンアクリレート系組成物[II-2]の重量平均分子量は67,000、60℃での粘度は65,000mPa・sであった。
[Production of Urethane Acrylate Composition [II-2]]
Into a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, an acrylate mixture (B-1) (dipentaerythritol with 31.3 g of isophorone diisocyanate (C-1) and a hydroxyl value of 96 mgKOH / g Acrylic acid adduct) of 168.7 g, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.1 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C., and the residual isocyanate group became 0.1%. When the reaction was completed, the urethane acrylate composition [II-2] was obtained (resin concentration 100%).
The resulting urethane acrylate composition [II-2] had a weight average molecular weight of 67,000 and a viscosity at 60 ° C. of 65,000 mPa · s.
〔ウレタンアクリレート系組成物[II-3]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(C-1)13.2g、水酸基価50mgKOH/gのアクリレート混合物(B-2)(ジペンタエリスリトールのアクリル酸付加物)186.8g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.1gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[II-3]を得た(樹脂分濃度100%)。
 得られたウレタンアクリレート系組成物[II-3]の重量平均分子量は2,000、60℃での粘度は1,700mPa・sであった。
[Production of Urethane Acrylate Composition [II-3]]
Into a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, 13.2 g of isophorone diisocyanate (C-1) and an acrylate mixture (B-2) (dipentaerythritol having a hydroxyl value of 50 mgKOH / g) Acrylic acid adduct) of 186.8 g, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.1 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C., and the residual isocyanate group became 0.1%. When the reaction was completed, the urethane acrylate composition [II-3] was obtained (resin concentration 100%).
The obtained urethane acrylate composition [II-3] had a weight average molecular weight of 2,000 and a viscosity at 60 ° C. of 1,700 mPa · s.
 なお、アクリレート混合物(B-2)中における下記成分(b1)~(b6)の合計に対する各成分の含有割合は以下の通りである。
(b4)ジペンタエリスリトールテトラアクリレート  6%
(b5)ジペンタエリスリトールペンタアクリレート  54%
(b6)ジペンタエリスリトールヘキサアクリレート  40%
 ただし(b1)ジペンタエリスリトールモノアクリレート、(b2)ジペンタエリスリトールジアクリレート、(b3)ジペンタエリスリトールトリアクリレートに関しては含有量が測定限界値以下であったため、(b4)~(b6)成分の含有割合を示した。
The content ratio of each component with respect to the total of the following components (b1) to (b6) in the acrylate mixture (B-2) is as follows.
(B4) Dipentaerythritol tetraacrylate 6%
(B5) Dipentaerythritol pentaacrylate 54%
(B6) Dipentaerythritol hexaacrylate 40%
However, since the content of (b1) dipentaerythritol monoacrylate, (b2) dipentaerythritol diacrylate, and (b3) dipentaerythritol triacrylate was below the measurement limit value, the inclusion of components (b4) to (b6) The percentage is shown.
〔ウレタンアクリレート系組成物[I’-5]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えたフラスコに、イソホロンジイソシアネート(C-1)38.4g、水酸基価118mgKOH/gのアクリレート混合物(A’-1)(ペンタエリスリトールのアクリル酸付加物)161.6gを仕込み、重合禁止剤としてハイドロキノンメチルエーテル0.01g、反応触媒としてジブチル錫ジラウレート0.01gを仕込み、60℃で8時間反応させ、残存イソシアネート基が0.3%以下となった時点で反応を終了し、ウレタンアクリレート系組成物[I’-5]を得た(樹脂分濃度100%)。
 得られたウレタンアクリレート系組成物[I’-5]の重量平均分子量は1,400、60℃での粘度は3,000mPa・sであった。
[Production of Urethane Acrylate Composition [I′-5]]
Into a flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, an acrylate mixture (A′-1) (pentaerythritol acrylic acid with 38.4 g of isophorone diisocyanate (C-1) and a hydroxyl value of 118 mgKOH / g Addition product) 161.6 g was charged, 0.01 g of hydroquinone methyl ether as a polymerization inhibitor and 0.01 g of dibutyltin dilaurate as a reaction catalyst were allowed to react at 60 ° C. for 8 hours. The residual isocyanate group was 0.3% or less. At this point, the reaction was terminated to obtain a urethane acrylate composition [I′-5] (resin content concentration 100%).
The obtained urethane acrylate composition [I′-5] had a weight average molecular weight of 1,400 and a viscosity at 60 ° C. of 3,000 mPa · s.
 なお、アクリレート混合物(A’-1)中における下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
(a2)ペンタエリスリトールジアクリレート   5%
(a3)ペンタエリスリトールトリアクリレート  50%
(a4)ペンタエリスリトールテトラアクリレート 45%
 ただし(a1)ペンタエリスリトールモノアクリレートに関しては含有量が測定限界値以下であったため、(a2)~(a4)成分の含有割合を示した。
The content ratio of each component with respect to the total of the following components (a1) to (a4) in the acrylate mixture (A′-1) is as follows.
(A2) Pentaerythritol diacrylate 5%
(A3) Pentaerythritol triacrylate 50%
(A4) Pentaerythritol tetraacrylate 45%
However, since the content of (a1) pentaerythritol monoacrylate was less than the measurement limit value, the content ratio of the components (a2) to (a4) was shown.
〔ウレタンアクリレート系組成物[I’-6]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)23.3g、水酸基価184.2mgKOH/gのアクリレート混合物(A’-2)(ペンタエリスリトールのアクリル酸付加物)76.7g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I’-6]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I’-6]の重量平均分子量は2,200、20℃での粘度は85mPa・sであった。
[Production of Urethane Acrylate Composition [I′-6]]
Into a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, 23.3 g of hydrogenated xylylene diisocyanate (C-2) and an acrylate mixture having a hydroxyl value of 184.2 mgKOH / g (A ′ -2) (Acrylic acid adduct of pentaerythritol) 76.7 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.05 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C. The reaction was terminated when the residual isocyanate group reached 0.1%, and a urethane acrylate composition [I′-6] was obtained (resin content concentration 50%).
The obtained urethane acrylate composition [I′-6] had a weight average molecular weight of 2,200 and a viscosity at 20 ° C. of 85 mPa · s.
 なお、アクリレート混合物(A’-2)中における下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
 (a1)ペンタエリスリトールモノアクリレート   1.6%
 (a2)ペンタエリスリトールジアクリレート   14.6%
 (a3)ペンタエリスリトールトリアクリレート  49.6%
 (a4)ペンタエリスリトールテトラアクリレート 34.2%
The content ratio of each component with respect to the total of the following components (a1) to (a4) in the acrylate mixture (A′-2) is as follows.
(A1) Pentaerythritol monoacrylate 1.6%
(A2) Pentaerythritol diacrylate 14.6%
(A3) Pentaerythritol triacrylate 49.6%
(A4) Pentaerythritol tetraacrylate 34.2%
〔ウレタンアクリレート系組成物[I’-7]の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(C-1)25.8g、水酸基価184.2mgKOH/gのアクリレート混合物(A’-2)(ペンタエリスリトールのアクリル酸付加物)74.2g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I’-7]を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物[I’-7]の重量平均分子量は2,100、20℃での粘度は73mPa・sであった。
[Production of Urethane Acrylate Composition [I'-7]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, an acrylate mixture (A′-2) (25.8 g of isophorone diisocyanate (C-1) and 184.2 mg KOH / g of hydroxyl value) ( Acrylic acid adduct of pentaerythritol) 74.2 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, 0.05 g of dibutyltin dilaurate as a reaction catalyst, and reacted at 60 ° C. When the group reached 0.1%, the reaction was terminated to obtain a urethane acrylate composition [I′-7] (resin concentration 50%).
The obtained urethane acrylate composition [I′-7] had a weight average molecular weight of 2,100 and a viscosity at 20 ° C. of 73 mPa · s.
<実施例5~12、比較例5~9>
〔活性エネルギー線硬化性樹脂組成物の製造〕
 上記で得られたウレタンアクリレート系組成物([I]、[II]、[I’])を下記の表2に示す通りの配合組成とし、更に、光重合開始剤(D)として、1-ヒドロキシシクロヘキシルフェニルケトン(IGM社製、「オムニラッド184」)を硬化成分100部に対して4部配合し、活性エネルギー線硬化性樹脂組成物を得た。
<Examples 5 to 12, Comparative Examples 5 to 9>
[Production of active energy ray-curable resin composition]
The urethane acrylate-based compositions ([I], [II], [I ′]) obtained above were blended as shown in Table 2 below, and the photopolymerization initiator (D) was 1- Hydroxycyclohexyl phenyl ketone (IGM, “Omnilad 184”) was blended in 4 parts with respect to 100 parts of the curing component to obtain an active energy ray-curable resin composition.
 得られた活性エネルギー線硬化性樹脂組成物について、下記の通り硬化塗膜を形成し、硬化塗膜の硬度、屈曲性を評価した。評価結果は下記の表2の通りである。 About the obtained active energy ray-curable resin composition, a cured coating film was formed as follows, and the hardness and flexibility of the cured coating film were evaluated. The evaluation results are as shown in Table 2 below.
〔硬化塗膜の硬度〕
 上記で得られた活性エネルギー線硬化性樹脂組成物を、易接着PETフィルム(東洋紡社製、「A4300」、サイズ15cm×15cm、厚み125μm)基板上にバーコーターを用いて、硬化後の塗膜が10μmの厚みとなるように塗工し、60℃で3分間乾燥した後、高圧水銀灯80W、1灯を用いて、18cmの高さから5.1m/minのコンベア速度で2パスの紫外線照射(積算照射量500mJ/cm2)を行い、硬化塗膜を形成した。
 易接着PETフィルム上に塗工した上記硬化塗膜について、JIS K-5600に準じて試験を行い、鉛筆硬度を測定した。
[Hardness of cured coating film]
The active energy ray-curable resin composition obtained above is coated with an adhesive PET film (Toyobo Co., Ltd., “A4300”, size 15 cm × 15 cm, thickness 125 μm) using a bar coater. Is applied to a thickness of 10 μm, dried at 60 ° C. for 3 minutes, and then irradiated with two passes of UV light at a conveyor speed of 5.1 m / min from a height of 18 cm using a high pressure mercury lamp 80 W and one lamp. (Integrated irradiation amount 500 mJ / cm 2 ) was performed to form a cured coating film.
The above cured coating film coated on the easy-adhesion PET film was tested according to JIS K-5600, and the pencil hardness was measured.
〔硬化塗膜の屈曲性〕
 上記の硬度評価と同様にして硬化塗膜を形成し、易接着PETフィルム上に塗工した硬化塗膜について、JIS K 5600-5-1に準じて、円筒形マンドレル屈曲試験機を用いて屈曲性の評価を行った。評価用硬化塗膜を、塗膜面が外側になるように試験棒に巻き付けた際に、割れ又は剥がれが生じる最大の径(整数値、mm)を測定した。値が小さいほど屈曲性の高い塗膜であることを意味する。
[Flexibility of cured coating film]
A cured coating film was formed in the same manner as the above hardness evaluation, and the cured coating film coated on the easy-adhesion PET film was bent using a cylindrical mandrel bending tester according to JIS K 5600-5-1. Sexuality was evaluated. The maximum diameter (integer value, mm) at which cracking or peeling occurred was measured when the evaluation cured coating film was wound around a test bar such that the coating film surface was on the outside. It means that it is a coating film with high flexibility, so that a value is small.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記評価結果より、実施例5~12のウレタンアクリレート系組成物[I]及び[II]を含有する活性エネルギー線硬化性樹脂組成物から得られる硬化塗膜は、硬度及び屈曲性の両方に優れることがわかる。
 一方、ウレタンアクリレート系組成物[I]を含有せず、ウレタンアクリレート系組成物[II]のみを用いた比較例5では、硬化塗膜の屈曲性に劣るものであった。更に、水酸基価の低いアクリレート混合物を用いて調製したウレタンアクリレート系組成物を含有する比較例6及び7においても、硬化塗膜の屈曲性に劣るものであった。
 また、水酸基価のやや高いアクリレート混合物を用いて調製したウレタンアクリレート系組成物を含有する比較例8及び9においても、硬化塗膜の屈曲性に劣るものであった。
 これらから、上記実施例5~12の活性エネルギー線硬化性樹脂組成物が硬度及び屈曲性に良好で、コーティング剤等、とりわけハードコート用コーティング剤や光学フィルム用コーティング剤の用途において有用であることがわかる。
From the above evaluation results, the cured coating films obtained from the active energy ray-curable resin compositions containing the urethane acrylate compositions [I] and [II] of Examples 5 to 12 are excellent in both hardness and flexibility. I understand that.
On the other hand, in Comparative Example 5 which did not contain the urethane acrylate composition [I] and used only the urethane acrylate composition [II], the flexibility of the cured coating film was inferior. Furthermore, in Comparative Examples 6 and 7 containing a urethane acrylate composition prepared using an acrylate mixture having a low hydroxyl value, the flexibility of the cured coating film was inferior.
Moreover, also in Comparative Examples 8 and 9 containing a urethane acrylate composition prepared using an acrylate mixture having a slightly higher hydroxyl value, the flexibility of the cured coating film was poor.
From these, the active energy ray-curable resin compositions of Examples 5 to 12 described above have good hardness and flexibility, and are useful in applications such as coating agents, particularly hard coat coating agents and optical film coating agents. I understand.
<<ウレタン(メタ)アクリレート系組成物[III]を用いた実施例>>
 ウレタン(メタ)アクリレート系組成物の製造に先立って、以下の通り、混合物(A)、混合物(A’)(比較例用)、混合物(B)、多価イソシアネート(C)、光重合開始剤(D)を用意した。
<< Example using urethane (meth) acrylate composition [III] >>
Prior to the production of the urethane (meth) acrylate-based composition, the mixture (A), the mixture (A ′) (for comparative example), the mixture (B), the polyvalent isocyanate (C), and the photopolymerization initiator are as follows. (D) was prepared.
〔混合物(A)〕
・A-1:水酸基価288mgKOH/gのペンタエリスリトールのアクリル酸付加物で、下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
 (a1)ペンタエリスリトールモノアクリレート    4%
 (a2)ペンタエリスリトールジアクリレート    29%
 (a3)ペンタエリスリトールトリアクリレート   49%
 (a4)ペンタエリスリトールテトラアクリレート  18%
[Mixture (A)]
A-1: Acrylic acid adduct of pentaerythritol having a hydroxyl value of 288 mgKOH / g, and the content ratio of each component to the total of the following components (a1) to (a4) is as follows.
(A1) Pentaerythritol monoacrylate 4%
(A2) Pentaerythritol diacrylate 29%
(A3) Pentaerythritol triacrylate 49%
(A4) Pentaerythritol tetraacrylate 18%
〔混合物(A’)(比較例用)〕
・A’-1:水酸基価118mgKOH/gのペンタエリスリトールのアクリル酸付加物で、下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
 (a2)ペンタエリスリトールジアクリレート     5%
 (a3)ペンタエリスリトールトリアクリレート   50%
 (a4)ペンタエリスリトールテトラアクリレート  45%
 ただし(a1)ペンタエリスリトールモノアクリレートに関しては含有量が測定限界値以下であったため、(a2)~(a4)成分の含有割合を示した。
[Mixture (A ′) (for comparative example)]
A′-1: Acrylic acid adduct of pentaerythritol having a hydroxyl value of 118 mgKOH / g, and the content ratio of each component to the total of the following components (a1) to (a4) is as follows.
(A2) Pentaerythritol diacrylate 5%
(A3) Pentaerythritol triacrylate 50%
(A4) Pentaerythritol tetraacrylate 45%
However, since the content of (a1) pentaerythritol monoacrylate was less than the measurement limit value, the content ratio of the components (a2) to (a4) was shown.
・A’-2:水酸基価184.2mgKOH/gのペンタエリスリトールのアクリル酸付加物で、下記成分(a1)~(a4)の合計に対する各成分の含有割合は以下の通りである。
 (a1)ペンタエリスリトールモノアクリレート   1.6%
 (a2)ペンタエリスリトールジアクリレート   14.6%
 (a3)ペンタエリスリトールトリアクリレート  49.6%
 (a4)ペンタエリスリトールテトラアクリレート 34.2%
A′-2: Acrylic acid adduct of pentaerythritol having a hydroxyl value of 184.2 mgKOH / g, and the content ratio of each component to the total of the following components (a1) to (a4) is as follows.
(A1) Pentaerythritol monoacrylate 1.6%
(A2) Pentaerythritol diacrylate 14.6%
(A3) Pentaerythritol triacrylate 49.6%
(A4) Pentaerythritol tetraacrylate 34.2%
〔混合物(B)〕
・B-1:水酸基価96mgKOH/gのジペンタエリスリトールのアクリル酸付加物で、下記成分(b1)~(b6)の合計に対する各成分の含有割合は以下の通りである。
 (b4)ジペンタエリスリトールテトラアクリレート  18%
 (b5)ジペンタエリスリトールペンタアクリレート  51%
 (b6)ジペンタエリスリトールヘキサアクリレート  31%
 ただし(b1)ジペンタエリスリトールモノアクリレート、(b2)ジペンタエリスリトールジアクリレート、(b3)ジペンタエリスリトールトリアクリレートに関しては含有量が測定限界値以下であったため、(b4)~(b6)成分の含有割合を示した。
[Mixture (B)]
B-1: An acrylic acid adduct of dipentaerythritol having a hydroxyl value of 96 mgKOH / g, and the content ratio of each component to the total of the following components (b1) to (b6) is as follows.
(B4) Dipentaerythritol tetraacrylate 18%
(B5) Dipentaerythritol pentaacrylate 51%
(B6) Dipentaerythritol hexaacrylate 31%
However, since the content of (b1) dipentaerythritol monoacrylate, (b2) dipentaerythritol diacrylate, and (b3) dipentaerythritol triacrylate was below the measurement limit value, the inclusion of components (b4) to (b6) The percentage is shown.
・B-2:水酸基価54mgKOH/gのジペンタエリスリトールのアクリル酸付加物で、下記成分(b1)~(b6)の合計に対する各成分の含有割合は以下の通りである。
 (b4)ジペンタエリスリトールテトラアクリレート   6%
 (b5)ジペンタエリスリトールペンタアクリレート  54%
 (b6)ジペンタエリスリトールヘキサアクリレート  40%
 ただし(b1)ジペンタエリスリトールモノアクリレート、(b2)ジペンタエリスリトールジアクリレート、(b3)ジペンタエリスリトールトリアクリレートに関しては含有量が測定限界値以下であったため、(b4)~(b6)成分の含有割合を示した。
B-2: An acrylic acid adduct of dipentaerythritol having a hydroxyl value of 54 mgKOH / g, and the content ratio of each component to the total of the following components (b1) to (b6) is as follows.
(B4) Dipentaerythritol tetraacrylate 6%
(B5) Dipentaerythritol pentaacrylate 54%
(B6) Dipentaerythritol hexaacrylate 40%
However, since the content of (b1) dipentaerythritol monoacrylate, (b2) dipentaerythritol diacrylate, and (b3) dipentaerythritol triacrylate was below the measurement limit value, the inclusion of components (b4) to (b6) The percentage is shown.
〔多価イソシアネート(C)〕
・C-1:イソホロンジイソシアネート
・C-2:水添化キシリレンジイソシアネート
・C-4:キシリレンジイソシアネート
[Polyisocyanate (C)]
C-1: Isophorone diisocyanate C-2: Hydrogenated xylylene diisocyanate C-4: Xylylene diisocyanate
〔光重合開始剤(D)〕
・D-1:1-ヒドロキシシクロヘキシルフェニルケトン(IGM社製、「オムニラッド184」)
[Photopolymerization initiator (D)]
D-1: 1-hydroxycyclohexyl phenyl ketone (manufactured by IGM, “Omnilad 184”)
〔合成例1:ウレタンアクリレート系組成物(III-1)〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)24g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)33g、水酸基価96mgKOH/gのアクリレート混合物(B-1)(ジペンタエリスリトールのアクリル酸付加物)43g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物(III-1)を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物(III-1)の重量平均分子量は4,900、20℃での粘度は40mPa・sであった。なお、20℃での粘度の測定はB型粘度計を用いて行った。20℃での粘度測定は以下同様である。
[Synthesis Example 1: Urethane acrylate composition (III-1)]
In a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas blowing port, 24 g of hydrogenated xylylene diisocyanate (C-2) and an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (penta 33 g of acrylic acid adduct of erythritol), 43 g of acrylate mixture (B-1) (acrylic acid adduct of dipentaerythritol) having a hydroxyl value of 96 mgKOH / g, 100 g of ethyl acetate as a solvent, and 0.4 methoxyphenol as a polymerization inhibitor. 08 g and 0.05 g of dibutyltin dilaurate as a reaction catalyst were added and reacted at 60 ° C. When the residual isocyanate group became 0.1%, the reaction was terminated to obtain a urethane acrylate composition (III-1). (Resin concentration 50%).
The resulting urethane acrylate composition (III-1) had a weight average molecular weight of 4,900 and a viscosity at 20 ° C. of 40 mPa · s. The viscosity at 20 ° C. was measured using a B-type viscometer. The viscosity measurement at 20 ° C. is the same in the following.
〔合成例2:ウレタンアクリレート系組成物(III-2)〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、キシリレンジイソシアネート(C-4)23g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)33g、水酸基価96mgKOH/gのアクリレート混合物(B-1)(ジペンタエリスリトールのアクリル酸付加物)44g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物(III-2)を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物(III-2)の重量平均分子量は4,600、20℃での粘度は30mPa・sであった。
[Synthesis Example 2: Urethane acrylate composition (III-2)]
A four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port was charged with 23 g of xylylene diisocyanate (C-4) and an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (acrylic of pentaerythritol). 33 g of acid adduct), 44 g of acrylate mixture (B-1) (acrylic acid adduct of dipentaerythritol) having a hydroxyl value of 96 mgKOH / g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, reaction 0.05 g of dibutyltin dilaurate was charged as a catalyst and reacted at 60 ° C., and the reaction was terminated when the residual isocyanate group reached 0.1%, to obtain a urethane acrylate composition (III-2) (resin Min concentration 50%).
The resulting urethane acrylate composition (III-2) had a weight average molecular weight of 4,600 and a viscosity at 20 ° C. of 30 mPa · s.
〔合成例3:ウレタンアクリレート系組成物(III-3)〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)24g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)35g、水酸基価54mgKOH/gのアクリレート混合物(B-2)(ジペンタエリスリトールのアクリル酸付加物)81g、溶剤として酢酸エチル60g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物(III-3)を得た(樹脂分濃度70%)。
 得られたウレタンアクリレート系組成物(III-3)の重量平均分子量は3,300、20℃での粘度は460mPa・sであった。
[Synthesis Example 3: Urethane acrylate composition (III-3)]
In a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas blowing port, 24 g of hydrogenated xylylene diisocyanate (C-2) and an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (penta Acrylic acid adduct of erythritol) 35 g, 81 g of acrylate mixture (B-2) (acrylic acid adduct of dipentaerythritol) having a hydroxyl value of 54 mg KOH / g, 60 g of ethyl acetate as a solvent, 4-methoxyphenol as a polymerization inhibitor 08 g and 0.05 g of dibutyltin dilaurate as a reaction catalyst were added and reacted at 60 ° C. When the residual isocyanate group reached 0.1%, the reaction was terminated to obtain a urethane acrylate composition (III-3). (Resin concentration 70%).
The resulting urethane acrylate composition (III-3) had a weight average molecular weight of 3,300 and a viscosity at 20 ° C. of 460 mPa · s.
〔合成例4:ウレタンアクリレート系組成物(III-4)〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(C-1)39g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)49g、水酸基価54mgKOH/gのアクリレート混合物(B-2)(ジペンタエリスリトールのアクリル酸付加物)112g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物(III-3)を得た(樹脂分濃度100%)。
 得られたウレタンアクリレート系組成物(III-4)の重量平均分子量は3,800であった。非常に高粘度であったため粘度は測定できなかった。
[Synthesis Example 4: Urethane acrylate composition (III-4)]
A four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port was charged with 39 g of isophorone diisocyanate (C-1) and an acrylate mixture (A-1) having a hydroxyl value of 288 mgKOH / g (acrylic acid of pentaerythritol). Adduct) 49 g, hydroxyl group value 54 mg KOH / g acrylate mixture (B-2) (dipentaerythritol acrylic acid adduct) 112 g, polymerization inhibitor 0.08 g 4-methoxyphenol, dibutyltin dilaurate 0. 05 g was charged and reacted at 60 ° C. When the residual isocyanate group reached 0.1%, the reaction was terminated to obtain a urethane acrylate composition (III-3) (resin concentration 100%).
The weight average molecular weight of the obtained urethane acrylate composition (III-4) was 3,800. Since the viscosity was very high, the viscosity could not be measured.
〔合成例5:ウレタンアクリレート系組成物(III’-1)〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)22g、水酸基価118mgKOH/gのアクリレート混合物(A’-1)(ペンタエリスリトールのアクリル酸付加物)78g、水酸基価96mgKOH/gのアクリレート混合物(B-1)(ジペンタエリスリトールのアクリル酸付加物)40g、溶剤として酢酸エチル60g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物(III’-1)を得た(樹脂分濃度70%)。
 得られたウレタンアクリレート系組成物(III’-1)の重量平均分子量は1,700、20℃での粘度は140mPa・sであった。
[Synthesis Example 5: Urethane acrylate composition (III′-1)]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, 22 g of hydrogenated xylylene diisocyanate (C-2) and an acrylate mixture (A′-1) having a hydroxyl value of 118 mgKOH / g ( 78 g of acrylic acid adduct of pentaerythritol), 40 g of acrylate mixture (B-1) (acrylic acid adduct of dipentaerythritol) having a hydroxyl value of 96 mgKOH / g, 60 g of ethyl acetate as a solvent, 4-methoxyphenol as a polymerization inhibitor 0.08 g and 0.05 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C., and the reaction was terminated when the residual isocyanate group became 0.1%. The urethane acrylate composition (III′-1) (Resin concentration 70%) was obtained.
The resulting urethane acrylate composition (III′-1) had a weight average molecular weight of 1,700 and a viscosity at 20 ° C. of 140 mPa · s.
〔合成例6:ウレタンアクリレート系組成物(III’-2)〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)21.3g、水酸基価184.2mgKOH/gのアクリレート混合物(A’-2)(ペンタエリスリトールのアクリル酸付加物)61.0g、水酸基価96mgKOH/gのアクリレート混合物(B-1)(ジペンタエリスリトールのアクリル酸付加物)17.6g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物(III’-2)を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物(III’-2)の重量平均分子量は2,300、20℃での粘度は65mPa・sであった。
[Synthesis Example 6: Urethane acrylate composition (III′-2)]
Into a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet, 21.3 g of hydrogenated xylylene diisocyanate (C-2) and an acrylate mixture having a hydroxyl value of 184.2 mgKOH / g (A ′ -2) 61.0 g (acrylic acid adduct of pentaerythritol), 17.6 g of acrylate mixture (B-1) (acrylic acid adduct of dipentaerythritol) having a hydroxyl value of 96 mgKOH / g, 100 g of ethyl acetate as a solvent, polymerization Charged 0.08 g of 4-methoxyphenol as an inhibitor and 0.05 g of dibutyltin dilaurate as a reaction catalyst, reacted at 60 ° C., and the reaction was terminated when the residual isocyanate group reached 0.1%. A composition (III′-2) was obtained (resin concentration: 50%).
The resulting urethane acrylate composition (III′-2) had a weight average molecular weight of 2,300 and a viscosity at 20 ° C. of 65 mPa · s.
〔合成例7:ウレタンアクリレート系組成物(III’-3)〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、キシリレンジイソシアネート(C-4)32g、水酸基価288mgKOH/gのアクリレート混合物(A-1)(ペンタエリスリトールのアクリル酸付加物)68g、溶剤として酢酸エチル100g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.05gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物(III’-3)を得た(樹脂分濃度50%)。
 得られたウレタンアクリレート系組成物(III’-3)の重量平均分子量は5,900、20℃での粘度は50mPa・sであった。
[Synthesis Example 7: Urethane acrylate composition (III′-3)]
Into a four-necked flask equipped with a thermometer, stirrer, water-cooled condenser, and nitrogen gas inlet, an acrylate mixture (A-1) (pentaerythritol acrylic acid) having 32 g of xylylene diisocyanate (C-4) and a hydroxyl value of 288 mgKOH / g Acid adduct) 68 g, 100 g of ethyl acetate as a solvent, 0.08 g of 4-methoxyphenol as a polymerization inhibitor, 0.05 g of dibutyltin dilaurate as a reaction catalyst, reacted at 60 ° C., and 0.1% of the remaining isocyanate groups At this point, the reaction was terminated to obtain a urethane acrylate composition (III′-3) (resin concentration 50%).
The obtained urethane acrylate composition (III′-3) had a weight average molecular weight of 5,900 and a viscosity at 20 ° C. of 50 mPa · s.
〔合成例8:ウレタンアクリレート系組成物(III’-4)の製造〕
 温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化キシリレンジイソシアネート(C-2)28g、水酸基価96mgKOH/gのアクリレート混合物(B-1)(ジペンタエリスリトールのアクリル酸付加物)172g、重合禁止剤として4-メトキシフェノール0.08g、反応触媒としてジブチル錫ジラウレート0.1gを仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物(III’-4)を得た(樹脂分濃度100%)。
 得られたウレタンアクリレート系組成物(III’-4)の重量平均分子量は5,500、60℃での粘度は39,400mPa・sであった。なお、60℃での粘度の測定はE型粘度計を用いて行った。
[Synthesis Example 8: Production of urethane acrylate composition (III′-4)]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, 28 g of hydrogenated xylylene diisocyanate (C-2) and an acrylate mixture (B-1) having a hydroxyl value of 96 mgKOH / g (di) 172 g of acrylic acid adduct of pentaerythritol), 0.08 g of 4-methoxyphenol as a polymerization inhibitor, and 0.1 g of dibutyltin dilaurate as a reaction catalyst were reacted at 60 ° C., and the residual isocyanate group became 0.1%. When the reaction was completed, the urethane acrylate composition (III′-4) was obtained (resin content concentration 100%).
The resulting urethane acrylate composition (III′-4) had a weight average molecular weight of 5,500 and a viscosity at 60 ° C. of 39,400 mPa · s. The viscosity at 60 ° C. was measured using an E-type viscometer.
<実施例13~16、比較例10~13>
〔活性エネルギー線硬化性樹脂組成物〕
 上記で得られたウレタンアクリレート系組成物(III-1~4、III’-1~4)に、光重合開始剤(D)として、1-ヒドロキシシクロヘキシルフェニルケトン(IGM社製、「オムニラッド184」)を硬化成分100部に対して4部配合し、活性エネルギー線硬化性樹脂組成物を得た。
<Examples 13 to 16, Comparative Examples 10 to 13>
[Active energy ray-curable resin composition]
The urethane acrylate compositions (III-1 to 4, III′-1 to 4) obtained above were used as a photopolymerization initiator (D) with 1-hydroxycyclohexyl phenyl ketone (“OMNIRAD 184” manufactured by IGM). ) Was blended in an amount of 4 parts with respect to 100 parts of the curing component to obtain an active energy ray-curable resin composition.
 得られた活性エネルギー線硬化性樹脂組成物について、下記の通り硬化塗膜を形成し、硬化塗膜の硬度、屈曲性、耐擦傷性を評価した。評価結果は下記の表3の通りである。 About the obtained active energy ray-curable resin composition, a cured coating film was formed as described below, and the hardness, flexibility and scratch resistance of the cured coating film were evaluated. The evaluation results are as shown in Table 3 below.
〔硬化塗膜の硬度〕
 上記で得られた活性エネルギー線硬化性樹脂組成物を、易接着PETフィルム(東洋紡社製、「A4300」、サイズ15cm×15cm、厚み125μm)基板上にバーコーターを用いて、硬化後の塗膜が10μmの厚みとなるように塗工し、60℃で3分間乾燥した後、高圧水銀灯80W、1灯を用いて、18cmの高さから5.1m/minのコンベア速度で2パスの紫外線照射(積算照射量500mJ/cm2)を行い、硬化塗膜を形成した。
 易接着PETフィルム上に塗工した上記硬化塗膜について、JIS K-5600に準じて試験を行い、鉛筆硬度を測定した。
[Hardness of cured coating film]
The active energy ray-curable resin composition obtained above is coated with an adhesive PET film (Toyobo Co., Ltd., “A4300”, size 15 cm × 15 cm, thickness 125 μm) using a bar coater. Is applied to a thickness of 10 μm, dried at 60 ° C. for 3 minutes, and then irradiated with two passes of UV light at a conveyor speed of 5.1 m / min from a height of 18 cm using a high pressure mercury lamp 80 W and one lamp. (Integrated irradiation amount 500 mJ / cm 2 ) was performed to form a cured coating film.
The above cured coating film coated on the easy-adhesion PET film was tested according to JIS K-5600, and the pencil hardness was measured.
〔硬化塗膜の屈曲性〕
 上記の硬度評価と同様にして硬化塗膜を形成し、易接着PETフィルム上に塗工した硬化塗膜について、JIS K 5600-5-1に準じて、円筒形マンドレル屈曲試験機を用いて屈曲性の評価を行った。評価用硬化塗膜を、塗膜面が外側になるように試験棒に巻き付けた際に、割れ又は剥がれが生じる最大の径(整数値、mm)を測定した。値が小さいほど屈曲性の高い塗膜であることを意味する。
[Flexibility of cured coating film]
A cured coating film was formed in the same manner as the above hardness evaluation, and the cured coating film coated on the easy-adhesion PET film was bent using a cylindrical mandrel bending tester according to JIS K 5600-5-1. Sexuality was evaluated. The maximum diameter (integer value, mm) at which cracking or peeling occurred was measured when the evaluation cured coating film was wound around a test bar such that the coating film surface was on the outside. It means that it is a coating film with high flexibility so that a value is small.
〔硬化塗膜の耐擦傷性〕
 上記の硬度評価と同様にして硬化塗膜を形成し、易接着PETフィルム上に塗工した硬化塗膜について、スチールウール(日本スチールウール社製、ボンスター#0000)を用い、500gの荷重をかけながら硬化塗膜の表面を10往復させた後、表面の傷付き度合いを目視により観察した。
(評価)
  ○・・・傷が確認できないもの
  ×・・・傷が確認できるもの
[Abrasion resistance of cured coating film]
A cured coating film was formed in the same manner as in the above hardness evaluation, and a 500 g load was applied to the cured coating film coated on the easy-adhesive PET film using steel wool (Nihon Steel Wool Co., Ltd., Bonster # 0000). Then, after the surface of the cured coating was reciprocated 10 times, the degree of scratching on the surface was visually observed.
(Evaluation)
○ ・ ・ ・ Scratches can not be confirmed × ・ ・ ・ Scratches can be confirmed
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記評価結果より、実施例13~16のウレタンアクリレート系組成物[III]を含有する活性エネルギー線硬化性樹脂組成物から得られる硬化塗膜は、硬度及び屈曲性のみならず、耐擦傷性にも優れることがわかる。
 一方、水酸基価が200mgKOH/g未満の低水酸基価のペンタエリスリトールのアクリル酸付加物(A’-1)を用いた比較例10の場合、混合物(A)及び(B)のうち、ジペンタエリスリトールのアクリル酸付加物(B-1)のみを用いた比較例13の場合は、硬化塗膜の屈曲性に劣るものであった。また、水酸基価がわずかに低いペンタエリスリトールのアクリル酸付加物(A’-2)を用いた比較例11の場合では、硬度が少し劣り、耐擦傷性に劣るものであった。更に、混合物(A)及び(B)のうち、高水酸基価のペンタエリスリトールのアクリル酸付加物(A-1)のみを用いた比較例12の場合、硬化塗膜の耐擦傷性に劣るものであった。
 これらから、実施例13~16の活性エネルギー線硬化性樹脂組成物が硬度、屈曲性に加え、耐擦傷性にも良好で、コーティング剤等、とりわけハードコート用コーティング剤や光学フィルム用コーティング剤の用途において有用であることがわかる。
From the above evaluation results, the cured coating film obtained from the active energy ray-curable resin composition containing the urethane acrylate composition [III] of Examples 13 to 16 has not only hardness and flexibility but also scratch resistance. Can also be seen as excellent.
On the other hand, in the case of Comparative Example 10 using a low hydroxyl value pentaerythritol acrylic acid adduct (A′-1) having a hydroxyl value of less than 200 mgKOH / g, among the mixtures (A) and (B), dipentaerythritol In Comparative Example 13 using only the acrylic acid adduct (B-1), the flexibility of the cured coating film was inferior. Further, in Comparative Example 11 using the pentaerythritol acrylic acid adduct (A′-2) having a slightly lower hydroxyl value, the hardness was slightly inferior and the scratch resistance was inferior. Furthermore, in the case of Comparative Example 12 using only the acrylic acid adduct (A-1) of pentaerythritol having a high hydroxyl value among the mixtures (A) and (B), the cured coating film was inferior in scratch resistance. there were.
From these, the active energy ray-curable resin compositions of Examples 13 to 16 are excellent in hardness and flexibility, as well as scratch resistance, and coating agents such as hard coat coating agents and optical film coating agents. It turns out to be useful in the application.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の活性エネルギー線硬化性樹脂組成物は、硬化塗膜を形成した際に、硬化収縮が小さいことからカールしにくく、硬度及び屈曲性に優れた塗膜を形成することができるものであり、コーティング剤、とりわけハードコート用コーティング剤や光学フィルム用コーティング剤として有用である。また、塗料、インク等としても有用である。更には、フィルム上に活性エネルギー線硬化性樹脂組成物層が形成された未硬化状態の積層フィルムの樹脂組成物側を、成形物に貼り付けた後、活性エネルギー線硬化を行うことにより、種々の成形物に容易に硬化膜を形成することができる。 The active energy ray-curable resin composition of the present invention is capable of forming a coating film that is hard to curl and has excellent hardness and flexibility due to small curing shrinkage when a cured coating film is formed. It is useful as a coating agent, especially as a coating agent for hard coats and a coating agent for optical films. It is also useful as a paint or ink. Furthermore, after affixing the resin composition side of the uncured laminated film in which the active energy ray-curable resin composition layer is formed on the film to the molded product, various active energy ray curings are performed. A cured film can be easily formed on the molded product.

Claims (15)

  1.  ペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(a1)~(a4)の混合物(A)中の(メタ)アクリレート(a1)~(a3)と、多価イソシアネート(CA)とが反応したウレタン(メタ)アクリレート系組成物[I]を含有してなり、上記混合物(A)の水酸基価が200mgKOH/g以上であることを特徴とする活性エネルギー線硬化性樹脂組成物。
     (a1)ペンタエリスリトールモノ(メタ)アクリレート
     (a2)ペンタエリスリトールジ(メタ)アクリレート
     (a3)ペンタエリスリトールトリ(メタ)アクリレート
     (a4)ペンタエリスリトールテトラ(メタ)アクリレート
    (Meth) acrylates (a1) to (a3) in a mixture (A) of the following (meth) acrylates (a1) to (a4), which is a reaction product of pentaerythritol and (meth) acrylic acid, and a polyvalent isocyanate ( The active energy ray-curable resin composition comprising a urethane (meth) acrylate composition [I] reacted with CA), wherein the mixture (A) has a hydroxyl value of 200 mgKOH / g or more. object.
    (A1) Pentaerythritol mono (meth) acrylate (a2) Pentaerythritol di (meth) acrylate (a3) Pentaerythritol tri (meth) acrylate (a4) Pentaerythritol tetra (meth) acrylate
  2.  ペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(a1)~(a4)の混合物(A)中の(メタ)アクリレート(a1)~(a3)と、多価イソシアネート(CA)とが反応したウレタン(メタ)アクリレート系組成物[I]、及び、ジペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(b1)~(b6)の混合物(B)中の(メタ)アクリレート(b1)~(b5)と、多価イソシアネート(CB)とが反応したウレタン(メタ)アクリレート系組成物[II]を含有してなり、上記混合物(A)の水酸基価が200mgKOH/g以上であるとともに、上記混合物(B)の水酸基価が40mgKOH/g以上であることを特徴とする活性エネルギー線硬化性樹脂組成物。
     混合物(A)
      (a1)ペンタエリスリトールモノ(メタ)アクリレート
      (a2)ペンタエリスリトールジ(メタ)アクリレート
      (a3)ペンタエリスリトールトリ(メタ)アクリレート
      (a4)ペンタエリスリトールテトラ(メタ)アクリレート
     混合物(B)
      (b1)ジペンタエリスリトールモノ(メタ)アクリレート
      (b2)ジペンタエリスリトールジ(メタ)アクリレート
      (b3)ジペンタエリスリトールトリ(メタ)アクリレート
      (b4)ジペンタエリスリトールテトラ(メタ)アクリレート
      (b5)ジペンタエリスリトールペンタ(メタ)アクリレート
      (b6)ジペンタエリスリトールヘキサ(メタ)アクリレート
    (Meth) acrylates (a1) to (a3) in a mixture (A) of the following (meth) acrylates (a1) to (a4), which is a reaction product of pentaerythritol and (meth) acrylic acid, and a polyvalent isocyanate ( And a mixture of the following (meth) acrylates (b1) to (b6) (reaction product of dipentaerythritol and (meth) acrylic acid) B) containing a urethane (meth) acrylate composition [II] obtained by reacting (meth) acrylates (b1) to (b5) in B) with a polyvalent isocyanate (CB). Active energy ray curability characterized by having a hydroxyl value of 200 mgKOH / g or more and a hydroxyl value of the mixture (B) of 40 mgKOH / g or more. Fat composition.
    Mixture (A)
    (A1) Pentaerythritol mono (meth) acrylate (a2) Pentaerythritol di (meth) acrylate (a3) Pentaerythritol tri (meth) acrylate (a4) Pentaerythritol tetra (meth) acrylate Mixture (B)
    (B1) Dipentaerythritol mono (meth) acrylate (b2) Dipentaerythritol di (meth) acrylate (b3) Dipentaerythritol tri (meth) acrylate (b4) Dipentaerythritol tetra (meth) acrylate (b5) Dipentaerythritol Penta (meth) acrylate (b6) Dipentaerythritol hexa (meth) acrylate
  3.  下記の[α]である(メタ)アクリレート(a1)~(a3)、下記の[β]である(メタ)アクリレート(b1)~(b5)、及び、多価イソシアネート(CC)が反応したウレタン(メタ)アクリレート系組成物[III]を含有してなることを特徴とする活性エネルギー線硬化性樹脂組成物。
     [α]ペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(a1)~(a4)の混合物(A)の水酸基価が200mgKOH/g以上であり、上記混合物(A)中の(メタ)アクリレート(a1)~(a3)。
      (a1)ペンタエリスリトールモノ(メタ)アクリレート
      (a2)ペンタエリスリトールジ(メタ)アクリレート
      (a3)ペンタエリスリトールトリ(メタ)アクリレート
      (a4)ペンタエリスリトールテトラ(メタ)アクリレート
     [β]ジペンタエリスリトールと(メタ)アクリル酸との反応物である下記(メタ)アクリレート(b1)~(b6)の混合物(B)の水酸基価が40mgKOH/g以上であり、上記混合物(B)中の(メタ)アクリレート(b1)~(b5)。
      (b1)ジペンタエリスリトールモノ(メタ)アクリレート
      (b2)ジペンタエリスリトールジ(メタ)アクリレート
      (b3)ジペンタエリスリトールトリ(メタ)アクリレート
      (b4)ジペンタエリスリトールテトラ(メタ)アクリレート
      (b5)ジペンタエリスリトールペンタ(メタ)アクリレート
      (b6)ジペンタエリスリトールヘキサ(メタ)アクリレート
    Urethanes reacted with (meth) acrylates (a1) to (a3) as [α] below, (meth) acrylates (b1) to (b5) as [β] below, and polyvalent isocyanate (CC) An active energy ray-curable resin composition comprising (meth) acrylate-based composition [III].
    The mixture (A) of the following (meth) acrylates (a1) to (a4), which is a reaction product of [α] pentaerythritol and (meth) acrylic acid, has a hydroxyl value of 200 mgKOH / g or more, and the mixture (A) (Meth) acrylates (a1) to (a3).
    (A1) pentaerythritol mono (meth) acrylate (a2) pentaerythritol di (meth) acrylate (a3) pentaerythritol tri (meth) acrylate (a4) pentaerythritol tetra (meth) acrylate [β] dipentaerythritol and (meth) The hydroxyl value of the mixture (B) of the following (meth) acrylates (b1) to (b6), which is a reaction product with acrylic acid, is 40 mgKOH / g or more, and the (meth) acrylate (b1) in the mixture (B) To (b5).
    (B1) Dipentaerythritol mono (meth) acrylate (b2) Dipentaerythritol di (meth) acrylate (b3) Dipentaerythritol tri (meth) acrylate (b4) Dipentaerythritol tetra (meth) acrylate (b5) Dipentaerythritol Penta (meth) acrylate (b6) Dipentaerythritol hexa (meth) acrylate
  4.  上記(メタ)アクリレート(a1)~(a4)の混合物(A)中のペンタエリスリトールジ(メタ)アクリレート(a2)の含有割合が10~50重量%であることを特徴とする請求項1~3のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The content ratio of pentaerythritol di (meth) acrylate (a2) in the mixture (A) of the (meth) acrylates (a1) to (a4) is 10 to 50% by weight. The active energy ray-curable resin composition according to any one of the above.
  5.  上記(メタ)アクリレート(a1)~(a3)の合計に対するペンタエリスリトールジ(メタ)アクリレート(a2)の含有割合が15~55重量%であることを特徴とする請求項1~4のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 5. The content ratio of pentaerythritol di (meth) acrylate (a2) with respect to the total of the (meth) acrylates (a1) to (a3) is 15 to 55% by weight. The active energy ray-curable resin composition according to Item.
  6.  上記ウレタン(メタ)アクリレート系組成物[I]の重量平均分子量が、1,000~20,000であることを特徴とする請求項1、2、4、5のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The activity according to any one of claims 1, 2, 4, and 5, wherein the urethane (meth) acrylate composition [I] has a weight average molecular weight of 1,000 to 20,000. Energy ray curable resin composition.
  7.  上記(メタ)アクリレート(b1)~(b6)の混合物(B)中のジペンタエリスリトールペンタ(メタ)アクリレート(b5)の含有割合が15~60重量%であることを特徴とする請求項2~6のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The content ratio of dipentaerythritol penta (meth) acrylate (b5) in the mixture (B) of the (meth) acrylates (b1) to (b6) is 15 to 60% by weight. The active energy ray-curable resin composition according to any one of 6.
  8.  上記(メタ)アクリレート(b1)~(b5)の合計に対するジペンタエリスリトールペンタ(メタ)アクリレート(b5)の含有割合が45~90重量%であることを特徴とする請求項2~7のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 8. The content ratio of dipentaerythritol penta (meth) acrylate (b5) with respect to the total of the (meth) acrylates (b1) to (b5) is 45 to 90% by weight. The active energy ray-curable resin composition according to one item.
  9.  上記(メタ)アクリレート(b1)~(b6)の混合物(B)中のジペンタエリスリトールテトラ(メタ)アクリレート(b4)の含有割合が1~35重量%であることを特徴とする請求項2~8のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The content ratio of dipentaerythritol tetra (meth) acrylate (b4) in the mixture (B) of the (meth) acrylates (b1) to (b6) is 1 to 35% by weight. The active energy ray-curable resin composition according to any one of 8.
  10.  上記(メタ)アクリレート(b1)~(b5)合計に対するジペンタエリスリトールテトラ(メタ)アクリレート(b4)の含有割合が2~40重量%であることを特徴とする請求項2~9のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 10. The content ratio of dipentaerythritol tetra (meth) acrylate (b4) based on the total of the (meth) acrylates (b1) to (b5) is 2 to 40% by weight. The active energy ray-curable resin composition according to Item.
  11.  上記ウレタン(メタ)アクリレート系組成物[II]の重量平均分子量が、1,000~20,000であることを特徴とする請求項2、4~10のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray according to any one of claims 2, 4 to 10, wherein the urethane (meth) acrylate composition [II] has a weight average molecular weight of 1,000 to 20,000. Curable resin composition.
  12.  上記ウレタン(メタ)アクリレート系組成物[III]の重量平均分子量が、1,000~20,000であることを特徴とする請求項3~5、7~10のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The activity according to any one of claims 3 to 5, and 7 to 10, wherein the urethane (meth) acrylate composition [III] has a weight average molecular weight of 1,000 to 20,000. Energy ray curable resin composition.
  13.  請求項1~12のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物を含有してなることを特徴とするコーティング剤。 A coating agent comprising the active energy ray-curable resin composition according to any one of claims 1 to 12.
  14.  ハードコート用コーティング剤として用いることを特徴とする請求項13記載のコーティング剤。 14. The coating agent according to claim 13, which is used as a coating agent for hard coat.
  15.  光学フィルム用コーティング剤として用いることを特徴とする請求項13記載のコーティング剤。 14. The coating agent according to claim 13, which is used as a coating agent for an optical film.
PCT/JP2018/013806 2017-03-31 2018-03-30 Active energy ray-curable resin composition and coating agent WO2018181972A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880014095.9A CN110382575B (en) 2017-03-31 2018-03-30 Active energy ray-curable resin composition and coating agent
KR1020197025035A KR102445218B1 (en) 2017-03-31 2018-03-30 Active energy ray-curable resin composition and coating agent

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-070381 2017-03-31
JP2017070381 2017-03-31
JP2017074718 2017-04-04
JP2017-074718 2017-04-04
JP2017-082548 2017-04-19
JP2017082548 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018181972A1 true WO2018181972A1 (en) 2018-10-04

Family

ID=63678186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013806 WO2018181972A1 (en) 2017-03-31 2018-03-30 Active energy ray-curable resin composition and coating agent

Country Status (4)

Country Link
KR (1) KR102445218B1 (en)
CN (1) CN110382575B (en)
TW (1) TW201841964A (en)
WO (1) WO2018181972A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113811555A (en) * 2019-08-02 2021-12-17 根上工业株式会社 Urethane (meth) acrylate, neutralized product thereof, photocurable resin composition, and liquid composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780799B1 (en) * 2020-04-07 2020-11-04 東洋インキScホールディングス株式会社 Active energy ray-curable hard coat agent, laminate, transparent conductive film, optical member, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146801A1 (en) * 2009-06-17 2010-12-23 日本化薬株式会社 Urethane (meth)acrylate compound and resin composition containing same
JP2012229412A (en) * 2011-04-13 2012-11-22 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and coating agent
WO2015190544A1 (en) * 2014-06-13 2015-12-17 東亞合成株式会社 Curable composition
JP2016104859A (en) * 2014-11-25 2016-06-09 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286924A (en) 2008-05-30 2009-12-10 Jsr Corp Curable composition
JP5374997B2 (en) 2008-09-26 2013-12-25 Dic株式会社 Active energy ray-curable resin composition for coating and film substrate
JP5497303B2 (en) 2009-02-05 2014-05-21 共栄社化学株式会社 Anti-curl coating agent
KR101869579B1 (en) * 2011-03-08 2018-06-20 닛폰고세이가가쿠고교 가부시키가이샤 Active-energy-curable resin compositon and coating agent
KR20180015709A (en) * 2015-06-04 2018-02-13 디아이씨 가부시끼가이샤 Urethane (meth) acrylate resin and laminated film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146801A1 (en) * 2009-06-17 2010-12-23 日本化薬株式会社 Urethane (meth)acrylate compound and resin composition containing same
JP2012229412A (en) * 2011-04-13 2012-11-22 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and coating agent
WO2015190544A1 (en) * 2014-06-13 2015-12-17 東亞合成株式会社 Curable composition
JP2016104859A (en) * 2014-11-25 2016-06-09 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113811555A (en) * 2019-08-02 2021-12-17 根上工业株式会社 Urethane (meth) acrylate, neutralized product thereof, photocurable resin composition, and liquid composition
CN113811555B (en) * 2019-08-02 2023-03-10 根上工业株式会社 Urethane (meth) acrylate, neutralized product thereof, photocurable resin composition, and liquid composition

Also Published As

Publication number Publication date
CN110382575A (en) 2019-10-25
KR102445218B1 (en) 2022-09-20
CN110382575B (en) 2022-11-22
KR20190129848A (en) 2019-11-20
TW201841964A (en) 2018-12-01

Similar Documents

Publication Publication Date Title
JP5886090B2 (en) Active energy ray-curable resin composition and coating agent
JP2016104859A (en) Active energy ray-curable resin composition and coating agent
JP7384233B2 (en) Active energy ray-curable resin composition and coating agent
JP2012229412A (en) Resin composition and coating agent
WO2015152110A1 (en) Urethane (meth)acrylate compound, active-energy-ray-curable resin composition, and coating agent
JP7024558B2 (en) Active energy ray curable resin composition and coating agent
JP7408910B2 (en) Active energy ray-curable resin composition and coating agent
JP2016121346A (en) Method of producing urethane (meth)acrylate
WO2018181972A1 (en) Active energy ray-curable resin composition and coating agent
JP7070234B2 (en) Active energy ray curable resin composition and coating agent
JP6938889B2 (en) Active energy ray-curable resin composition and coating agent
JP6578692B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP6891404B2 (en) Coating agent
KR102645100B1 (en) Active energy ray curable resin composition and coating agent
JP7322396B2 (en) Active energy ray-curable resin composition and coating agent for pre-coated metal production
JP7110672B2 (en) Active energy ray-curable resin composition and coating agent
JP7243162B2 (en) Active energy ray-curable resin composition and coating agent
JP6452320B2 (en) Urethane (meth) acrylate-based compound, active energy ray-curable resin composition, and coating agent composition
JP7275748B2 (en) Active energy ray-curable resin composition and coating agent containing the same
JP7434708B2 (en) Active energy ray-curable resin composition and coating agent
JP6950527B2 (en) Active energy ray-curable resin composition and coating agent using the same
JP2015124227A (en) Active energy ray curable resin composition and coating agent composition
JP6740609B2 (en) Active energy ray curable resin composition and coating agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025035

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777617

Country of ref document: EP

Kind code of ref document: A1